Degree sum conditions in graph pebbling

Anna Blasiak John Schmitt

Department of Mathematics
Middlebury College
Middlebury, VT 05753
U.S.A.

Abstract

Given a graph G on n vertices and a distribution, D, of pebbles on the vertices of G, we define a pebbling move to be the removal of two pebbles from a given vertex and the placement of one on an adjacent vertex. If D has n pebbles and if after a sequence of pebbling moves we can place a pebble on any specified vertex then we call G Class 0 . We give a sufficient degree sum condition for G to be Class 0 .

1 Introduction

We let $G=(V, E)$ be a simple graph with vertex set $V:=V(G)$ and edge set $E:=$ $E(G)$ where $|V|=n$. For sets $A, B \subset V$ and $A \cap B=\emptyset$, we use $G[A, B]$ to denote the bipartite subgraph of G containing all edges with one end-vertex in each of A and B. We define the degree of a vertex v, denoted $d(v)$, to be the number of edges incident with v and denote its set of neighbors by $N(v)$. The minimum degree, maximum degree and independence number of a graph G are denoted $\delta(G), \Delta(G)$ and $\alpha(G)$, respectively. We let $\sigma_{k}(G)=\min \left\{d\left(x_{1}\right)+\ldots+d\left(x_{k}\right) \mid x_{1}, \ldots, x_{k}\right.$ are independent in $\left.G\right\}$.
Given a distribution D of pebbles on the vertices of G, which may be thought of as an assignment of integer weights to the vertices of G, we say that a pebbling move consists of removing two pebbles from a vertex and then placing one pebble on an adjacent vertex. The number of pebbles placed on a vertex v is denoted $D(v)$. Given a target vertex r, known as the root vertex, we say that r can be reached, or pebbled, if after a sequence of pebbling moves it is possible to place a pebble on r. The pebbling number of $G, \pi(G)$, is the least integer m such that, regardless of how m pebbles are distributed on the vertices of G, after a sequence of pebbling moves it is possible to reach any vertex. It is easy to see that $\pi(G)>n-1$ since placing each of $n-1$ pebbles on a distinct vertex leaves one vertex, r, without a pebble and no pebbling moves possible. Graphs for which $\pi(G)=n$ are known as Class 0 graphs and this class is the object of our consideration. It is obvious that such graphs must
be connected and in fact must be 2 -connected. The latter is seen true if we let x be a cut-vertex of G, let the components of $G(V \backslash\{x\}, E)$ be G_{1}, G_{2} and $v_{i} \in G_{i}$ and consider the following distribution in G of n pebbles, $D\left(v_{1}\right)=3, D\left(v_{2}\right)=0, D(x)=0$ and $D(v)=1$ for all other vertices. The distribution does not allow v_{2} to be pebbled.
In [4], the problem of determining necessary and sufficient conditions for a graph G to be Class 0 is given. Most results in this direction, including those surveyed in [4], focus on conditions on the diameter and connectivity of G. A result in [5], which we discuss below, gives a sufficient condition in regards to the number of edges of G. Here, we give a sufficient degree sum condition, which is best possible, for G to be Class 0 .

Theorem 1 If $\sigma_{2}(G) \geq n$, then G is Class 0 .

The proof of Theorem 1 is essentially the same as the proof of Theorem 2 in Czygrinow and Hurlbert [2], so we do not present it here. However, as a result we obtain the following.

Corollary 2 If $\delta(G) \geq\left\lceil\frac{n}{2}\right\rceil$, then G is Class 0 .

In [2], it was incorrectly claimed that if $\delta(G) \geq\left\lfloor\frac{n}{2}\right\rfloor$ then G is Class 0 . The error in [2] occurred in the proof of the lower bound on $\delta(G)$. To see this, consider when n is odd the following graph G - which has minimum degree $\left\lfloor\frac{n}{2}\right\rfloor$, but is not Class 0 . Let G be the graph of two complete graphs of order $\left\lceil\frac{n}{2}\right\rceil$ intersecting in a single vertex. This graph contains a cut-vertex, so it cannot be Class 0 . Thus we must necessarily have $\delta(G) \geq\left\lceil\frac{n}{2}\right\rceil$. The proof that this bound is sufficient to guarantee membership in Class 0 holds as given in [2] with $\left\lfloor\frac{n}{2}\right\rfloor$ replaced by $\left\lceil\frac{n}{2}\right\rceil$, but also follows immediately from Theorem 1.
We are able to offer the following new result.

Theorem 3 Let G be a graph on $n \geq 6$ vertices. If for each maximal independent set, S, of G we have

$$
\sum_{v \in S} d(v) \geq(|S|-1)(n-|S|)+2
$$

then G is Class 0 .

Using this result, we can see that the complete multipartite-graph, $K_{p_{1}, \ldots, p_{t}}$, with partite sets P_{1}, \ldots, P_{t} where $\left|P_{i}\right|=p_{i}, t \geq 2$ and $1 \leq p_{1} \leq p_{2} \leq \ldots \leq p_{t}$, is Class 0 as long as $\Sigma p_{i} \geq 6$, except in the case $t=2$ and $p_{1}=1$. Notice that the only maximal independent sets are P_{1}, \ldots, P_{t}.
We also obtain the following corollary due to Pachter, Snevily and Voxman [5].

Figure 1: The family \mathcal{F}

Corollary 4 [5] If G is a graph on $n \geq 4$ vertices and $|E(G)| \geq\binom{ n-1}{2}+2$, then G is Class 0.

For a survey of results in graph pebbling, we refer the reader to [3] and [4].

2 Proof of Main Result

To see that the conditions given in Theorem 1 and Theorem 3 are best possible, consider the following construction. Let G^{\prime} be any graph on $n-k$ vertices with vertex set $\left\{x_{1}, \ldots, x_{n-k}\right\}$. To G^{\prime} we add vertices $\left\{x_{n-k+1}, \ldots, x_{n}\right\}$ with each vertex in $\left\{x_{n-k+1}, \ldots x_{n-1}\right\}$ adjacent to each vertex in $\left\{x_{1}, \ldots, x_{n-k}\right\}$ and x_{n} adjacent only to x_{1}; denote this graph by G. In G, the set of vertices x_{n-k+1}, \ldots, x_{n} forms an independent set of size k with degree sum $(k-1)(n-k)+1$, yet G is not Class 0 as it contains a cut-vertex, x_{1}.

To prove Theorem 3 we first present a result from [1]. To do this, we must first describe a class of graphs \mathcal{F}. The class, \mathcal{F}, we give is a correction to the one given in [1], yet the corresponding result (and its proof) still holds.
We refer the reader to Figure 1. To begin, each $F \in \mathcal{F}$ has a six-cycle $C_{6}=p r^{\prime} q p^{\prime} r q^{\prime} p$. For each vertex p, q and r there exists a subgraph (possibly the empty graph), denoted H_{p}, H_{q} and H_{r}, respectively. In each component of H_{p} there exists a vertex adjacent to p (denoted by double dotted lines), and each vertex in H_{p} is adjacent to q^{\prime}, r^{\prime} (denoted by solid lines). Similar statements hold for H_{q} and H_{r}. Further, in each F there exists a subgraph, denoted H_{c}, in which each vertex is adjacent to at least two of $\left\{p^{\prime}, q^{\prime}, r^{\prime}\right\}$ (denoted by arrowed lines). At least two of the edges $p^{\prime} q^{\prime}, q^{\prime} r^{\prime}, r^{\prime} p^{\prime}$ exist (denoted by dashed lines). Edges may not exist between any pair H_{i}, H_{j}. This describes all possible edges of a member of \mathcal{F}.

Theorem 5 [1] If a graph G on $n \geq 6$ vertices has diameter two, connectivity at

Figure 2: A graph F with diameter two, connectivity two, but not Class 0
least two and $\pi(G)>n$, then $G \in \mathcal{F}$.

The class of graphs given in [1] differs from the class \mathcal{F}. It differs from \mathcal{F} only in H_{c}, all other aspects are the same. In [1], H_{c} was essentially described as consisting of two parts $H_{c^{\prime}}$ and $H_{c^{\prime \prime}}$, where $H_{c^{\prime}}$ consists of those vertices in H_{c} adjacent to vertices p^{\prime} and q^{\prime} only and $H_{c^{\prime \prime}}$ consists of all other vertices in H_{c}. It was specified that edges did not exist between $H_{c^{\prime}}$ and $H_{c^{\prime \prime}}$, however we show that this need not be the case and this leads to our description of \mathcal{F} as given above.
To see that the description of \mathcal{F} given here is more broad than the one given in [1], we give a graph F which has diameter two and connectivity two, is not Class 0 and is not a member of the family of graphs described in [1]. We refer the reader to the graph given in Figure 2. By inspection, it is easy to see that F has diameter two and connectivity two. The graph F is not Class 0 since if we let $D(p)=D(q)=$ $3, D(r)=D\left(p^{\prime}\right)=D\left(q^{\prime}\right)=D\left(r^{\prime}\right)=0$ and $D(x)=D(y)=D(z)=1$ then it is impossible to pebble r.

A consequence of Theorem 5, as shown in [1], is that if a graph G has diameter two and connectivity at least three then G is Class 0 . The discussion following the statement of Theorem 3 gives an instance of a graph shown to be Class 0 by Theorem 3, but not by this consequence - namely the graph $K_{2, n-2}$.
We now give two preparatory propositions towards the proof of Theorem 3. Given a graph $F \in \mathcal{F}$ and a set of vertices, R, in $V(F)$ we say that R has Property 1 if R contains a vertex in each of $H_{p} \cup p, H_{q} \cup q$ and $H_{c} \cup H_{r} \cup r$ and does not contain any element of $\left\{p^{\prime}, q^{\prime}, r^{\prime}\right\}$.

Proposition 6 If $F \in \mathcal{F}$ and $\alpha(F) \geq 3$, then for each $s, 3 \leq s \leq \alpha(F)$, there is an independent set of size s in F with Property 1.

Proof: Let $F \in \mathcal{F}$ and S be an independent set in $V(F)$ of size at least three.

Assume that S does not have Property 1 and we will show that there exists an independent set T with $|T|=|S|$ having Property 1.
If S does not contain any vertex from $\left\{p^{\prime}, q^{\prime}, r^{\prime}\right\}$, then as there are no edges between $H_{p} \cup p$ and $H_{q} \cup q, H_{p} \cup p$ and $H_{c} \cup H_{r} \cup r$, and $H_{q} \cup q$ and $H_{c} \cup H_{r} \cup r$, we may remove a single vertex from S and replace it by any vertex from the set which it does not intersect, while at the same time ensuring the number of sets it intersects increases, to form S^{\prime}. If S^{\prime} has Property 1 then we let $T=S^{\prime}$. Otherwise, we repeat this procedure to form $S^{\prime \prime}$, at which point we are guaranteed that $S^{\prime \prime}$ has Property 1 and so we let $T=S^{\prime \prime}$.
Otherwise, S does contain a vertex from $\left\{p^{\prime}, q^{\prime}, r^{\prime}\right\}$. The set S may contain at most two vertices from $\left\{p^{\prime}, q^{\prime}, r^{\prime}\right\}$, as this set induces at least two edges. First consider if S contains precisely one such vertex. Let's say $p^{\prime} \in S$, then as p^{\prime} is adjacent to each vertex in $H_{q} \cup q$ and $r^{\prime} \notin S$ we may replace p^{\prime} by any vertex in $H_{q} \cup q$ to form an independent set, S^{\prime}. Similarly, if $q^{\prime} \in S$, or $r^{\prime} \in S$, then a similar procedure may be performed to form an independent set, S^{\prime}. The set S^{\prime} has $\left|S^{\prime}\right|=|S|$ and does not contain any vertex in $\left\{p^{\prime}, q^{\prime}, r^{\prime}\right\}$, so by the previous case either S^{\prime} has Property 1 or we may find a suitable set T.
Finally, we consider the case in which S contains two vertices from $\left\{p^{\prime}, q^{\prime}, r^{\prime}\right\}$. Regardless of the choice of the two, every remaining vertex in the graph will be adjacent to at least one of the two. Thus the set S cannot contain any other vertices from G. This contradicts that the size of S is at least three.
For a positive integer a, we define a positive integer partition of length t of a to be a vector $\mathbf{a}=\left(a_{1}, \ldots, a_{t}\right)$ such that $a_{1}+\ldots+a_{t}=a$ and for $1 \leq i \leq t$ we have $a_{i} \in \mathbb{Z}^{+}$.

Proposition 7 Let a, b, t be positive integers with $b \geq a \geq t$. Let \mathbf{a}, \mathbf{b} be positive integer partitions of length t of a and b, respectively. If for $1 \leq i \leq t$ we have $b_{i} \geq a_{i}$ then

$$
\begin{equation*}
f(\mathbf{a}, \mathbf{b})=\Sigma_{i=1}^{t} a_{i}\left(b_{i}-a_{i}\right) \tag{1}
\end{equation*}
$$

is maximized when for some i we have $a_{i}=a-(t-1), b_{i}=b-(t-1)$, and so $a_{j}=b_{j}=1$ for all $j \neq i$ and $f(\mathbf{a}, \mathbf{b})=(a-(t-1))(b-a)$.

We delay the proof of Proposition 7, a purely number theoretic result, until after the proof of our main result which we now give.
The proof of Theorem 3 is based on arguments given in [2].
Proof of Theorem 3: Let G be given according to the conditions of Theorem 3. If $\alpha(G)=1$, then $G=K_{n}$ and the result holds trivially. If $\alpha(G)=2$, then the condition of Theorem 1 holds and G is Class 0 .
Thus we may assume that $\alpha(G) \geq 3$ and suppose G is not Class 0 . We begin by showing that G must belong to \mathcal{F}. Let $x, y \in V(G)$ such that $x y \notin E(G)$ and let S be any maximal independent set containing both x and y. As S is independent, the
maximum degree of a vertex in S is $n-|S|$. This fact and the hypothesis imply that we have,

$$
\begin{aligned}
d(x)+d(y) & \geq(|S|-1)(n-|S|)+2-(|S|-2)(n-|S|) \\
& =(n-|S|)+2
\end{aligned}
$$

The pigeonhole principle implies that x and y must share at least two common neighbors, and so the diameter of G is at most two. The diameter is at least two since $\alpha(G) \geq 3$, and so the diameter must be equal to two. We can also reach the conclusion that between any pair of non-adjacent vertices there exists at least two vertex disjoint x, y-paths. Now consider $x, y \in V(G)$ such that $x y \in E(G)$, we seek to find an x, y-path distinct from the edge $x y$. This will show that between any two vertices in G there exists two vertex disjoint paths and so, by a theorem of Whitney [6], G is 2-connected. As G is connected at least one of x and y has another neighbor, say x does and call x 's neighbor u. If $u y \in E(G)$ then $u y$ is the second path we seek. Thus we may assume that $u y \notin E(G)$ and let S^{\prime} be a maximal independent set containing both u and y. Then, as above, we may show that u and y have at least two neighbors in common, one of which, say v, is distinct from x. We then have $x u v y$ as an x, y-path distinct from the edge $x y$. Thus G is 2 -connected.
As G has diameter 2, is 2-connected and, by assumption, is not Class 0 , then by Theorem $5 G$ is in \mathcal{F}. Now consider a maximal independent set S such that $|S|=$ $\alpha(G)$. We apply Proposition 6 to S to obtain an independent set T with $|T|=\alpha(G)$ and T has Property 1. Let's say that i vertices from T are in $H_{p} \cup p, j$ vertices from T are in $H_{q} \cup q$ and k vertices from T are in $H_{c} \cup H_{r} \cup r$. We then have the following,

$$
\begin{aligned}
\underset{u \in T, u \in H_{p} \cup p}{\sum d(u)}+\underset{v \in T, v \in H_{q} \cup q}{\sum d(v)} & +\underset{w \in T, w \in H_{c} \cup H_{r} \cup r}{\sum d(w)} \\
\leq & i\left(\left|H_{p} \cup p\right|+2-i\right)+j\left(\left|H_{q} \cup q\right|+2-j\right) \\
& +k\left(\left|H_{c} \cup H_{r} \cup r\right|+2-k\right) \\
= & 2(i+j+k)+i\left(\left|H_{p} \cup p\right|-i\right)+j\left(\left|H_{q} \cup q\right|-j\right) \\
& +k\left(\left|H_{c} \cup H_{r} \cup r\right|-k\right) \\
= & 2 \alpha(G)+i\left(\left|H_{p} \cup p\right|-i\right)+j\left(\left|H_{q} \cup q\right|-j\right) \\
& +k\left(\left|H_{c} \cup H_{r} \cup r\right|-k\right) .
\end{aligned}
$$

Note that $i, j, k \geq 1, i+j+k=\alpha(G)$ and $\left|H_{p} \cup p\right|+\left|H_{q} \cup q\right|+\left|H_{r}+H_{c}+r\right|=n-3$. We may now apply Proposition 7 with $a=\alpha(G), b=(n-3)$ and $t=3$. As a result, the sum on the right-hand side of the above inequality is at most $2 \alpha(G)+(\alpha(G)-$ $2)(n-3-\alpha(G))$. However, this quantity is less than $(\alpha(G)-1)(n-\alpha(G))+2$ when $n>4$. That is, we obtain a contradiction to the degree sum condition. Thus G is Class 0 .

We now present the proof of Corollary 4.

Proof of Corollary 4: For $n=4,5$, we can see by inspection that the claim is true. Now, for $n \geq 6$ let $G=(V, E)$ be as given and consider any independent set S in G. By the edge count we see that G has at most $n-3$ non-edges. The set S contains exactly $\binom{|S|}{2}$ non-edges and so $G[S, V \backslash S]$ contains at most $n-3-\binom{|S|}{2}$ non-edges. We then have,

$$
\begin{aligned}
\sum_{v \in S} d(v) & \geq|S|(n-|S|)-\left(n-3-\binom{|S|}{2}\right) \\
& \geq(|S|-1)(n-|S|)+2
\end{aligned}
$$

Thus, by Theorem 3, G is Class 0 .
We now present the proof of Proposition 7.
Proof of Proposition 7: Let a, b, t be positive integers with $b \geq a \geq t$ and let \mathbf{a}, \mathbf{b} be any positive integer partitions of length t, respectively, for which $b_{i} \geq a_{i}, 1 \leq$ $i \leq t$.
First suppose that $a=b$. In this case, $\Sigma a_{i}=\Sigma b_{i}$ and so $\Sigma\left(b_{i}-a_{i}\right)=0$. As $b_{i} \geq a_{i}$ we must have that $b_{i}=a_{i}$ for all i. Thus $f(\mathbf{a}, \mathbf{b})=0$ and the conclusion holds true trivially.
We may now consider when $b>a$. As $b>a$, there is an i for which $b_{i}>a_{i}$. Let $d_{i}=b_{i}-a_{i}>0$. If for some $j \neq i$ we have $a_{j} \geq a_{i}$ then choose the largest such a_{j}. If there is more than one choice, then of these choose the one with the largest such j. We may then replace \mathbf{b} by $\mathbf{b}_{\mathbf{1}}=\left(b_{1}, \ldots, b_{i}-d_{i}, \ldots, b_{j}+d_{i}, \ldots b_{t}\right)$. We then have that $f\left(\mathbf{a}, \mathbf{b}_{\mathbf{1}}\right) \geq f(\mathbf{a}, \mathbf{b})$ since

$$
\begin{aligned}
f\left(\mathbf{a}, \mathbf{b}_{1}\right)-f(\mathbf{a}, \mathbf{b}) & =a_{i}\left(b_{i}-d_{i}-a_{i}\right)+a_{j}\left(b_{j}-a_{j}+d_{i}\right)-\left[a_{i}\left(b_{i}-a_{i}\right)+a_{j}\left(b_{j}-a_{j}\right)\right] \\
& =d_{i}\left(a_{j}-a_{i}\right) \geq 0, \quad \text { since } a_{j} \geq a_{i} .
\end{aligned}
$$

Repeating this procedure until it is no longer possible allows us to replace $\mathbf{b}_{\mathbf{1}}$ by some $\mathbf{b}_{\mathbf{2}}$, so that in $\mathbf{b}_{\mathbf{2}}$ there exists a unique j for which $b_{j}>a_{j}$. Fix this j.
In $\mathbf{b}_{\mathbf{2}}$ for $i \neq j$ we have $a_{i}=b_{i}$. If we have for some $i, a_{i}, b_{i}>1$ then we perform the following operation. Replace \mathbf{a} and $\mathbf{b}_{\mathbf{2}}$ by $\mathbf{a}_{\mathbf{3}}=\left(a_{1}, \ldots, a_{i}-\left(a_{i}-1\right), \ldots, a_{j}+\left(a_{i}-\right.\right.$ $\left.1), \ldots, a_{t}\right)$ and $\mathbf{b}_{\mathbf{3}}=\left(b_{1}, \ldots, b_{i}-\left(b_{i}-1\right), \ldots, b_{j}+\left(b_{i}-1\right), \ldots, b_{t}\right)$, respectively. We then have that $f\left(\mathbf{a}_{\mathbf{3}}, \mathbf{b}_{\mathbf{3}}\right)>f\left(\mathbf{a}, \mathbf{b}_{\mathbf{2}}\right)$ since,

$$
\begin{aligned}
f\left(\mathbf{a}_{\mathbf{3}}, \mathbf{b}_{\mathbf{3}}\right)-f\left(\mathbf{a}, \mathbf{b}_{\mathbf{2}}\right) & =\left(a_{j}+\left(a_{i}-1\right)\right)\left(b_{j}-a_{j}\right)-a_{j}\left(b_{j}-a_{j}\right) \\
& =\left(a_{i}-1\right)\left(b_{j}-a_{j}\right) \\
& >0 .
\end{aligned}
$$

Repeating this procedure until it is no longer possible allows us to replace $\mathbf{a}, \mathbf{b}_{\mathbf{2}}$ by some $\mathbf{a}^{*}, \mathbf{b}^{*}$ so that there exists a unique j for which $b_{j}>a_{j}$ and for all $i \neq j$ we have $a_{i}=b_{i}=1$ and $f\left(\mathbf{a}^{*}, \mathbf{b}^{*}\right) \geq f(\mathbf{a}, \mathbf{b})$. The conclusion now readily holds.

Acknowledgment

The authors wish to thank the anonymous referee for his/her valuable suggestions.

References

[1] T. A. Clarke, R. A. Hochberg and G. H. Hurlbert, Pebbling in diameter two graphs and products of paths, J. Graph Theory 25 no. 2 (1997), 119-128.
[2] Andrzej Czygrinow and Glenn Hurlbert, Pebbling in dense graphs, Australas. J. Combin. 28 (2003), 201-208.
[3] Glenn Hurlbert, A survey of graph pebbling, Proc. Thirtieth Southeastern Int. Conf. Combin., Graph Theory, Computing, Congr. Numer. 139 (1999), 41-64.
[4] Glenn Hurlbert, Recent Progress in Graph Pebbling, Graph Theory Notes N.Y. 49 (2005), 25-37.
[5] Lior Pachter, Hunter S. Snevily and Bill Voxman, On pebbling graphs, Proc. Twenty-sixth Southeastern Int. Conf. Combin., Graph Theory, Computing, Congr. Numer. 107 (1995), 65-80.
[6] H. Whitney, Congruent Graphs and the Connectivity of Graphs, Amer. J. Math. 54 (1932), 150-168.

