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H. T. KU, L. N. MANN, J. L. SICKS AND J. C. SU(X)

0. Introduction. Suppose Mm is a compact connected differentiable m-manifold.
Following [7], we define N(M), the degree of symmetry of M, as the maximum of
the dimensions of the isometry groups of all possible Riemannian structures on M.
Of course, N(M) is the maximum of the dimensions of the compact Lie groups
which can act effectively and differentiably on M. It is well known that

N(Mm) Z m(m+1)/2,

and that if N(Mm)=m(m+\)/2, then M is diffeomorphic to the standard sphere
5m or the real projective space RPm [5]. In this paper we generalize this result by
considering a product manifold

Mm = A/fi x Mfr       (m ^ 19),

where Mt is a compact connected differentiable manifold of dimension mx. We
show that

N(M) = mx(mx + l)/2 + m2(m2 + \)/2,
and that if

N(M) = nix(mx+ l)/2+m2(m2+\)/2,

then M is a product of two spheres, two real projective spaces or one of each.
We establish the above result by first showing that if Mm (m S 19) is a compact

connected differentiable w-manifold, then, except when M is diffeomorphic to the
complex projective space CPk (m = 2k),

N(Mm) <: «(a+l)/2 + (m-cc)(m-a+l)/2,

for all a such that Ha(M; 0#O (ß = rationals). This bound on N(Mm) is of
course sharper than m(m+1)/2, especially if a can be chosen near [m/2]. It follows
as an easy consequence of our results that

N(CPk) = k2+2k,
at least for k ̂ 10.
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1. Preliminaries. Consider a transformation group K acting on a space X.
The subset K0 of all elements of K which act as the identity on X form a normal
subgroup of K, and K/K0, in a natural fashion, acts effectively on X. The action of
Kon A'is said to be almost effective if K0 is finite. An almost effective action is said
to be almost free if K/K0 acts freely on X. The following lemma may be found in
[11].

Lemma 1. Let K= Ky x K2 act almost effectively on X. If Ky acts transitively on
X, then K2 acts almost freely on X.

Following Jänich [9] we let m(H), for a compact connected Lie group H, denote
the minimal dimension of the connected manifolds upon which H acts almost
effectively, e.g.,

m(SO(n)) = n-1.
The values of m(H) for all compact simply-connected simple Lie groups H are
listed in [9, p. 68].

If a compact Lie group G acts differentiably on a manifold M, it is known that
the orbit space M/G is a finite complex [15]. Furthermore it is well known that the
dimension of M/G is equal to the dimension of M minus the dimension of a
principal orbit.

A compact connected Lie group G can be expressed in the form:

(A) G = (T" x Sy x S2 x . ■ • x Su)/N = G/N,
where T" is a o-torus, o = 0, each S¡ is a compact, connected, simply-connected
simple Lie group and N is a finite normal subgroup of G. Each S¡ of dimension 3
is isomorphic to Spin (3). We employ the isomorphism

Spin (4) s Spin (3) x Spin (3)
to combine pairs of 3-dimensional S/s. With this convention, we may rewrite G
in the form

(B) G = (T«xSy~xS'2x...xSv)/N= G/N,
where each S] is either simple or isomorphic to Spin (4) and where there is at most
one S'i of dimension 3. We shall need later the following result [11, Theorem 1],
[9, p. 68].

For a nonnegative integer n, let

<n> = n(n +l)/2.

Proposition A. Let G be a compact connected Lie group acting effectively on a
connected m-dimensional manifold M. If G is of the form (B), then there exist
integers ty, t2,...,tv such that

dim Si S <*/>,      7= 1,2,..., r,
and

V

2 h = "»-?■í=i
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The following lemma is obvious.

Lemma 2. Ifnx^n2^w^0,
(a)   <ni> + <«2> = <«!+«2>,
(b) <«i> + </i2> = <n1 + H'> + <«2-M'>.

The next proposition is essentially due to W. Y. Hsiang [8] and related to
Proposition A. The version presented here is easily derivable from [9, p. 74].

Proposition B. Suppose G acts effectively on a homogeneous space G/H and

dim G > r(dim (G/H)),       r £ 13/4.

Then if G is of the form (B), there is at least one normal factor, say S'x, which is
isomorphic to one of the following groups:

(i) Spin (n), n > 2r,
(ii) SU(«), n>2r-l,
(iii) Sp(/i), «>2r-2.

Remark. The restriction that rt 13/4 in Proposition B guarantees that the
dominant normal factor S[ is a classical Lie group. If we remove this restriction,
we obtain an expanded version of Proposition B which has exceptional simple Lie
groups as possibilities for Sx-

2. The main lemma.

Main Lemma. Let G be a compact connected Lie group acting differentiably and
effectively on a compact connected m-manifold M, m^l9. Then if

dim G ^ m2/4+m/2,

exactly one of the following holds:
(a) M is diffeomorphic to CP" (m=2k), G acts transitively on M and G is locally

isomorphic to SU (k+1).
(ß) M is diffeomorphic to CPkx S1 (m = 2k+l), G acts transitively on M and G

is locally isomorphic to U (k+1).
(y) M is a simple lens space finitely covered by S2k + 1 (m = 2k+l), G acts

transitively on M and G is locally isomorphic to U (k+1).
(S) G contains a normal factor Sis Spin (n) (see §1 for terminology) where
(a) »Sm/2+1,
(b) S'x acts almost effectively on M with principal isotropy subgroup H whose

identity component H° is a standardly imbedded Spin (n— 1) in Spin («).

Proof. Let G(x) be a principal orbit for the action of G on M. Then G acts
effectively on the homogeneous space G(x) = G/Gx, where Gx is the principal
isotropy subgroup of G at .v. Now

_ .  m2   m      Im    \\    ^ Im    \\I ,.     G\
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Let

(1) r = m/4 + 1/2-e,

where e is a small positive quantity. Then

(2) dim G > r dim (G/Gx).

[Note that r can be chosen equal to w/4+1/2 if dim G(x)<m.) Since m_ 19, it
follows from (1) that r> 13/4. Suppose now that G is decomposed into the form
(B). Then we may use (2) to apply Proposition B and obtain a normal factor group
S'y of G as described in the proposition. Since G acts almost effectively on M, so
does S'y. We consider the possibilities for S'y.

Case I. SisSp(n).
By Proposition B and (1),

n > 2r-2 = m/2-l-2e.
Hence

(3)
On the other hand,

or

(4) 4n S m+4.

It follows from (3) and (4) that

2m-4 S 4n S m+4

or m S 8. Hence Case I is eliminated.
Case 11. S'y s SU (n).
By Proposition B,

n > 2r-l = m/2-2e.
Hence

(5) n = m/2.

Let H denote a principal isotropy subgroup for the almost effective action of S'y
on M. We consider various cases for dim H.

Subcase (a), dim HS [dim SU (n-1)]-2. Now,

2n+l S dim (S'y/H) S m.
Hence

(6) 2nSm-l.

We obtain an immediate contradiction from (5) and (6). Hence

dim#= [dimSU(n-l)]-l.

n = m/2-1.

4n-4 = m(Sp(n)) S m
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On the other hand if n _ 8, which will always be the case from (5) if m = 15, it
follows automatically that

dim H £ dimSU(n-l).

(See, for example, [6, Theorem 1.19].)
Subcase (b). dim 77=dim SU (n- 1).
First let us show that S'y is transitive on M. If not,

2n-l = dim(5i/7ï) S m-l,

or2nSm. It follows from (5) that 2n — m. Suppose G = S'y x K, where

K = S2 x ■ ■ ■ x S'v x T",

in the decomposition (B). We shall show that dim KS3, from which it follows that

dim G = dim G = dim SU (n)+dim K S «2+2.

However since m=2n,

dim G S «2+2 < n2+n = m2/4+m/2,

which contradicts our original assumption on the size of dim G.
We proceed to show dim.K_3. Now G = S[xK acts transitively and almost

effectively on a principal orbit My = G(x). Then S{ acts transitively on the orbit
space My/K which must be a compact connected manifold. If dim K~£4, then K
acts on My with principal orbits of dimension at least 3 and

dim(My/K) S m-3 = 2n-3.

Since SJ s SU (ri) is simple, S'y acts either almost effectively or trivially on My/K.
However, since

m(SU(n)) = 2n-2,

the action must be trivial. Hence My/K is a point and K acts transitively on My.
By Lemma 1, Sis SU (ri) acts almost freely on My and

n2-l = dim SU (n) S m = 2n,

which is an obvious contradiction. Hence Si s SU (n) must act transitively on M.
Since

dim 77 = dimSU(n-l),

it follows, at least for n ̂  8, that H°, the identity component of H, is a standardly
imbedded SU (n— 1) in SU (ri) [6, Theorem 1.19]. We have the covering

M = S'y/H° - SU (n)/SU (n-1) = S2""1

I
M -   S'y/H
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and, therefore M is finitely covered by S2n_1. Moreover the group of covering
transformations H/H° is a subgroup of

N(SU(n-l),S\J(n))^    x
SU (n-1)

where N(S\J (»— 1), SU (n)) denotes the normalizer of SU(« —1) in SU (n).
Hence H/H° is a finite cyclic group and the action of H/H° on M=S2n~1 is the
restriction of the standard free action of

N(S\J(n-l),SV(ri))„    x
SU(n-l)

on S"2"-1. It follows that M is a simple lens space. To show that we have possibility
(y) of the Main Lemma we must now verify that G is locally isomorphic to U(/i).
Recall that G = S[ x K. Now Si s SU (n) acts transitively on M and by Lemma 1,
K acts almost freely on M. Furthermore, S[ acts transitively on the compact
connected manifold Mx = M/K. This action must also be nontrivial, and therefore
almost effective, for otherwise K would act transitively on M and by Lemma 1
again, S[ would act almost freely on M which is impossible due to dimensional
considerations. Now

dim Mx = dim M—dim K = 2n — \ — dimK,
and since

iw(SU(»)) = 2n-2,
it follows that dim Ä= 1. On the other hand,

dim SU (n) = n2-\ = m2/4 + m/2-3/4,

since m = 2n— 1. It follows due to our dimensional restriction on G that dim K= 1,
and K is a circle group. Since G = SU (n) x S1, G is locally isomorphic to U (n)
and we have possibility (y) of the Main Lemma.

Since m(SU (n)) = 2n — 2, if dim H>dim SU (n- 1), then we must have

dimH = dimU(n-l).

Subcase (c). dim i? = dim U (n — 1).
First we show that S'x must act either transitively or with an (m— l)-dimensional

orbit on M. If not,
2«-2 = dim (S'x/H) ára-2,

or 2/z ̂  m. It follows from (5) that 2n=m, and we can proceed exactly as in Subcase
(b) to obtain a contradiction.

It follows, at least for « = 8, that H°, the identity component of H, is a standardly
imbedded U for consistency (n— 1) in SU (n). Since the normalizer of U (n— 1) in
SU (ri) is U (n-1) itself, H=H°. Suppose first that S[ is transitive on M. Then

Si       SV (ri)
M      H     U(»-l)      Cr     •
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As usual let G = S[xK. Since Si s SU (n) acts transitively on M, K acts almost
freely on M. Using our standard argument we may show dim K=Q, and, hence,
that G is locally isomorphic to SU (ri). This gives us possibility (a) of the Main
Lemma. By the way, in this case, since the Euler characteristic of M=CPn~1 is
positive, it follows directly that rank £=0.

We are left with the case that S[ acts on M with an (m — l)-dimensional orbit.
It follows that

(i) M¡S'1 = S1 or I (closed interval),
(ii) All orbits are principal and diffeomorphic to CPn~1.
(i) is a well-known result due to P. S. Mostert [13] and G. E. Bredon [3]. (ii) is

reasoned out as follows. Since we have already agreed that the normalizer of
U (n — 1) in SU (ri) is U (n— 1) itself, all orbits of maximal dimension are principal
and diffeomorphic to CPn~1. Moreover since H=\J (n— 1), the only other possible
orbits are fixed points. However, if the action has fixed points, then the orbit space
is a closed interval with the two end points corresponding to the two exceptional
orbits, each of which are fixed points. It follows that M is homeomorphic to the
suspension of CP71'1 and therefore not a manifold since n>2.

Since all orbits are principal, M is a fibre bundle over M/S[ with structural group

N[U(n-l), SU(n)]
U(n-l)

which is trivial. Hence M=CPn-1 x M/S'y. Clearly M/S[ = I is impossible. It
follows that

M= CPn~1xS\

Let G— S'yxK and suppose that My = G(x) is a principal orbit of the action of G
on M. Since

dim My S dim M = 2n— 1,

and Sis SU (ri) acts almost effectively on M2 = My/K, it follows using our standard
techniques that dim KS 1. On the other hand, due to our dimensional restriction
on G, dim K= 1, and G is locally isomorphic to U (n). This gives us possibility (jS)
of the Main Lemma. (Clearly (r = SU (ri)xSx acts transitively on M.)

CaselII. Si s Spin (n).
By Proposition B,

n > 2r = m/2+l-2e.
Hence

(7) n = m/2 + l.

Let H denote a principal isotropy subgroup of the almost effective action of Si
on M. Suppose first that

dim H S dim [SO (n-2) x SO (2)].
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Now
2n-4 S dim (S'y/H) S m,

or

(8) 2n S m+4.

Let G=S'yxK. We shall show that dim KSm + 6, from which it will follow that

dim G = dim G = dim Spin (n) + dim K S n(n-1)/2+m+6.

However, since from (8)

n S (m+4)/2,

..    _ ^ \   2   )     I   2   / ,      m2   1m   _     m2    mdim G S --—^--+m+6 = -Q-+-A- + ^ < -r +-¡r2 8      4 4      2

for m^ 12. This, of course, is a contradiction.
We proceed to show dim KSm + 6. Now G=S'y x Kacts transitively and almost

effectively on a principal orbit My = G(x). Hence K acts transitively on the orbit
space My/S'y which must be a compact connected manifold. Let M2 = My/S'y. Now
Si must act on M with principal orbits of dimension at least m—2. For otherwise

2n-4S dim (S'y/H) S m-3,

which contradicts (7). Hence

dim M2 = dim (My/S'y) S dim (M/S[) S 2.

Now either Af2 is a point or K acts nontrivially on M2 since

MJK m My/G

is a point. If M2 is a point, Si is transitive on My and by Lemma 1, K acts almost
freely on My. Therefore dim K S dim My S m. Suppose then that K acts nontrivially
on M2. Now

K = S2 x Sá x • • • x S'v x T«

and 1 S dim M2 S 2. Now either T" or S^, 2 áy =s t\ acts nontrivially on M2. Suppose,
say, S2 acts nontrivially on M2. Then S2 acts transitively on M2 and dim S2 = 6.
[Note that conceivably S2sSpin (4).] Let

Ky = S3 x • • • x S'v x T".

Now G^SixSaxT^i, and SixS2 acts transitively on My. Hence by Lemma 1,
A^a acts almost freely on My and dim Ky S dim My = m. It follows that

dim K = dim S2 + dim Ky _ m+6.
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If each S'f, 2¿j£v, acts trivially on M2, then T" acts transitively and nontrivially
on M2. Therefore T" contains a subgroup T2 which acts transitively on M2. Let

J\2  =  *^2 ̂  *^3 X ••. X Sv X 1

where T"-2 = T"/T2. Now G = S'xxT2xK2 and SixT2 acts transitively on Mj.
Hence by Lemma 1 again, K2 acts almost freely on Mx and

dim K - dim r2 + dim K2 g 2+m.

(Actually the above argument applies to the case where dim M2 = 2 ; for dim M2 = 1,
an obvious alteration is required.) It follows that

dim H > dim [SO (n-2) x SO (2)].

Hence if we assume ni 11, which from (7) will always be the case for m ̂  19, then
dim H—dim SO (n— 1) and H° is a standardly imbedded Spin (n— 1) in Spin (ri)
[6, Theorem 1.18]. Thus we have the last possibility (8) of the Main Lemma.

3. Main results.

Theorem 1. Let Mm be a compact connected differentiable m-manifold (m^ 19).
Then precisely one of the following holds:

(i) N(Mm)£<.ay + <m-a> for all a such that H"(M; 0#O.
(ii) M is diffeomorphic to CPk (m=2k), and Ñ(M)=dim SU (k+1).

Proof. Suppose first that M is diffeomorphic to CPk. Now

Hk(CPk; Q) * 0,       fceven;
Hk+1(CPk; Q) Ï 0,       A: odd.

On the other hand SU (k+1) acts almost effectively on CPk. Consequently

N(CPk) ^ dim SU (k+1) = k2+2k > <*:> + <*:>, k even;
> </t+l>+<Â:-l>,       kodd.

We proceed to show that CPk is the only manifold which violates (i). Suppose
7V(Mm)><o£>+<m-a>, for some a where H"(M; g)#0. Then there exists a
compact connected Lie group G acting effectively and differentiably on M with

N(Mm) = dim G > <a>+</n-a>.
Now

, v ,      a2 + (m—a)2   m ^ m2   m<ay+<m-«> =      \    >+J z -+r

Hence dim G>m2/4+m/2, and we must be in one of the four possibilities of the
Main Lemma. If possibility (a) occurs, M is diffeomorphic to CPk and G is locally
isomorphic to SU(&+1). Hence N(M)=dim G = dim SU (k+1), and we have
statement (ii).
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We show that the remaining possibilities of the Main Lemma cannot occur.
In the case of possibility (ß), we have

dim G = dim U (k+l) = (k +1)2.
On the other hand,

<a> + <m-a> £ </c+l> + <A:> = (k+l)2.

Hence dim G^<a> + <nj — a>.
If M is finitely covered by Sm (possibility (y)), then M is a rational cohomology

sphere. (See, for example, [1, p. 38].) Hence c¡=0 or m and <a> + <m —a> = <m>.
However, N(Mm) S <w> as is the case for every m-dimensional manifold. We are
left with possibility (8) of the Main Lemma. Now

G = Si x ••• x Si x T"

acts almost effectively on M with

Si s Spin(n),       n = m/2+1.
Hence

dim Si = dim Spin (n) = <n-l> = <[(m + l)/2]>

and by Proposition A,
dim Si = dim S'},       2 S j S v.

Let /S = max (a, m — a). We claim it is sufficient to show that nSß+1. For if

dim Si = dim Spin (n) = <n-1> < <jS>,
we know that

ßZhZt,,       2SjSv
from Proposition A. (Note we assume that the f/s are chosen minimally.) Let

tl = ß-u,       u = 0.
We know that

V

(9) dim G = dim G < <¿S-u>+ 2 <&>+9
í=2

where

(10) 2 *> = m-q-(ß-u) = m-ß+u-q.

We consider two cases,
(i) 2/=2 tj+qSu- Then by Lemma 2(a)

2 <ti;+qS ¿Ít,+q\ á<«>,
í=2 \i=2 /

and from (9) it follows that

dim G = dim G S <)3-«> + <M> S <ß> S <«> + </«-«>.
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(ii) 2"-2 t,+q>u. By repeated use of Lemma 2(b), since ß — u = tx^tj for ally,

</?-«>+ 2 <'i>+<7 á </3> + 2 <f,>+<?
¡-2 ¡.2

where
(a) OS?,*/,,
(b) Oeqúq,
(c) S-« ?>+#»!?-• </+f-*

From (9) it follows that
V

dim G = dim G â </3>+ 2 <&>+$
/-2

am+^Zji+q-y

a<ß} + <m-ß}       (from (10))
á <«> + <m-a>.

It remains to show that «gj8+1. Suppose, on the contrary, that

(11) «£¿3+2.
We know from the Main Lemma that S[ s Spin (ri) acts almost effectively on M
with principal isotropy subgroup H whose identity component H° is a standardly
imbedded Spin (n — 1). It follows that the only possible orbits of the action of S'x
on M are S"-1, ftP"-1 and fixed points, all of which are acyclic over Q up to and
including dimension n - 2.

Let X denote the orbit space M/S[. Then
(12) dim X= m-(n-\) g m-ß-l < a
from (11). Consider the projection tt: M -> X. Since 7r_1(.v) is acyclic over Q up to
dimension n—2 for each x, it follows from the Vietoris-Begle Mapping Theorem
[14] that

H\M; Q) s W(X; Q),       i $ n-2.
However, since a^ß^n-2, it follows that Ha(X; Q)¥>0 which contradicts (12).
Hence n^ß+l and we are finished.

Theorem 2. Suppose
Mm =  A/ml x Mm2¡ (»^  fc 1«, fc   1 î ™  S   19)

wAere M™*, i= 1, 2, ¿s a compact connected differentiable manifold of dimension mt.
Then iV(Mm)^<m1> + </fia>. Moreover ¡/AT(A/m) = <m1> + <OT2>, íAen A/ üs í/#é?o-
morphic to one of the following:

(i) SmixSma,
(ii) RPmixRPmi,

(iii) SmixÄPm2,
(iv) RPmixSm*.
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Proof. For the first part of the theorem we may as well suppose that My and M2
are each orientable. If not, let

Mm = Mï"1 x Mfi,

where M¡, i=l, 2 is either the orientable double covering of A/¡ or M¡ itself
depending upon whether or not Mt is orientable. Now M is either a two or four
fold covering of M and N(M) ^ N(M), since every group G acting almost effectively
on M can be lifted to a covering group G acting almost effectively on M. (See, for
example, [10, Lemma 2].)

Now Hmi(M; S)#0, and since CPk does not split as the product of two mani-
folds, as is immediately obvious from its cohomology ring structure, it follows
from Theorem 1 that N(Mm)S<my} + <m2>.

Suppose now that N(A/m) = <m1> + <m2>, and let G be a compact connected
Lie group of dimension <Wi> + <w2> acting effectively on M. If we refer to the
Main Lemma, possibility (a) is out since CPk does not split. Possibility (y) is out
for a similar reason. In possibility (ß) if

CPkxS1 = MmixMm2,

then my=2k and m2 = l due to the cohomology ring structure of CP"xS1.
However,

dim G = dimU(¿ + l) < <2/fc> + <l> = <my) + <.m2>.
Consequently we are dealing with possibility (8) of the Main Lemma.

Let G= S'y x K. We know Si s Spin (n), where n ̂  m/2 +1. Following the proof of
Theorem 1 we can show that n S my +1, lifting the action if necessary to the
orientable covering M=M?i x M^2- Let us first show that n=/n1 + l. Suppose,
on the contrary, that nSmy. Then n— lSmx — 1 and dim Si^<mi —1>. Assume
that G is in the form (B) and apply Proposition A. Then

V

dim G = dim G = dim Si+ 2 dim S'i +q
1*2

= <ti>+f<ts>+q.
J = 2

We know
í/ = íi = »ii-l,      7 = 2.

If m2Snty—2, we may use Lemma 2 to show

dim G S <m1-l> + <m2+l> < </M1> + <m2>.

If m2=my -1 we can conclude by Lemma 2 that

dim G S <w1-l> + <OT2>+<l> < <mi>+<fflj).

Finally, if m2=mx,

dim G S <w1-l> + <m2-l> + <2> < <m1> + <m2>.

We proceed with n = my +1.
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Choose x e M so that it lies simultaneously on principal orbits of the actions of
S'x, K and G on M, and let Hlt H2 and H, respectively, denote the isotropy sub-
groups at x of the three actions. Then Nx = G(x) is a principal orbit for the action
of G on M and G=S'x x K acts transitively and almost effectively on Nx. We know
that

dim K - dim G-dim S[ = <«j2>,
and therefore that Kacts almost effectively on Nx with principal orbits of dimension
at least m2. On the other hand, if the dimension of the principal orbits of this
action is greater than m2, it follows that

dim N2 < m—m2 — mu

where N2 denotes the orbit space NJK. However S[, which is simple, acts either
trivially or almost effectively on the compact connected manifold N2. If the action
is trivial, then N2 is a point and, therefore, .Kacts transitively on Nx. It then follows
from Lemma 1 that S[ acts almost freely on Nx and that

</«!> = dim S'x Ú dim N% á m,
which is impossible. But if S[ acts almost effectively on N2 we again arrive at a
contradiction since dim S[ = <iWi> and dim N2<mx. Therefore K acts on Nx with
principal orbits precisely of dimension m2. It follows that As Spin (m2+ 1), and
that

dim G(x) = dim Nx = dim N2+m2 = mx+m2 = m.

Hence G acts transitively on M and M=G/H. We already know that H% is a
standardly imbedded Spin (jnx) in S'x. From our knowledge of the action of K on
Nx = M, it follows that

dim H^ = dim Spin (m2),

and consequently for m2^3,7 that H2 is a standardly imbedded Spin (m2) in K
[12, Lemma 7]. We proceed under the assumption that m2^3,7 acknowledging
that separate arguments are required to handle these two possibilities. In any case
Hi*xH$<=H0, and since it is immediately checked that dim (#? x H g) = dim H°,
it follows that Hl x H%=H°.

Now H/H°<=N(H°, G~)/H° and

N(H°, G")     A^Spin (mx), Spin (mi +1))   A^Spin (m2), Spin (ma+ 0)
H°      ~ Spin (mx) X Spin(m2)

ZZ2@Z2.

We obtain the possibilities (i), (ii), (iii) and (iv) listed in Theorem 2 by taking
H/H° to be the subgroups 0, Z2 © Z2, 0 © Z2 and Z2 © 0 respectively. The only
remaining possibility is that H/H° is a Z2 imbedded diagonally in Z2 © Z2. In
this case M can be described as follows. Let Z2 act on Smi x Sma by (x, y) -*■
(-x, -y). Then

M = (Smi x Sm2)/Z2
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is the orbit space of this action. We shall show that, depending upon m: and m2,
M may or may not split as a product but when M does split, then it is diffeo-
morphic to Smi x RPmi. This would complete the proof of Theorem 2.

Recall [2] that (KO)~(RPm¡>) is a cyclic group of order 2*(m2) where

4>(m2) = the number of integers p
such that

(13) 0 < p S m2

(14) p = 0, 1, 2, 4   (mod 8).

Moreover a generator of (KO)~(RPmi) is given by the element a=£-l, where $
is the usual Hopf bundle

i : Z2 -> Sm2 -> RPni

defined by the antipodal involution of Z2 on Sm¡¡. We complete the proof of
Theorem 2 by proving the following proposition.

Proposition C. Let
M = (Smi x Sm2)/Z2

be the orbit space of the diagonal involution (x, j)->-( — x, —y) on SmixSm*,
my^m2. Then M splits as a product if and only if

my +1 = 0   (mod 2*°V).

Moreover, if M splits, then it is diffeomorphic to Smi x RPm2.

Proof. First observe that we have the fibration

r¡: Smi -> M-+ RPmt,

which is the bundle associated with £ having fiber Smi. Thus as vector bundles,
,-(!«! + l)f If

my +1 = 0   (mod 2*(ms)),
then

r)-(my + l) = (my + l)a = 0

in (KO)~(RPma). This means that t¡ is stably trivial. But since m2<my +1, we are
in the stable range and therefore t¡ itself is a trivial bundle. In particular, M is
diffeomorphic to Smi x RPm2.

Suppose now that M=Myi x M2*. We wish to show that

nii + lsO   (mod2*(m2)).

We shall consider only the case m2>l as the argument for m2=l is similar. If
w2>l, then TTy(M)=Z2, and hence one of the two factors My and A/2 is simply
connected. Denote the simply connected factor by Me and the other by My. Then
TTy(My)=Z2. Let My be the universal covering space of My. Then we must have

MgxMyX SmixSm2.
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From this it follows that MB and My must be homotopy spheres of dimensions
my or m2. If m1=nj2, it does not matter of course which is which. But if mx>m2,
we claim that

dim M a — mlt       dim A/r = m2.

For if it were the reverse way, then M would have the mod 2 cohomology

H*(M;Z2) = H*(RPmixSm*;Z2).

However, a simple spectral sequence computation (the spectral sequence is trivial
because mx > m2) shows that

H*(M;Z2) = H*(SmixRPm*;Z2),

at least additively. But this gives an immediate contradiction by looking at
Hm2(M; Z2).

Thus at any rate M is homotopy equivalent to

Smi x RPm3.

Let
n: M -> Smi x RPm2

be a homotopy equivalence and let

/: Smi -* M

be the inclusion of a fiber in r¡. It is easily checked that

S"i —U. M —> Sni x RPm2 lU smi

induces an isomorphism on the integral cohomology in dimension my. According
to Dold [4], this means the bundle r¡ is fiber homotopically trivial. However, it is
known [2] that the /-homomorphism

J: (KO)~(RPm2) -+J(RPm*)

is an isomorphism for projective spaces. Hence the element

■n-(my + l) = (mx + lXf-1) = (my + l)«

is zero in (KO)~(RPm2) or
my +1 = 0   (mod 2*<m2>).

Remarks. The assumption that m=19 throughout the paper appears to be
technical and we are able to dispose of this restriction in most cases. The authors
are currently attempting to generalize Theorem 2 to products of more than two
manifolds. The key to the situation appears to involve increasing the scope of the
Main Lemma. For example, to handle the product of three manifolds, we should
consider manifolds M where

N(M) = m2/6+m/2;
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for the product of four manifolds, we should consider manifolds M where

N(M) = m2ß + m/2
and so on.

It is easily checked that differentiability is not really used in the proof of the
Main Lemma. Consequently, Theorems 1 and 2 can be stated in terms of topological
manifolds and topological degree of symmetry NT(Mm) where for a compact con-
nected topological w-manifold Mm, Nr(Mm) is the maximum of the dimensions of
the compact Lie groups which can act effectively on M.

Proposition D. Suppose
M = M x x M2 x ■ ■ ■ x Mx,

where M and the Mx are compact differentiable manifolds. Then

N(M) £ 2 N(M¿-

Proof. Let M¡ be a Riemannian structure for Mt such that

N(MX) = dim Isom (M,),       i = 1, 2,..., A.

Let  M=MxXM2x ■ ■ ■ xMh  be  the  product  Riemannian  manifold.   Clearly
Isom (M) contains a subgroup isomorphic to the product

Isom (Mx) x Isom (M2) x ■ ■ ■ x Isom (MA).
Hence

N(M) è dim Isom (M) = 2 N(Mt).

Example. If 2n is an exotic sphere which bounds a 7r-manifold, it is known
that Sn x S2 is diffeomorphic to Sn x S2. Furthermore, it is known [7] that

N(Zn) < in2+l.
It follows that

A^xS2) > NÇLn)+N(S2).

Corollary 1 (Corollary to Theorem 2).

N(Mx) + N(M2) è N(M?ixM?i) è <>«!> + <ma>       (mx+m2 è 19).

Remark. If the right-hand equality in the above corollary holds we know that
M x x M2 is diffeomorphic to one of the four manifolds listed in Theorem 2.
However, this does not imply that the left-hand equality holds as exhibited by the
last example where we chose an exotic splitting A/i=Sn, M2=S2 of Sn x S2.
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