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Abstract

Given a graph G on n vertices and a distribution, D, of pebbles on the
vertices of G, we define a pebbling move to be the removal of two pebbles
from a given vertex and the placement of one on an adjacent vertex. If
D has n pebbles and if after a sequence of pebbling moves we can place a
pebble on any specified vertex then we call G Class 0. We give a sufficient
degree sum condition for G to be Class 0.

1 Introduction

We let G = (V, E) be a simple graph with vertex set V := V (G) and edge set E :=
E(G) where |V | = n. For sets A, B ⊂ V and A∩B = ∅, we use G[A, B] to denote the
bipartite subgraph of G containing all edges with one end-vertex in each of A and B.
We define the degree of a vertex v, denoted d(v), to be the number of edges incident
with v and denote its set of neighbors by N(v). The minimum degree, maximum
degree and independence number of a graph G are denoted δ(G), Δ(G) and α(G), re-
spectively. We let σk(G) = min{d(x1)+ . . .+d(xk)|x1, . . . , xk are independent in G}.
Given a distribution D of pebbles on the vertices of G, which may be thought of as
an assignment of integer weights to the vertices of G, we say that a pebbling move
consists of removing two pebbles from a vertex and then placing one pebble on an
adjacent vertex. The number of pebbles placed on a vertex v is denoted D(v). Given
a target vertex r, known as the root vertex, we say that r can be reached, or pebbled,
if after a sequence of pebbling moves it is possible to place a pebble on r. The
pebbling number of G, π(G), is the least integer m such that, regardless of how m
pebbles are distributed on the vertices of G, after a sequence of pebbling moves it is
possible to reach any vertex. It is easy to see that π(G) > n − 1 since placing each
of n − 1 pebbles on a distinct vertex leaves one vertex, r, without a pebble and no
pebbling moves possible. Graphs for which π(G) = n are known as Class 0 graphs
and this class is the object of our consideration. It is obvious that such graphs must
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be connected and in fact must be 2-connected. The latter is seen true if we let x be
a cut-vertex of G, let the components of G(V \ {x}, E) be G1, G2 and vi ∈ Gi and
consider the following distribution in G of n pebbles, D(v1) = 3, D(v2) = 0, D(x) = 0
and D(v) = 1 for all other vertices. The distribution does not allow v2 to be pebbled.

In [4], the problem of determining necessary and sufficient conditions for a graph G
to be Class 0 is given. Most results in this direction, including those surveyed in [4],
focus on conditions on the diameter and connectivity of G. A result in [5], which we
discuss below, gives a sufficient condition in regards to the number of edges of G.
Here, we give a sufficient degree sum condition, which is best possible, for G to be
Class 0.

Theorem 1 If σ2(G) ≥ n, then G is Class 0.

The proof of Theorem 1 is essentially the same as the proof of Theorem 2 in Czygri-
now and Hurlbert [2], so we do not present it here. However, as a result we obtain
the following.

Corollary 2 If δ(G) ≥ �n
2
�, then G is Class 0.

In [2], it was incorrectly claimed that if δ(G) ≥ 	n
2

 then G is Class 0. The error in

[2] occurred in the proof of the lower bound on δ(G). To see this, consider when n is
odd the following graph G - which has minimum degree 	n

2

, but is not Class 0. Let

G be the graph of two complete graphs of order �n
2
� intersecting in a single vertex.

This graph contains a cut-vertex, so it cannot be Class 0. Thus we must necessarily
have δ(G) ≥ �n

2
�. The proof that this bound is sufficient to guarantee membership in

Class 0 holds as given in [2] with 	n
2

 replaced by �n

2
�, but also follows immediately

from Theorem 1.

We are able to offer the following new result.

Theorem 3 Let G be a graph on n ≥ 6 vertices. If for each maximal independent
set, S, of G we have

Σ
v∈S

d(v) ≥ (|S| − 1)(n − |S|) + 2

then G is Class 0.

Using this result, we can see that the complete multipartite-graph, Kp1,...,pt , with
partite sets P1, . . . , Pt where |Pi| = pi, t ≥ 2 and 1 ≤ p1 ≤ p2 ≤ . . . ≤ pt, is Class
0 as long as Σpi ≥ 6, except in the case t = 2 and p1 = 1. Notice that the only
maximal independent sets are P1, . . . , Pt.

We also obtain the following corollary due to Pachter, Snevily and Voxman [5].
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Figure 1: The family F

Corollary 4 [5] If G is a graph on n ≥ 4 vertices and |E(G)| ≥ (
n−1

2

)
+ 2, then G

is Class 0.

For a survey of results in graph pebbling, we refer the reader to [3] and [4].

2 Proof of Main Result

To see that the conditions given in Theorem 1 and Theorem 3 are best possible,
consider the following construction. Let G′ be any graph on n − k vertices with
vertex set {x1, . . . , xn−k}. To G′ we add vertices {xn−k+1, . . . , xn} with each vertex
in {xn−k+1, . . . xn−1} adjacent to each vertex in {x1, . . . , xn−k} and xn adjacent only
to x1; denote this graph by G. In G, the set of vertices xn−k+1, . . . , xn forms an
independent set of size k with degree sum (k− 1)(n− k) + 1, yet G is not Class 0 as
it contains a cut-vertex, x1.

To prove Theorem 3 we first present a result from [1]. To do this, we must first
describe a class of graphs F . The class, F , we give is a correction to the one given
in [1], yet the corresponding result (and its proof) still holds.

We refer the reader to Figure 1. To begin, each F ∈ F has a six-cycle C6 = pr′qp′rq′p.
For each vertex p, q and r there exists a subgraph (possibly the empty graph), denoted
Hp, Hq and Hr, respectively. In each component of Hp there exists a vertex adjacent
to p (denoted by double dotted lines), and each vertex in Hp is adjacent to q′, r′

(denoted by solid lines). Similar statements hold for Hq and Hr. Further, in each
F there exists a subgraph, denoted Hc, in which each vertex is adjacent to at least
two of {p′, q′, r′} (denoted by arrowed lines). At least two of the edges p′q′, q′r′, r′p′

exist (denoted by dashed lines). Edges may not exist between any pair Hi, Hj. This
describes all possible edges of a member of F .

Theorem 5 [1] If a graph G on n ≥ 6 vertices has diameter two, connectivity at



86 ANNA BLASIAK AND JOHN SCHMITT

q’
x

zy

p r’
q

p’

r

Figure 2: A graph F with diameter two, connectivity two, but not Class 0

least two and π(G) > n, then G ∈ F .

The class of graphs given in [1] differs from the class F . It differs from F only in Hc,
all other aspects are the same. In [1], Hc was essentially described as consisting of
two parts Hc′ and Hc′′, where Hc′ consists of those vertices in Hc adjacent to vertices
p′ and q′ only and Hc′′ consists of all other vertices in Hc. It was specified that edges
did not exist between Hc′ and Hc′′, however we show that this need not be the case
and this leads to our description of F as given above.

To see that the description of F given here is more broad than the one given in [1],
we give a graph F which has diameter two and connectivity two, is not Class 0 and
is not a member of the family of graphs described in [1]. We refer the reader to the
graph given in Figure 2. By inspection, it is easy to see that F has diameter two
and connectivity two. The graph F is not Class 0 since if we let D(p) = D(q) =
3, D(r) = D(p′) = D(q′) = D(r′) = 0 and D(x) = D(y) = D(z) = 1 then it is
impossible to pebble r.

A consequence of Theorem 5, as shown in [1], is that if a graph G has diameter
two and connectivity at least three then G is Class 0. The discussion following the
statement of Theorem 3 gives an instance of a graph shown to be Class 0 by Theorem
3, but not by this consequence - namely the graph K2,n−2.

We now give two preparatory propositions towards the proof of Theorem 3. Given
a graph F ∈ F and a set of vertices, R, in V (F ) we say that R has Property 1 if R
contains a vertex in each of Hp ∪ p, Hq ∪ q and Hc ∪Hr ∪ r and does not contain any
element of {p′, q′, r′}.

Proposition 6 If F ∈ F and α(F ) ≥ 3, then for each s, 3 ≤ s ≤ α(F ), there is an
independent set of size s in F with Property 1.

Proof: Let F ∈ F and S be an independent set in V (F ) of size at least three.
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Assume that S does not have Property 1 and we will show that there exists an
independent set T with |T | = |S| having Property 1.

If S does not contain any vertex from {p′, q′, r′}, then as there are no edges between
Hp ∪ p and Hq ∪ q, Hp ∪ p and Hc ∪ Hr ∪ r, and Hq ∪ q and Hc ∪ Hr ∪ r, we may
remove a single vertex from S and replace it by any vertex from the set which it
does not intersect, while at the same time ensuring the number of sets it intersects
increases, to form S ′. If S ′ has Property 1 then we let T = S ′. Otherwise, we repeat
this procedure to form S ′′, at which point we are guaranteed that S ′′ has Property 1
and so we let T = S ′′.

Otherwise, S does contain a vertex from {p′, q′, r′}. The set S may contain at most
two vertices from {p′, q′, r′}, as this set induces at least two edges. First consider if
S contains precisely one such vertex. Let’s say p′ ∈ S, then as p′ is adjacent to each
vertex in Hq ∪ q and r′ 
∈ S we may replace p′ by any vertex in Hq ∪ q to form an
independent set, S ′. Similarly, if q′ ∈ S, or r′ ∈ S, then a similar procedure may be
performed to form an independent set, S ′. The set S ′ has |S ′| = |S| and does not
contain any vertex in {p′, q′, r′}, so by the previous case either S ′ has Property 1 or
we may find a suitable set T .

Finally, we consider the case in which S contains two vertices from {p′, q′, r′}. Re-
gardless of the choice of the two, every remaining vertex in the graph will be adjacent
to at least one of the two. Thus the set S cannot contain any other vertices from G.
This contradicts that the size of S is at least three. �

For a positive integer a, we define a positive integer partition of length t of a to be a
vector a = (a1, . . . , at) such that a1 + . . .+ at = a and for 1 ≤ i ≤ t we have ai ∈ Z

+.

Proposition 7 Let a, b, t be positive integers with b ≥ a ≥ t. Let a,b be positive
integer partitions of length t of a and b, respectively. If for 1 ≤ i ≤ t we have bi ≥ ai

then

f(a,b) = Σt
i=1ai(bi − ai) (1)

is maximized when for some i we have ai = a − (t − 1), bi = b − (t − 1), and so
aj = bj = 1 for all j 
= i and f(a,b) = (a − (t − 1))(b − a).

We delay the proof of Proposition 7, a purely number theoretic result, until after the
proof of our main result which we now give.

The proof of Theorem 3 is based on arguments given in [2].

Proof of Theorem 3: Let G be given according to the conditions of Theorem
3. If α(G) = 1, then G = Kn and the result holds trivially. If α(G) = 2, then the
condition of Theorem 1 holds and G is Class 0.

Thus we may assume that α(G) ≥ 3 and suppose G is not Class 0. We begin by
showing that G must belong to F . Let x, y ∈ V (G) such that xy 
∈ E(G) and let S
be any maximal independent set containing both x and y. As S is independent, the
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maximum degree of a vertex in S is n−|S|. This fact and the hypothesis imply that
we have,

d(x) + d(y) ≥ (|S| − 1)(n − |S|) + 2 − (|S| − 2)(n − |S|)
= (n − |S|) + 2.

The pigeonhole principle implies that x and y must share at least two common
neighbors, and so the diameter of G is at most two. The diameter is at least two
since α(G) ≥ 3, and so the diameter must be equal to two. We can also reach the
conclusion that between any pair of non-adjacent vertices there exists at least two
vertex disjoint x, y-paths. Now consider x, y ∈ V (G) such that xy ∈ E(G), we seek
to find an x, y-path distinct from the edge xy. This will show that between any two
vertices in G there exists two vertex disjoint paths and so, by a theorem of Whitney
[6], G is 2-connected. As G is connected at least one of x and y has another neighbor,
say x does and call x’s neighbor u. If uy ∈ E(G) then uy is the second path we
seek. Thus we may assume that uy 
∈ E(G) and let S ′ be a maximal independent
set containing both u and y. Then, as above, we may show that u and y have at
least two neighbors in common, one of which, say v, is distinct from x. We then have
xuvy as an x, y-path distinct from the edge xy. Thus G is 2-connected.

As G has diameter 2, is 2-connected and, by assumption, is not Class 0, then by
Theorem 5 G is in F . Now consider a maximal independent set S such that |S| =
α(G). We apply Proposition 6 to S to obtain an independent set T with |T | = α(G)
and T has Property 1. Let’s say that i vertices from T are in Hp ∪ p, j vertices from
T are in Hq ∪ q and k vertices from T are in Hc∪Hr ∪ r. We then have the following,

Σ d(u)
u∈T,u∈Hp∪p

+ Σ d(v)
v∈T,v∈Hq∪q

+ Σ d(w)
w∈T,w∈Hc∪Hr∪r

≤ i(|Hp ∪ p| + 2 − i) + j(|Hq ∪ q| + 2 − j)

+k(|Hc ∪ Hr ∪ r| + 2 − k)

= 2(i + j + k) + i(|Hp ∪ p| − i) + j(|Hq ∪ q| − j)

+k(|Hc ∪ Hr ∪ r| − k)

= 2α(G) + i(|Hp ∪ p| − i) + j(|Hq ∪ q| − j)

+k(|Hc ∪ Hr ∪ r| − k).

Note that i, j, k ≥ 1, i+ j +k = α(G) and |Hp ∪p|+ |Hq ∪ q|+ |Hr +Hc + r| = n−3.
We may now apply Proposition 7 with a = α(G), b = (n− 3) and t = 3. As a result,
the sum on the right-hand side of the above inequality is at most 2α(G) + (α(G) −
2)(n− 3−α(G)). However, this quantity is less than (α(G)− 1)(n−α(G))+2 when
n > 4. That is, we obtain a contradiction to the degree sum condition. Thus G is
Class 0. �

We now present the proof of Corollary 4.
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Proof of Corollary 4: For n = 4, 5, we can see by inspection that the claim
is true. Now, for n ≥ 6 let G = (V, E) be as given and consider any independent
set S in G. By the edge count we see that G has at most n − 3 non-edges. The set
S contains exactly

(|S|
2

)
non-edges and so G[S, V \ S] contains at most n − 3 − (|S|

2

)
non-edges. We then have,

Σ
v∈S

d(v) ≥ |S|(n − |S|) − (n − 3 −
(|S|

2

)
)

≥ (|S| − 1)(n − |S|) + 2.

Thus, by Theorem 3, G is Class 0. �

We now present the proof of Proposition 7.

Proof of Proposition 7: Let a, b, t be positive integers with b ≥ a ≥ t and let
a,b be any positive integer partitions of length t, respectively, for which bi ≥ ai, 1 ≤
i ≤ t.

First suppose that a = b. In this case, Σai = Σbi and so Σ(bi − ai) = 0. As bi ≥ ai

we must have that bi = ai for all i. Thus f(a,b) = 0 and the conclusion holds true
trivially.

We may now consider when b > a. As b > a, there is an i for which bi > ai. Let
di = bi − ai > 0. If for some j 
= i we have aj ≥ ai then choose the largest such aj .
If there is more than one choice, then of these choose the one with the largest such
j. We may then replace b by b1 = (b1, . . . , bi − di, . . . , bj + di, . . . bt). We then have
that f(a,b1) ≥ f(a,b) since

f(a,b1) − f(a,b) = ai(bi − di − ai) + aj(bj − aj + di) − [ai(bi − ai) + aj(bj − aj)]

= di(aj − ai) ≥ 0, since aj ≥ ai.

Repeating this procedure until it is no longer possible allows us to replace b1 by
some b2, so that in b2 there exists a unique j for which bj > aj. Fix this j.

In b2 for i 
= j we have ai = bi. If we have for some i, ai, bi > 1 then we perform the
following operation. Replace a and b2 by a3 = (a1, . . . , ai − (ai − 1), . . . , aj + (ai −
1), . . . , at) and b3 = (b1, . . . , bi − (bi − 1), . . . , bj + (bi − 1), . . . , bt), respectively. We
then have that f(a3,b3) > f(a,b2) since,

f(a3,b3) − f(a,b2) = (aj + (ai − 1))(bj − aj) − aj(bj − aj)

= (ai − 1)(bj − aj)

> 0.

Repeating this procedure until it is no longer possible allows us to replace a,b2 by
some a∗,b∗ so that there exists a unique j for which bj > aj and for all i 
= j we
have ai = bi = 1 and f(a∗,b∗) ≥ f(a,b). The conclusion now readily holds. �
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