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ABSTRACT

Let G be a finite group and let cd(G) be the set of irreducible character degrees

of G. The degree graph ∆(G) is the graph whose set of vertices is the set of

primes that divide degrees in cd(G), with an edge between p and q if pq divides

a for some degree a ∈ cd(G). We determine the graph ∆(G) for the finite simple

groups of types A`(q) and 2A`(q
2), that is, for the simple linear and unitary

groups.

1. INTRODUCTION

A problem of current interest is to determine information that can be
deduced about the structure of a finite group G from the structure of its
set of irreducible character degrees. A tool that has been used to study
the relationship between G and its set of character degrees is the character
degree graph ∆(G).

Let G be a finite group and let Irr(G) be the set of ordinary irreducible
characters of G. Denote the set of irreducible character degrees of G by
cd(G) = {χ(1)|χ ∈ Irr(G)} and denote by ρ(G) the set of primes that
divide degrees in cd(G). The character degree graph ∆(G) of G is the
graph whose set of vertices is ρ(G), with primes p, q in ρ(G) joined by an
edge if pq divides a for some character degree a ∈ cd(G).

The structure of this graph has been studied primarily in the case where
G is a solvable group. More recently, however, some results on the structure
of ∆(G) have been obtained for an arbitrary finite group G. In [8], for
example, Lewis and the author classified the nonsolvable finite groups for
which ∆(G) is disconnected, and in [9] we proved an upper bound on the
diameter of ∆(G) for a nonsolvable finite group G.

The results on ∆(G) for nonsolvable G have been obtained essentially by
reducing the problem to the structure of ∆(G) for a finite simple group G.
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It is therefore very useful to have as much information about the graphs
of the simple groups as possible. In particular, in order to attempt to
improve the bound on the diameter of ∆(G) found in [9], it will probably
be necessary to know explicitly the graphs for all finite simple groups.

The character tables of the sporadic simple groups are known (see the
Atlas [3]), so it is easy to determine the graphs of these groups. A descrip-
tion of these graphs is given in [9]. The graphs for the alternating groups
are easily deduced from the Atlas character tables and the results of [1].
The graphs for the simple groups of exceptional Lie type were found in [12].
By the Classification of Finite Simple Groups, this leaves the graphs for
the simple groups of classical Lie type to be determined.

In this paper, we determine the graph ∆(G) where G is a finite simple
group of Lie type either of type A`, with ` > 1, or of type 2A`, with ` > 2.
That is, either G is the linear group PSL`+1(q) for ` > 1, or G is the
unitary group PSU`+1(q2) for ` > 2. Work to determine the graphs for
the classical groups of types B`, C`, D`, and 2D` — the orthogonal and
symplectic groups — is in progress.

The character degree graphs of the simple linear and unitary groups
tend to be complete graphs, that is, there is an edge joining every pair
of vertices. In fact, for ` > 3, the degree graph of PSL`+1(q) is complete
unless ` = 3 and q = 2 (Theorem 3.3) and the graph of PSU`+1(q2) is
always complete (Theorem 3.5). The situation for groups of lower rank is
more complicated and is described in Theorems 3.1, 3.2, and 3.4.

2. CHARACTER DEGREES

In this section, we construct the character degrees used to determine
the character degree graphs for simple groups of type A` or 2A`, for ` > 3.

Throughout this section, q will denote a power of a prime p, Fqa is the
field of qa elements, and F∗qa its multiplicative group. We denote by Fp an
algebraic closure of the field Fp of p elements.

For notation, definitions, and basic properties of groups of Lie type, we
refer to [2] or [4]. We will denote by G a simple linear algebraic group of
adjoint type defined over Fp, and by F a Frobenius endomorphism of G so
that the set GF of fixed points is finite and the derived group of GF is a
simple group. Let (G∗, F ∗) denote the dual of (G, F ).

Several of the character degrees are determined using the following
lemma, which is a direct result of [4, Theorem 13.23, Remark 13.24] or
[2, §12.9].

Lemma 2.1. There is a bijection between the set of conjugacy classes
(s) of semisimple elements s of G∗F∗ and the set of geometric conjugacy
classes E(GF , (s)) of irreducible characters of GF . For a semisimple el-
ement s of G∗F∗ , there is a bijection ψs between the set of irreducible
characters in E(GF , (s)) and the set of unipotent characters of CG∗(s)F∗ .
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Moreover, for χ ∈ E(GF , (s)), the degree of χ is

χ(1) =
|GF |p′

|CG∗(s)F∗ |p′ ψs(χ)(1).

The elements of E(GF , (1)) are the unipotent characters of GF . The
character χs such that ψs(χs) is the principal character of CG∗(s)F∗ is the
semisimple character corresponding to the conjugacy class of s. Thus the
lemma says that the irreducible characters of GF are in bijection with the
set of pairs (χs, µs), where χs is the semisimple character corresponding
to (s) and µs is a unipotent character of CG∗(s)F∗ . The degree of the
character corresponding to (χs, µs) is χs(1)µs(1).

The degrees of the unipotent characters of the classical groups can be
computed using formulas found in [2, §13.8]. Other character degrees will
be computed using the formula in Lemma 2.1 for particular semisimple
elements s.

2.1. Character Degrees of Linear Groups

We construct here some character degrees for the projective general
linear group PGL`+1(q), for ` > 3. In this case, G is the adjoint group of
type A`, so G = PGL`+1(Fp) and the dual group is G∗ = SL`+1(Fp). The
Frobenius map F ∗ on G∗ is the standard Frobenius map (aij) 7→ (aq

ij),
so the group of fixed points G∗F∗ is SL`+1(q), which is dual to GF =
PGL`+1(q).

In order to construct each semisimple character degree of PGL`+1(q),
we will exhibit a semisimple element X of G∗ = SL`+1(Fp) whose eigen-
values are permuted by the Frobenius map F ∗. The conjugacy class of
X in G∗ then intersects the conjugacy class of a semisimple element s of
SL`+1(q), and this semisimple class corresponds to a semisimple character χ
of PGL`+1(q).

Lemma 2.2. If ` > 3, then GF = PGL`+1(q) has irreducible characters
χ(1,1,`−1), χ1, χ2, and χ3 with degrees

χ(1,1,`−1)(1) = q3 · (q`−1 − 1)(q` − 1)
(q − 1)(q2 − 1)

χ1(1) = (q − 1)(q2 − 1)(q3 − 1) · · · (q`−1 − 1)(q` − 1)

χ2(1) = (q2 − 1)(q3 − 1) · · · (q`−1 − 1)(q`+1 − 1)

χ3(1) = q · (q2 − 1)(q3 − 1) · · · (q`+1 − 1)
(q2 − 1)(q`−1 − 1)

.

Proof. By the notation and character degree formula in [2, §13.8], since
` > 3, GF = PGL`+1(q) has the unipotent character χ(1,1,`−1) with the
degree as claimed.
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By [3, §3], we have

|GF |p′ = (q2 − 1)(q3 − 1) · · · (q` − 1)(q`+1 − 1).

Let η be a generator of F∗q`+1 and τ = ηq−1, so τ is an element of Fq`+1

of order
q`+1 − 1

q − 1
= q` + q`−1 + · · ·+ q + 1.

Let
X1 = diag[τ, τ q, τ q2

, . . . , τ q`

],

so det X1 = 1 and X1 is a semisimple element of G∗ = SL`+1(Fp).
Since τ ∈ Fq`+1 , we have τ q`+1

= τ , and therefore the Frobenius map
cyclically permutes the eigenvalues of X1. Hence the conjugacy class of X1

in G∗ is F ∗-stable and intersects G∗F∗ = SL`+1(q) in the conjugacy class
of a semisimple element s1. Denote by χ1 the corresponding semisimple
character of GF = PGL`+1(q).

The eigenvalues of s1 are distinct and CG∗(s1)F∗ = 〈s1〉. Hence

|CG∗(s1)F∗ |p′ =
q`+1 − 1

q − 1
,

and by Lemma 2.1 and the value of |GF |p′ given above, χ1(1) is as claimed.
Next, let σ be a generator of F∗q` and

ρ = σ−
q`−1
q−1 = σ−(q`−1+q`−2+···+q+1),

so ρ is an element of Fq of order q − 1. Let

X2 = diag[σ, σq, σq2
, . . . , σq`−1

, ρ],

so det X2 = 1 and X2 is a semisimple element of G∗ = SL`+1(Fp).
Since ρ ∈ Fq, ρq = ρ. Also, σ ∈ Fq` , hence σq`

= σ and the Frobe-
nius map cyclically permutes the eigenvalues σ, σq, . . . , σq`−1

and fixes ρ.
Therefore the conjugacy class of X2 is F ∗-stable and its intersection with
G∗F∗ = SL`+1(q) is the conjugacy class of a semisimple element s2. Denote
by χ2 the corresponding semisimple character of GF = PGL`+1(q).

The eigenvalues of s2 are distinct and CG∗(s2)F∗ = 〈s2〉, hence

|CG∗(s2)F∗ |p′ = q` − 1.

Therefore, by Lemma 2.1 and the value of |GF |p′ given above, χ2(1) is as
claimed.

Let θ be a generator of F∗q`−1 and let γ = θq−1, so γ is an element of
Fq`−1 of order

q`−1 − 1
q − 1

= q`−2 + q`−3 + · · ·+ q + 1.
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Let
X3 = diag[1, 1, γ, γq, γq2

, . . . , γq`−2
].

so det X3 = 1 and X3 is a semisimple element of G∗ = SL`+1(Fp).
Because γ ∈ Fq`−1 , we have γq`−1

= γ, so the Frobenius map cycli-
cally permutes the eigenvalues γ, γq, . . . , γq`−2

, and of course fixes the
eigenvalue 1. Therefore the conjugacy class of X3 is F ∗-stable and its
intersection with G∗F∗ = SL`+1(q) is the conjugacy class of a semisim-
ple element s3. Denote by χs3 the corresponding semisimple character of
GF = PGL`+1(q).

The eigenvalues of s3 other than 1 are distinct and CG∗(s3)F∗ is iso-
morphic to a group of the form [SL2(q)× 〈γ〉] · (q− 1). We have |SL2(q)| =
q(q2 − 1) and |〈γ〉| = (q`−1 − 1)/(q − 1), hence

|CG∗(s2)F∗ |p′ = (q2 − 1)(q`−1 − 1).

Therefore, by Lemma 2.1 and the value of |GF |p′ given above,

χs3(1) =
(q2 − 1)(q3 − 1) · · · (q`+1 − 1)

(q2 − 1)(q`−1 − 1)
.

In this case, CG∗(s3)F∗ has a unipotent character St, the Steinberg char-
acter, of degree q. Let χ3 be the irreducible character of GF = PGL`+1(q)
corresponding to the pair (χs3 , St). It then follows from Lemma 2.1 that
the degree of χ3 is as claimed.

2.2. Character Degrees of Unitary Groups

We next construct some character degrees for the projective general
unitary group PU`+1(q2), for ` > 3. Let G∗ = SL`+1(Fp), and let F ∗ be
the twisted Frobenius map on G∗ given by (aij) 7→ ((aq

ij)
t)−1, so the group

of fixed points G∗F∗ is the special unitary group SU`+1(q2) defined over
the field of q2 elements. This is dual to GF = PU`+1(q2), the adjoint group
of type 2A`.

Lemma 2.3. If ` > 3, then GF = PU`+1(q2) has irreducible characters
χ(1,1,`−1), χ1, and χ2 with degrees

χ(1,1,`−1)(1) = q3 · (q`−1 − (−1)`−1)(q` − (−1)`)
(q + 1)(q2 − 1)

χ1(1) = (q + 1)(q2 − 1)(q3 + 1) · · · (q`−1 − (−1)`−1)(q` − (−1)`)

χ2(1) = (q2 − 1)(q3 + 1) · · · (q`−1 − (−1)`−1)(q`+1 − (−1)`+1).

If (`, q) is not in {(3, 2), (3, 3), (4, 2)}, then there is an irreducible character
χ3 with degree

χ3(1) = q · (q2 − 1)(q3 + 1) · · · (q`+1 − (−1)`+1)
(q2 − 1)(q`−1 − (−1)`−1)

.

5



Proof. By the notation and character degree formula in [2, §13.8], since
` > 3, GF = PU`+1(q2) has the unipotent character χ(1,1,`−1) with the
degree as claimed.

By [3, §3], we have

|GF |p′ = (q2 − 1)(q3 + 1) · · · (q` − (−1)`)(q`+1 − (−1)`+1).

Denote by η a generator of F∗q`+1 and, if ` is even, let ω be a generator
of F∗

q2(`+1) . Let

τ =
{

ηq+1 if ` is odd
ω(q`+1−1)(q+1) if ` is even

so τ is an element of Fp of order

q`+1 − (−1)`+1

q + 1
= (−1)`

(
1− q + q2 − · · ·+ (−q)`−1 + (−q)`

)
.

Let
X1 = diag[τ, τ−q, τ q2

, . . . , τ (−q)`−1
, τ (−q)`

],

so det X1 = 1 and X1 is a semisimple element of G∗ = SL`+1(Fp).
Since τ q`+1−(−1)`+1

= 1, we have τ (−q)`+1
= τ , and therefore the Frobe-

nius map cyclically permutes the eigenvalues of X1. Hence the conjugacy
class of X1 in G∗ is F ∗-stable and intersects G∗F∗ = SU`+1(q2) in the con-
jugacy class of a semisimple element s1. Denote by χ1 the corresponding
semisimple character of GF = PU`+1(q2).

The eigenvalues of s1 are distinct and CG∗(s1)F∗ = 〈s1〉, hence

|CG∗(s1)F∗ |p′ =
q`+1 − (−1)`+1

q + 1
.

By Lemma 2.1 and the value of |GF |p′ given above, χ1(1) is as claimed.
If ` is even, let σ be a generator of F∗q` , and if ` is odd, let ζ be a

generator of F∗q2` and let σ = ζq`−1. Let

ρ = σ(−1)` q`−(−1)`

q+1 = σ−(1−q+q2−···+(−q)`−2+(−q)`−1),

so that σ is an element of Fp of order q`− (−1)` and ρ is an element of Fq2

of order q + 1. Let

X2 = diag[σ, σ−q, σq2
, . . . , σ(−q)`−1

, ρ],

so det X2 = 1 and X2 is a semisimple element of G∗ = SL`+1(Fp).
Since ρq+1 = 1, ρ−q = ρ. Also, σq`−(−1)`

= 1, hence σ(−q)`

= σ and the
Frobenius map cyclically permutes the eigenvalues σ, σ−q, . . . , σ(−q)`−1

and
fixes ρ. Therefore the conjugacy class of X2 is F ∗-stable and its intersection
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with G∗F∗ = SU`+1(q2) is the conjugacy class of a semisimple element s2.
Denote by χ2 the corresponding semisimple character of GF = PU`+1(q2).

The eigenvalues of s2 are distinct and CG∗(s2)F∗ = 〈s2〉, hence

|CG∗(s2)F∗ |p′ = q` − (−1)`.

Therefore, by Lemma 2.1 and the value of |GF |p′ given above, χ2(1) is as
claimed.

Let θ be a generator of F∗q`−1 and, if ` is even, let ξ be a generator of
F∗

q2(`−1) . Let

γ =
{

θq+1 if ` is odd
ξ(q`−1−1)(q+1) if ` is even

so γ is an element of Fp of order

q`−1 − (−1)`−1

q + 1
= (−1)`−2

(
1− q + q2 − · · ·+ (−q)`−3 + (−q)`−2

)
.

Let
X3 = diag[1, 1, γ, γ−q, γq2

, . . . , γ(−q)`−3
, γ(−q)`−2

],

so det X3 = 1 and X3 is a semisimple element of G∗ = SL`+1(Fp).
As γq`−1−(−1)`−1

= 1, we have γ(−q)`−1
= γ, and the Frobenius map

cyclically permutes the eigenvalues γ, γ−q, . . . , γ(−q)`−2
, fixing the eigen-

value 1. Therefore the conjugacy class of X3 is F ∗-stable and its in-
tersection with G∗F∗ = SU`+1(q2) is the conjugacy class of a semisim-
ple element s3. Denote by χs3 the corresponding semisimple character of
GF = PU`+1(q2).

Unless ` = 3 and q = 2 or q = 3, or ` = 4 and q = 2, the eigenvalues
of s3 other than 1 are distinct and CG∗(s3)F∗ is isomorphic to a group
of the form

[
SU2(q2)× 〈γ〉] · (q + 1). We have |SU2(q2)| = q(q2 − 1) and

|〈γ〉| = (q`−1 − (−1)`−1)/(q + 1). Hence

|CG∗(s2)F∗ |p′ = (q2 − 1)(q`−1 − (−1)`−1).

Therefore, by Lemma 2.1 and the value of |GF |p′ given above,

χs3(1) =
(q2 − 1)(q3 + 1) · · · (q`+1 − (−1)`+1)

(q2 − 1)(q`−1 − (−1)`−1)
.

In this case, CG∗(s3)F∗ has a unipotent character St, the Steinberg char-
acter, of degree q. Let χ3 be the irreducible character of GF = PU`+1(q2)
corresponding to the pair (χs3 , St). It then follows from Lemma 2.1 that
the degree of χ3 is as claimed.
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3. THE DEGREE GRAPHS

We are now ready to describe the graphs ∆(G) for simple groups of
types A` and 2A`. Let π(n) denote the set of prime divisors of a positive
integer n. Note that if G is a nonabelian finite simple group, then by the
Itô-Michler Theorem (see [10, Remarks 13.13]), ρ(G) = π(|G|).

3.1. Linear Groups

In this section, G is the projective special linear group PSL`+1(q) of
type A`(q), where q is a power of a prime p and ` > 1. If ` = 1, then
we take q > 4 as PSL2(2) and PSL2(3) are not simple. Note also that
PSL2(5) ∼= PSL2(4).

Theorem 3.1. Let G ∼= PSL2(q), where q > 4 is a power of a prime p.

1. If q is even, then ∆(G) has three connected components, {2}, π(q−1),
and π(q + 1), and each component is a complete graph.

2. If q > 5 is odd, then ∆(G) has two connected components, {p} and
π ((q − 1)(q + 1)).

(a) The connected component π ((q − 1)(q + 1)) is a complete graph
if and only if q − 1 or q + 1 is a power of 2.

(b) If neither of q−1 or q+1 is a power of 2, then π ((q − 1)(q + 1))
can be partitioned as {2} ∪M ∪ P , where M = π(q − 1) − {2}
and P = π(q + 1) − {2} are both nonempty sets. The subgraph
of ∆(G) corresponding to each of the subsets M , P is complete,
all primes are adjacent to 2, and no prime in M is adjacent to
any prime in P .

Proof. The character table of PSL2(q) is well-known. See [5, §38], for
example.

If q = 2n, n > 2, then

cd(G) = {1, 2n − 1, 2n, 2n + 1}.

As 2n−1 and 2n+1 are odd and relatively prime, ∆(G) has three connected
components {2}, π(2n−1), and π(2n +1). For each connected component,
there is a degree divisible by all primes in that component, hence each
component is a complete graph.

If q = pn > 5 is odd, then

cd(G) = {1, q − 1, q, q + 1, (q + ε)/2},

where ε = (−1)(q−1)/2. Now 2 divides both q − 1 and q + 1, and (q + ε)/2
divides q + ε, hence the two connected components of ∆(G) are {p} and
π((q − 1)(q + 1)).
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We have (q − 1, q + 1) = 2, so no prime in M is adjacent to any prime
in P , but every prime in π((q− 1)(q +1)) is adjacent to 2 in ∆(G). If q− 1
or q + 1 is a power of 2, then either M or P is empty, and the graph of
the component π((q − 1)(q + 1)) is complete. If neither q − 1 nor q + 1 is
a power of 2, then both M and P are nonempty, hence the graph is not
complete.

We next describe the degree graph for PSL3(q). Note that PSL3(2) ∼=
PSL2(7), so if q = 2, then the graph is described in Theorem 3.1. We will
therefore take q > 2.

Theorem 3.2. Let G ∼= PSL3(q), where q > 2 is a power of a prime p.

1. The graph ∆(G) is complete if and only if q is odd and q − 1 = 2i3j

for some i > 1, j > 0.

2. (a) If q = 4 then G ∼= PSL3(4) and ∆(G) is

2 5�
��
PPP

3

7

(b) If q 6= 4, then ρ(G) = {p} ∪ π
(
(q − 1)(q + 1)(q2 + q + 1)

)
. The

subgraph of ∆(G) corresponding to π
(
(q − 1)(q + 1)(q2 + q + 1)

)
is complete and p is adjacent to precisely those primes dividing
q + 1 or q2 + q + 1.

Proof. If q = 4, then G ∼= PSL3(4) and by the character table in the
Atlas [3], we have

cd(PSL3(4)) = {1, 22 · 5, 5 · 7, 32 · 5, 32 · 7, 26}.

Hence ∆(PSL3(4)) is as claimed in 2a. Note that the graph is not complete,
so 1 holds in case q = 4.

If q = 3, then G ∼= PSL3(3) and again by the Atlas character table, we
have

cd(PSL3(3)) = {1, 22 · 3, 13, 24, 2 · 13, 33, 3 · 13}.
Hence ∆(PSL3(3)) is complete as claimed in 1. Moreover, in this case
p = 3, q − 1 = 2, q + 1 = 4, and q2 + q + 1 = 13, hence 2b holds as well.

Assume now that q > 4. By the character table of G in either [11]
or the CHEVIE system [6], every character degree of G divides one of the
degrees in the subset

{q3, q(q+1), (q−1)(q2+q+1), q(q2+q+1), (q+1)(q2+q+1), (q−1)2(q+1)}

of cd(G). Hence all primes dividing q−1, q+1, or q2 +q+1 are adjacent in
∆(G) and p is adjacent to precisely those primes dividing q+1 or q2+q+1.
Statement 2b of the theorem follows.
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It also follows from the list of degrees above that for q > 4, ∆(G) is
complete if and only if p is adjacent to all primes dividing q−1. This holds
if and only if every prime dividing q−1 also divides either q+1 or q2+q+1.

We have

(q − 1, q + 1) =
{

1 if q is even
2 if q is odd

and

(q − 1, q2 + q + 1) =
{

1 if q 6≡ 1(mod 3)
3 if q ≡ 1(mod 3).

Thus for q > 4, ∆(G) is complete if and only if no primes other than 2 or 3
divide q − 1, that is, if and only if q − 1 = 2i3j for some i > 0, j > 0.

If q − 1 = 2i3j and q is even, then q = 2m for some positive integer m
and i = 0, so q − 1 = 2m − 1 = 3j . Hence either j = 0 and q = 2,
contradicting q > 4, or 2m − 1 is divisible by 3. Since 2 ≡ −1(mod 3), this
implies m = 2k is even, and 3j = 22k − 1 = (2k − 1)(2k + 1). But then
2k− 1 and 2k +1 are powers of 3 and are relatively prime, and this implies
2k − 1 = 1. Hence k = 1, m = 2, and q = 2m = 4, again contradicting
q > 4.

Therefore, 1 holds for q > 4 and we saw above that 1 holds for q 6 4,
completing the proof of the theorem.

We now consider the simple groups of type A` for all ` > 3. The one
exceptional case is PSL4(2), which is isomorphic to the alternating group
Alt(8). This is one of only three simple alternating groups whose graph is
not complete, along with Alt(5) ∼= PSL2(4) and Alt(6) ∼= PSL2(9).

Theorem 3.3. Let G ∼= PSL`+1(q), where ` > 3 and q is a power of a
prime p. The graph ∆(G) is complete unless ` = 3 and q = 2. If ` = 3 and
q = 2, then G ∼= PSL4(2) ∼= Alt(8) and ∆(G) is

2�
��
PPP

5

7
3P

PP
���

Proof. The order of G ∼= PSL`+1(q) is given by

|G| = 1
d

q`(`+1)/2(q2 − 1)(q3 − 1) · · · (q` − 1)(q`+1 − 1),

where d = (` + 1, q − 1) = [PGL`+1(q) : PSL`+1(q)]. Therefore, denoting
by Φk = Φk(q) the value of the kth cyclotomic polynomial evaluated at q,
we have that ρ(G) is precisely the set of primes dividing q or some Φk for
1 6 k 6 ` + 1.

The character degrees found in Lemma 2.2 are degrees of PGL`+1(q).
By [7, Corollary 11.29], if χ is an irreducible character of PGL`+1(q) and
µ is an irreducible constituent of the restriction of χ to PSL`+1(q), then
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χ(1)/µ(1) divides d and hence divides q − 1 as well. In particular, if q − 1
divides χ(1), then χ(1)/(q − 1) = χ(1)/Φ1 divides µ(1).

First, let ` > 4. By Lemma 2.2, PGL`+1(q) has an irreducible character
χ3 of degree

χ3(1) = q · (q2 − 1)(q3 − 1) · · · (q`−1 − 1)(q` − 1)(q`+1 − 1)
(q2 − 1)(q`−1 − 1)

.

Since ` > 4, χ3(1) is divisible by at least q` − 1 and q`+1 − 1, one of which
is divisible by q2− 1 and the other by q− 1. Hence Φ2

1 and Φ2 both divide
χ3(1), in spite of the division by q2 − 1 in the degree formula. It follows
that PSL`+1(q) has an irreducible character whose degree is divisible by p
and all Φk with 1 6 k 6 `+1 except Φ`−1. Thus all primes in ρ(G), except
those dividing only Φ`−1, are adjacent in ∆(G).

Again by Lemma 2.2, PGL`+1(q) has irreducible characters of degrees

χ1(1) = (q − 1)(q2 − 1)(q3 − 1) · · · (q`−1 − 1)(q` − 1)

and
χ2(1) = (q2 − 1)(q3 − 1) · · · (q`−1 − 1)(q`+1 − 1).

As ` > 4, both degrees are divisible by Φ2
1, hence PSL`+1(q) has irreducible

characters µ1 and µ2 whose degrees are divisible by the same primes as
χ1(1) and χ2(1), respectively. These degrees show that the primes dividing
Φ`−1 are adjacent in ∆(G) to all primes in ρ(G) except possibly to p.

It remains to show that p is adjacent to all primes dividing Φ`−1. The
character χ(1,1,`−1) in Lemma 2.2 is a unipotent character of degree

χ(1,1,`−1)(1) = q3 · (q`−1 − 1)(q` − 1)
(q − 1)(q2 − 1)

.

By the results of [2, §12.1], PSL`+1(q) has a unipotent character of the
same degree. Because ` > 4, both p and Φ`−1 divide this degree. Hence
∆(G) is a complete graph for ` > 4.

Now let ` = 3, so that G = PSL4(q). In this case, the primes in ρ(G)
are those primes dividing one of q, Φ1, Φ2, Φ3, or Φ4. The degrees listed
in Lemma 2.2 are

χ(1,1,`−1)(1) = q3 · (q2 − 1)(q3 − 1)
(q − 1)(q2 − 1)

= q3Φ3,

χ1(1) = (q − 1)(q2 − 1)(q3 − 1) = Φ3
1Φ2Φ3,

χ2(1) = (q2 − 1)(q4 − 1) = Φ2
1Φ

2
2Φ4,

and

χ3(1) = q · (q2 − 1)(q3 − 1)(q4 − 1)
(q2 − 1)(q2 − 1)

= qΦ1Φ3Φ4.

11



Note that in this case, d = (4, q − 1) = (4,Φ1). If q is even, then d = 1
and PSL4(q) = PGL4(q). If q is odd, then d = 2 or d = 4, but d divides Φ1

and Φ4 = q2 + 1 is even. Hence, in any case, the primes dividing the
degree of an irreducible constituent of the restriction of χ3 to PSL4(q) are
the same as the primes dividing χ3(1). Therefore, all primes in ρ(G) are
adjacent in ∆(G) except possibly those dividing Φ2.

Irreducible constituents of the restrictions of χ1 and χ2 to PSL4(q) will
have degrees divisible by Φ2

1Φ2Φ3 and Φ1Φ2
2Φ4, respectively. Hence the

primes dividing Φ2 are adjacent in ∆(G) to all primes dividing Φ1, Φ3,
or Φ4.

If q is even then p = 2 and if q is odd then p is adjacent to all primes
dividing Φ1 = q − 1, so in particular p is adjacent to 2. Hence, it remains
to determine whether p is adjacent to the odd primes dividing Φ2.

If q = p = 2, then G = PSL4(2) ∼= Alt(8) and Φ2 = 3. By the character
table of G in the Atlas [3], we have

cd(G) = {1, 7, 2 · 7, 22 · 5, 3 · 7, 22 · 7, 5 · 7, 32 · 5, 23 · 7, 26, 2 · 5 · 7}.
Hence 2 and 3 are not adjacent in ∆(G), and the graph is as claimed.

If q = 3, then Φ2 = 4 and there are no odd primes dividing Φ2, so p is
adjacent to all primes dividing Φ2. Hence ∆(G) is complete if q = 3.

If q > 3, then by the character table of GL4(q) constructed by F. Lübeck
for the CHEVIE system [6], PGL4(q) has an irreducible character of degree
qΦ2Φ3Φ4. We have d = 1, 2, or 4 and PSL4(q) has an irreducible character
whose degree is divisible by (qΦ2Φ3Φ4)/d, hence divisible by p and the odd
primes dividing Φ2. Therefore, p is adjacent to the odd primes dividing Φ2,
and ∆(G) is complete when q > 3.

3.2. Unitary Groups

In this section G is the projective special unitary group PSU`+1(q2) of
type 2A`(q2), where q is a power of a prime p. Because PSU2(q2) ∼= PSL2(q),
we take ` > 2. If ` = 2, then we take q > 2, as PSU3(22) is not simple.

Theorem 3.4. Let G ∼= PSU3(q2), where q > 2 is a power of a prime p.

1. The graph ∆(G) is complete if and only if q satisfies q + 1 = 2i3j for
some i > 0, j > 0.

2. If q > 2, then ρ(G) = {p} ∪ π
(
(q − 1)(q + 1)(q2 − q + 1)

)
. The

subgraph of ∆(G) corresponding to π
(
(q − 1)(q + 1)(q2 − q + 1)

)
is

complete, and p is adjacent to precisely those primes dividing q − 1
or q2 − q + 1.

Proof. Since q > 2, the character table of G in either [11] or the CHEVIE
system [6] shows that every character degree of G divides one of the degrees
in the subset

{q3, q(q−1), (q−1)(q2−q+1), q(q2−q+1), (q+1)(q2−q+1), (q−1)(q+1)2}
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of cd(G). Hence all primes dividing q−1, q+1, or q2−q+1 are adjacent in
∆(G) and p is adjacent to precisely those primes dividing q−1 or q2−q+1.
Therefore, statement 2 of the theorem follows.

It also follows from the list of degrees above that ∆(G) is complete if
and only if p is adjacent to all primes dividing q +1. This holds if and only
if every prime dividing q + 1 also divides either q − 1 or q2 − q + 1.

We have

(q + 1, q − 1) =
{

1 if q is even
2 if q is odd

and

(q + 1, q2 − q + 1) =
{

1 if q 6≡ −1(mod 3)
3 if q ≡ −1(mod 3).

Hence ∆(G) is complete if and only if no primes other than 2 or 3 divide
q +1, that is, if and only if q +1 = 2i3j for some i > 0, j > 0. Statement 1
of the theorem therefore holds.

Finally, we determine the graph ∆(G) for the simple groups of type 2A`

for all ` > 3.

Theorem 3.5. If G ∼= PSU`+1(q2), where ` > 3 and q is a power of a
prime p, then the graph ∆(G) is complete.

Proof. It is easy to check using the character tables in the Atlas [3]
that if (`, q) is in {(3, 2), (3, 3), (4, 2)}, then the graph ∆(G) is complete.
In fact, in each case, there is an irreducible character whose degree is
divisible by all primes in ρ(G). Using Atlas notation for the characters, we
have ρ(PSU4(22)) = {2, 3, 5} and χ11(1) = 30 = 2 · 3 · 5, ρ(PSU4(32)) =
{2, 3, 5, 7} and χ8(1) = 210 = 2 · 3 · 5 · 7, and ρ(PSU5(22)) = {2, 3, 5, 11}
and χ26(1) = 330 = 2 · 3 · 5 · 11. We therefore assume for the remainder of
the proof that (`, q) 6∈ {(3, 2), (3, 3), (4, 2)}.

The order of G ∼= PSU`+1(q2) is given by

|G| = 1
d

q`(`+1)/2(q2 − 1)(q3 + 1) · · · (q` − (−1)`)(q`+1 − (−1)`+1),

where d = (` + 1, q + 1) = [PU`+1(q2) : PSU`+1(q2)]. Therefore, ρ(G) is
precisely the set of primes dividing q or some qk − (−1)k for 2 6 k 6 ` + 1.

The character degrees found in Lemma 2.3 are degrees of PU`+1(q2).
As in the linear case, if χ is an irreducible character of PU`+1(q2) and µ
is an irreducible constituent of the restriction of χ to PSU`+1(q2), then
χ(1)/µ(1) divides d and hence divides q + 1 as well. In particular, if q + 1
divides χ(1), then χ(1)/(q + 1) divides µ(1).

First, let ` > 4. By Lemma 2.3, PU`+1(q2) has an irreducible character
χ3 of degree

χ3(1) = q · (q2 − 1)(q3 + 1) · · · (q` − (−1)`)(q`+1 − (−1)`+1)
(q2 − 1)(q`−1 − (−1)`−1)

.
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Since ` > 4, χ3(1) is divisible by at least q`−(−1)` and q`+1−(−1)`+1, one
of which is divisible by q2 − 1 and the other by q + 1. Hence (q + 1)2 and
q−1 both divide χ3(1), despite the division by q2−1 in the degree formula.
It follows that PSU`+1(q2) has an irreducible character whose degree is
divisible by p and all qk− (−1)k with 2 6 k 6 `+1 except q`−1− (−1)`−1.
Thus all primes in ρ(G) except those dividing only q`−1 − (−1)`−1 are
adjacent in ∆(G).

By Lemma 2.3, PU`+1(q2) has irreducible characters of degrees

χ1(1) = (q + 1)(q2 − 1)(q3 + 1) · · · (q`−1 − (−1)`−1)(q` − (−1)`)

and

χ2(1) = (q2 − 1)(q3 + 1) · · · (q`−1 − (−1)`−1)(q`+1 − (−1)`+1).

Since ` > 4, both degrees are divisible by (q + 1)2, hence PSU`+1(q2) has
irreducible characters µ1 and µ2 whose degrees are divisible by the same
primes as χ1(1) and χ2(1), respectively. These degrees show that the primes
dividing q`−1 − (−1)`−1 are adjacent in ∆(G) to all primes in ρ(G) except
possibly to p.

It remains to show that p is adjacent to all primes dividing q`−1 −
(−1)`−1. The character χ(1,1,`−1) in Lemma 2.3 is a unipotent character of
degree

χ(1,1,`−1)(1) = q3 · (q`−1 − (−1)`−1)(q` − (−1)`)
(q + 1)(q2 − 1)

.

As in the linear case, PSU`+1(q2) has a unipotent character of the same
degree. Since ` > 4, we already know that p is adjacent to all primes
dividing q2 − 1. Also because ` > 4, both p and all other primes dividing
q`−1 − (−1)`−1 divide this degree. Hence ∆(G) is a complete graph for
` > 4.

Now let ` = 3, so that G = PSU4(q2), and recall that in this case we
assume q > 3. We have d = (4, q + 1) and

|G| = 1
d

q6(q2 − 1)(q3 + 1)(q4 − 1) =
1
d

q6Φ2
1Φ

3
2Φ4Φ6,

where Φk = Φk(q) denotes the value of the kth cyclotomic polynomial
evaluated at q. The primes in ρ(G) are those primes dividing one of q, Φ1,
Φ2, Φ4, or Φ6. The degrees listed in Lemma 2.3 are

χ(1,1,`−1)(1) = q3 · (q2 − 1)(q3 + 1)
(q + 1)(q2 − 1)

= q3Φ6,

χ1(1) = (q + 1)(q2 − 1)(q3 + 1) = Φ1Φ3
2Φ6,

χ2(1) = (q2 − 1)(q4 − 1) = Φ2
1Φ

2
2Φ4,
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and

χ3(1) = q · (q2 − 1)(q3 + 1)(q4 − 1)
(q2 − 1)(q2 − 1)

= qΦ2Φ4Φ6.

We have d = (4, q + 1) = (4, Φ2), and Φ2
2 divides both χ1(1) and χ2(1).

For χ3, note that if q is odd, then d = 2 or d = 4, but d divides Φ2 and Φ4 =
q2 + 1 is even. If q is even, then d = 1 and PSU4(q2) = PU4(q2). Hence,
in any case, the primes dividing the degree of an irreducible constituent
of the restriction of χ1, χ2, or χ3 to PSU4(q2) are the same as the primes
dividing χ1(1), χ2(1), or χ3(1), respectively.

Therefore, using χ3(1), we see that all primes in ρ(G) are adjacent in
∆(G) except possibly those dividing Φ1. The degrees χ1(1) and χ2(1) show
that the primes dividing Φ1 are adjacent in ∆(G) to all primes dividing Φ2,
Φ4, or Φ6. It remains to show that p is adjacent to the primes dividing Φ1.

By the character table of GU4(q2) constructed by F. Lübeck for the
CHEVIE system [6], since q > 3, PU4(q2) has an irreducible character of
degree qΦ2

1Φ4. Hence PSU4(q2) has an irreducible character whose degree
is divisible by (qΦ2

1Φ4)/d. If q is even, then d = 1. If q is odd, then d = 2
or d = 4, and qΦ2

1Φ4 is divisible by 8. Therefore, this degree is divisible by
p and all primes dividing Φ1 in any case. Hence p is adjacent to all primes
dividing Φ1, and ∆(G) is complete when ` = 3.
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