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DEGREE OF ADAPTIVE APPROXIMATION 

RONALD A. DEVORE AND XIANG MING YU 

ABSTRACT. We obtain various estimates for the error in adaptive approximation 
and also establish a relationship between adaptive approximation and free-knot 
spline approximation. 

1. INTRODUCTION 

Nonlinear methods of approximation are important because they enable us 
to approximate functions with singularities much better than do their linear 
counterparts. This speaks for the great interest in rational and free-knot spline 
approximation. On the other hand, adaptive approximation, which is a vari- 
ant of free-knot spline approximation, is much more useful in applications of 
approximation to numerical computation. However, there are only a few error 
estimates for this type of approximation. The earliest results were obtained by 
Birman and Solomjak [3] who gave an estimate for the degree of adaptive ap- 
proximation for functions in Sobolev spaces. Estimates of a different flavor were 
given by Rice [11 ] and in the multivariate case by de Boor and Rice [2]. More 
recently, with a simple application of the Hardy-Littlewood maximal function, 
DeVore [5] proved a limiting version of the Birman-Solomjak theorem. 

In this paper, we obtain a variety of estimates for the degree of adaptive 
approximation in Lq, 0 < q < xc. Our first results are for functions in the 
smoothness spaces Cp (a > 0, 0 < p < xo) which measure smoothness of 
order a in Lp through certain maximal functions. Since, in the case that a 
is an integer and 1 < p < cc, they are closely related to the Sobolev spaces, 
our results are a generalization of the Birman-Solomjak theorem and DeVore's 
theorem. The advantage here, however, is that the smoothness of functions can 
be measured for all a > 0 and in Lp spaces with p < 1 . It is well understood 
that the description of approximation classes by nonlinear methods ultimately 
involves smoothness spaces in Lp, p < 1. 

We shall also establish a relationship between adaptive approximation and 
free-knot spline approximation, which allows the estimation of the degree of 
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626 R. A. DeVORE AND X. M. YU 

adaptive approximation by means of known results for the degree of free-knot 
spline approximation. Moreover, we prove for adaptive approximation an ana- 
logue of Burchard's theorem [4] for free-knot spline approximation. 

2. ADAPTIVE APPROXIMATION 

We begin with a brief description of what we mean by adaptive approxi- 
mation. Other variants are possible and would produce similar results. Let 

d d Q = [0, 1] be the unit cube in R . If f E Lq(Q) 0 < q < oo, we denote by 
E(Q):= Er(f, Q)q := inf Ilf -PLq(Q) 

the local error in approximating f on the cube Q C Q by elements of the 
space Y'r, the space of polynomials of degree < r. The following adaptive 
procedure constructs a piecewise polynomial which approximates f to a pre- 
scribed tolerance e > 0. We say that a cube Q is good if E(Q) < e; otherwise 
Q is called bad. We want to generate a partition Se of Q into good cubes. 
If Q is good then go {Q} is the desired partition. In this case, we define 

:= 0. On the other hand, if Q is bad, we let go := 0 and A := {Q2}. In 
this latter case, we proceed further and divide Q into 2d cubes of equal size 
and test these whether they are good, in which case they are put into the set 

1 ,or bad, in which case they are put into the set R . We continue in this 
way. At each step k we have a set of good cubes gk and a set of bad cubes 
Rk. We divide the cubes in Rk into their children and test whether these 
children Q are good or bad to obtain the sets gk+1 and Rk+l . This process 
will terminate because E(Q) -* 0 as IQI -- 0. We let Se 

:= Uk k. Then Se 
forms a partition of Q. For each Q E Se we have a polynomial PQ which is 
a best Lq(Q) approximation to f from Yr . The piecewise polynomial 

S(x):= PQ(X), x Eint(Q), Qui9,, 

is the adaptive approximation to f, and the error of approximation of S to f 
is 

If - 
SIILq(2) = If (-PI Q )1q 

where 19I is the number of cubes in S. 
We would like to compare adaptive methods of approximation with other 

methods of approximation which depend on 0(n) parameters. Accordingly, 
we change our viewpoint slightly and ask, given n, how good of an error of 
approximation can we achieve by the adaptive method with the stipulation that 
the number of resulting intervals be < n . This leads us to define 

(2.1) an(f)q := inf ' 1/q8 
( 2. 1 ) l~~~~~~~~~~~Ae I < n 

It follows that for each n, the adaptive procedure generates a piecewise poly- 
nomial with n pieces which satisfies 

(2.2) Ilf - SIIq < an(f)q. 
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The results that follow will give estimates of an (f)q in terms of the smooth- 
ness of f. In contrast to linear approximation, the smoothness of f will be 
measured in spaces Lp with p < 1 . It will be useful for the reader to keep in 
mind the Sobolev embedding theorem in order to understand our results. This 
theorem says that spaces defined by smoothness of order a in Lp embed into 
Lq provided a > (dip - d/q). 

3. ERROR ESTIMATES FOR FUNCTIONS IN Ca p 

We first recall the definition of the spaces Cp . The reader is referred to the 
monograph [9] of DeVore and Sharpley for a detailed study of these spaces. Let 
f E Lp(Q) (O < p < oo). If a > O, we let r := [a] + 1. For a cube Q c Q, 
we denote by PQf a best polynomial approximation to f of degree < r in 

Lp(Q). For O <p < oo, we define 

4 ~1 /11 pf< 
Ia p(X) sup Kd ( IQ ]Q 

PQlP 
Q3x1Q 

where the sup is taken over all cubes Q which contain x and are contained 
in Q. For O < p < oo we say that f E Ca(Q) if pE Lp(Q), and define 

IfjlCpa(Q) II:= 1144 IjLP(2). 

The definition in [9] for these spaces uses ]- I for the definition in the case 
p > 1 but as was shown in [9] the definition we have used gives the same space 
with an equivalent norm. When p = xc, the same definition with I q for 
any q < xc gives the space CO and its norm. These spaces are related to 
Sobolev spaces and Lipschitz spaces (see [9, ?6]). For example, when p = xc, 

CO = Lip a, a :$ integer. 
For g E Lp(Q), we shall also use the Hardy-Littlewood maximal function: 

(3.1) M (g)(x) := sup ( J IgIP) " 

where the sup is taken over all cubes Q which contain x and are contained in 

Q. 

Theorem 3.1. Let O < q < x and a > O, p := (a/d + 1/q)'1. If f E C (Q) 

and MP (J4 P) E Lp (Q), then 

(3.2) an(f)q < Cn /d IlMp(fap)IIL(O) 

where C is a constant independent of f and n. 
Proof. By the embedding theorems [9, Corollary 9.5], we know f E Lq(Q). 
From the definition (2.1) of an(f)q, there is an e > 0 such that 19, I < n and 

(3.3) an(f)q < 21?,1 11q8 
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Suppose that Q E 9 is a good cube; then the parent Q of Q is a bad 
cube. Therefore, the error of best Lq approximation Er(f, Q)q to f on Q 
by polynomials of degree < r satisfies 

Er(f IQ)q> 8 

On the other hand, from the definition of Ja, q for any x E Q we have 

I~~q~~x) ? If I~ = ,-(a/d+l/q)(fQq 
fa, q(X) >61Qald 1I61 I-Q|) = Q Er(f 5 Q)q 

d 
Since IQI=2 IQI and Q c Q, we have 

(3.4) Q (a/d+l/1)f# (x) < c1Q (a/d+l/)fq C(X ) 
l 

X E Q. 

From the properties of functions <q, we know (see Theorem 4.3 in [9]) that 

fa, q (x) < CM, (fa p ) (X), 

where p = (a/d + 1/q)'. Hence, by (3.4), for any x E Q we have 

< C IQ I'/ 4 M f, p) (X) 

which gives 

(3.5) 8 < C (f MP cCP)(x) Pdx) /P 

Because (3.5) is true for any Q E 9, we have 

eig ICjE 1 IMp(< )(x)IP dx 

(3.6) QEV, 

= cf IMp(< I)(x)P dx = CIIMP(: PII(Q). 

Now, we take : C"lPn"1PIIMP(4P)IIL (2) with C the constant of (3.6). 
Then (3.6) shows that 12 I < n. We therefore obtain 

an(f)q < Clgel 8q < Cn' /n 11IplalM II(f Q 

= Cn dI 1Mp(Ca< p)IIL (Q) ? 

We mention next some simple consequences of Theorem 3.1. Let p' > p . 
From the definition of #p(X) and Holder's inequality we know 
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Hence, f E Cp implies E L which gives M (f< p) E Lp . Therefore, 
we have 

Corollary 3.2. Let 0 < q < xo, a > 0, and p' > (a/d + 1/q)[. Then for 
f ECSp, (Q) we have 

(37) an (f)q < Cn d If IC(). 
p 

For 0 < p, a < x and 0 < a < r, the Besov space Ba(Lp(Q)) consists of 
all functions f in Lp (Q) such that 

(3.8) If{ (fIaC[t G r(f, t) ]a')lI, 0< a < c, 
1supt>0 t 0jr(f ItOp a= 

is finite. Here, Wor(f, *)p is the modulus of smoothness of f as measured in 
Lp (Q). By the embedding theorems for the Cpa spaces and Besov spaces [9], 
we have 

Corollary 3.3. Let 0 < q < xc, a > 0, and p' > (aid + 1/q)[. Then for 
f E B a(L (Q)), 0 < af < x we have 

(3.9) a (a) < Cn-aldIfI 

In fact, for p' > (aid + l/q)' , we can choose ptt such that p' > p" > 
(a/d + ljq) [ . For 0 < a < cc, f E Ba(Lp1(Q)) implies f E Ba,,(L ,(Q)) 
and then by the embedding [9, Theorem 7.1], we have f E Cpa,. Then, by 
Corollary 3.2, we obtain the conclusion. 

4. ADAPTIVE APPROXIMATION AND FREE-KNOT SPLINE APPROXIMATION 

For further results, we restrict our attention to the univariate case. We shall 
give a comparison between adaptive and free-knot spline approximation. Let 

n := YEn r be the set of all piecewise polynomial functions S of order < r 
with at most n pieces on I. If f E Lq(I), I = [O. 1], we let 

(4.1) an(f)q = inf Ilf-SIIq 

be the error of approximation of f by the elements of En. Throughout this 
section, all norms are on Q = [0, 1] unless otherwise noted. Obviously, we 
have an (f)q < an (f)q . We next obtain an inverse inequality between adaptive 
approximation and free-knot spline approximation. 

For this we shall use the Besov spaces 

B a:= B a 
(Lo), 

where A := A (a p) (a + 1/p)[. The spaces Ba are embedded into CA and 
then into Lp provided 0 < p < cc (see [9, ?7]). Moreover (see [7]), for any 
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interval J C I we have 

(4.2) Er(f J)p < CIf IB(J), 0 < a < r, 

where the constant C depends only on r and p. 
The importance of the spaces Ba in nonlinear approximation is that some- 

times we can precisely characterize the approximation order of the elements of 
Ba. For example, we have the following theorem of DeVore and Popov [8] 
(using heavily the results of Petrushev [10]): 

Theorem 4.1. A function f is in Ba, a < r, if and only if 

00 ~ ~~~ 1/1 

(4.3) Ek 
a 

Uk (f) ) 
k=1 

is finite, and (4.3) is an equivalent semi-(quasi)norm for Ba. 

A main step in the proof of this theorem is the inverse inequality of Petrushev 
[10], which says that for each Sn E En: 

(4.4) ISIn|Ba < Cn aIISn lp. 

As a special case of Corollary 3.3 and (4.3), we obtain 

(4.5) an(f)q < Cna tEk aAIk V~) 
A 

p > q. 
k=1 

The results that follow can be considered an improvement of this inequality. 
We begin with the following simple lemma. 

Lemma4.2. LetO < p < o, a >0,and A :=A(a,p):=(a+1/p)['. Then 
for any collection {I' }7I1 of pairwise disjoint intervals we have 

(Er(Ef I)) < C (Jk a k(f))" 

Proof. Let Sm be a best approximation to f from Em Ilf - Sm lp1= m (f)p . 
From (4.2), we have 

m m 

(4.6) E~rS < IjSp JA a B(I ) < C 
A 

m|A a 
j=1 j=l 

Here we have used the fact that as a set function (on intervals), Ba has an 
equivalent seminorm I - I for which I * I is subadditive. Now, ak (Sm)p = 0. 
k > m, and ak(Sm)p < ak(f)p + Ilf - SmIIp : 2uk(f)p, k < m. Hence, from 
Theorem 4.1 we obtain 

m 
(4.) Aa|B 

< 
CA kaA- 

I 
(aA 

k=l 
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Therefore, 

(4.8) EEr(f, I )A < C { Er(Sm, Ij)A + Z 11f-Sm II(Ij)} 
j=l j=l 

The first sum can be estimated by (4.7), and by H6lder's inequality the second 
sum on the right does not exceed [ml ""- I"P am ()p] = m aaum (f)A. 

For our next theorem, we need to make some further simple observations 
about the adaptive procedure. We let N(c) := N(c, f) := I9(f)I. Then N(c) 
is a nonincreasing, integer-valued function which is continuous from the right. 
Indeed, if e > 0 and I E Se, then the parent I of I is a bad interval and 
therefore E(I) := Er(f , I)q > ec. We choose 7 > e so small that E(I) > I for 
all I E Se. Then, S' = S and therefore N(77) = N(c). Hence, N is constant 
on [e, a], which shows the right continuity of N. 

Now suppose that we are given n; then the above remarks show that there 
is an e such that an(f)q = N(8)lq 8. It may happen that N(c) < n/2. In 

this case, we shall construct a second partition Se which is obtained from Se 

by further subdivision and satisfies n/2 < 1,8 < n. If 1,I1 > n/2, then we 
simply take Se = Se . Otherwise, we first observe that there are always intervals 
I E Se for which E(I) = c, since otherwise we could decrease e slightly 
without changing N(c) and thereby contradict the definition of an(f)q. Now, 
we subdivide all intervals I E Se for which E(I) = e. We continue in this way 
by further dividing any resulting cubes which satisfy our criterion E(I) = e. 
We stop this process at the first stage k (i.e., when we are processing cubes 
of sidelength 27k ), where the total number of intervals, i.e., those in Se and 
those just constructed, number n/2 or more. It may happen that there are no 
intervals left with E(I) = e and still the total number of cubes is not > n/2. 
In this case, if c' is the largest value of E(I) for our current set of cubes, then 
the current set of cubes is S, . We can therefore repeat our procedure for ' . 
If we continue in this way, we shall eventually arrive at a partition, which we 
denote by Se, which satisfies n/2 < 1I ? n, and for some c0 ? e all the 
intervals I E S satisfy E(I) < e0 and all their parents satisfy E(I) > co;. As 
usual, we call the cubes in Se good cubes and denote by 9k the good cubes of 

k sidelength 27 . The parents of these good cubes are bad cubes. We denote by I- _k 
Wk the bad cubes of sidelength 2K . We also note that 

(4.9) an(f)q - 11 < lq < ?a lq 

because 1, 1 < n and 1 e, I < 1ek. 
We can now prove the following. 



632 R. A. DeVORE AND X. M. YU 

Theorem 4.3. Let a > 0, 0 < q < p < oo, and A = (a + 1/p 1. Then for 
f E Lp we have 

a < Cn 
-a aA- I A~~~~~~~~~~~~~ /) 2.. 

an(f)q? Cn (,ij 1 (f)j , 

where C is independent of f and n. 

Proof. Let n be given and let c > 0 be chosen so that '11/q8 = an (f )q, and 

let Se be the associated set of intervals described above and let g0 < c be as 
above. Then for any interval I E A we have 

Er(fE I)q >? 0 

and III = 27k . The Holder inequality gives 

Er(f 5 I)q <Er(f 9 I)plIII 

Therefore, from the above information and Lemma 4.2 we have 

1, 
A A 

E f ) 2-k(llq-llp)A E E ( ) 

IE~k IEek 

(4.10) 
C-k( l q-l lp)A yaA- If ( A C-k( l q-llp)iA 

j=1 

where A >n=, jaA' aj(f)A. Here, for the last inequality we have used the 

fact that I~k I < ,(eI <n. 

We also have 1,kj| < 2k and IkjI < 2 k k-1 I . Hence, from these two inequal- 
ities and (4.10), we obtain for any positive integer m, 

( )< E 2 + CcAA E 2-k(l/q-l/p)A 

(4.11) ~~k=O k=m 

< C{2m + g-A A2 - m(1q-1/p)l 

We want to choose m so that the two terms on the right side of (4.1 1) are about 
equal; this can be accomplished with m the smallest integer such that 

2m > ,A2? m(11q-11p) 

Then (4.11) gives 

(4.12) n1 +(Idq- Ildp)A < C2md(+(lq-llp)A) < Cgd-A 

and 
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where we used the fact that n/2 < 1 I < n. From this last inequality and (4.9) 
we obtain our conclusion: 

a ~ ~~ < Cn -a1/1 
an(f)q < I~l/8 '6 I 

I 
Eq60 j 7 V7~)p) 

kj=' 

To apply Theorem 4.3, it is enough to use discrete Hardy inequalities. For 
example, it follows from this theorem that if an (f)p = Q(n ) for some ft > 0, 
then for all q < p, an(f)q = Q(n f). Indeed, it is enough to take an a > /1 
and apply Theorem 4.3. More generally, if V/ is a nondecreasing continuous 
function on [0, 1] with V(0) = 0 and 

t 7du O(ig(t) t>O, 

then an(f)p = O(yi(n'I)) implies an(f)q = O(yI(n-)) provided q <p. 

5. ADAPTIVE APPROXIMATION IN LOO 

We consider the case q = xo. For free-knot spline approximation, Burchard 
[4] proved 

Theorem A. Suppose that f(r-1) E C(O, 1) and If(r)(X)I < q>(x), where q E 

LI/r is a monotone function. Then we have 

(5.1) an (f)oo < Cn -rIIII I/r 

The proof of this theorem (see de Boor [1]) depends on the estimate 

(5.2) Er(f, I)oo CO (f (X) I/r dx) 

for any I c (0, 1). We can prove an analogous estimate to (5.1) for adaptive 
approximation, but we shall need a further restriction on q. We assume that 

(5.3) fO(X)l/rdx < Cl/n if III < 2 -, 

where C1 is an absolute constant. 

Theorem 5.1. Suppose that f(r 1) E C(O, 1) and If(r)(X)I < q$(x), where q E 

LI/r is a monotone function satisfying condition (5.3). Then we have 

(5.4) an(f)oo < Cn -rIIII I/r 

Proof. We may assume that q is increasing and 1101111r = 1. We take ce 

COC rn-r with CO the constant of (5.2) and C1 the constant of (5.3). We 
apply the adaptive process using the right side of (5.2) in place of Er(f, I). 
and obtain an adaptive partition. We enumerate the intervals II. I2 N... IN' 
N :1,1, of 9, in order from left to right. Since b is increasing, we have 

(5.5) IIj > IIj+=11, =1,..., N- 1. 
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In order to prove (5.4), we need only show that N < Cn. We write Se as a 
union of subsets Si, i = 1, .. ., m, where Si is a collection of all the intervals 
of hi with a given common length. By (5.5) we have 

S1 = {I }=1' S2 = 
jlj- 1=1+ '} Sm {Ij}j=iMTlm +1 

From (5.2) and (5.3), there are no intervals of length < 2 n and therefore 
m < n. It is therefore enough to count the intervals in the Si which contain 
three or more intervals. 

Denote by 'SiI the number of intervals in Si. Since all the intervals in Si 
have the same length, they are generated at the same step k of the adaptive 
process. Hence, except for one or two of these intervals, we can separate them 
into pairs whose parent is an interval I E Rk-I . Then, since Er(f ')oo > X, 

(5.2) gives fkb(X)Il/r dx > C1 / n . Since the number of these pairs is > (ISI - 
2)/2, for JSij > 3 we have 

E ;l+( x )l ll/r dx > -Sil - 2 *C, > I Si I * C L~JII+,X)IX - 2 n -n 1 

From this inequality we obtain 

E Is ii <6n 1 E (X)h1rdx < 
6n 

ISI>3 1 i IeS I 1 

which completes our proof. 5 

For example, the functions f(x) = xa (a > 0) and f(x) = [logx/2] 2r+I 

can be approximated with order O(n r) in the uniform norm by the adaptive 
process. 
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