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Abstract. To improve the security of iterated block ciphers, the re-
sistance against linear cryptanalysis has been formulated in terms of
provable security which suggests the use of highly nonlinear functions as
round functions. Here, we show that some properties of such functions
enable to find a new upper bound for the degree of the product of its
Boolean components. Such an improvement holds when all values occur-
ring in the Walsh spectrum of the round function are divisible by a high
power of 2. This result leads to a higher order differential attack on any
5-round Feistel ciphers using an almost bent substitution function. We
also show that the use of such a function is precisely the origin of the
weakness of a reduced version of MISTY1 reported in [23, 1].

Keywords. Block ciphers, higher order differential cryptanalysis, Boolean
functions, nonlinearity.

1 Introduction

The development of cryptanalysis in the last ten years has led to the defini-
tion of some design criteria for block ciphers. These criteria correspond to some
mathematical properties of the round function which is used in an iterated block
cipher. In particular, the use of a highly nonlinear round function ensures a high
resistance to linear attacks [16,17]. The functions with maximal nonlinearity are
called almost bent. They only exist for an odd number of variables, but they
also guarantee the best resistance to differential cryptanalysis [6]. Such func-
tions are used for instance in the block cipher MISTY [18]. Here, we show that
these optimal functions present some particular properties which introduce other
weaknesses in the cipher. This vulnerability comes from the fact that all values
occurring in the Walsh spectrum of an almost bent function are divisible by a
high power of 2. Most highly nonlinear functions of an even number of variables
present a similar structure, except the inverse function. Such a spectral property
for a round function F leads to an upper bound on the degree of the function
F ◦ F which grows much slower than deg(F )2. Therefore, any iterated cipher
using an almost bent function may be vulnerable to a higher order differential
attack [12,10], even if the round function has a high degree. This weakness leads
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to a new design criterion for iterated block ciphers: the Walsh spectrum of the
round function should contain at least one value which is not divisible by a
higher power of 2. The S-box used in AES is the only known highly nonlinear
function which fulfills this requirement.

The paper is organized as follows. Section 2 recalls the main spectral prop-
erties of the round function which are involved in differential and linear crypt-
analysis. The general principle of a higher order differential attack is described
in Section 3. Section 4 then investigates the link between the divisibility of the
Walsh coefficients of a function and the degree of the product of its Boolean com-
ponents. This result leads to a higher order differential attack on any 5-round
Feistel cipher using an almost bent substitution function. Finally, we point out
that the attack of a reduced version of MISTY1 presented in [23,1] is a direct
consequence of the use of almost bent S-boxes. We show that a similar attack
can be performed for different block sizes and almost bent S-boxes.

2 Spectral Properties of a Round Function

In an iterated block cipher, the ciphertext is obtained by iteratively applying a
round function F to the plaintext. In an r-round iterated cipher, we have

xi = F (xi−1,Ki)

where x0 is the plaintext, xr is the ciphertext and the r-round keys (K1, . . . ,Kr)
are usually derived from a unique secret key. For any fixed round key K, the
round function FK : x �→ F (x,K) is a permutation of the set of n-bit vectors,
IFn

2 , where n is the block size. The resistance of such cipher to some particular
attacks can be quantified by some properties of the round function.

A Boolean function f of n variables is a function from IFn
2 into IF2. It can

be expressed as a polynomial, called its algebraic normal form. The degree of
f , denoted by deg(f), is the degree of its algebraic normal form. The following
notation will be extensively used in the paper. The usual dot product between
two vectors x and y is denoted by x ·y. For any α ∈ IFn

2 , ϕα is the linear function
of n variables: x �→ α · x.

For any Boolean function f of n variables, we denote by F(f) the following
value related to the Walsh (or Fourier) transform of f :

F(f) =
∑

x∈IFn
2

(−1)f(x) = 2n − 2wt(f) ,

where wt(f) is the Hamming weight of f , i.e., the number of x ∈ IFn
2 such that

f(x) = 1.

Definition 1. The Walsh spectrum of a Boolean function f of n variables is
the multiset

{F(f + ϕα), α ∈ IFn
2} .
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The Walsh spectrum of a vectorial function F from IFn
2 into IFn

2 consists of the
Walsh spectra of all Boolean functions ϕα ◦ F : x �→ α · F (x). Therefore, it
corresponds to the multiset

{F(ϕα ◦ F + ϕβ), α ∈ IFn
2 \ {0}, β ∈ IFn

2} .

A linear attack against a cipher with round function F exploits the existence
of a pair (α, β) with α �= 0 such that, for almost all round keys K, the function
x �→ ϕα ◦ FK(x) + ϕβ(x) takes the same value for most values of x ∈ IFn

2 .
Therefore, all functions ϕα ◦ FK should be far from all affine functions. This
requirement is related to the nonlinearity of the functions FK .

Definition 2. [21] The nonlinearity of a function F from IFn
2 into IFn

2 is the
Hamming distance between all ϕα ◦ F, α ∈ IFn

2 , α �= 0, and the set of affine
functions. It is given by

2n−1 − 1
2
L(F ) where L(F ) = max

α∈IFn
2

max
β∈IFn

2

|F(ϕα ◦ F + ϕβ)| .

Proposition 1. [6] For any function F : IFn
2 → IFn

2 ,

L(F ) ≥ 2
n+1

2 .

In case of equality F is called almost bent (AB).

This minimum value for L(F ) can only be achieved if n is odd. For even n, some
functions with L(F ) = 2

n
2 +1 are known and it is conjectured that this value is

the minimum. Note that the Walsh spectrum of a function is invariant under
both right and left compositions by a linear permutation of IFn

2 .
A particular property of almost bent functions is that their Walsh spectrum

is unique.

Proposition 2. [6] The Walsh spectrum of an almost bent function F from IFn
2

into IFn
2 takes the values 0 and ±2

n+1
2 only.

This property implies that any almost bent function is almost perfect nonlin-
ear [22], i.e., that it ensures the best resistance to differential cryptanalysis.
Therefore, the use of an almost bent function as round function (or as substitu-
tion function) provides a high resistance to both linear and differential attacks.
These functions are used in MISTY [18]. Similarly, AES uses a function of an
even number of variables which has the highest known nonlinearity.

3 Higher Order Differential Attacks

Higher order differential cryptanalysis was introduced by Knudsen [12]. As a
generalization of differential cryptanalysis, it relies on some properties of higher
order derivatives of a vectorial function. In the following, we denote by ⊕ the
bitwise exclusive-or.
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Definition 3. [14] Let F be a function from IFn
2 into IFm

2 . For any a ∈ IFn
2 , the

derivative of F with respect to a is the function

DaF (x) = F (x ⊕ a) ⊕ F (x) .

For any k-dimensional subspace V of IFn
2 , the k-th derivative of F with respect

to V is the function
DV F = Da1Da2 . . . Dak

F ,

where (a1, . . . , ak) is any basis of V . Moreover, we have for any x ∈ IFn
2

DV F (x) =
⊕
v∈V

F (x ⊕ v) .

We now consider an r-round iterated cipher with block size n and round func-
tion F . We call reduced cipher, the cipher obtained by removing the final round
of the original cipher. The reduced cipher corresponds to the function G =
FKr−1 ◦ . . . ◦ FK1 .

Suppose that there exists a k-dimensional subspace V ⊂ IFn
2 such that

DV G(x) = c for all x ∈ IFn
2

where c is a constant in IFn
2 which does not depend on the round keys K1, . . . ,

Kr−1. Then, for any round keys the reduced cipher G satisfies

∀x ∈ IFn
2 ,

⊕
v∈V

G(x ⊕ v) = c . (1)

This property leads to the following chosen plaintext attack.

1. Select a random plaintext x0 ∈ IFn
2 and get the ciphertexts cv corresponding

to all plaintexts x0 ⊕ v, v ∈ V .
2. Compute c by applying (1) to the reduced cipher with any round keys (e.g.

K1, . . . ,Kr−1 = 0).
3. For each candidate round key kr, compute

σ(kr) =
⊕
x∈V

F−1
kr

(cv) .

The key kr for which σ(kr) = c is the correct last-round key with a high proba-
bility. If the attack returns several round keys, it could be repeated for different
values of x0. The running-time of the attack corresponds to 2m+k evaluations
of F−1 where m is the size of the round key and k is the dimension of V . It
requires the knowledge of 2k chosen plaintexts.

The main problem in this attack is then to find a subspace V satisfying (1)
and having the lowest possible dimension. A natural candidate for V arises when
the degree of the reduced cipher is known.

Definition 4. The degree of a function F from IFn
2 into IFn

2 is the maximum de-
gree of its Boolean components: deg(F ) = max1≤i≤n deg(ϕei

◦F ) where (ei)1≤i≤n

denotes the canonical basis of IFn
2 .
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For any F of degree d, we obviously have DV F = 0 for any (d+1)-dimensional
subspace V ⊂ IFn

2 . Therefore, if the reduced cipher G has degree at most d for
all round keys, it is possible to perform a differential attack of order (d + 1).

The degree of the round function F provides a trivial upper bound on the
degree of the reduced cipher:

deg(G) ≤ (deg(F ))r−1 .

This bound was directly used by Jakobsen and Knudsen [10] for breaking a cipher
example proposed in [22], whose round function is an almost bent quadratic
permutation. Unfortunately, this method can only be used when the degree of
the round function is very low. It clearly appears that another approach has to
be used when the degree of the round function is strictly greater than

√
n since

(deg(F ))r−1 > n for any r ≥ 3.

4 Divisibility of the Walsh Spectrum and Degree
of a Composed Function

In this section, we focus on the degree of a function F ′ ◦ F where F and F ′ are
two mappings from IFn

2 into IFn
2 . We show that the trivial bound

deg(F ′ ◦ F ) ≤ deg(F ′) deg(F )

can be improved when the values occurring in the Walsh spectrum of F are
divisible by a high power of 2. This situation especially occurs when F is an
almost bent function (see Proposition 2).

Definition 5. The Walsh spectrum of a function F from IFn
2 into IFm

2 is said
to be 2�-divisible if all its values are divisible by 2�. Moreover, it is said exactly
2�-divisible if, additionally, it contains at least one value which is not divisible
by 2�+1.

The divisibility of the values occurring in the Walsh spectrum of a function F
provides an upper bound on its degree [15, Page 447]. The following proposition
is a direct consequence of [4, Lemma 3].

Proposition 3. Let F be a function from IFn
2 into IFm

2 . If the Walsh spectrum
of F is 2�-divisible, then deg(F ) ≤ n − � + 1.

The i-th Boolean component of F ′ ◦ F can be expressed as f ′(F1(x), . . . ,
Fn(x)), where f ′ is the i-th Boolean component of F ′ and (F1, . . . , Fn) denote the
Boolean components of F . Using the algebraic normal form of f ′, we can write
this function as

∑
J

∏
j∈J Fj(x) where each product involves at most deg(f ′)

Boolean components of F . We deduce that the degree of F ′ ◦ F cannot exceed
the degree of a product of deg(F ′) Boolean components of F .

Now, we focus on the Walsh spectrum of the product of some Boolean func-
tions. We use the following lemma. Its proof can be found in [3].
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Lemma 1. Let f1, . . . , fk be k Boolean functions of n variables, with k > 0. We
have

F(
k∑

i=1

fi) = 2n−1 [
(−1)k + 1

]
+

∑
I⊂{1,...,k}

(−2)|I|−1F(
∏
i∈I

fi) .

Moreover, for any nonzero α in IFn
2 , we have

F(
k∑

i=1

fi + ϕα) =
∑

I⊂{1,...,k}
(−2)|I|−1F(

∏
i∈I

fi + ϕα) .

Using the previous relation between the Walsh coefficients of the sum of
k Boolean functions and the Walsh coefficients of their product, we obtain:

Theorem 1. Let f1, . . . , fk be k Boolean functions of n variables, with k > 0.
Suppose that for any subset I of {1, . . . , k} we have

∀α ∈ IFn
2 , F(

∑
i∈I

fi + ϕα) ≡ 0 mod 2� .

Then, for any I ⊂ {1, . . . , k} of size at most �, we have

∀α ∈ IFn
2 , F(

∏
i∈I

fi + ϕα) ≡ 0 mod 2�+1−|I| . (2)

Therefore,
deg(

∏
i∈I

fi) ≤ n − � + |I| .

Proof. We prove Relation (2) by induction on the size of I. The result obviously
holds for |I| = 1. We now assume that (2) holds for any I with |I| ≤ w and we
consider a subset I ⊂ {1, . . . , k} of size w + 1. From Lemma 1, we have for any
α ∈ IFn

2

(−2)wF(
∏
i∈I

fi + ϕα) ≡ F(
∑
i∈I

fi + ϕα) −
∑

J⊂I

J 
=I

(−2)|J|−1F(
∏
j∈J

fj + ϕα) mod 2n.

From induction hypothesis, we derive that

(−2)wF(
∏
i∈I

fi + ϕα) ≡ F(
∑
i∈I

fi + ϕα) mod 2� .

Therefore, we have
F(

∏
i∈I

fi + ϕα) ≡ 0 mod 2�−w .

The upper bound on the degree is a direct consequence of (2) and Proposition 3.
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By applying the previous theorem to the n Boolean components of a mapping
F from IFn

2 into IFn
2 , we derive the following corollary.

Corollary 1. Let F be a function from IFn
2 into IFn

2 such that its Walsh spectrum
is 2�-divisible. Then, the degree of the product of any t Boolean components of F
is at most n − � + t.

Therefore, for any function F ′ from IFn
2 into IFn

2 , we have

deg(F ′ ◦ F ) ≤ n − � + deg(F ′) .

When F is an almost bent function, we obtain

deg(F ′ ◦ F ) ≤ n − 1
2

+ deg(F ′) .

The result presented in Corollary 1 was already proved for the particular case
of power functions. Here, we identify IFn

2 with the finite field with 2n elements,
IF2n . In this context, any function F from IFn

2 into IFn
2 can be expressed as a

unique univariate polynomial in IF2n [X], F (X) =
∑2n−1

u=0 auX
u. The degree of F

(in the sense of Definition 4) is given by deg(F ) = maxu,au 
=0 w2(u), where w2(u)
denotes the number of ones in the 2-adic expansion of u, u =

∑n−1
i=0 ui2i. The case

of power functions is of great interest since all known highly nonlinear mappings
are equivalent (up to a linear permutation of IFn

2 ) to some power functions x �→ xs

over IF2n . Now, if we write F ′ as a univariate polynomial F ′(X) =
∑2n−1

u=0 auX
u,

we obtain for F : x �→ xs that F ′ ◦F (x) =
∑2n−1

u=0 auX
us mod (2n−1) . Therefore,

deg(F ′ ◦ F ) ≤ maxu,au 
=0 w2(us mod (2n − 1)). This bound is related to the
divisibility of the Walsh spectrum of F by the following proposition [2, Coro. 2].
The result is directly derived from McEliece’s theorem which provides the weight
divisibility of a cyclic code [19]. We refer to [5,2] for the link between cyclic codes
and power functions.

Proposition 4. Let F : x �→ xs be a power function over IF2n . Then, the Walsh
spectrum of F is 2�-divisible if and only if, for any integer u, 1 ≤ u ≤ 2n − 1,
we have

w2(us mod (2n − 1)) ≤ n − � + w2(u) .

5 Cryptanalysis of 5-Round Feistel Ciphers
Using Highly Nonlinear Functions

We now focus on 5-round Feistel ciphers. In a Feistel cipher with block size 2n,
the round function is defined by

FK : IFn
2 × IFn

2 → IFn
2 × IFn

2
(L,R) �→ (R,L ⊕ SK(R))

where SK is a function from IFn
2 into IFn

2 called the substitution function. In the
following, Li (resp. Ri) denotes the left part (resp. right part) of the output of
the i-th round.
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In a 5-round Feistel cipher, the right part of the output of the third round,
R3, can be derived from the ciphertext (L5, R5) and the last-round key:

R3 = R5 ⊕ SK5(L5) .

Moreover, when we consider any plaintext (x, c0) whose right part is a given
constant c0, R3 can be computed from x by only two iterations of the substitution
function :

R3(x) = x ⊕ c1 ⊕ SK3(c0 ⊕ SK2(x ⊕ c1))

where x stands for the left half of the plaintext and c0, c1 are some constants.
When the Walsh spectrum of the substitution function SK is 2�-divisible for

all values of K, we can apply Corollary 1. Then, we obtain the following upper
bound for the degree of R3:

deg(R3) ≤ n − � + deg(S) .

Thus, if we consider the attack described in Section 3, we have exhibited a
new attack on the last round key with average running-time of 2m+δ, where m
is the size of the round key and δ = min(deg(S)2 + 1, n − � + deg(S) + 1). This
attack is feasible as soon as δ ≤ n. For example, if S is almost bent, a higher
order differential attack can be performed except when deg(S) = (n+ 1)/2, i.e.,
when S is an almost bent function of maximum degree.

A similar situation occurs when S is a function of an even number of variables
which has the highest known nonlinearity, L(S) = 2

n
2 +1. All known functions

satisfying this property are equivalent (up to a linear permutation of IFn
2 ) to one

of the power functions given in Table 1 (or to one of their inverses) [8]. All optimal
functions for n even are such that their Walsh spectra are divisible either by 2

n
2 or

by 2
n
2 +1, except the inverse function whose Walsh spectrum is exactly 4-divisible.

Note that the Walsh spectrum of the inverse function has the smallest possible
divisibility for a function whose nonlinearity is even. If the Walsh spectrum of
the substitution function S is 2

n
2 +1-divisible, then deg(S) ≤ n/2. Therefore, the

attack is always feasible. When the Walsh spectrum of S is 2
n
2 -divisible, the

attack can be performed except if deg(S) ∈ {n/2, n/2 + 1}. These results are
summed up in Table 2 (general case).

It is also possible to improve this attack when the round key in the Feistel
cipher is inserted by addition, i.e., SK(x) = S(x ⊕ K). In that case, we obtain
the following expression for R3:

R3(x) = x ⊕ c1 ⊕ S(c0 ⊕ K3 ⊕ S(x ⊕ c1 ⊕ K2)) .

Let G be the function defined by G : x �→ S(K3 ⊕ c0 ⊕ S(x ⊕ c1 ⊕ K2))
and let G′ be defined by G′ : x �→ S(K3 ⊕ c0 ⊕ S(x)). Then, we know that
deg(G′) ≤ n− �+ deg(S). The expression of G′ shows that the terms containing
the constants c0 or K3 are the result of the product of at most (deg(S) − 1)
Boolean components of S. Thus, their degree is at most n − � + deg(S) − 1.
We then deduce that the terms of maximal degree in G′ are independent of the
constants. In particular we have for any subspace V of dimension (n−�+deg(S)):
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Table 1. Known power permutations xs on IF2n , n even, with the highest nonlinearity
and exact divisibility of their Walsh spectra

exponents s condition on n divisibility

2n−1 − 1 n ≡ 0 mod 2 22 [13]

2k + 1, with gcd(k, n) = 2 and k < n
2 n ≡ 2 mod 4 2

n
2 +1 [9,20]

22k − 2k + 1, with gcd(k, n) = 2, k < n
2 n ≡ 2 mod 4 2

n
2 +1 [11]

2
n
2 + 2

n+2
4 + 1 n ≡ 2 mod 4 2

n
2 +1 [7]

2
n
2 + 2

n
2 −1 + 1 n ≡ 2 mod 4 2

n
2 +1 [7]

∑n/2
i=0 2

ik, with gcd(k, n) = 1, k < n
2 n ≡ 0 mod 4 2

n
2 [8]

2
n
2 + 2

n
4 + 1 n ≡ 4 mod 8 2

n
2 [8]

Table 2. Higher order differential attack on a 5-round Feistel cipher using a highly
nonlinear substitution function S

function S General case SK(x) = S(x ⊕ K)

L(S) div. differential feasibility differential feasibility

order order

2
n+1

2 2
n+1

2 deg(S)+ n+1
2 except for deg(S)+ n−1

2 always

n odd deg(S) = n+1
2 feasible

2
n
2 +1 deg(S)+ n

2 always deg(S)+ n
2 −1 always

2
n
2 +1 feasible feasible

n even 2
n
2 deg(S)+ n

2 +1 except for deg(S)+ n
2 except for

deg(S) ∈ deg(S) = n
2 + 1

{n
2 , n

2 + 1}

∀a ∈ IFn
2 , DV G′(a) =

⊕
v∈V

G′(a ⊕ v) = c

where c is independent of any kind of constants. We can see that G is obtained
by translating G′, so we have:

∀a ∈ IFn
2 ,

⊕
v∈V

G(a ⊕ v) =
⊕
v∈V

G′(a ⊕ v ⊕ c1 ⊕ K2) = DV G′(a ⊕ c1 ⊕ K2) = c.

The constant c can be computed, for example, with the null value for all the
subkeys. The above attack requires 2n−�+deg(S) pairs of plaintexts-ciphertexts
and 22n−�+deg(S) evaluations for the function S. It can be performed for any
almost bent function S (see Table 2).
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6 Higher Order Differential Cryptanalysis
on a Generalization of MISTY1

MISTY is a model of block ciphers proposed by Matsui [18] and presented under
two forms MISTY1 and MISTY2. MISTY1 is the object of this study. M’1, the
version of MISTY1 reduced to 5 rounds without FL functions is provably secure
against both differential and linear cryptanalysis. Therefore, the background
of the attack is this simplified algorithm. In [23] it is shown that M’1 can be
attacked with a 7-th order differential. In [1], the attack is extended to the case
where any almost bent power function of degree 3 on IF7

2 is used for the S7-box.
In this section, we extend the use of this higher order differential attack to a

generalization of the algorithm M’1 where the block size becomes 16m bits (see
Fig. 1). The original value is 64 bits. In this generalization, we show that the
weakness of M’1 is due to the use of an almost bent substitution function.

In the following, x0 and x1 are the left and right halves of the plaintext.
Similarly, (xi+1, xi) denotes the intermediate value after i rounds.

Notation 1 Let u be a 16m bit word. We denote by uL, uR, uLk , uRk , respec-
tively the left and right halves of u and the k left and right most bits. The ‖
symbol stands for the concatenation of two binary words.
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Fig. 1. The 5-round Feistel cipher M’1 with equivalent key schedule
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The cipher uses the “zero-extend” function, E, and the ‘truncate” function,
T , which are respectively defined by:

E : IF2m−1
2 → IF2m+1

2
(u1, · · · , u2m−1) �→ (u1, · · · , u2m−1, 0, 0) ,

T : IF2m+1
2 → IF2m−1

2
(u1, · · · , u2m+1) �→ (u1, · · · , u2m−1) .

The nonlinear part of the cipher consists of two permutations, S2m−1 and
S2m+1, respectively defined over IF22m−1 and IF22m+1 . In the original cipher, we
have S7(x) = L(x81) over IF27 where L is a linear permutation and S9 is a
quadratic almost bent permutation of IF29 .

Let V be the (2m− 1)-dimensional subspace of plaintexts of 16m bits whose
form is (06m+1 ‖ x ‖ 08m) where x is in IF2m−1

2 . Let W denote the subspace
{(w0 ‖ 02m−1 ‖ w1), w0 ∈ IF6m+1

2 , w1 ∈ IF8m
2 }. We are interested in ciphering

plaintexts P ⊕ w where P ∈ V and w = (w0 ‖ w1) is a fixed constant in W . We
now consider the function GK defined as follows:

GK : x �→ x
L2m−1
4 .

To sum up the higher order differential attack proposed in [23], with m = 4
and the original S7 and S9 boxes, we can say that the 7-th order derivative of
GK with respect to V is a constant independent from the secret key K:

∀w ∈ W,
⊕
x∈V

GK(x ⊕ w) = c. (3)

Here, we show that this property can be generalized to different block sizes.
We need the exact expression of xL2m−1

4 . The details of this computation are
given in [3]. We obtain:

x
L2m−1
4 = µR2m−1 ⊕ λR2m−1 ⊕ λL2m−1 ⊕ c24 ⊕ T ◦ S2m+1(µL2m+1 ⊕ c20)

⊕ T ◦ S2m+1(λL2m+1 ⊕ c21) ⊕ S2m−1(µR2m−1 ⊕ c22)

⊕ S2m−1(λR2m−1 ⊕ c23) ,

(4)

where

µL2m−1 = S2m−1(x ⊕ c5) ⊕ x ⊕ c9

λL2m−1 = S2m−1(x ⊕ c7) ⊕ S2m−1(x ⊕ c5) ⊕ c10

µR2m+1 = S2m+1 (E(x) ⊕ c11) ⊕ E ◦ S2m−1(x ⊕ c5) ⊕ c15

λR2m+1 = S2m+1 (E(x) ⊕ c13) ⊕ E ◦ S2m−1(x ⊕ c7) ⊕ S2m+1 (E(x) ⊕ c11)
⊕E ◦ S2m−1(x ⊕ c5) ⊕ E(x) ⊕ c16

and all ci are some constants depending on the round keys. The aim of our study
is to determine the degree of the Boolean components of xL2m−1

4 .
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We restrict our study to the case where S2m+1 is a quadratic function, as in
the original cipher. We suppose that the almost bent permutation S2m−1 can
be written as S2m−1(x) = L(xe) where L is a linear permutation. We denote by
d the degree of S2m−1 and we assume that 2d < 2m − 1, i.e., that the degree
of S2m−1 differs from the highest possible degree for an almost bent function
over IF2m−1

2 . These conditions obviously imply that we can neglect the terms
T ◦S2m+1(µL2m+1 ⊕ c20)⊕T ◦S2m+1(λL2m+1 ⊕ c21) in (4) for a (2m−1)-th order
differential.

We denote by [F ]d the terms in the algebraic normal form of F whose degree
are at least d. It clearly appears that the terms of degree 2m − 1 in x

L2m−1
4

correspond to
[
x

L2m−1
4

]
2m−1

=
[
S2m−1(µR2m−1 ⊕ c22)

]
2m−1 ⊕ [

S2m−1(λR2m−1 ⊕ c23)
]
2m−1 .

Terms of Highest Degree in S2m−1(λR2m−1 ⊕ c23)

We first consider the terms of highest degree in S2m−1(λR2m−1 ⊕ c23). We make
a change of variable, since we consider all x ∈ IF2m−1

2 . Then, [S2m−1(λR2m−1 ⊕
c23)]2m−1 = [S2m−1(g(x))]2m−1 with

g(x) = S2m−1(x) ⊕ S2m−1(x ⊕ c28) ⊕ T ◦ S2m+1(E(x) ⊕ c29)
⊕T ◦ S2m+1(E(x) ⊕ c30) ⊕ x ⊕ c31

= Dc28S2m−1(x) ⊕ A(x, c29, c30, c31) ,

where all terms of A have degree at most 1. Therefore, all terms of S2m−1(g(x))
correspond to the product of β1 components of Dc28S2m−1 and of β2 components
of A(x, c29, c30, c31) where β1 + β2 = d. The degree of such a term is then lower
than β1(d − 1) + (d − β1) as deg(Dc28S2m−1) ≤ d − 1. When β1 = d (and then
β2 = 0), this term corresponds to a product of derivatives with respect to c28.
Hence it has the same value on x and x⊕c28 for all x ∈ IF2m−1

2 and it cannot have
degree 2m − 1. Therefore, the degree 2m − 1 can only be obtain for β1 ≤ d − 1.
In such cases, the degree admits the upper bound (d − 1)2 + 1. It follows that
S2m−1(g(x)) have degree at most (2m − 2) if

d < 1 +
√

2m − 2 .

Note that this condition is satisfied by the original parameters (m = 4 and
d = 3).

Terms of Highest Degree in S2m−1(µR2m−1 ⊕ c22)

Now, we apply a similar treatment to S2m−1(µR2m−1 ⊕ c22), where µR2m+1 =
S2m+1 (E(x) ⊕ c11)⊕E ◦S2m−1(x⊕c5)⊕c15. We also make a change of variable.
Then, [S2m−1(µR2m−1 ⊕ c22)]2m−1 = [S2m−1(t(x))]2m−1 with

t(x) = S2m−1(x) ⊕ T ◦ S2m+1(E(x) ⊕ c25) ⊕ c26 .



530 Anne Canteaut and Marion Videau

Moreover, the explicit writing of the almost bent power function S2m−1(x) =
L(xe) leads to:

L−1(t(x)) = xe ⊕ Q(x) ⊕ A(x, c25, c26)

where Q contains quadratic terms only and A affine or constant terms (since c25
and c26 only appear in linear or constant terms). In [1], Babbage and Frisch give
the following explanation for the 7-th order differential attack on the original
cipher: the only way to obtain a term of degree 7 in S2m−1(t(x)) with d = 3 is
to multiply at least two terms of degree 3 of L−1(t(x)) and another term. But,
the terms of degree 3 in L−1(t(x)) come from the almost bent function S7, and
they observe that the product of any two Boolean components of S7 has degree
at most 5 [1, Fact 2]. This observation is a direct consequence of Corollary 1.
Thus, the maximum degree that we can obtain is at most 7.

More generally, all terms in [S2m−1(t(x))]2m−1 are the result of the product
of β1 terms from xe, β2 terms from Q(x) and β3 terms from A(x, c25, c26), with
β1+β2+β3 = d. In other terms, we can write them as: xeλ1 ·xλ2 ·xλ3 ·c where λ1,
λ2 and λ3 are integers lower than 22m−1 and verifying w2(λ1) = β1, w2(λ3) ≤ β3
and w2(λ2) ≤ 2β2 as λ2 is the sum of β2 integers whose 2-weights equal 2. Such
a term depends on a constant only if β3 �= 0. Its degree is then:

w2
(
(eλ1 + λ2 + λ3) mod

(
22m−1 − 1

))

and the attack could be done as soon as w2
(
(eλ1 + λ2 + λ3) mod

(
22m−1 − 1

))
< 2m − 1. Now, we derive from Proposition 4

w2 ((eλ1 + λ2 + λ3) mod(22m−1 − 1)
)

≤ w2(eλ1 mod (22m−1 − 1)) + w2(λ2) + w2(λ3)
≤ (m − 1) + β1 + 2β2 + β3 ≤ (m − 1) + d + β2

(5)

as β1 + β2 + β3 = d.
Such a term depends on the constants only if β3 ≥ 1. We then have β2 ≤ d−1.

But the terms including a high value for β2 (β2 ≥ d − 2) correspond to one of
the following particular cases:

– Case β1 = 0. Then, we have β2 + β3 = d. We deduce that

w2((eλ1 + λ2 + λ3) mod (22m−1 − 1)) = w2(λ2 + λ3 mod (22m−1 − 1))
≤ 2β2 + β3 ≤ 2d − β3 ≤ 2m − 3

since β3 ≥ 1. Note that this case completely solves the case β2 = d − 1.
– Case β1 = 1 and β2 = d − 2. As w2(λ1) = w2(λ3) = 1, we have λ1 = 2i and

λ3 = 2j . Therefore,

w2((eλ1 + λ2 + λ3) mod (22m−1 − 1)) = w2(2ie + λ2 + 2j mod (22m−1 − 1))
= w2(e + λ′

2 + 2k mod (22m−1 − 1))
≤ w2(e) + w2(λ′

2) + 1
≤ d + (d − 2) + 1 ≤ 2m − 3 .
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Both previous situations include the case β2 ≥ d − 2. Now, for any β2 ≤ d − 3,
we derive from (5) that

w2((eλ1 + λ2 + λ3) mod (22m−1 − 1)) ≤ m − 1 + 2d − 3 .

This upper bound cannot exceed (2m − 2) as soon as

d <
m + 3

2
.

This study emphasizes that for any block size 16m, with a S2m+1 box of
degree 2, the cipher is vulnerable to a higher order cryptanalysis of degree 2m−1
as soon as the degree d of the almost bent function S2m−1 satisfies

d < min(1 +
√

2m − 2,
m + 3

2
) .

The condition required by the first bound is clearly the most restrictive one,
since it does not exploit the almost bent property. For any S2m−1 of degree 3,
the cipher is vulnerable when m ≥ 4 and for S2m−1 of degree 4 when m ≥ 6.
The attackable degrees are classified in the following table.

m block size attackable degrees

3 48 d ≤ 2
4 64 d ≤ 3 (original parameters)
5 80 d ≤ 3
6 96 d ≤ 4

10 160 d ≤ 5

Then, our study points out that the property of high divisibility of the Walsh
spectrum of the substitution function is at the origin of the vulnerability of such
a cipher. This property leads to the following new design criterion: the Walsh
spectrum of the substitution function should contain at least one value which is
not divisible by a higher power of 2.
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