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We propose a new characterization of non-Markovian quantum evolution based on the concept of
non-Markovianity degree. It provides an analog of a Schmidt number in the entanglement theory and
reveals the formal analogy between quantum evolution and the entanglement theory: Markovian evolution
corresponds to a separable state and the non-Markovian one is further characterized by its degree. It enables
one to introduce a non-Markovianity witness—an analog of an entanglement witness, and a family of
measures—an analog of Schmidt coefficients, and finally to characterize maximally non-Markovian
evolution being an analog of the maximally entangled state. Our approach allows us to classify the
non-Markovianity measures introduced so far in a unified rigorous mathematical framework.
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Introduction.—Open quantum systems and their
dynamical features are attracting increasing attention nowa-
days. They are of paramount importance in the study of the
interaction between a quantum system and its environment,
causing dissipation, decay, and decoherence [1–3]. On the
other hand, the robustness of quantum coherence and
entanglement against the detrimental effects of the envi-
ronment is one of the major focuses in quantum-enhanced
applications, as both entanglement and quantum coherence
are basic resources in modern quantum technologies,
such as quantum communication, cryptography, and com-
putation [4]. Recently, much effort was devoted to the
description, analysis, and classification of non-Markovian
quantum evolution (see, e.g., [5–19] and the collection
of papers in [20]). In particular, various concepts of
non-Markovianity were introduced and several so-called
non-Markovianity measures were proposed. The main
approaches to the problem of (non)Markovian evolution
are based on divisibility [9–12], distinguishability of states
[13], quantum entanglement [10], quantum Fisher infor-
mation flow [14], fidelity [15], mutual information [16,17],
channel capacity [18], and geometry of the set of accessible
states [19].
In this Letter we accept the definition based on divis-

ibility [9,10]: the quantum evolution is Markovian if the
corresponding dynamical map Λt is CP divisible (where CP
stands for complete positivity), that is,

Λt ¼ Vt;sΛs; (1)

and Vt;s provides a family of legitimate (completely
positive and trace-preserving) propagators for all
t ≥ s ≥ 0. The essential property of Vt;s is the following
composition law Vt;sVs;u ¼ Vt;u, for all t ≥ s ≥ u. It
provides a natural generalization of a semigroup law

etLesL ¼ eðtþsÞL. Interestingly, the very property of CP
divisibility is fully characterized in terms of the time-local
generator Lt: if Λt satisfies the time-local master equation
_Λt ¼ LtΛt, then Λt is CP divisible if and only if Lt has the
standard Lindblad form for all t ≥ 0, i.e.,

Ltρ ¼ −i½HðtÞ; ρ�
þ
X
α

�
VαðtÞρV†

αðtÞ − 1
2
fV†

αðtÞVαðtÞ; ρg
�
;

with time-dependent Lindblad (noise) operators VαðtÞ and
time-dependent effective system Hamiltonian HðtÞ
[3,21,22]. A very appealing concept of Markovianity
was proposed by Breuer, Lane, and Piilo (BLP) [13]: Λt
is Markovian if

σðρ1; ρ2; tÞ ¼
d
dt

jjΛtðρ1 − ρ2Þjj1 ≤ 0; (2)

for all pairs of initial states ρ1 and ρ2. BLP call σðρ1; ρ2; tÞ
an information flow and interpret σðρ1; ρ2; tÞ > 0 as a
backflow of information from the environment to the
system which clearly indicates the non-Markovian charac-
ter of the evolution. As usual jjXjj1 denotes the trace norm
of X, i.e., jjXjj1 ¼ Tr

ffiffiffiffiffiffiffiffiffi
XX†

p
. It turns out that CP divisibility

implies (2) but the converse needs not be true [23–25].
In this Letter we propose a more refined approach to

non-Markovian evolution. We reveal the formal analogy
with the entanglement theory: Markovian evolution corre-
sponds to a separable state and non-Markovian evolution is
characterized by a positive integer—the non-Markovianity
degree—corresponding to the Schmidt number of an
entangled state. The notion of non-Markovianity degree
enables one to introduce a family of measures and finally to
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characterize maximally non-Markovian evolution being an
analog of the maximally entangled state.
Schmidt number and k-positive maps.—Let us recall

that a state of a composite quantum system may be
uniquely characterized by its Schmidt number [26,27]:
for any normalized vector ψ ∈ H ⊗ H let SRðψÞ denote
the Schmidt rank ofψ , i.e., a number of nonvanishing Schmidt
coefficients in the decomposition ψ ¼ P

kskek ⊗ fk, with
sk > 0 and

P
ks

2
k ¼ 1. Now, for any density operator ρ one

defines its Schmidt number by

SNðρÞ ¼ min
pk;ψk

fmax
k

SRðψkÞg; (3)

where the minimum is performed over all decompositions
ρ ¼ P

kpkjψkihψkj with pk > 0 and
P

kpk ¼ 1. Let
Sk ¼ fρjSNðρÞ ≤ kg. One has S1 ⊂ S2 ⊂ … ⊂ Sn, where
S1 denotes a set of separable states and Sn denotes a
set of all states inH ⊗ H. Note that a maximally entangled
state ψ satisfies λ1 ¼ … ¼ λn and the corresponding
projector jψihψ j defines an element of Sn. The Schmidt
number does not increase under local operation, i.e.,
SNð½E1 ⊗ E2�ρÞ ≤ SNðρÞ, where E1 and E2 are arbitrary
quantum channels. Moreover, if Φ is a k-positive map, i.e.,
1k ⊗ Φ is positive, then for any ρ ∈ Sk one has ½1k ⊗
Φ�ðρÞ ≥ 0 (1k denotes an identity map acting in Mk—the
space of k × k complex matrices). This simple property
establishes a duality between k-positive maps and quantum
bipartite states with the Schmidt number bounded by k.
Non-Markovianity degree.—The notion of k-positive

maps enables one to provide a natural generalization of
CP divisibility: we call a dynamical map Λt k divisible if
and only if Vt;s is k positive for all t ≥ s ≥ 0. Hence,
n-divisible maps are CP divisible and 1 divisible are
simply P divisible; i.e., Vt;s is positive. Now, we introduce
a degree of non-Markovianity which is an analog of a
Schmidt number: a dynamical map Λt has a non-
Markovianity degree NMD½Λt� ¼ k if and only if Λt is
(n − k) but not (nþ 1 − k) divisible. It is clear that Λt is
Markovian if and only if NMD½Λt� ¼ 0 and essentially
non-Markovian if and only if NMD½Λt� ¼ n. Denoting by
N k ¼ fΛtjNMD½Λt� ≤ kg, one has a natural chain of
inclusions

N 0 ⊂ N 1 ⊂ … ⊂ N n−1 ⊂ N n; (4)

where N 0 denotes Markovian maps and N n all dynamical
maps. The characterization of k-divisible maps is provided
by the following.
Theorem 1.—If Λt is k divisible, then

d
dt

jj½1k ⊗ Λt�ðXÞjj1 ≤ 0; (5)

for all operators X ∈ Mk ⊗ BðHÞ.
For the proof see Supplemental Material [28]. In

particular, all k-divisible maps (k ¼ 1;…; n) satisfy

d
dt

jjΛtðXÞjj1 ≤ 0; (6)

for all X ∈ BðHÞ. Note that BLP condition (2) is a special
case of (6) with X being traceless Hermitian operator.
It is, therefore, clear that BLP condition is weaker than all
conditions in the hierarchy (5) and it is satisfied for all
k-divisible maps not necessarily CP divisible. According
to our definition of Markovianity (Markovianity ¼
CPdivisibility) k-divisible maps which are not CP
divisible are clearly non-Markovian. However, such
non-Markovian evolutions always satisfy (6). We propose
to call such dynamical maps weakly non-Markovian.
A dynamical map which is even not P divisible will be
called essentially non-Markovian. Hence, Λt is weakly
non-Markovian if and only if Λt ∈ N n−1 −N 0 and it is
essentially non-Markovian if and only if Λt ∈ N n −N n−1.
Using the notion of degree of non-Markovianity Λt is
weakly non-Markovian if and only if 0 < NMD½Λt� ≤ n −
1 and it is essentially non-Markovian if and only if
NMD½Λt� ¼ n. Note that maps which violate the BLP
condition are always essentially non-Markovian. Similarly,
if Λt is at least 2 divisible, then the relative entropy satisfies
the following monotonicity property [29]

d
dt

S½Λtðρ1ÞjjΛtðρ2Þ� ≤ 0; (7)

for any pair ρ1 and ρ2. The violation of (7) means that Λt is
at most P divisible or essentially non-Markovian. It should
be stressed that there is crucial difference between CP
divisibility and only k divisibility with k < n. CP divis-
ibility guarantees that Vt;s are completely positive and,
hence, they may be considered as physical propagators for
s ≤ t. This is no longer true for Vt;s which are not CP but
only k positive. There was an active debate whether or not
one can describe quantum evolution by maps which are
more general than CP maps [30]. Usually, the departure
from complete positivity is attributed to the presence of
initial system-environment correlations [30]. Remarkably,
in our approach the lack of complete positivity of Vt;s
corresponds to memory effects caused by the nontrivial
system-environment interaction. We stress that the dynami-
cal map Λt is perfectly CP; only the intermediate propa-
gators Vt;s are not. Note, however, that if Λt is k divisible
then Vt;s map a state in time s into a state in time t. One
loses this property only if Λt is essentially non-Markovian.
Non-Markovianity witness.—Actually, if Λt is invertible,

then it is k divisible if and only if (5) holds. Clearly, a
generic map is invertible (all its eigenvalues are different
from zero) and hence this result is true for a generic
dynamical map (a notable exception is the Jaynes-
Cummings model on resonance [1,31]). Hence, if (5) is
violated for some t > 0, then Λt is not k divisible or,
equivalently, NMD½Λt� > n − k. It is, therefore, natural
to call such X a non-Markovianity witness in analogy to
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the well-known concept of an entanglement witness.
Recall, that a Hermitian operator W living in H ⊗ H
is an entanglement witness [26] if and only if
(i) hΨjWjΨi ≥ 0 for all product vectors Ψ ¼ ψ ⊗ ϕ,
and (ii) W is not a positive operator; i.e., it possesses
at least one negative eigenvalue. Similarly, W is a
k-Schmidt witness [32] if hΨjWjΨi ≥ 0 for all vectors
Ψ ¼ ψ1 ⊗ ϕ1 þ � � � þ ψk ⊗ ϕk, that is, if TrðρWÞ < 0,
then ρ is entangled and moreover SNðρÞ > k. Note, that
if X ≥ 0, then (5) is always satisfied due to the fact
that jj½1k ⊗ Λt�ðXÞjj1 ¼ jjXjj1. Hence, similarly as W, a
non-Markovianity witness X has to possess a negative
eigenvalue.
Non-Markovianity measures.—The above construction

allows us to define a series of natural measures measuring
departure from k divisibility,

Mk½Λt� ¼ sup
X

Nþ
k ½X�

jN−
k ½X�j

; (8)

where

Nþ
k ½X� ¼

Z
λkðX;tÞ>0

λkðX; tÞdt;

and, similarly for N−
k ½X� (where now one integrates over

time intervals such that λkðX; tÞ < 0), and

λkðX; tÞ ¼
d
dt

jj½1k ⊗ Λt�ðXÞjj1: (9)

The supremum is taken over all Hermitian
X ∈ Mk ⊗ BðHÞ. Note thatZ

∞

0

d
dt

jj½1k ⊗ Λt�ðXÞjj1dt

¼ jj½1k ⊗ Λ∞�ðXÞjj1 − jjXjj1 ≤ 0;

and hence jN−½Λt�j ≥ Nþ½Λtj, which proves that
Mk½Λt� ∈ ½0; 1�. Clearly, if l > k, then Ml½Λt� ≥ Mk½Λt�
and, hence,

0 ≤ M1½Λt� ≤ … ≤ Mn½Λt� ≤ 1;

which provides an analog of a similar relation among the
Schmidt coefficients s1 ≥ … ≥ sn. Now, following the
analogy with an entanglement theory, we may call Λt
maximally non-Markovian if and only if M1½Λt� ¼ 1,
which immediately implies

M1½Λt� ¼ … ¼ Mn½Λt� ¼ 1; (10)

in a perfect analogy with maximally entangled state
corresponding to s1 ¼ … ¼ sn.
Examples.—Let us illustrate the above introduced

notions by a few simple examples.
Example 1: Consider pure decoherence of a qubit system

described by the following local generator

LtðρÞ ¼ 1
2
γðtÞðσzρσz − ρÞ; (11)

The corresponding evolution of the density matrix reads

ρt ¼
�

ρ11 ρ12e−ΓðtÞ

ρ12e−ΓðtÞ ρ22

�
; (12)

where ΓðtÞ ¼ R
t
0 γðτÞdτ. The evolution is completely pos-

itive if and only if ΓðtÞ ≥ 0 and it is k divisible (k ¼ 1, 2) if
and only if γðtÞ ≥ 0. Taking X ¼ σx one finds
jjΛtðXÞjj1 ¼ 2e−ΓðtÞ. Observe that

jN−½Λt�j ¼ Nþ½Λt� þ e−Γð∞Þ − 1; (13)

and hence if Γð∞Þ ¼ 0 the evolution is maximally non-
Markovian. Note, that Γð∞Þ ¼ 0 implies that ρt → ρ, that
is, asymptotically one always recovers an initial state—
perfect recoherence. Actually, this example may be
immediately generalized as follows: let L be a Lindblad
generator and consider a time-dependent generator defined
by Lt ¼ γðtÞL. Now, Lt gives rise to a legitimate quantum
dynamical map if and only if ΓðtÞ ≥ 0 and it is k divisible
(k ¼ 1; 2;…; n) if and only if γðtÞ ≥ 0. The corresponding
dynamics is maximally non-Markovian if Γð∞Þ ¼ 0.
Example 2: Consider the qubit dynamics governed by

the time-dependent generator

LtðρÞ ¼ 1
2

X3
k¼1

γkðtÞðσkρσk − ρÞ: (14)

It is clear that (14) provides a simple generalization of (11)
by introducing two additional decoherence channels. The
corresponding dynamical map reads

ΛtðρÞ ¼
X3
α¼0

pαðtÞσαρσα; (15)

where σ0 ¼ I, and the probability distribution pαðtÞmay be
easily calculated in terms of γkðtÞ (see Ref. [33]).
Interestingly, in this example there is an essential difference
between CP divisibility (¼ Markovianity) and only P
divisibility: CP divisibility is equivalent to

γ1ðtÞ ≥ 0; γ2ðtÞ ≥ 0; γ3ðtÞ ≥ 0; (16)

whereas P divisibility is equivalent to much weaker
conditions [33]

γ1ðtÞ þ γ2ðtÞ ≥ 0;

γ1ðtÞ þ γ3ðtÞ ≥ 0;

γ2ðtÞ þ γ3ðtÞ ≥ 0; (17)

for all t ≥ 0. Actually, the BLP condition reproduces (17).
Now, violation of at least one inequality from (17) implies
essential non-Markovianity. Suppose for example that
γ2ðtÞ þ γ3ðtÞ≱0. Assuming that Γ2ð∞Þ ¼ Γ3ð∞Þ ¼ 0
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one finds that M1½Λt� ¼ 1, that is, Λt is maximally non-
Markovian. Interestingly, if there are at most two
decoherence channels, then there is no difference between
CP and P divisibility. Note, that random unitary dynamics
(15) is unital; i.e., ΛtðIÞ ¼ I and, hence, during the
evolution the entropy never decreases S½ΛtðρÞ� ≥ SðρÞ
for any initial qubit state ρ. One easily shows that P
divisibility is equivalent to

d
dt

S½ΛtðρÞ� ≥ 0; (18)

for any qubit state ρ. Hence, for any weakly non-Markovian
random unitary dynamics the von Neumann entropy
monotonically increases. Violation of (18) proves that Λt
is essentially non-Markovian.
Example 3: Consider a qubit dynamics governed by the

following local generator

Lt ¼ γþðtÞLþ þ γ−ðtÞL−; (19)

where LþðρÞ ¼ 1
2
ð½σþ; ρσ−� þ ½σþρ; σ−�Þ and L−ðρÞ ¼

1
2
ð½σ−; ρσþ� þ ½σ−ρ; σþ�Þ, with σþ ¼ j2ih1j and σ− ¼

j1ih2j. Lþ generates pumping from the ground state j1i
to an excited state j2i and L− generates a decay from j2i to
j1i. One shows that Lt generates legitimate dynamical map
if and only if

0 ≤
Z

t

0

γ�ðsÞeΓðsÞds ≤ eΓðtÞ − 1; (20)

where ΓðtÞ ¼ R
t
0½γ−ðτÞ þ γþðτÞ�dτ. In particular, it

follows from (20) that ΓðtÞ ≥ 0. Now, Λt is CP divisible
if and only if

γ−ðtÞ ≥ 0; γþðtÞ ≥ 0; (21)

and it is P divisible if and only if

γ−ðtÞ þ γþðtÞ ≥ 0. (22)

Note, that (21) implies (20). However, it is not true for (22):
i.e., P divisibility requires both (20)—it guarantees that Λt
is completely positive—and (22).
Bloch equations and P divisibility.—The above exam-

ples illustrating qubit dynamics may be easily rewritten in
terms of the Bloch vector xkðtÞ ¼ Tr½σkΛtðρÞ�. Example 2
gives rise to

d
dt

xkðtÞ ¼ −
1

TkðtÞ
xkðtÞ; k ¼ 1; 2; 3; (23)

where T1ðtÞ ¼ ½γ2ðtÞ þ γ3ðtÞ�−1, and similarly for T2ðtÞ
and T3ðtÞ. Quantities TkðtÞ correspond to local relaxation
times. It is therefore clear that P divisibility is equivalent to
TkðtÞ ≥ 0 for k ¼ 1, 2, 3. This proves the essential differ-
ence between CP divisibility and P divisibility. CP

divisibility requires that all local decoherence rates satisfy
γkðtÞ ≥ 0, whereas P divisibility requires only TkðtÞ ≥ 0.
Hence, one may have temporarily negative decoherence
rates but always positive relaxation times. From a physical
point of view this shows that the two main non-
Markovianity measures used in the literature describe very
different ways in which memory effects manifest them-
selves. Violation of CP divisibility [10] reflects the pres-
ence of reverse quantum jumps [6], restoring previously
lost coherence and occurring when one of the decay rates
becomes negative. The BLP non-Markovianity [13], which
in this case corresponds to the violation of P divisibility,
instead occurs when at least one of the relaxation times
becomes temporarily negative; i.e., instead of relaxation
one of the components xkðtÞ temporarily grows. This in
turn stems from a temporary and partial increase of
information on the open system, as measured by trace
distance. Note, that CP divisibility is equivalent to P
divisibility plus three extra conditions

1

T1

þ 1

T2

≥
1

T3

;
1

T1

þ 1

T3

≥
1

T2

;
1

T2

þ 1

T3

≥
1

T1

:

Finally, let us observe that the initial volume of the Bloch
ball shrinks during the evolution according to

VðtÞ ¼ e−½Γ1ðtÞþΓ2ðtÞþΓ3ðtÞ�Vð0Þ;

where VðtÞ denotes a volume of the set of accessible states
at time t. Authors of [19] characterized non-Markovian
evolution as a departure from ðd=dtÞVðtÞ ≤ 0. One has
ðd=dtÞVðtÞ ¼ −½γ1ðtÞ þ γ2ðtÞ þ γ3ðtÞ�VðtÞ and, hence,
ðd=dtÞVðtÞ ≤ 0 if and only if

γ1ðtÞ þ γ2ðtÞ þ γ3ðtÞ ≥ 0. (24)

This condition is much weaker than (17). To violate (24)
the evolution has to be essentially non-Markovian (i.e., Λt
cannot be even P divisible). Actually, the geometric
condition of [19] is always weaker than P divisibility
(and hence k divisibility). Any k-divisible dynamics nec-
essarily satisfies ðd=dtÞVðtÞ ≤ 0.
A similar conclusion may be drawn from Example 3: the

corresponding Bloch equations read

d
dt

xkðtÞ ¼ −
1

T⊥ðtÞ
xkðtÞ; k ¼ 1; 2;

d
dt

x3ðtÞ ¼ −
1

T jjðtÞ
x3ðtÞ þ ΔðtÞ; (25)

where ΔðtÞ ¼ ½γþðtÞ − γ−ðtÞ�, and T⊥ðtÞ ¼ 2=½γ−ðtÞ þ
γþðtÞ� and T jjðtÞ ¼ T⊥ðtÞ=2 are transverse and longitudinal
local relaxation times, respectively. Again, P divisibility is
equivalent to T⊥, T jjðtÞ ≥ 0, provided that the Bloch vector
stays within a Bloch ball.
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Conclusions.—In this Letter we provided further
characterization of non-Markovian evolution in terms
of the non-Markovianity degree. This simple concept,
being an analog of the Schmidt number in the entanglement
theory, enables one to compare quantum evolutions. We
say that Λð1Þ

t is more non-Markovian than Λð2Þ
t if

NMD½Λð1Þ
t � > NMD½Λð2Þ

t �. Similarities and differences
between the existing non-Markovianity measures in spe-
cific open system models have been discussed in several
papers [18,19,23–25,31,34,35]. However, their general
connection was still an open problem. Here we have solved
this problem in full generality by defining a hierarchy of
non-Markovianity measures. They interpolate between the
well-known RHP [10] and BLP [13] measures and, hence,
they provide refinement of non-Markovianity measures
usually used in the literature. This way our approach allows
us to classify the non-Markovianity measures introduced so
far in a unified framework. Finally, we define a notion of
maximally non-Markovian evolution which is an analog of
a maximally entangled state. Maximally, non-Markovian
evolution may be of crucial importance if non-
Markovianity can be shown to be a resource for quantum
technologies, as recent results suggest [18]. Finally, if the
evolution is only k divisible with k < n one may ask
about additional properties of the dynamical map. In
particular an interesting issue might be the optimality of
the family of “propagators” [36] Vt;s.
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National University of Singapore in the framework of
the programme Mathematical Horizons for Quantum
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