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DEGREE THEORY FOR EQUIVARIANT MAPS. I

J. IZE, I. MASSABÓ AND A. VIGNOLI

Abstract. A degree theory for equivariant maps is constructed in a simple
geometrical way. This degree has all the basic properties of the usual degree
theories and takes its values in the equivariant homotopy groups of spheres.
For the case of a semifree 5'-action, a complete computation of these groups
is given, the range of the equivariant degree is determined, and the general Sl-
action is reduced to that special case. Among the applications one recovers and
unifies both the degree for autonomous differential equations defined by Fuller
[F] and the S '-degree for gradient maps introduced by Dancer [Da]. Also, a
simple but very useful formula of Nirenberg [N] is generalized (see Theorem
4.4(H)).

0. Introduction

We expect this paper to be a reasonable example of the subject that we feel
could be baptized as topological analysis. This term seems to us almost self-
explanatory. The gist would be to try to translate a problem from analysis into a
problem in topology—or, to put it more gently, to try to use concepts and tools
from topology in solving problems in analysis. Frequently, the nonvanishing of
a topological invariant gives unexpected deep information on a certain question
coming from analysis such as, say, the structure of the solution set of a given
nonlinear equation. Thus, for example, ideas from singularity theory, Morse
theory, Ljusternik-Snirel ' man category, index theories, topological degree the-
ories, and their generalizations are more and more often used in analysis. This
is particularly true with respect to what has been going on in nonlinear analysis
during the past 15 years or so.

We believe that it is not necessary here to stress any further the topics cov-
ered by topological analysis and we hope that this label will be accepted by
enough supporters among nonlinearists to become familiar in the mathematical
community.

Our goal here is to carry on our program of research announced in [I.M.V]
regarding the construction of a (generalized) degree theory for maps which are
equivariant with respect to given representations of a compact Lie group T.
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In [I.M.V] we constructed a degree theory for S '-equivariant maps defined
on balls (see §1 for notation and definitions). We showed there that Fuller's
degree [F] and the degree for S -equivariant gradient maps introduced in [Da]
follow as particular cases. The techniques used in [I.M.V] originated mainly
from elementary obstruction theory and we kept the spirit of some ideas already
contained in [I].

We wish to present here both an extension and a simplification of what we
have done in [I.M.V]. Namely, we extend our degree to maps defined on the
closure of an arbitrary open set of the ambient space (not just on the closure
of an open ball) and replace the circle group Sx by an arbitrary compact Lie
group T. Moreover, we simplify our presentation, avoiding obstruction theory.
We shall rely instead on the very elementary idea of T-equivariant extensions
of maps.

With a simple but useful trick we reduce the case of arbitrary domains to the
case of maps defined on spheres. Consequently, our degree will be an element of
the T-equivariant homotopy groups of spheres. These groups are by no means
easy to compute. There are only some general results about their structure
scattered in the literature. One of our tasks here is to compute them in the
particular case when T is the group Sx acting almost semifreely. We shall be
more specific on this topic when giving a more detailed report on the content
of this paper.

We add in passing that our method of reducing the case of an arbitrary
domain to that of spheres is interesting in itself even in the nonequivariant
setting. Also, let us mention that a different approach of reducing an arbitrary
domain to spheres has been presented in [G.M.V]. We briefly sketch it here so
that the reader can compare both methods of reduction.

Let U be an open and bounded subset of Rm and let f:U—yR" be
a continuous map from the closure U of U into R", n < m, such that
f(x) # 0 for any x e dU. Now let RAm , RA" be the Alexandroff one-
point compactification of Rm and R" respectively and /: R m —► R " be a
continuous extension of / such that f(x) = f(x) for all x e U and f(x) ^
0 if x e RAm\U. Taking into account that RA/ is homeomorphic to the
unit sphere 5 of R + , one obtains a map f:Sm —> S" defined by / =
a o/ofj"1, where a : RA" — S", am : RAm -* Sm are the corresponding
homeomorphisms. Thus, to any continuous map f:U—yR" not vanishing
on dU we may associate a continuous map /: Sm —> S" . This device is
exploited in [G.M.V] to define a generalized degree for maps acting between
finite-dimensional Euclidean spaces of possibly different dimensions. When
m = n one recovers the classical Brouwer topological degree.

In the same situation our degree is constructed as follows. Let B be a closed
ball containing U and let /: i? —► R" be a continuous extension of /. Let N
be a bounded open neighborhood of dU such that f(x) / 0 for any x e N.
Define V = (U U N)c and let <p: B ->• [0,1] be a Urysohn function such that
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(p(x) = 1 if x e V and <p(x) = 0 if x e U. Let F: [0,1] -* R"+1 be the map
defined by

F(t,x) = (2t + 2<p(x)-lJ(x)).

It is easy to see that F(t,x) = 0 only if x e D, f(x) = 0, and t = \ . Thus
F maps d([0,1] x B) into R"+1\{0}, which defines an element of nm(S"),
the generalized degree of / with respect to U. The addition of two degrees is
with respect to the group structure in nm(Sn). In the case when an action of a
compact Lie group is present, this construction extends without difficulties.

An account of the structure of the present paper is in order. § 1 is meant to
make the whole work more handy and self-contained. It collects the majority of
notions (to be used throughout the paper) which perhaps may not be too well
known to nonspecialists.

The method we use in constructing our T-degree in infinite dimensions is
strongly influenced by classical degree theories. Namely, we start with the con-
struction of the degree for T-equivariant maps between finite-dimensional Eu-
clidean spaces. This is carried out in §2 by reducing the case of arbitrary do-
mains to that of spheres and showing that the T-degree is independent of this
construction. We then prove its main properties which are analogous to those of
the Brouwer topological degree. In particular, the Hopf classification property
holds; i.e., if / is defined on a ball B and the T-degree of / with respect to
B is trivial, then the restriction of f to dB has a nonvanishing T-equivariant
extension to B. The additivity property is proved up to one suspension and
we do not know if it holds in the case when the suspension is not performed.

The last result of §2 shows that when Y is the trivial group {e} and m = n ,
then our T-degree reduces to the Brouwer topological degree.

We would like to point out some of the advantages of this definition, besides
its quite simple geometric context: it is easy to construct and no heavy topolog-
ical machinery is involved. Moreover, it is defined globally; that is, no generic
arguments are used where one looks first at a local index and then proves that
the degree obtained via the addition of the local indices is independent of the
different approximations used (usually finite dimensional). Our construction
is particularly handy in the case of equivariant problems since, in general, no
generic framework is available. Furthermore, even in the case when one could
define a local index for an isolated orbit, one has the problem of comparing
the different "indices" for orbits of different type. It is also important to note
that there are simple examples, coming from bifurcation theory, showing that
a T-equivariant map has trivial generalized degree (forgetting the action) but
its T-degree is nontrivial. This, together with some further observations on the
T-degree, is given in Example D.7 of the Appendix.

In §3 we extend our theory to the infinite-dimensional context. In analogy
with the classical case, we proceed by approximating a T-equivariant compact
perturbation of the identity via T-equivariant maps acting in finite dimensions.
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Essentially, this can be done in two ways. The first way is sketched at the be-
ginning of §3. The second one, which is closer in spirit to Leray and Schauder's
construction [L.S], is embodied in Proposition 3.1. It should be emphasized
again that this degree has all of the basic properties of a classical degree. Thus
one may use it to obtain local and global results on existence, continuation,
bifurcation, etc.

Let us stop for a moment and see what we have achieved so far. Essen-
tially, we have shown that our T-degree is well defined as an element of the
T-equivariant groups of spheres. We now face the formidable task of comput-
ing these groups. Since the corresponding computations are long and somewhat
tedious we have decided to collect them in the Appendix. These results are ex-
ploited in §4 to show that Fuller's degree introduced in [F] and Dancer's degree
[Da] follow as particular cases of our S'-degree. We show, in particular, how to
extend an S -equivariant map, not referring to obstruction theory, provided the
action of S is almost semifree. The fact that our S '-degree does not depend
on these extensions is by no means trivial and we settle this question in the long
Theorem 4.2. The next step is to try to solve the problem of what elements of
our S -homotopy groups of spheres are achieved by the S -degree. A complete
answer is given by Theorem 4.3. Most of the proofs of the results contained in
§4, due to their length and technicality, are given in Appendix D.

Let us say a few more words about the Appendix. We start by defining the
T-homotopy groups of spheres nm(S") in a context which is suitable to our
purposes. Next, we recall a T-equivariant version of the classical Freudenthal
suspension theorem (see Theorem B). This is the main tool in extending the
T-degree from the finite to the infinite-dimensional case.

Further, we collect some simple results on the structure of the group nm (Sn )
(for example, Theorem C.2 represents a r-equivariant version of the classical
Hopf classification theorem).

Finally, in D we confine ourselves to the particular case of an S -almost
semifree action. In this case we are able to give complete information on the
5"'-equivariant homotopy groups of spheres nm(S"). In particular, we give
explicit formulas for the generators of these groups.

In a forthcoming paper, which, as everyone would guess, will have the title
Degree theory for equivariant maps, II, we shall undertake the study of our degree
when the action is not necessarily almost semifree. This will involve the study
of the degree with respect to all of the isotropy subgroups of S (see Remark
2.1 in [I.M.V]).

1. Preliminaries

In this paper we shall use freely the following well-known facts and definitions
regarding group actions and equivariant maps (cf. [B, Chapters 0 and 1]). The
reader who is familiar with this material may skip 1.1 to 1.6.
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1.1. Group actions and the like. By a (left) topological transformation group we
mean a triple (Y,X,8), where T is a topological group, I isa Hausdorff
space, and 6:YxX—yX is a continuous map satisfying the following condi-
tions:

(i) 6(y, 6(y', x)) = 6(yy', x), for all y, / € T and all x e X,
(ii) 6(e ,x) = x , for all x eX, where e is the identity of T.

The map 6 is called the action of T on I. The space X, together with a
given action 6 of T, is called a (left) T-space. In what follows we shall often
use the notation 6(y, x) = yx .

Let X be a T-space and let x e X. The set

rx = {ye Y: yx = x}

is called the isotropy subgroup of T at x. Obviously, Yx is a closed subgroup
of T, the action being continuous.

The action is said to be free if the (isotropy subgroup) Yx is trivial (i.e.,
T^ = {e}) for any x e X ; thus for a free action each nontrivial element of T
moves every point of X. By a semifree action we mean that for each x e X,
Tx is either trivial or is all of Y.

A point x 6 X is called a fixed point of T on I, provided Yx = Y.
We shall denote the subspace of fixed points (fixed point space) of Y on X

by
X   = {x e X : yx = x, for all y e Y}.

(If H is a subgroup of Y, then XH will have the obvious meaning.)
Let T and X be as above and let x e X. The subspace

Y(x) = {yxeX:yeY}

is called the orbit of x under Y. It is easy to see that the orbits T(x) and
Y(y) of any two points x, y e X are either equal or disjoint. Let X/Y denote
the set whose elements are the orbits x = Y(x) of Y on X (i.e., x = y if and
only if x and y are in the same orbit). Let n: X —y X/Y denote the natural
map taking x into its orbit x = Y(x). Then the space X/Y endowed with the
quotient topology (i.e., U c X/Y is open if and only if n~x(U) is open in X )
is called the orbit space of X with respect to Y.

By a (real) representation of a topological group Y over a (real) Banach space
E, we mean a homomorphism p of Y into GL(L')—the general linear group
of (linear) isomorphisms over E. This can be thought of as an action of Y on
E by linear transformations. In this case, we say that Y acts linearly on E and
the action 6:YxE—yE is defined by 8(y,x) = p(y)x; some authors prefer
a terminology having a somewhat old-fashioned flavor: Y acts as a group of
continuous linear operators on E ; see, e.g; [R, p. 177].

1.2. Invariant sets and equivariant homotopies. A given subset U of a T-space X
is called Y-invariant if yx € U for any y e Y and any x eU (i.e., Y(U) c U).
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Let X and Y be T-spaces with actions 6 and 6' respectively, and let U c
X be open and T-invariant. Then a map g : U -> Y is called Y-equivariant if

g(d(y,x)) = 0'(y,g(x)),    for any yeYandxe U,

and is called Y-invariant if

g(6(y ,x)) = g(x),    for any y e Y and x e U.

To simplify the writing, unless strictly necessary, we shall use the following
notation:

g(yx) = y g(x),    for T-equivariant maps,
g(yx) = 8(x) »    f°r T-invariant maps.

It may be of interest to note that if g is a T-equivariant c'-map, then
its Fréchet derivative g at a stationary point x0, that is, yx0 = x0 for any
y e Y, is also T-equivariant.

Two T-equivariant maps are Y-homotopic if they are homotopic through Y-
equivariant maps. Alternatively, we define equivariant homotopies in terms of
maps of cylinders. Namely, if X is a T-space, we make Y act on [0,1] x X
by

y(t,x) = (t,yx),    for any y eY, is [0,1], and x € A\
We shall say that the group Y acts trivially on [0,1]. Now two equivariant maps
f ,g: X —» Y are T-homotopic, written / ~ g, if there exists a T-equivariant
map H : [0,1] x X -» Y such that

H(0,x) = f(x)   and   H(l,x) = g(x),    for all x e X.

In the sequel we shall restrict our attention to the case when Y is a com-
pact Lie group (i.e., Y is a compact topological group which is also a smooth
manifold on which the group operations are smooth).

1.3. The Haar integral and isometric group representations. Let £ be a real
Banach space and let Y be a compact Lie group acting linearly on E with
representation p : Y —> GL(2s ).

One may renorm the Banach space E, for example by setting

IIMII = / ll/,(}')-xll^7   for x € £
where the integral stands for the normalized Haar integral over the compact
group T. Equipped with this new norm, the representation p becomes an
isometry due to the fact that the Haar integral is T-invariant on the class of
continuous real-valued functions f on Y under both left and right actions
defined by (Lylf)(y) = f((y')~xy) and (Ry,f)(y) = f(yy') respectively. This
follows from

j /((/)"' 7) dy = j f(y) dy = j f(yy) dy.

Thus, there is no loss of generality in assuming p to be an isometry.
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1.4. Invariant Urysohn functions. Let X be a normal space and let T be a
compact Lie group acting on X. Let A and B be closed T-invariant subsets
of X such that AnB = 0.

Then there exists a continuous r-invariant Urysohn function q>: X —> [0,1]
such that q>(x) = 0 if x e A and <p(x) = 1 if x e B . Indeed, let lp: X —y [0,1]
be any Urysohn function relative to A and B ; then the required T-invariant
Urysohn function is given by the standard averaging

tp(x) = l ç(yx)dy.

1.5. Construction of invariant neighborhoods. Let X and Y be as above and
let A c X be a T-invariant closed set and U c X be T-invariant, open, and
such that A c U. Then there exists a T-invariant open subset V such that
AcVcVcU.ln fact, let tp : X —y [0,1 ] be a T-invariant Urysohn function
such that q>(x) = 0 if x e A and tp(x) = 1 if x 6 Uc. A set with the required
properties is given, for example, by V = <p~ ([0, j)).

1.6. The Dugundji-Gleason extension theorem. Let Y be a compact Lie group
acting on a Banach space E and let A and B be T-invariant closed subsets
of E such that A c B. Let /?: T -+ GL(F) be a representation of Y over a
Banach space F and let g: A —y F be a T-equivariant map. Then there exists
a T-equivariant extension ~g: B ^y F of g. To see this, let g: B —» F be
any Dugundji extension of g (see [D]). The required T-equivariant extension
is given by

g(x)= I p(y~X)g(yx)dy,       xeB.

Moreover, if g is also compact, then so is g. This follows by an argument
given in [I, Lemma III.2.1].

1.7. Equivariant Borsuk homotopy extension theorem. The following statement
is a direct extension to the equivariant context of a basic result in homotopy
theory (see [W]).

Let Rm , R" be Y-spaces and let A , X be closed Y-invariant
subsets of Rm such that A c X. Let F0,FX: A -* R"\{0} be
Y-equivariant maps which are Y-homotopic. Then FQ extends
Y-equivariantly to X without zeros if and only if F{ does.

Indeed, let F0 be a T-equivariant extension of F0 to X and let H: Ax
[0,1] —► R"\{0} be a T-homotopy between FQ and Fx.

Define f:Ix[0,l]-»R" to be any T-equivariant extension (where the
group T acts trivially on [0,1]) of the map

F:(A-x{0})U(^x[0,l])-R"\{0}
defined by

F{x t) = ( W      if^e^rand/ = 0,
1 H(x,t)   if(x,t)eAx[0,l].
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Let B = {x e X: F(x,t) = 0 for some t e [0,1]}. Clearly, B is closed
T-invariant and A n B = 0. Hence there is a T-invariant Urysohn function
(p: A^[0,1] suchthat <p(B) = {0} and tp(A) = {1} .

Consider now the T-equivariant map F:Ix[0,l]^R" defined by F(x, t)
= F(x,tp(x)t). Notice that F(x,0) = F0(x) for any x e X and F(x,l) =
H(x,<p(x)), if x e A . Moreover, F(x,t) ^ 0 for any x e X and any
t e [0,1]. Thus F(x,l) is a nonvanishing T-equivariant extension of Fx
to X.

Note that F(x, 1) is T-homotopic to FQ(x), via F(x, t).

1.8. Equivariant suspension. Let us recall first the concept of suspension of a
map in the case when there is no action.

For k e N, let Sk denote the unit sphere in R*+l . Let /: 5"""' -♦ S"~x be
a given map. The suspension !(/) : Sm —y S" of f is defined by first identifying
Sm~ with the equator of Sm and similarly S"~x with S", then sending poles
into poles, and finally extending / linearly over meridians.

In particular, if
g:Sm^R"+X\{0}

is of the form

g(xx, ... ,xm ,xm+x) = (f(xx, ... ,xm),xm+1),

then
Z(f)(xx,...,xm+l)

is homotopic to
g(Xi,... ,xm+l)/\\g(xlt... txm+l)\\.

The homotopy classes of maps from Sm into S" form the homotopy group
Jtm(Sn). The important Freudenthal suspension theorem [S, p. 458] asserts that
after a certain number of suspensions the homotopy class of a given map / does
not change any more. It is then called the stable homotopy class of /. More
precisely, if n is such that k < n - 2 then the sequence of homomorphisms

/o"\   £ i-cn+l\   £
7tk+n(S )^nk+n+x(S     )-».-.

consists of isomorphisms. The direct limit of this sequence is called the k-stable
homotopy group and denoted by n^ .

In the case when f:Sm^S" is T-equivariant, we may speak about the
T-equivariant homotopy groups of spheres, denoted by

nJS").
The fact that these sets are indeed groups (abelian under certain restrictions) is
shown in Appendix A. For T-equivariant maps there is a corresponding notion
of suspension. Given a T-space V we denote by

y I'/ r\.  ç,m+dim V „n+áimV
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the V-Y-equivariant suspension of the T-equivariant map f:Sm-*S". In the
case when V = R and Y acts trivially on R, we shall use the notation Z(/)
for the suspension of the T-equivariant map /. In this context an equivariant
version of the Freudenthal suspension theorem is available (see [H, N]). The
latter result is reported in Appendix B for the reader's convenience.

2. Generalized degree for equivariant maps in finite dimension

In this section we construct a degree theory for T-equivariant maps acting
on finite-dimensional T-spaces. We postpone to §3 the extension of this degree
to the infinite-dimensional context.

Let r be a compact Lie group acting linearly isometrically (see § 1 ) on both
Rm and R". Let Q be a T-invariant, bounded, open subset of Rm and let
/: Q —► R" be a T-equivariant map such that

f(x)¿0   forxedCl.

We construct our degree as follows. Consider a closed ball BR centered at the
origin with radius R such that Q c BR (notice that BR is T-invariant since
r acts isometrically). Now let f'-BR —> R" be a continuous T-equivariant
extension of / such that f(x) ^ 0 for any x € N, where A is a T-invariant,
bounded, open neighborhood of dQ with N c BR. The existence of such
a neighborhood is ensured both by the continuity of / and by §1.5 of the
Preliminaries.  Define  V = (fl u N)c.   Clearly,  V is T-invariant closed and
vnU = 0.

Let <p: BR —► [0,1] be a T-invariant Urysohn function such that <p(x) = 1
if x e V and <p(x) = 0 if x e Q. Let F: [0,1] x BR -> Rn+1 be the T-
equivariant map defined by

(2.1) F(t,x) = (2t + 2<p(x)-l,f(x))

where Y acts trivially both on [0,1] and on the first component of Rn+1.
Notice that if x gñuA7 then F(t,x) = (2t + l,/(x)), t e [0,1], and if

x eU then F(t,x) = (2t - l,/(x)), ? G [0,1]. Moreover, F(t,x) ¿ 0 for
any xeQcUÑ, te[0,l]. Hence if F(t,x) = 0, then xefl, f(x) = f(x) =
0, and t = \. Now F maps ö([0,l] x BR) into R"+'\{0} and therefore
the restriction of F to d([0,1] x BR) can be thought of as a T-equivariant
map from Sm into S" via the standard identifications d([0,1] x BR) « Sm
and R"+ \{0} « S", respectively. We may thus consider the T-equivariant
homotopy class [F]r of F as an element of the T-equivariant homotopy group

r       n
nm(S ) (see Appendix A).

At this stage some readers may be puzzled by our somewhat tricky construc-
tion of the degree. Why not extend the T-equivariant map /: Q, —► R" directly
to a T-equivariant map f:BR-*R"l The point is, of course, that the extension
/ may vanish on BR\Cl (see also Remark 2.4 below).
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We have seen that to any map f as above there corresponds an element
r      n

[F]r e nm(S ). Our next goal is to show that this correspondence is indepen-
dent of its construction. Namely, we have the following:

Proposition 2.1. The homotopy class [F]T does not depend on
(a) the Y-invariant Urysohn function <p,
(b) the choice of the Y-invariant neighborhood N of dCl,
(c) the Y-equivariant extension f of f,
(d) the choice of the ball BR containing Q.

Proof, (a) Let <p0,<px: BR —y [0,1] be two T-invariant Urysohn functions
vanishing on Í2 and taking value 1 on V = (Q, u N)c. Consider the map
<px: BR —»[0,1], x e [0,1], defined as <px(x) = xtpx(x) + (1 - x)<p0(x) , x e Br
and t e [0,1]. Let Fx: [0,1] x BR -> R"+1, t e [0,1], be defined by

Fx(t,x) = (2t + 2<px(x)-lJ(x)).

Clearly, Fx(t,x) = (2t + 1 ,/(x)) for any x e dBR and t e [0,1].
Moreover,

• (3,/(x))      if x^CiöN,
¿0 ifxetfnN,

. (+l,/(x))   ifxeQ,

' (1,/(*)),
Fr(0,x) = l   #0, FT(l,x)

. (-1,/(*)),
for any x e [0,1]. Hence Fx is an admissible T-homotopy between F0 and
Fx . Therefore [F0]r = [Fx ]r ; that is, the T-homotopy class of F does not
depend on the choice of the Urysohn function.

(b) Let us assume first that there exist two invariant open neighborhoods A/0 ,
Nx of dQ such that A/0 c Nx c BR. Let tpQ, <px be the T-invariant Urysohn
functions associated to N0, Nx respectively. Consider the map <px(x) =
t(px(x) + (l- *)(PQ(X), for x e BR , x e [0,1], and the admissible T-homotopy
Fx : [0,1] x BR -> Rn+X , t e [0,1], between .F0 and Fx which acts only on the
first coordinate

Fx(t,x) = (2t + 2tpx(x)-l,f(x)).

This gives immediately that [FQ]r = [Fx]r.
In the case when N0, Nx are arbitrary, one can use the previous argument

applied to A0 n Nx and to each A/0 and A, .
(c) Given two T-equivariant extensions f0, fx of / we can choose a l'-

invariant open neighborhood N of dQ, on which the T-equivariant map xfx +
(1 - t)/0 is not vanishing for x e [0,1]. This map induces an admissible
T-homotopy Fx via (2.1) and the assertion follows.

(d) Let BR c BR, 0 < R0 < R, be such that Qc BRg. Let f0 and / be
two T-equivariant extensions of / to BR and BR, respectively. By (b) and
(c) we may assume that f0 and / do not vanish on a common T-invariant
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open neighborhood N c BR of 9Q and are such that /L = fQ . Let s > 0
be such that if x e A7 then ||x|| < R0 - e. Consider the T-map

K(x) = f(a(x,x)x)/a(x,x),    for any x e [0,1],

where

«,.»)-{lt,n-yM-^ lf^-"£<w<So.
For any t e [0,1], the scaling 5T(x) := a(r,x)x is a T-equivariant homeo-
morphism from 5Ä   into BR , leaving fixed BR _E and 5'1(5Ä ) = BR. Hence,
hx is a T-equivariant extension of / to BR   for any x e [0,1].

Thus, by (c), since h0 =  £Br   = f0, the T-homotopy class [F0]r of FQ

induced by f0 coincides with the class [Fx]r, where Fx is induced by hx, via
(2.1).

Moreover, if we extend hx as a constant outside BR , we obtain a Y-
equivariant extension Â, of / to BR . Thus, once again applying (c) we have
that [Fx]r = [F]r, where Fx , F are the maps induced by fx, f respectively.
(Here we identify, via the scaling, the two groups of T-homotopy classes of
maps defined on the two cylinders [0,1] x BR   and [0,1] x BR.)    Q.E.D.

We are now in a position to introduce the following important

Definition 2.2. To each T-equivariant map /: Q —► R", not vanishing on oil,
we assign the element [F]r e nm(S") and we call it the generalized T-degree
of f, denoted by degr(/,Q).

We now list the main properties of this degree.

(a) Existence property. If degr(f, Q) is nontrivial, then there exists x ed such
that f(x) = 0.

The proof of (a) can be drawn out of Remark A.2 in the Appendix. Note,
however, that the r-equivariance of / implies f(yx) = 0 for all y e Y; that
is, solutions come by orbits.

(b) T-homotopy invariance property. Let fx : Q —y R", 0 < x < I, be a con-
tinuous one-parameter family of Y-equivariant maps not vanishing on dQ. for
all x e [0,1]. Then the generalized Y-degree degr(fx,Q) does not depend on
te[0,l].
Proof. Immediate from the fact that the construction of Fx : [0,1] x BR —» R"+1
via (2.1) can be performed uniformly with respect to x.   Q.E.D.

(c) Excision property. Let f:Q-+R" be a continuous Y-equivariant map such
that f(x) j= 0 in iî\Q0, where Q0 C Q is open and Y-invariant. Then

degr(f,Q) = degr(f¡Tk,Q0).
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Proof. Let Q c BR , let /: BR —► R" be a T-equivariant extension of / to BR ,
let A be a T-invariant open neighborhood of dQ where / does not vanish,
and let <p : BR —» [0,1 ] be a T-invariant Urysohn function associated to N ; that
is, tp(x) = 0 if x e Q and <p(x) = 1 if x £ Q U A. Thus degr(/, £2) = [FJr,
where F is defined by (2.1).

Now observe that the map / is also an extension of the restriction f-
of / to Q0 which never vanishes on the T-invariant neighborhood A =
(Q\Q0)UÑo(Qf)Ñ0) of dQQ (where A0 is the neighborhood of dQ0).

Since QQ U N = Q U A, the Urysohn function ç? is also a Urysohn function
associated to N . Thus, being degr(/J^ ,Q0) independent of the choice of the
neighborhood of dQ0 and of the Urysohn function, it follows that

lFlr = àeër(flno,Q0).
In particular, if f(x) #0 for all x e Q, then degr(/,Q) = 0 (take Q0 =
<f>).   Q.E.D.
Remark 2.3. Using the excision property we may extend the notion of T-degree
to the class of T-equivariant maps /: Q —► R", Q an open (not necessarily
bounded) T-invariant set of Rm , such that f~ (0) is a compact set, by restrict-
ing / to a bounded open T-invariant set Q0 D f~ (0).

(d) Suspension property. Let f: BR —y R" be an Y-equivariant continuous map
not vanishing on dBR . Then

degr(f,BR) = l([f]r)-
Proof. Using a nonvanishing radial extension of /, we have that

degr( f,BR) = [F)r = [2t-l,f]r = Z([f\T) ■

Here [f]r e 7i]n_x(Sn~x) and I stands for the (one-dimensional) suspension
homomorphism (see §1.8).   Q.E.D.
Remark 2.4. Let /: Q —y R." be a T-equivariant continuous map such that
f(x) ^ 0 for all x e dQ and assume that there exists a T-equivariant extension
/: BR ̂ R" of f to BrdQ such that f(x) # 0 for any x e BR\Q. Then

A T" y. _   |

one may consider the T-homotopy class [f]r in nm_x(S     ) as well the Y-
homotopy class in nm(S") of the map F defined by (2.1), that is, degr(f,BR).
In this case, using the suspension and the excision properties of the T-degree,
one obtains

(2.2) degr(f,BR) = X([/]r) = degr(/,íí).
We are now ready for the following

Corollary 2.5. Let f:Q—yR" be a continuous Y-equivariant map such that
f(x) # 0 for all x e dQ. Let f.: BR -> R", Q c BR c Rm, i = 0,1,
be Y-equivariant extensions of f to BR (possibly with zeros in BR\Q) and let
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g¡ : [0,1] x BR —► R, i = 0,1, be continuous Y-invariant functions. Assume
further that the maps Fi:[0,\]xBR^ Rn+X, i = 0,1, defined by

Fl(t,x) = (gi(t,x)Jl(x)),    i = 0,1,

are Y-homotopic on 9([0,l]xQ) and such that

Ft(t,x) * 0   for all (t,x)e[0,l]x (BR\Q).

Then

Proof Since degr(.F0,(0,1) x Q) = degr(Fx ,(0,1) x Q), then applying (2.2)
to Q' = (0,1) x Q and F0, Fx , respectively, we get the assertion.   Q.E.D.

(e) Additivity property (up to one suspension). Let f: Q —y R" be a Y-equivari-
ant continuous map such that f(x) ^ 0 on dQ and let Q = Qx u Q2, where
Qt, Q2 are open Y-invariant subsets of Q such that Qx n Q2 = 0.

Then
l([F]r) = -L([Fx]r) + l([F2]r),

where [F]r, [Fx]r, and [F2]r are the Y-equivariant homotopy classes induced
hy f, yfn, - and f\ñ2 respectively.
Proof. Let [F]r be the T-equivariant homotopy class induced via the map
f:[0,l]x5R-*R"+l defined by

F(t,x) = (2t + 2tp(x)-l,f(x))

where <p is a T-invariant Urysohn function associated to an open, bounded,
T-invariant neighborhood N of dQ (on which / ^ 0) such that A = Nx U
A2 and NX<1 N2 = 0, where Nx and A2 are the corresponding T-invariant
neighborhoods of dQx and dQ2 respectively. We shall denote by <px and tp2
the Urysohn functions associated to Nx and A2 respectively. Consider the
following T-homotopy, x e [0,1] :

i (2í + (1-2ít)(2^(x)-1),/(x)), 0<t<\,
\ ((l-x)(2t + 2(p(x)-l) + xj(x)),       \<t<l.

Setting T = 1, we obtain that [F]r is induced by the map

i (2í+(l-2í)(2^(x)-l),/(x)),        0<i<i,
1(1, fix)), x2<t<l.

Notice that if we change the variable t to 1 -1 in the above map, the new map
so obtained induces the class -[.F]r (the inverse of [F]r ; see Appendix A).

Consider the map

f (2t + (l-2t)(2<p(x)-l)J(x)), 0<t<{,
(2.3)

"";x^)-l,,j^ll,        2^(2(1 - t) + {It - l)(2tpx(x) - 1) ,/(x)),        1 < t < 1
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This is the map which induces [F]r - [Fx ]r . Next, consider the T-homotopy
Hx : [0,1] x BR -» R"+1 defined by

Hx(t,x) = (l,f(x))   if re [0,1], x^QuÑ, andre [0,1];

(2t + (l -2t)(2fx(x)- l),/(x))   if 0<2?<Tandxeñ,uA1,
(x + (l-x)(2<px(x)-l)J(x))

if x < 2t < 2 - x and x e Q~x U Ä7,,
(2(l-t) + (2t-l)(2tpx(x)-l)J(x))

if 2 - x < 2t < 2 and x e Q~x U ~NX ;

(2t + (l - 2t)(2tp2(x) - l),/(x))   if 0<t< \ andxefi2uiV2,
^(l,/(x))   if \ <t< 1 andxGñ2uA2.

It is easy to check that H% is well defined (recall that ç>,- ̂  = c»¿, z = 1,2)
and continuous. Clearly Hx coincides with the map denned by (2.3). On the
other hand,

HQ(t,x) = (2tpx(x) - l ,/(x))   if te [0, l],x e Q, UÄ,

and the restriction of HQ to [0,1] x (Q2 u A2) coincides with F2. Thus the
map H0 can be viewed as an extension of F2 which is nonvanishing on

[0,l]xBR\(Q2UN2).

Therefore, by Corollary 2.5, we obtain X([F]r - [Fx]r) = Z([F2]r). Since Z is
a homomorphism we are done.   Q.E.D.
Remark 2.6. In the case when Q2 = 0, taking <p2 = 1 in the above argument,
one gets that [F]r - [Fx]r is represented by the map

(2tpx(x)-l,f(x)).
This map is nonvanishing on the whole of [0,1 ] x BR, hence homotopically
trivial on the boundary of the cylinder, that is, [F]r - [Fx]r = 0r (this is
another way of computing the class -[F]r, which is the inverse of [F]r).

Remark 2.7. Note that in all the above homotopies one has the last component
f(x) unchanged. Thus one can show that the additivity property also holds in
infinite dimensions when compact perturbations of the identity are considered.

(f) Relation between the generalized T-degree and T-epi maps. The class of T-
epi maps has been introduced in [I.M.V]. The definition runs as follows (adapted
here to the case of bounded domains).

A continuous T-equivariant map /: Q —> R" is called Y-epi provided that
(a) f(x) ^ 0 for all x e dQ, and (b) for any continuous T-equivariant map
h : Q -y R" such that h(x) = 0 for all x edQ, the equation f(x) = h(x) has
a solution x e Q. Let us add in passing that this class of maps coincides with
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that of Y-essential maps (i.e., / does not admit nonvanishing T-equivariant
extensions / from <9Q to Q). In this context the following relation holds.

Let f: Q —y R" be such that degr(/,£2) is not trivial; then f
is Y-epi (Y-essential).

This follows at once from

degr(/-A,fl) = degr(/,£2)
provided h is continuous T-equivariant and vanishing on dQ. This is, in
its turn, a consequence of the boundary dependence property of the generalized
T-degree: let /, g : Q —> R" be T-equivariant maps such that

f(x) = g(x)   forallxedQ;

then, if defined, degr(/,i2) = degr(g,Q). This last equality is an immedi-
ate consequence of the homotopy property and the fact that, under the above
assumption, the maps / and g are T-homotopic.

(g) Recovering the Brouwer topological degree. In the case when Y = {e} (i.e.,
Y is the trivial group) and m = n the generalized T-degree introduced above
reduces to the classical Brouwer topological degree (here denoted by degB).
This can be shown as follows:

degr(/,Q) = [F] = degB(F,(0, l)xBR,0) = degB(F,(0,1) x Q,0)
= degB((2¿-l,/),(0,l)xíl,0).

Now, by the product formula of the Brouwer degree, we obtain

degß((2i-l,/),(0,l)xQ,0) = degß(2i-l,(0,l),0)degß(/,Q,0)
= degg(/,fi,0).

If m ^ n , then the same relationship holds with cohomotopy theory (cf.
[I0]) except that our addition is a homotopy operation and not a cohomotopy
sum.

3. Generalized degree for equivariant maps
in infinite dimensions and finite-dimensional approximations

In this section we extend our T-degree to the context of infinite-dimensional
Banach spaces and then show how to compute it by means of finite-dimensional
approximations. We shall confine ourselves to the following case, which is
particularly suitable for applications.

Let E be a Banach space and let T be a compact Lie group acting linearly
isometrically on each of the spaces E, R^ , and RN , Af, A e N. Let Q be
a T-invariant open bounded subset of R x E and let /: Q —> RN x E be a
compact T-equivariant map of the form

f(x,y) = (fN(x,y),f00(x,y))eRN xE,    for (x,y) e Q c RM x E.
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Finally, let us denote by Q>: Q -> R   x E the T-equivariant map defined as

*(*) = (-fN(x,y),y-f00(x,y)),    where z = (x,y)eQ.

To define a T-degree for the map O with respect to the set Q we make the
basic assumption

(H) ®(z)¿0   forallzedQ.

Mimicking the construction of the T-degree in finite-dimensional spaces, we
consider first a ball B centered at the origin containing Q and a compact Y-
equivariant extension f = (fN, f^), of the map / = (fN, f^) to B . We then
proceed as follows.

Let O: B —> R   x £ be the T-equivariant map defined by

®(z) = (-fN(x,y),y-f00(x,y))=y-f(x,y),    z = (x ,y) e B cRM x E.

Now, using both the compactness of / and assumption (H), we may construct
a T-invariant, open neighborhood N of dQ such that N c B and

Ô(z) ^ 0   for any z eÄ7.

Set V = B\(QuN). Clearly, V is T-invariant, closed, and such that Vf]Q =
0 . Let <p: B —y [0,1] be a T-invariant Urysohn function such that <p(z) = 0
for z eQ and p(z) = 1 if z eV.

Let F:[0,l]xfi^ R**1 x E be the map defined as

(3.1) F(t,z) = (2t + 2tp(z)-l,Ô(z))   if (í,z)e[0,l]x¿.

Notice that F is continuous and T-equivariant (the group Y acts trivially both
on [0,1] and on the first component of R + ). Moreover, the map F does not
vanish on d([0,1] x B) and if F(t ,z) = 0 then z e Q, Ô(z) = 4>(z) = 0, and
í = \ . Thus, F maps d([0,1] x £) into RA'+1 x £'\{0} and therefore we may
consider the homotopy class [F]r of F . In analogy with the finite-dimensional
case, we may consider the group of all T-equivariant homotopy classes induced
by maps of the form (3.1). These groups will be denoted by Y1M N . In this case
the admissible T-homotopies are those of the form

H(t,x,y;x) = (f0(t,x,y;x), - fN(t,x ,y;x),y -/^(t, x, y ; x))

where f0 is real valued, fN has values in R , and f^ is compact. Hence
to the couple ($, Q) there corresponds an element [F]r e Y1M N . It is easily
verified that [F]r is independent of its construction and we may call it the
generalized Y-degree of 0> on Q, denoted by degr(«P, Q).

Clearly, degr(<E>, Q) has the properties listed for the finite-dimensional case:
existence, Y-homotopy invariance, excision, and suspension. In fact, all of the
corresponding proofs run as for the finite-dimensional case, with only minor
modifications, taking into account the compactness of the T-equivariant map
/ (see Remark 2.7).
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We proceed now to the task of computing degr(/, Q) by appealing to suitable
finite-dimensional approximations of the couple (<ï>, Q). As a by-product of
this procedure we get a different way of defining Y1M N.   Assume now that
the above assumptions hold and let us consider the T-extension f of f to B
introduced in the construction of degr(<I>, Q). As / is compact there exist
both a sequence of finite-dimensional subspaces E'n , n e N, of R x E and a
sequence of continuous maps fn: B —> E'n, n e N, such that

oo

/(Z) = E^(Z)   and   L/>)l^2~"    forall zeB, neN.
o

We may assume that R    c E'n, n e N.   By averaging fn on the group we
obtain a new sequence of maps fn  (i.e., fn(z) = fry~ fn(yz)dy) with the
following properties (see [I, p. 783]).

( 1 ) fn : B —y YE'n is T-equivariant,
(2) YE'n = Uj,6r yE'n is a finite-dimensional T-invariant space,
(3) \\fn{z)\\ < 2~n for all zeB and n e N,
(4)/(2) = Er=o/„(z) fora11 Z^B-
Now let Ên = (RN, YE[ ,YE'2,..., YE'n) = RN © En, n e N. Clearly, En is

a T-invariant finite-dimensional space. Consider the sequence of maps fn(z) =
Yl"=o f,(z) > i e N. Each map fn: B -^ E„, n e N, is T-equivariant and such
that

(3.2) ||/(z)-/„(z)||<2-"   for all z G B.

Let P'n be a projection of E onto En and let Pn be its average over the group
T (thus Pn is T-equivariant; see [V, p. 94]).

Finally, set Pny = yn , y e E. Now, since / is compact and ||0(z)|| > 2e >
0 for all z e N, where N is the T-invariant open neighborhood of dQ used
in the definition of the T-degree of /, it follows that there exists «0 e N such
that for n> n0

(3.3) \\y-fB(x,y)\\>e   for all (x,y) € F.

For any « G N, set fi" = ßn (RM x En) and let Ôn: B" -* RN x En be the
T-equivariant map defined as

*n(xnyyn) = yn-Uxnyyn)y whereyn = ^•

Let Qn = Qn(RMxEn) and Nn = Nn(RM xEn). Since dQn c A^niR^xfJ ,
we have that the T-equivariant map Ofl : Qn -» £?n defined as the restriction
of Ôn to nn does not vanish on dQn by (3.3), provided n > nQ. Therefore
degr(<Pn ,Qn) is well defined. Furthermore

degr(<D,D.) = 2:£degr((D„,QJ
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f - —where X stands for the ^-T-equivariant suspension and E is a T-invariant
subspace of E such that E = En® É. Indeed, by (3.2) and (3.3) the map
O is T-homotopic to the map 0(x,y) = y - fn(x,y). Decompose y =
{y„yy) y where yn e En and y e Ë. Then the map <ï> is T-homotopic to
(y„ - f„(x,yn,0),y), which can be thought as the £-T-suspension of <I>n .
This brings immediately to one's mind the idea of relating the T-degree of trie
original map O with the T-degree of its finite-dimensional approximations <£>n .
This is, of course, nothing else but an adaptation of the classical technique due
to Leray and Schauder when constructing the topological degree for compact
perturbations of the identity via the Brouwer degree of their finite-dimensional
approximations.

To be more precise, we have to proceed by comparing degr(On ,Qn) and
degr(Q>m,Qm) for n,m > n0. To this end, some further notation and pre-
liminary results are needed. Denote with En the T-invariant space En m =
(En ,Em) and let Pn m be a T-equivariant projection onto En m . Set

ë = d-Pn)oPnm(RNxE)

and let y = (I-Pn)oPn my . Clearly the space Ë is T-invariant and En®E =

En,m-™nnm = Qn(RNxEnm),let

<¥:Bn(RMxEnJ^RNxEnm

be the T-equivariant map defined by *P(x,yn ,y) = (yn - fn(x,yn ,y),y) and
set ¥ = 'î'.n . Notice that ^„w F = 0„. We are now in a position of
proving the following.

Proposition 3.1.  degr0P,Q„ J = Ie degr((D„ ,Qn), where deg^,«,, J e

nM+n+dimÈ^N+n+d'mE^ and Z.E degr($>n ,Qn) is the E-Y-equivariant suspension

of the element degr(<Dn ,£2B) G nrM+n(SN+").
Proof. Note first that by the excision property of the T-degree we may replace
the set Qn m by the set Qn m u (Qn x {y e Ë: \\y\\ < e}) and this, in its turn,
by the set Qn x {y e Ê: \\y\\ < e}. We may also deform the map *F to the map

^(x,y„,y) = (y„-f„(x,yn,0)>y).

Set Nn = N n (RM x En) and <pn = <p,B„, where tp is the Urysohn function
associated to A. Obviously, dQn c Nn and <pn is a T-invariant Urysohn
function associated to Nn .

If we set B'r = {y e Ê: \\y\\ < r} , then An x B'2c is a T-invariant neighbor-
hood of d(Qn x B'e) such that

d(NnxB'2e)n(QnxB'£)c = 0
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and, by (3.3), «F ± 0 on Nn x B2£. Let xp: ßn(RM x Enm) -^[0,1] be defined
as

V(x,yn,y) = \ ^(x,y„)(2-||y||/e)-l + |lJ5||/E   if e < \\y\\ < 2e,
l 1    if 2e < \\y\\.

Clearly \p is a T-invariant Urysohn function associated to Nn x B'2e. It follows
that in the T-homotopy class of degr(^, Qn m) we have the map

.M
n,m>

which can be deformed (via a convex T-homotopy) to the map

(3.4) (2t + 2ip(z)-l,<¥l(z)),       te[0,l], zeBn(RM xEnJ,

(3.5) (2/ + 2<pn(x,yn) -l,y„- fn(xn ,yn),y).

Note that if y = 0 then the first components of the maps (3.4) and (3.5)
coincide. The map (3.5) is clearly the £-T-suspension of the map associated to

<bn:Qn^RNxEn

defined through (3.1).   Q.E.D.

Clearly Proposition 3.1 can be applied equally well to the maps Om and
8 = ê,ô      where the map 8: B n (RM x En J -» R^ x E„ m is defined by

G(x,ym,y) = (ym - fm(x,ymJ9),y) with ym = Pmy,  Pm  a T-equivariant
projection onto Em and y e Ê = (I - Pm) o Pn mE. Hence, we have that

degr(e,Qn,J = ^degr(Ow,fim).

Finally, using (3.2) and (3.3), it follows that the maps <P and 9 are T-
homotopic on B n (RN x En    ) (take a convex T-homotopy). Therefore

ZE degr(a>n , Qn) = ZE degr(<I>m , Qm)   provided n,m> nQ.

To perform the last step of our construction we assume that the T-equivariant
Freudenthal suspension theorem applies (see Theorem B. 1 in the Appendix).

We may now define degr(<I>, Q) as the direct limit of the finite-dimensional
T-degrees degr(<D„ ,Q„) and Y\YM N = lim^ 7irM+dim En (SN+dim E" ). This is an
alternative approach to defining the T-degree in infinite dimension.

Remark 3.2.
(i) The T-degree for mappings between infinite-dimensional spaces has the

complete additivity property in the case when the suspension is an isomorphism
(see Appendix B).

(ii) If T = {e} and M = N, then degr(0>,i2) = deg¿s(0,í2), where deg¿s
denotes the Leray-Schauder degree for the compact vector field O (see Property
(g) in §2).
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(iii) When defining the degree through finite-dimensional approximations,
one has to keep track of the suspension isomorphisms used, in particular, of the
orientation chosen.

(iv) The reader can see easily that one may extend this degree to other cat-
egories of maps: T-A>set contractions, T-^-proper, Y-C -Fredholm nonlinear
operators, and other classes as considered in [I.M.P.V].

We close this section with some results related to global continuation and
global bifurcation problems.

It is clear that once the degree is defined one may use it to get the global results
about existence and dimension which were given in [I.M.P.V] and [I.M.V] since
the notion of T-epi map is more general than that of the T-degree (see property
(f) in §2).

For example, for continuation problems, suppose one considers the equation
x - F(x,A) = 0 in an open bounded T-invariant subset Q of R^ x E x A,
where F is a compact, T-equivariant map with values in RN x E. The group

pT may also act on A. Assume that for some XQ e A , x - F(x ,X0) ^ 0 on
dQk = d{(x,X) G Q: X = X0} and degr(x - F(x,X0),Qx ,0) / 0. Assume
further that the T-equivariant Freudenthal suspension theorem applies and that
A = Ar © A, with dim Ar > 0.

Then there exists a "continuum" X of solutions of the equation x - F(x ,X) =
p _0, with a G A , such that lr\dQ^0 and Z/T is connected and has dimension

pat each point at least dim A  .
Indeed, consider the map H(x,X) = (x - F(x ,X) ,X-X0) . Clearly, H is T-

equivariant, nonzero on 9Q,and degr(H,Q) = 1 degr(x-F(x ,X0),QX ,0).
Thus, the map H is T-epi on Q and then the map X- X0 is T-epi on the set

pof zeros of x - F(x,X), with X e A . Now one may apply Theorem 3.1 of
[I.M.V].

For bifurcation problems one considers, as before, an equation of the form
x - F(x,X) = 0 with F(0,X) = 0 for any X G A. Assume that F is C' and
that for some X0 e Ar the map I-Fx(0,X0) is noninvertible but I — Fx(0,X)
is invertible for 0 < \X - X0\ < p with A G A (where A is some invariant
subspace of A). Let A be an invariant subspace of A such that A = A © A
and let B  = {X: \X - X0\ < p} . Finally, assume that

degr((x - Fx(0,X, 0)x, ||x|| - e),B2e xBp)¿0

and one is in a position to apply the T-equivariant Freudenthal suspension
theorem. (If dim A = 1, then the above inequality holds if and only if

degr(x-Fx(0,X-p,0)x,B2e)¿degr(x-Fx(0,X + p,0)x,B2E)).

Then there exists a branch I of solutions bifurcating from (0,A0) with 1 = 0
such that

( 1 ) Z is either unbounded or returns to (0, X, 0).
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(2) The local dimension of X/T is at least dimÂr + 1.
(3) If the return points on X have a linearization, with the same invertibility

properties assumed for X0, and X is bounded, then the sum of the local Y-indices,
degr((x - F(0,1., 0)x, ||x|| - e), B2c x B ), is trivial.

ff ff       ff    "* ff(4) If for some subgroup H of Y one knows that if x   - F  (x   ,X   ,0)
ff ff ff= 0 for \X - X0 | < p implies x = 0—that is, there is no bifurcation in

(RM x E x A)H—then (1), (2), and (3) hold for a subset X in the complement
of E . The return points, if there are any, belong to E .In particular, for
H = Y, one has nonstationary solutions.

Indeed, the map (x-i7(x,A),||x||-e,Â-Â0) has T-degree on B2£xBp,for

s small enough, equal to Xa degr(x - Fx(0,X, 0), ||x|| - e). Then the argument
proceeds as in [I.M.P.V] and [I.M.V, Theorems 3.1 and 4.2]. Note that assertion
(3) is obtained by using the arguments of [I0, p. 77] (there is no need for
cohomotopy here). To obtain (4), one has to complement the equation x -
F(x, X) = 0 with ||x, || - e instead of ||x|| - e, where x, is in the complement
of EH . Finally note that here dim(R x A)   > 1.

One may also refine these results using the different ideas and theorems
proved in [I.M.V].

4. The s'-equivariant degree

In this part of the paper we shall restrict our attention to the case T = S .
We will give a complete characterization of the S -degree when a semifree
(actually almost semifree) action is considered. More precisely, if S acts on
R x Cm and R x C" , leaving fixed R and R respectively, and multiplying
each component of Cm by e""09, where mQ > 1, and each component of
C" by e"1'9 , where n. are multiples of m0 , then we shall give in Corollaries

4.1 and 4.2 a complete description of nk+2m(S + ") whenever m = 1  or m <

n + I - (k - l)/2 (any of these numbers may be zero). When the action of S
on Cm is not of one orbit type (see [B, p. 42]), we shall construct an auxiliary
degree which has all the properties of a degree by reducing the problem to an
almost semifree action. This auxiliary degree can also be extended to infinite
dimensions. In particular, if k = I + I and m = n (these last numbers may
be infinite), we extend the Sx-degree introduced in [I.M.V] to general domains,
recovering both Fuller's and Dancer's degrees (see [F] and [Da]).

We emphasize that we obtain this extension without referring to the formal-
ism of obstruction theory.

We shall explore further the S '-degree (when the action is not necessarily
almost semifree) in the second paper of this series.

4.1. The finite-dimensional case, reduction to semifree action. Let RM , RN be
linear representations of 5   with fixed-point subspaces R   and R  respectively.
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Then the action of S on the orthogonal complements of those subspaces will
give them a complex structure. Thus RM = Rk x Cm , RN = R1 x C" , and the
action will be represented by

{4 n eim*z:=e""9(zx,...,zj = (,""•%... ,eim»9zm),
ein9C:=¿n9(Sx,...,t¿ = (eini%,...,ein"%),

where z., <? are complex numbers and mi, n are nonzero integers, i =
I, ... ,m, j = I, ... ,n . By taking conjugates if necessary, we may assume
without loss of generality that ra( and « are positive and form a nondecreasing
sequence of integers (conjugation changes only the orientation in Cm and C"
and induces isomorphisms at the level of the equivariant homotopy groups).
We set Af' = Ylin=xmi, A' = Yl"=x ni, and let m0 be a common divisor of mi,
i=l, ... ,m.

Any element of R will be written as (x0, z) e R x Cm and any S -
equivariant map F from an invariant subset of R = R x Cm into R = R x
C" will have the form (3>0(x0, z), 0>(x0, z)) where <D0(x0,e""9z) = O0(x0, z)
and <I>(x0,e""(pz) = e'"9<&(x0, z). Note that due to the equivariance of F the
integer mQ divides n., j = 1, ... , n , provided that the 7 th component of O
is not identically equal to zero. Finally, observe that the radial scaling from the
ball {(x0,z):\\x0\\2+ \\z\\2 <R20 + R2} to the set

(4.2) D = {(x0,z):\\x0\\<R0,\\z\\<R}

isa S -equivariant homeomorphism which induces an isomorphism at the equi-
variant homotopy level. We shall then identify the S -homotopy group of equi-
variant maps from  d([0, 1] x D)  into  R x RN\{0}   of the form  (fQ(x,z),

O0(x,z),O(x,z)) with nsk+2m(S,+2n). Here the variable x stands for the pair

(r,x0) € [0,1] x R* . In the case of the generalized T-degree, the map f0 is the
auxiliary real-valued function f0(x0 ,z) = 2t + 2tp(x0, z) - 1 , and the pair of
maps (<E>0, <I>) does not depend explicitly on the variable t.

Let Cm denote Cm with the following Sx-action:

Jmo97_Jmo<P(7 7   \ — (oim0f''7 ¿"¡oVy   n
e       z. .— e       yz,x , ... ,^m) — \t       £*x, ... ,e       ^m),

which reduces to the standard free action of S   when m0 = 1 .
Then, leaving Sx to act trivially on R , we shall refer to the action on

Rk x CT as an almost semifree Sx-action. Now, let 6: Rk x Cm -+ Rk x Cm be
the S -equivariant map defined by

6(x0,Z,,... ,Zm) = (x0,Zf , ...,Z^m),    where m0/i¡ = mi,

and let nk+2m .(S +2n) be the group of all equivariant homotopy classes of
S'-maps from the boundary of the set D' = {(t,x0,Z): t e [0,l],||x0|| <
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R0,  \\Z\\ < R} into HxR'x C\{0}  (define the addition as for the group

nk+2m^s      )) ■
The following results are in order.

Lemma 4.1. The map 6 induces a group homomorphism
<Q*.  ~S'        t<?l+2n\ Vs' i<?l+2"\6   :nk+2m(S        )^nk+2mAS        )■

Proof. Let F(/,x0,z).= (/0,qJ0,O)(i,x0,z) be a S '-equivariant map from
[0,l]xD into RxR'xC" suchthat F(d([0, l]xD)) c RxR'xC"\{0} where
D is as in (4.2). Consider the set

D = {(t,xo,Z):te[O,l],0(xo,Z)eD}.

Clearly, D is a S'-invariant set with respect to the S -almost semifree action
and the map

(4.3) F(t,x0,Z) = F(t,&(x0,Z))

from D into RxR'xC" is 5'-equivariant (notethat F(dD) c RxRyxC"\{0}).
Moreover, the sets D and D being homeomorphic via a radial scaling (hence
S '-invariant), we may identify the set of all equivariant homotopy classes of
S'-maps defined on the set D with nsk+2m .(Sl+2n). Let 8*([F]S,) = [F]sl,
where F is given by (4.3). Clearly, the morphism ©* does not depend on the
choice of the map F but only on its homotopy class. Hence the morphism 6*
is well defined. Finally, 0* is a group homomorphism since the addition is an
operation on the / variable only (where the group S   acts trivially).   Q.E.D.

Lemma 4.2. Let Q be an open and bounded Sx-invariant subset of R x Cm
and let f: dQ —» R x C"\{0} be Sx-equivariant (the action is the one described
by (4.1)). Then

(4.4) e*deg51(/,Q) = deg51(/oe,e-'(Q)).

Proof. Let RQ, R he such that Q C D = {(x0,z) eR'xC": ||x0|| < RQ,
\\z\\ < R} . As in §2, let /: D —> R x C" be a 5"'-equivariant extension of / to
D, let A be a S '-invariant neighborhood of dQ on which / ± 0, and let <p be
a 5 -invariant Urysohn function associated to A. Thus degs,(f,Q) = [F]s¡ ,
where F(t,x0, z) = (2t+2f(xQ,z)- 1 ,/(x0,z)). Now consider U = 0~x(Q).
Then U is an open bounded and S -invariant subset of R x C|" , the set
8~ (A) is a S -invariant neighborhood of d U, and <p = (po&isaS-
invariant Urysohn function over 6~ ' (A) taking the right values on the different
S -invariant sets. Hence, deg5, (/ o 8, U) can be defined in terms of the map
F(t,x0,Z) = F(t,S(x0,Z)) and degsl(foS,U) = [F]sl (see §2). It is now
a direct consequence of Lemma 4.1 that

8* deg^, (f,Q) = deg5, (/ o 8,8" ' (Q)).   Q.E.D.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



456 J. IZE, I. MASSABÓ, AND A. VIGNOLI

On the basis of (4.4), we may consider from now on s'-equivariant maps
from Rk x Cm into r'xC".

We now introduce the following morphism of groups. Let F(t,x0,z) =
(/0,O0,<P)((,x0,z) be a S'-equivariant map from <9([0,1] x D) into R x
R x C"\{0} where D is the set defined by (4.2). Due to the Sx-action, we
have that i>(r,x0,0) = 0. Thus to the S'-map F we can associate the Sx-
invariant map (/0,O0): d([0,1] x {x0 G Rk : ||x0|| < R0}) -^RxR1 defined as
(f0, Q>0)(t,x0) = (f0,<P0)(f,x0,0). Call this assignment p . Then we have the
following.

Lemma 4.3. The map p induces a group homomorphism

S' lc,l+2n, lc,l,
P,-nk+2mAS        )->**($)

which is onto if m < n .
Furthermore, assuming m < n  and letting F = (f0,00, <S>)  represent an

element of nk+2m ,(S+ "), the assignment

[F]sl»(P*(lF]sl),[F]sl-[F]sl)

from nk+2m .(S ) onto nk(S )x ker/?% is an isomorphism, where F = (fQ ,i>0,
q>) with

0>(r,x0,z) = t(i -t)(z"xlm\ ... ,z"mm/mo, o,... ,0).

(Recall that the map F can be chosen such that fr(0,x0,Z) = fr(l,x0,Z) =
(1,0,0); see Proposition A. 1.)

Proof. The fact that pt is a morphism follows directly from the definition of
the addition. Furthermore, if [(./¿,<I>0)] is an element in nk(S ) then the map

F(t,x0,Z) = (f0(t,x0),<S>0(t,x0),Zxni"n°,...,Zn™/m\ 0,...,0)

n—m

has the property that pt[F]s¡ = [(f0,<S>0)] ; that is, pt is onto.
It remains to prove the last part of the assertion. To this end, recall that the

element [F]s, - [F]s¡  is represented by

ÍF(2r,x0,Z) if0</<i,
G(t,xn,Z) = <   ~

0 \ F(2-2t,x0,Z)   ifi<r<l.

Clearly, pt([G]s,) = 0. That the assignment is well defined follows from the
fact that if Fx and F2 are ^'-homotopic so will Fx and F2 be. To show that
it is indeed a group morphism it suffices to note that the factor t(l - t) in the
definition of O can be deformed to 1 and thus the addition is performed only
on the invariant part of the maps.
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If pt([F]s¡) = 0, then F(t,x0,0) is deformable to (1,0,0) and, by the
S'-equivariant Borsuk extension theorem, we may assume that F(t,x0,0) =
(1,0,0). Since

[F]s, = [(/0(i,x0,0),O0(/,x0,0),Z1'!'/W0, ... ,z;m/m°,0, ... ,0)]s,

(by deforming Z to 0 in both fQ and <P0), then [F]s¡ = 0S, . This implies
that the assignment is one to one. Let (f0,®0) induce an element in nk(S )
(extended continuously to [0,1] x B0 and taking value (1,0) at both t = 0
and t — 1). Now let H(t,x0,Z) = (A0,*F0,*¥)(t,x0,Z) be a representative of
an element in ker/^ . As above, we may assume that H(t,x0,0) = (1,0,0).
Taking

- (f0(2t,x0),%(2t,x0),
F(t,x0,Z) = l      2t(l-2t)(Zxn"/m\...,Z"m"'/m\0,...,0)),       te[0,{-],

. H(2t-l,x0,Z),       te[{-,l],

it follows that [F]sl = [H]s¡ +[(/0,<D0,Z1"l/mo,...,Z^/mo,0,...L0)]sl.
Moreover, pt([F]sl) = [(/0,*0)], since pt([H]sl) = 0, and [F]s, - [F]s, =
[H]s¡ by the associativity of the sum. Thus the assignment is onto.   Q.E.D.

In [I] and [I.M.V] we introduced, for computational purposes, the S -equi-
variant map

ß : r' x C" -> R' x C"
defined as

ß(y0^x,...,Q = (y04'/"',...4'/n")
where C" stands for C" with the S -action given by

eiN''(ii,...,^)^(eiN\,...,eiN\).

As in the first part of this section, one can define the group nf+2m (Sl+2n '°) (all
the equivariant homotopy classes of S'-maps with range in R x R xC") and
it is easy to check that the map ß induces the group homomorphism

a   . -S'       /Çl+2n\ ^ „S'       /çl+2n,o,
P*-nk+2m(S        >^nk+2m(S >

defined by
/U[F]s,) = [/?°F]sl.

After these preliminaries, we have the following commutative diagram.

nk+2m(S        ) -» Uk+2mAS        )
P. \ / P.

P. I nk(S!) | ß.
p- / \ p.

S'       /c,/+2n,o* S1 /c,/+2n,Os
nk+2m(S ) Z! nk+2mAS >
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In [I.M.V] we defined a degree existing in the group at the lower right corner.
In the next section we will define an auxiliary degree taking values in the group
at the upper right corner, and we shall completely determine the right half of
the diagram when m = 1 orm<n + l-(k-1)/2. In order to do so we study
the kernel of the homomorphism pm. The next section will be devoted to this
task.

4.2. The equivariant extension procedure (the study of kerpj. We shall consider
here the question of extending S -equivariant maps (for a S -almost semifree
action) without using the machinery of obstruction theory as developed in [I]
and [I.M.V].

Let / = [0,1], £0 = {x0gR*: ||x0|| < R0}, and B = {ZeCm: \\Z\\ < R} .
Until further notice, we will consider S -equivariant maps

F:3(/xfi0xß)^RxR'x C"\{0}

of the particular form

F(t,x0,Z) = (f0,%,<t>)(t,x0,Z)

with

f0(t,x0,e"n°9Z) = f0(t,x0,e""°9Zx,...,e"n°9ZJ

= f0(t,xfJ,Z1, ... ,Zm),

%(t,xQ,*im«9Z) = %(t,xQ,eim>9Zx,... ,e""«9Zm)

{ ■ } =O0(t,x0,Zx,...,Zm),

*,(*,*„,e'-'Z) = ^(t,x0,e^9Zx, ... ,e'm°9Zm)

= ei">9<t>j(t,x0,Zx,...,Zm)

for j = I, ... ,n .
Recall that due to the equivariance of F the «'s are multiples of m0.

Assume that pt([F]sl) = 0 ; that is, the invariant part of F ,

(/o,<Do):0(/x2?o)-RxR\{O},

extends to a nonvanishing map (f0,<I>0) : I x BQ —> R x R \{0} . Consider the
map Fx : d(I x BQ x {r e R: 0 < r < R}) -> R x R1 x C"\{0} defined by

~ = Í (/0,O0,0)    forr = 0,
1     \ F forO<r<R.

Clearly, the map Fx gives an element [Fx] in the ordinary homotopy group
7ik+x(Sl+2n) and Fx admits a nonvanishing extension to /xß„x{reR:0<
r < R} if and only if [Fx] = 0 (one has always an extension if k+ I < 1 + 2n).

Suppose now that (f0,<t>0,0) is such an extension of Fx . Then we may
define a S -equivariant extension F, of F, to IxBQx(Bn{Z2 = •■■ = Zm = 0})
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by setting for Z, = e'v\Zx\

Fx(t,x0,e"'\Zx\) = (f0,%,...,einj/mo9^j,...)(t,x0,\Zx\).

Note that Fl(t,x0,e,l**4k*)\Zl\) = F^.x^e^lZ,!) since n} is a multiple
of m0 for j = 1, ... ,n. Clearly, F, is a nonvanishing extension of F
to I x B0 x (B n {Z2 = • • • = Zm = 0}). Let us check that the map Fx
is 5" -equivariant.    Indeed the S -action on the domain can be written as
¿m°9(t,x0,Zx) = (t,x0,eiim°9+«')\Zx\).Thus

= (/0,$0,...,^V("^^Ö.,...)(/,x0,|Z1|)

= ¿"9Fx(t,x0,Zx).

Now suppose that the map F has been extended S -equivariantly to IxB0x
(Bn{Zh = Zh+x = -.. = Zw = 0}) via the S'-map Fh_x(t,x0,Zx, ... ,Zh_x).
Then on the topological sphere d(I x B0 x (B n {Zh+X = ■ ■ ■ = Zm = 0, Zh e R,
0 <Zh< R})) one may consider the map Fh defined by

p = (Fh_x    onIxB0x(Bn{Zh = Zh+x=--- = Zm = 0}),
h     \ F       on the rest of the sphere.

Now the map Fh can be extended to the set IxB0x (Br\{Zh+x = ■■■ = Zm = 0,
ZheR, 0<Zh<R}) if it is homotopically trivial in nk+2h_x(Sl+2n). If this is
the case and (f0,®0,<ï>) is a nonvanishing extension of Fh , one obtains a Sx-
equivariant extension Fh of Fh_x to the set IxB0x(Bn{Zh+x = ■ ■ ■ = Zm = 0})
by setting

Fh(t ,x0,Z,, ... ,Zhx ,e   \Zh\)

= (f0,%,...,e^,m^èj,...)(t,x0,e^Zx,...,e-^Zh_x,\Zh\)

for Zh = elv\Zh\. It is easy to see that the map Fh isa S -equivariant extension
of F to the set I x BQx (Bn {Zh+X = ■ ■ ■ = Zm = 0}), using as above the facts
that Fhx is equivariant and «   is a multiple of mQ .

Clearly, the procedure just described may be repeated automatically as long
as k + 2h - I < I + 2n, with 1 < h < m, but it will require a particular
consideration as soon as

h = hc:=l ifk-l>2n-l,
k - I - 1

(4 6) h = hc:=n-   if \k - l\ is odd,
k — I

h = hc:= n-hi    if \k - l\ is even.
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Namely, we shall denote by degK(F) the ordinary homotopy class of the map
Fh   defined above, where K stands for the kernel of pt. Therefore,

nk+x(Sl+2n), ifk-l>2n-l(hc=l),

nl+2n(Sl+2") = Z, if \k-l\ is odd,

deg^F) G { n!+2n+x (Sl+2n) = Z2, if \k - l\ is even and / + 2« > 2,

ni+2n+i(S + ") - Z, if \k - l\ is even and I + 2n = 2,

ni+2n+\(S'+2n) = 0, if |ifc - /| is even and / + 2« < 2.

Note that the degree degK(F) depends a priori on the different extensions that
one has to perform before arriving at the critical level hc. That this is in fact
not so will be proved below. First, we would like to point out some simple
consequences of the above construction.

To this task let us introduce the following notation. Given a S '-equivariant
map F = (/0,*0,O) let *,([F]) denote the class of F in nk+2m(Sl+2n), that
is, when one forgets the group action. We are now in a position to prove the
following result.

Theorem 4.4.
(i) If 1 < m < hc, where hc is defined by (4.6), then p.: nsk+2m.(S,+2n) —

nk(S ) is an isomorphism. Moreover, x*([F]) = 0 provided that either k / / or
m^n, and *„([F]) = (N' /mnQ) deg(/0 ,O>0) if k = I and m = n .

(ii) If k = I and m = n, then the Brouwer degree of a S -equivariant map
from dD cRxRk xCm into RxR'x C"\{0} is equal to (N'/M') deg(/0,O0).

(iii) If k = I and m > n, then pt([F]s¡) = 0; that is, there are no S -
equivariant maps defined on d(I x BQ x B) with deg(fQ ,<I>0) ̂ 0.
Proof, (i) Let m < hc. Then any element in kerpt extends to I x BQ x B ;
that is, kerpt = {[0]5,}. Moreover, if k > I then, by (4.6), we have hc <
n + 1 . Thus m < n and by Lemma 4.3 the morphism pt is onto. If k < I
then nk (S ) = 0. Therefore, we can conclude that /?„ is an isomorphism.
Furthermore, m < hc implies k + 2m < I + 2n . Hence x,([F]) = 0 except if
the equality holds and k > I (and hence m <n). But then, by Lemma 4.3, the
map F is S'-homotopic to (f0,%,Zxn,/m°, ... ,Z^m,m° ,0, ... ,0). If m <
n, then the Brouwer degree of this map is zero (make a deformation through
the last components); that is, /„([F]) = 0. In the case m — n, ¿'»([F]) =
(N1 /m™) deg(/0, <P0) by the product formula of the Brouwer degree.

(ii) Let f^flcRxR'xC^RxR'x C"\{0} be S '-equivariant. To
compute the Brouwer degree of F, one can use the previous result applied
to the map F(t,x0,Z) = F(t ,O(x0,Z)). Indeed, for k = / and m = n,
X,(0*[F]) = (N'/m"0)deg(fQ,%) = deg(F) = (M'jm"0)deg(F) (by the compo-
sition rule for degrees). Hence, deg(F) = (A'/Af')deg(./¿,<P0).
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(iii) Finally, for k = I and m > n one has that

^([F]) = (A7A/')deg(/0,<I>0) = 0
on I x B0 x (B n {Zn+X = • • • = Zm = 0}), by deforming the value of F on
the boundary of the former set to its value at the point (t = \, x0 = 0, Z =
(0, ... ,0,R)) through the map F itself. Hence pt([F]s¡) = 0.   Q.E.D.
Remark 4.5. Part (ii) of Theorem 4.4 represents an extension of a result of
Nirenberg [N].

In the following theorem we describe the main properties of degK(F) = [Fh ].

Theorem 4.6. deg^: kerpt —y nk+2h _X(S+ ") is a group homomorphism (in
particular, it is independent of the previous extension) except in the following
cases:

(a)k = l-l, hc = n+l and N' = mn0;
(b) k = I - 1, hc = n + 1, and N' > m"0 ;
(c) k > I - 1, hc = 1, and n = 0 ;
(d) |A: - l\ even, hc> I, k + I + n> I, and Y?m (nj/mo) + K 0<^>
(e) k = I = 0 and n = 1.
Moreover, there is always an extension to the set I x B0 x (B n {Zh    = ■ ■ ■ =

Zm = 0}) if either (a) or (c) or (d) holds. If either (b) or (e) holds then deg^ is
unique modulo N' /m^.
Proof. See Appendix D.

The following results describe some consequences of Theorems 4.4 and 4.6.

Corollary 4.7.
(i) Ifhc=l (thus k-l>2n-l), then

s1       .çZ+2^^/0 ifn = 0,
nk+2hcA > - \   „/c'\~,,      fO/+2/^     ,r„ ^ A{ nk(S ) x nk+x(S      )   if n >0.

(ii) Ifk-l = 2n-l, then

xS4+2hcXS,+2n)) = (Ñ/m(i)nl+2n+x(Sl+2n)

where N = X^Li n¡   (A = 0 if n = 0). More precisely, the restriction of x* to
7tk(S ) has the following properties:

isomorphism,   ifn = 1, nx/mQ is odd, and I > 2,
onto, ifn = l, nx/m0 is odd, and 1 = 2,
0, otherwise,

X*\7tk(s') -

while

**|**+i (S'+2")

isomorphism, ifN/m0 is odd and I + 2n > 2,
has image (nx/m0)Z,    ifN/m0 is odd and 1 = 0, n = 1

. 0, otherwise.
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(iii) If hc> I, \k-l\ odd, and n > 0 then

n J+2n
k+2hc,' (S—) =

nk(Sl)xZ   ifk ¿I-I
7

Furthermore,

x.(^k+2hcAs    ))-

ifk = 1-1.

0     for N/m0 + hc odd,
Z2   for N/mQ + hc even,

whose generator is given by the element having K-degree equal to 1, and

i    ^ iZ2   ifN'/m1^ is odd and k = I + 1 > 3,
*   k I 0     otherwise.

Here the isomorphisms are understood in the sense of Lemma 4.3.
Proof. See Appendix D.

Corollary 4.8. If h  > 1, \k - l\ even, and n > 0 then

( Z

n J+2n
k+2hc, .(5      ) = <

N/m0

0
nk(S!]

Z
z,

I Z2 x nk(S'

ifn=l, k = l = 0,

ifk<l, k + l + n> 1, Ñ/m0 + hc odd,
ifk>l, k + l + n> 1, Ñ/m0 + hc odd,
ifn = 0, k = 0, 1 = 2, N/m0 + hc even,
ifk < I, k + I + n > 2, Ñ/m0 + hc even,
ifk = I, k + I + n > 1, N/mQ + hc even,

ifk > I, Ñ/m0 + hc even.
Furthermore,

*.(**+2A„.(5 ))
ifN/mQ + hc is odd,

n,+2n+2^,+i") = z2   ¿fñ/m0 + hc is even.-,/+2n

If N/m0 + hc is even and k > I then x* on nk(S ) iS n excePt if k = l + 2> 4,
and the generator of the other component always gives the generator of Z2.
Thus, except in the low-dimensional cases, i.e., if n = 1,  k = I = 0 and if
n = 0, k = 0, 1 = 2, Ñ/m0 + hc even, the morphisms pt and x* give aU tne
information on nf+2h .(Sl+2n). The isomorphisms are understood in the sense
of Lemma 4.3.
Proof. See Appendix D.

4.3. Behavior of the A^-degree under suspension and the range of degK(f, Q). If
one has a one-dimensional suspension with trivial action, the T-equivariant
suspension theorem (Theorem B in the Appendix) applies if the following di-
mensional inequalities hold:

(i) if h = 1, then k < 21 - 4 for n = 0 and k < 21 - 2 for n > 1 ;
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(ii) if hc > 1, then k < 21 - 2 except hc = 2, n = 0, I = k + 2 = 2 or 3
(for the details see Example B.3).

These conditions ensure that the suspension X is actually an isomorphism.
They are, however, too restrictive. We can weaken those assumptions and obtain
the same result, using some facts presented in the previous section.

Since pt oX = Xopt and ^toï = Io^,we have that

degj,(XF,XF) = Xdeg„(F,F).
(See Lemma 0.3 for this notation.) Thus, if 1 < m < hc one needs the condition
k < 2/ - 2 whenever pt + 0, that is, if m < hc, or m = hc = 1 < n and k > I,
or hc > 1 and k > I. On the other hand, X is an isomorphism on kerp^
except if hc = 1, k > 2(2n + 1-1), n > 1 and if either n = 0, k = 0, 1 = 2
or n = I , k = I = 0. In the last two cases X is onto.

Similarly one can study the suspension Xr,    : C -» C defined by X(Z) =
Zr/m°, where r is a multiple of mQ and the action on C is given by em°9 .
Hence, for r = m0 the T-equivariant suspension theorem applies if k < I +
2n - 2   (k > 2 if hc > 1  and \k - l\ is even); see Example B.3.  However,
P^r/m, =P* and *.**/«, = (r/mjx.l.y = (r/m0)Z2xt. Hence,

deg^Xr/moF,Xf/moF) = -^deg^X.F^.F) = ^l2 degK(F, F).
'"o 'o

Thus, if 1 < m < hc, then hc is increased by 1 under the suspension and so
X .     is an isomorphism.

Now let m = hc = I.   Then X ,     = 0, if n = 0.   On the other hand,
W7^') x nk+x(Sl+2n)) = nk(S>) x (r/m^2nk+x(S>+2n). Note that hc = 1
also for the suspended problem. In particular, if r = m0 and k < 2(2« + /- 1),
then X, is an isomorphism.

If \k - l\ is odd and k-l <2n, then for 1 < hc, hc is transformed under
the suspension in hc + 1 , and we have that deg^ is uniquely defined in Z if
k + l-I. Hence

\lm(nk(Sl)xZ) = nk(Sl)x(r/m,)Z

and
r/m0

Sr/m„(ZWm;) ~ (r/Wo)ZA'r/-""r/mo'y    NI ml' ~ v ' "'0'^Nr/m"0 +

giving a one-to-one map and an isomorphism if r = m0 .
If \k -1\ is even and k - I < 2n , then for 1 < hc, hc is transformed under

the suspension into hc + 1 and N/m0 + hc will conserve its parity if and only if
r/m0 is odd. In the case when r/mQ is even, then deg^X , F,X , F) = 0
(since it belongs to Z2 if I + 2n > I and if / = n = 0 then hc = 1 and so the
equivariant group reduces to 0). Then X , isOon kerp^ and an isomorphism
on lmpt. Hence X .     is never onto (unless in the trivial case) and it is one
to one only if k > I and Ñ/m0 + hc is odd. In particular, X^rim = 0.
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We now examine the case r/m0 odd. If / + 2« > 2, then

^KVr/moF>Zr/moP)=á**K(F,F)>
thus Xr/mo is an isomorphism. lfn = 0,k = l = 0, l,or2, then X ,     = 0
(since hc = 1, the first group is trivial). If « = 0, k = 0, 1 = 2, then X ,
is onto Z2 but it will kill all the maps with K-degree even. Finally, if n = 1,
k = I = 0, then Xr/mo = 0 if nx/mQ is odd and it is onto Z2 if nx/m0 is even
(one to one if nx = 2m0), killing all even integers in Zn .    . In all cases, one
has that x^r/m0 = X. ■

Thus a direct study of the groups improves the T-suspension theorem.
Namely, one also obtains an isomorphism in the following cases: hc = 1,
k < 2(2« + /-1); k — I — In — 1 ; k - I = 2n and k > 3 (not covered at all
by the Y-suspension theorem); hc > I, \k — l\ even, and k > 1. Furthermore,
one has a precise knowledge of the behavior of the suspension.

We would like to add in passing that one gets into the stable range after a
finite number of suspensions.

We shall now study the range of degK(f ,Q). Let Q be an open bounded
invariant subset of R xCm and assume that m < hc. Which elements of

nk+2m •($ + ") are realized as the S -degree of equivariant maps /: Q —► R x
C" suchthat f¿0 on ÖQ?

Let us recall that an equivariant map /, as above, gives rise to a S -map F
of the form

(/0,<D0,O)(í,x0,Z) = (2í + 2^(x0,Z)-l,(D0(x0,Z),a)(x0,Z)).

Theorem 4.9. Let Q + 0 and m < hc. Then we have the following conclusions:
(i) If fin {Z = 0} = 0, then pt [(2t + 2<p - 1, í>0 ,<D)] = 0. Thus any element

in kerpt is obtained, except:
(a) if hc = 1, then any suspension in nk+x(S+ ") is attained (hence any

element if k < 21 + 4« - 3) ;
(b) if either « = 0, A: = 0, m = 2, 1 = 2 or n = I, k = I = 0, m = 2,

then, in general, the S -degree is trivial.
(ii) If Q n {Z = 0} t¿ 0, then any element in nsk+2m .(S+ ") is obtained as

the Sx-degree of an equivariant map on Q, with the following exceptions:
(a) for the elements in kerp^ the same exceptions as in (i) and if I = 0 then

the S -degree is not defined,
(b) for the elements in lmpt, any suspension is achieved (hence any element

if either k < 2/ - 2 or k = I = 0 and m <hc).
In Appendix D we shall give concrete generators of the degree and the proof

of this theorem.
Remark 4.10. Thus, according to Lemma 4.3, degs, ((G>0, G>), Q) has two com-
ponents:

deg(<P0(x0,0),i!n{Z = 0})),
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which is always trivial iffin{Z = O} = 0, and
degK(g(t,x0,Z),(0,l)xB),

where B is a ball containing fi and
[ (2t + 2tp(Y)-l,%(Y),(l-2t)4>(Y)),        te[0,{-],

(2(l-t) + 2tp(Y)-l,%(Y),
(2i-l)(Z,"l/mo,...,Z"'"/mo,0,...,0)),        /G[i,l].

g(t,x0,Z) = <

Here, Y = (x0, Z). As in Remark A.5, it is easy to see that

[^,=[(/0^0'<I>)]sl-[(/0'<I>0'Zr/m0'---'C/m0'0'---'0)]5-

m < hc < n,
whenever p„([F]s¡) + 0. If p^([F]s¡) = 0, then one has only the A-degree of
F . Note that the zeros of g are for t = { , q>0(T) = 0, and feiluJV (with
<p(Y) = 0).

We would like to point out that if n > hc = m and Oq'(0) n fis ^ 0, then
degs, (/, fi) can be computed as follows.

Since / # 0 on <9fi and <P(x0,0) = 0, there exists e > 0 such that
<D0(x0,Z) ¿ 0 when (x0,Z) G dfi and |Z| < 2e. Now let ip: R+ -► [0,1]
be a continuous function such that \p(r) = 1 if 0 < r < e and \p(r) = 0 if
r>2e. Clearly the S'-homotopy

«r(x0,Z) = (<D0(x0,Z),(l-TV/(|Z|))<D(x0,Z)
+ TVx(|Z|)(Z1'"/mo,...,Z:'"/mo,0,...,0)),

x e [0,1], is admissible and such that «,(x0, Z) ^ 0 if \Z\ = e . Thus, by the
homotopy and additivity property of the S -degree, we have that

degsl(/,fi) = deg5,(«1,fi) = deg51(«1,fin{|Z|<e})
+ deg5,(«,,fin{|Z|>£}).

Now, by the excision property of the 5" -degree, we obtain that

degsl(«, ,fin {|Z| < e}) = deg51(«, ,fiS' x {|Z| < e})

= deg5l((cD0(x0,0),Z1",/'"0,...,Zy"0,0,...,0),fiS' x {|Z| < e})

= (deg((D0(x0,0),fi5,),0).
The last two equalities are obtained by first deforming Z to 0 in q>0(x0,Z)
and then applying Lemma 4.3 directly to compute the A-degree of hx on the
set fi n {|Z| < e} . On the other hand, we have that

deg5l(«,,Qn{|Z|>e}) = (0,degA.(A1>fin {|Z| >e})),

since deg5,(«,,fin{|Z| > e}) = [g]$l , where g(t,xQ,Z) = (2t + 2tp(x0,Z) -
I ,hx(x0,Z)) with çj(x0,Z) = 1 for |Z|<e.Thus,

deg5l(/,fi) = (deg(O0,fis'),0) + (0,degJt(«,,fin{|Z| >£})).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



466 J. IZE, I. MASSABÓ, AND A. VIGNOLI

If m = hc > «, then k < I and hence p„([F]s¡) = 0; thus one has only the
A-degree of F.

4.4. The infinite-dimensional case. The simplest situation perhaps arises when
the action of S is the same both on RM and RN, in the sense that m = n
and k = I + x, where x is the number of free parameters in the problem.

If one wishes a topological invariant which is not completely determined
by the invariant part, then it is necessary to consider the case when m = hc
and « > 1 , if infinite-dimensional problems are considered. This immediately
reduces the choice to either k = I + I or k = I + 2.

Let us consider first the case when k = 1 + 2. Then in order to have a
nontrivial invariant, i.e., an element in kerpt, the number N/m0 + hc has to be
even. Moreover, the morphism x* turns out to be onto and sends the generator
of kerpt into the generator of xk+2n(S +2") ■ Thus, in this situation, there is
no gain in taking into account the Sx-action. Moreover, the "suspension" Xr
is an isomorphism provided that r is odd (taking mQ = 1) ; thus all the «'s
have to be odd, in which case A + « is even.

Let us now consider the case when k = I + 1. Then if « > 0, we have that
nk+2h -(^ + ") — ni+\(S ) x Z and the A-degree is well defined. Moreover, the
suspension X is an isomorphism if / > 3 and its restriction to kerpt is an
isomorphism, provided that « > 0. Furthermore, X , is an isomorphism
if r = m0 and « > 0 (notice that X , is one to one if r is a multiple of
m0). Finally, /„([F]) ^ 0 if and only if [F]s, belongs to kerpt and F has
an odd A-degree with N/m0 + hc even (for example, if n¡/m0 is odd for all
y's). In this case the A-degree will detect nontrivial elements, which cannot be
obtained if one forgets the S -action.

We shall now discuss the problem of computing the S -degree in the infinite-
dimensional setting. Let R , R + , and E be Sx-spaces. We shall assume
that (R^)5' = R', (R^1)5' = R/+l , and E is an infinite-dimensional Banach
space. Moreover, from now on we shall write any element of the S -space
R x E x R as (x, v) with x G R x E and v e R, which is considered as a
one-dimensional subspace of R + .

Let fi be an open bounded invariant subset of R x F x R and let /: fi —<•
R   x F be a 5 -equivariant compact map such that

x- f(x,v)^0   for any (x,v) edQ.

(Note that the first A components of the map / will be taken of the form
xN - fN(xN , y, v) so that the map x - f(x, v) will have as first components
fN(xN ,y ,v), since the actions on R +   and R    may be different.)

The approximation procedure. We shall assume that the T-equivariant suspen-
sion theorem is valid (for details see Example B.4 in the Appendix).   Thus,
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following §3, let us denote by (F„)„eN a sequence of finite-dimensional sub-

spaces of R^ x E x R such that RN+X C En for all n , and let En = (En) x
En , with dim En = «, so that any element of En will be written as xn =
(x0, z,, ... , zn, v). Then we have that

degs,(x - f(x,v),Q) = deg5, (xn - fn(xn ,v),fi„)

for « large enough, where Qn = fi n En and fn is a S -approximation of /
with values in En .

For each « large enough, let 8* no be the morphism induced by the map

%,n0(^Zl,...,Zn,V) = (x0,Z^,...,Z^"\u)

The S -action on the Z's is given by e"109 with n0 a common divisor of
mx, ... ,mn.

We would like to point out that the map &n no is not of the form Id-compact
when considered between infinite-dimensional spaces. Hence one cannot do di-
rectly the reduction of a S -action to an almost semifree action without passing
first to the finite-dimensional setting.

Using Lemma 4.3, we now have that

ö;,nodeg„(x„-/n(xn,^),fifl) = degsl(C?„,e-'no(fi)),

where the ith component of the map Gn is given by

C      _ 7m'/no _  f    i        7m,/«o 7m„/n0      »
V3nji~£ji -V/^O'^l '•••'z'n yv>y

here fn i denotes the z'th component of fn , i = 0, ... ,n, and Z0 stands for
x0 with exponent 1 (m0 = n0).

Moreover, for En c Em , we shall write

Xm ~ (X0 ' Zl ' • • • ' Z« ' -^0 ' Zn+1 ' • ■ ■ ' Zm ' V>
and we shall also have that

K,mo deSs<(xm - U*m >v),Qm) = deg5, (Hm ,e-\mo(Q)),
where the z'th component of the map H    is given by

ir p>n¡/mo        r      /e     ^m,/m0 ^mm/m0       . .       _
Hm,i=ti --/m./^O'il '•••'ím > V> » 1 = 0,...,«.

(Not necessarily «z0 = «0, but if we choose «0 to be the greatest common
divisor of mx, ... ,mn then m0 divides «0, hence one may take «0 to be
m0.) Here the ^'-action on the f.*s is given by e""oi°.

However, by the 5 -equivariant suspension theorem

deg5, (xm - fjxm , v), fim) = deg^, (xn - fn(x„ , u), Qn).

In fact, the map xm - fm(xm,v) is equivariantly deformable relative to dQn
to the map (x„-f„(xn,v),xm_n) relative to ¿>(fi„ x {xm_n: \\xm_n\\ < e}),
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where xm_n = (y0,zn+x, ... ,zj.  Let U = 6„'„,(«) x {|y0| < e} x {\Q <
e: i = n + 1, ... ,m} and

V — (Bm<¡lml _  f     i? pm„lm0       . j.mn/m0
" ~ v^O ^n.0^0' ••• »*»« ,V ),...,C,n

_  f     /c c"i„/m0       s £"i„i/m0 pmmlma,
■>n,n^0 ' • • ■ '^n ' ^ >"o ' ^n+1 ''"'*nt >'

Thus,

em,m„ deS^(*„ -fj*m>»)>nj = deg5l(//, U)

= (deg((x0-fn0(x0,u),y0),Qn(RNxEmxRf),

deèKimo(gJi,x0,y0,i^))),

where

8j^x0,y0,4,v)

i   ( 2t + 2<p(x0,y0,Ç,v)- 1
y   _ f     (y     ïmi/mo xfnn/mo\
A0      Jnfi^O'^l > •" 'Si ^

J>0
(l-2z)(C/m°-/n,1(x0,C/m0.---'C/m0))

emn/m0 em¡/m0 :m„/m0s(i-20(C   -/„.„(^'C "'••■'C/ °))
'n+l

(1 _2z)<fWmo

(1 -2i)Cm/m°

2(l-í) + 2«»(*0,y0,í,i/)-l

A0      Jn,O^O'^l '■••>'=« ^

^0

0<Z< A,

J

(2*-l)Î Wl/Wo
1

2" </< 1.

V (2z-l)C/mo 7
Here ( , ... , )tr denotes the transposed vector and

/ e       \ / emilmo ¡-mm/mo       -,fj7(x0,y0,^,z/) = ç?(x0,y0,^,        ,...,ím        ,"),

as in the proof of Lemma 4.3. (Recall that, if £,- G RM, i<n, then Çilm -
fn . = gn . with the Sx-action ein'9 and tf",m* has to be interpreted as $"i/n°
for these z's.)

Now, if dim(R'   x E)    < 2, then we have (by the choice of the F„'s) that
N Sl

ya = 0 ; thus the invariant part is unchanged. If dim(R   xE)    > 2 and y  ^ 0,
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then one is in the stable range. Hence

deg((x0 - fn 0(x0,0,v),y0),Qsm) = deg(x0 - fn fi(x0,0,v),Qsn)
s'= deg(x- f(x,v),Q   ).

Moreover, using a linear deformation, the z'th component, i = 1, ... , m , in
gm can be deformed to

/C/mo-(i-20/„,1K.C'/mo'---'C/mo)Vr

Clm-{i-2t)fnn(x0A7ilm\...,Clm)

(Ï mjm0 \ tr

umm/m0

rmn+Jm0

swm/m0

\<t< 1.

0<i < ±

J
We may also deform the map <p to (p(x0,0,^,m°, ... ,^",m° ,0,v). Now
the component y0 acts as a trivial suspension (which is always an isomorphism
on kerpt ) and Z(w''m° acts as an (w(/«70)th suspension for i = n + l,... ,m .
Thus,

m    m
de&K,mo(Sm(t,X0,y0,lí,v)) =    Il    ̂ rd^.mo^^^O'0'^'---'^'0'^))

(in order to derive the above identity, we have used the product theorem for
the Brouwer topological degree; this explains the orientation we have chosen).
Moreover, using Remark D.6, it follows that

degK x(gn(t,x0,0,Cx, ... ,{„,0,1/))
n-\

= mo    aegKtmogn((t,x0,0^x,...,in,0,u)).

Therefore,

em ,mo deSs> (*m ~ fm(Xm ' v) ' "J

=    deg(x-/(x,z/),fi   ),

m0w     f] «(.degKil(£B(f,x0,0,{,,...,{„,0,i/))    ,
/=«+!

e¡,n,d^^-/„K^)'üJ
-n+l(deg(x-/(x,z/),fio),«0"+1deg^,(<?n(Z,x0,0, £,,...,{„, 0,«/))).
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Definition 4.11. We shall call the normalized Sx-degree of the map x - f(x, v)
relative to fi, denoted by deg^ (x - f(x, v), Q), the pair

deg(x-f(x,u),Qs'),n"0~x ín«,-j     deSx,«(W>*o>Éi>-..,{„,«'))

en,+x(s')xQ.
Here gn(t>x0,£x, ... ,Çn,v) is defined through the map

' (2r-i-29>(x0,z,z/) - l,x0-f0(x0,z,v),

z-(l-2t)f(x0,z,u)),       0<t<±
(2(1 -t) + 2<p(xa,z,v)- l,xn-/n(x0,z,z/),z),        \ < t < 1

'oov/v0'"' >"JJ> " - * -  2

vo ' * ' "; — * '-^o ~~ •'o^o 'z ' ^i 'z) > 2
after the approximation of (/q,./^) on Fn by (fnfi,fn) and (x0,z) replaced

by (-r0„)zn) and z¡ = Ç™'>"° , «Q a common divisor of «,,..., «?n . If

deg(x - f(x,v),Q   ) = 0, then the map g can be replaced by x - f(x,v).

We would like to point out that this definition is independent of « and «0
since

deBK,«0(<O = "o~"+1 deg*,i(<0 = de^K,mo(8m)
m

= müm+xI[mld^K,Mn)-

This degree has of course all the properties of any topological degree; in fact,
it comes from deg5, (x - f(x, v), fi).

Remark 4.12. If x - f(x,v) ^ 0 on fi5' , for example, if fi5' =0, then the
first component of the normalized 5 -degree is 0 and the second component is

m«,.)     degJÏ(2i+2^(r)-l,x0-/0(T),Z1W|-/„il(F),...,z;"-/n!n(r)),

where Y = (x0, Z,"", ... , Z™n, v).
The generalized Fuller degree and the normalized index. If we restrict our

attention to maps (and homotopies) with the property that they have no station-
ary solutions on fi, then we shall call the second component of the normalized
S '-degree the generalized Fuller degree of x - f(x ,v) in fi. This degree will
have all the properties of a usual degree.

We shall now define the normalized index of an isolated orbit in the case of
a nonstationary orbit. Suppose that (x ,v ) is a solution of

(4.7) x-f(x,v) = 0
and that x - f(x,v) ^ 0 on an invariant neighborhood of (x ,v ) for any
(x ,v) t¿ (e'9x°, u°). Then one may define the normalized index of the orbit
as the normalized degree for any small neighborhood of the orbit. Now if x
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is not a stationary point of (4.7) then we can write x  =(x0,z ), where x0 is
the invariant part of x   and z  ^¿ 0.

For instance, we may assume that the first component z( of z is nonzero.
Moreover, by the action of the group, z, > 0. We may choose the invariant
neighborhood of the orbit in such a way that zx ^ 0 on it. Thus,

<p(xQ,0,z2, ... ,zn,u)= 1.

This implies that pt([x - f(x, u)]s,) = deg(x - f(x, v), fi   ) = 0 and (2t +
2tp(x ,v) - 1 ,x - f(x,v)) t¿ 0 if the z^component of x is zero.

Hence, the rational component of the normalized index is just the Brouwer
degree, divided by Y[" mi, of the map

(2t + 2<p(x0,Zxm' , ... ,Z™n ,v)- l,x0-/n0(x0,Z1mi, ... ,Z™" ,u),
ZrTli s-       , ry/M) <-zmn \ r^rftn r        , r-jlYln T^n \\

1     -/„,l(*0'Zl     '•••'Zn    yV)y-yZn     ~/„ ,„ K ' Z«    ' • • • ' Zn    >»))

with respect to the set

C = d{t e [0,1],\\x0\\ < R0,\\Z\\ < R,0 < Zx < R,\u\ < R0} .

Now the map (t,x0, Zx, ... , Zn, v) >-* (t,x0, Z,"1' , ... , Z™", v) from C into
the set

C' = d{te [0,1], ||x0|| < R0, ||z|| <R',0<zx<R',\u\< R0}

has degree Y[2 mt... Thus, by the composition law, the normalized index is the
Brouwer degree, divided by mx, of the map

(2z + 2^(x0,z,, ... ,zn,v)- l,x0-fn0(x0,zx, ... ,zn,v),

Z1 -fn, 1 ( X0 ' Z1 ' ••■ ' Z «' v )'■••' Zn ~fn,n (X0 ' 21 » •■• > Zn ' " ) )

with respect to the set C'. To compute the degree of the above map we may
proceed by computing the Leray-Schauder degree of the map

{It + 2tp(x0 ,z,v)-l,x0- f0(x0 ,z,v),z- f^'xQ ,z,v))
= (2t + 2<p(x ,v) - 1 ,x - f(x,v))

with respect to the set

¿>{ZG[0,l],||x0|| <Ä0,||z|| <R',0< z, <R',\u\ <Rq},

where z = (zx, ... ,zn).
By the additivity property of the degree and the construction of tp , the Leray-

Schauder degree of the above map is the sum of the indices (with z, e R+) of
x - f(x, v) at the points (xJ, v) in fi with z\ > 0, that is, points on the orbit
of x° with z\ > 0 : xJ = ei9x° , or else u = u°, xJ0 = x0° , z{ = eim°* z°n.

But z\ = e""'9zx > 0 implies that tp is a multiple of 2n/mx (tp = 0
corresponds to x ).
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However, two of the xJ (for two multiples 0 < / < k < m, of 2n/mx) will
„„•_«'a~ T     Q jmn2knlm\ 0   im„2ln/m,     ..    .   ■        ... 0        r, r\        i        icoincide if zne '     = zne        '    , that is, either zn = 0or0<K-/ =
hnmx/mn for some positive integer hn < mn. Since k — I < m, , then mx
and mn have a common factor: mx = a(k - I), mn = ahn, and k - I is
a multiple of mx/n0, if «0 is the largest common factor of mx, ... ,mn, ...
for all «'s such that z° / 0. Thus there are only «,/«0 different points
x1 G fi, with z-[ > 0, where «0 is the order of the isotropy subgroup of x ,

i i2njnn/m¡    0      •      n , .x7 =e 'x , ; = 0, ... ,m,/«0- 1.
For any neighborhood of (xJ, z/°), intersected with the space z, G R+ , one

may perform the homotopy (of the form Id-compact)

x_ei2nj{n0/ml)rf{e-i2nj{n0/mi)rx^h TG[0,1]

(which is equal to x - f(x, u) by the equivariance and therefore admissible).
Now, for x = 1 the map (x,u) h-> (e~l "J{"°'m,'x ,u) is an isomorphism,

from the neighborhood of (xJ, v ) onto the neighborhood of (x , v ), with
degree 1. Thus the local indices are equal at each (xJ ,v ). (Since the iso-
morphism is not of the form Id-compact, one has to consider first its finite-
dimensional approximations; then the above isomorphism has degree 1, since
its real determinant is 1 and the indices on En are equal and hence, by the
suspension theorem, the Leray-Schauder indices will also be equal).

We will summarize what we have just proved in the following.

Proposition 4.13. If (e'9 x ,v ), with zx > 0, denotes an isolated solution (non-
stationary) of x - f(x, v), then its normalized S -index is

(0 ,(l /«0)Index(x - f(x ,u) ,x° ,(RN+X xF)n{z, gR+})),

where «0 is the order ofthe isotropy subgroup ofthe orbit and Index(-,-, •) stands
for the Leray-Schauder topological index at (x ,v ) of the map x — f(x,u),
where one takes the Poincaré section Im z, = 0.

Observe that, due to its construction, the normalized S -index is independent
of the Poincaré section chosen.

We would like to note that one could have defined the normalized S -index
using the methods given in [I.M.V]. Namely, given a tubular neighborhood
fi of the orbit, one obtains (f]y «,-)/"0 tuDular neighborhoods in the space
(x0,Z,,... ,Zn,v), where J denotes the subset of fs such that Z, ^ 0.
(One counts the inverse images and then identifies those which are identified
under the isotropy subgroup of the orbit. Note that for the approximation fn
of / one may have more than one orbit in fin , but at the level of the neigh-
borhoods the argument goes through.) Then the degree of the map

(2z + 2i3(x0,Z1m|,... ,Z„m\z/)- l,x0-/n0(x0,Z1m, , ... ,Z™n ,v),

zi    -4i(*o>Zi    '••■'Z„   ,v),...,Zn    -fnJx0,Zx    ,...,Zn   ,v))
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is the sum of the indices of the map

\XQ ~ J n fi\X0 > ̂  \     '•••'Z«     yv)y^\     ~ J n ,1 V-*o ' ^1     '•••'¿'n     >v)>-">
Zm" -fix    Zm' Zm"   V))

at each of these points. By the composition property of the degree, we ob-
tain then that it is the degree of the above map at xn (on the space Zx real)
multiplied by the index of the map

(x0, Zx.Z„, v) ~ e-a*j{n*/m\x0 , Z¡\ ..., Z? ,u),       Z, g R+,
. .. .   /   0   70 vo     o-,at the point (x0 , Z, , ... , Zn , v ).

If Z is nonzero, then the contribution of ZW; is 1, while if Z = 0 the
contribution will be «z .

Thus the index at each (fTy m()/«0 points is

J]«z(Index(x-/„(x,z.),x0,Fnn{z1GR+}).

Note that one may consider a small neighborhood of (x , z/ ) in R^ x E x R
and the normalized 5"'-index of the orbit will be the index, divided by «0 , of
the map (x -f(x,v), - Imz,) at (x ,v ) (by the product theorem, the map
(x0,xx +iyx,z2,... ,zn, v)»-* (x0,xx,z2,... ,zn, v, yx) has degree -1).

Computation of the normalized index. We suppose now that the map / is
of class C' and that x belongs to the domain of the infinitesimal generator
A of the group x h-> e'9x ; that is, d(e'9x )/dtp belongs to R x E. This
requires some smoothness on the orbit e'9x . For example, if E has the
property that its norm is equivalent to the norm ||x||2 = ||x0||2 + 2^|°° lz„|2 >
x = (x0,z,,z2, ...),then

Ax   = (0,z'w1z1, ... ,imnzn, ...) G E

if Yl+\°° m„1z„|2 < +°°• The operator A , considered as a real operator, has the
form A(x0,xx ,y, ,...) = (0, -«,y,,«1x1, ...).

Note that if x° belongs to the domain of A, so do e'9x° and Ae'9x° =
e'9Ax  . Then, since e'9x -f(e'9x ,u ) = 0, one has that Ax —fx(x ,v )Ax
= 0 ; that is, Ax   belongs to the real eigenspace of the (real) compact operator
fx(x ,v ), corresponding to the eigenvalue 1.

On the space R   x E x R, consider the compact operator

K(x,p) = (fx(x° ,v°)x + fl/(x° ,v°)p,p + lmzx).

We now study the kernel of I - K.
If (I-K)(x,p) = 0, then fv(x° ,v°)p G Range^-f^x0,^0)). If this is the

case, then there is a unique x (in a fixed complement of ker(7 - fx(x° ,u )))
such that (I — f (x ,v ))x = f (x ,v ). Thus, px will be a solution of x -
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fx(x ,v )x - fv(x ,v )p = 0 as well as px + ax, for any x G
ker(7 - fx(x° ,u0)). On the other hand, since (Ax°)x = imxz°x is purely imag-
inary, given a basis {Ax° ,x', ... ,x"} of ker(7 - fx(x°, u0)), then the set of
vectors {Ax ,xx+axAx , ... ,x" +anAx0} , with a¡. = -Imz',/«,z°, is also
a basis. Thus one may assume that x', ... ,x" have Im zj = 0. The condition
lm(px + ax)x = 0 means plmzx + almz, =0. Hence, if ImZj ^ 0, we may
satisfy this condition with aQ(p) = -plm~zx/mxz°x for x = Ax° , andfor p = 0
for x , ... ,x" . Thus ker(f-A) has the same dimension as ker(I-fx(x°,i>0))
and it is generated by the vectors (x + a0(l)Ax°, l),(x' ,0), ... ,(x" ,0) (since
px + x = px + X0Ax + ^2X¡x', and X0 = aQ(p)). If Im~zx = 0 (for exam-
ple, if fu(x°, v°) = 0 then x = 0), the vectors (x,l),(xl ,0), ... ,(x",0) are
generators. In both cases the operator I - K is not invertible and

dimker(7 - K) = dimker(7 - fx(x°, z/0)).

If fv(x ,v )p & Range(7 - fx(x°,u0)), then p = 0 and the kernel of
7 - K  is generated by   (x , 0), ... , (x" , 0), with one dimension less than
ker(I-fx(x°,u0)).

Definition 4.14. We shall say that the orbit (e'9x0, z/°) is hyperbolic if 7 - K
is invertible, i.e., if

(a) fv(x°, z,0) * Range(7 - fx(x°, z>0)) ;
(b) dimker(7 - fx(x° ,v )) = 1, i.e., Ax° is the generator.
We shall say that the orbit is simply hyperbolic if it is hyperbolic and the

algebraic multiplicity of 1, as eigenvalue of fx(x ,v ), is 1.

Note that these definitions are independent of the representative x on
the orbit. Indeed, since (7 - fx(e'9x°, u°))x = ei9(I - fx(x°, u°))e~'9x , we
have that ker(7 - fx(e'9x ,v )) is generated by Ae'9x and fl/(e">'x ,v )
= e'9 fv(x> ,u°), so that f„(ei9x° ,v°) = (I - fx(ei9x° ,u°))x if and only if
/í/(x0,z,0) = (7-/x(x°,z,>-'í'x.

Hence, if (e'9x°, u°) is hyperbolic, the Leray-Schauder index of the map
(x-f(x ,v),-lmzx) at (x° ,u ) is the index of the operator 7-A at (0,0),
which is the index of 7 - XK for X close to 1, that is, (-1)^"', where at is
the algebraic multiplicity of the characteristic eigenvalue Xi < 1 and the sum is
over all such characteristic eigenvalues.

Case of a simply hyperbolic orbit. If the orbit is simply hyperbolic, then

RN xE = ker(7 - fx) ® Range(7 - fx)

so that fv(x° ,u°) = aAx° © w where w e Range(7 - fx) and a ^ 0. Now
consider the deformation,

((7 - f)x - apAx  - xpw , - Imz,),        TG[0,1].
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This is an admissible homotopy since the only zero is for p = 0 (aAx g
Range(7 - fx)), x = Ax° , and lmx = mxz°x ̂  0. Thus one may replace fv
by aAx0 in the definition of K. Also for X < 1, so close to 1 that I-XK and
I - Xfx are invertible (the operators K and fx are both compact, hence with
discrete spectrum, so since X = 1 is in the spectrum of fx , then X~ cannot
be an eigenvalue if X is close to 1 and 2^1), one may write

(7 - XK)(x ,p) = ((I - Xfx)x - apAx ,p(l - X) - Imz,)

= ((7 - fx)(x - pkAx ),pa(X) - Im(Zj - pkimxz{))

where a(X) = (1 -X) - amxz\/(l - X) and k = a/(l-X). Note that a(X) ± 0
for a < 1 and close to 1 and a(X) has the sign of -a. Replacing k by
kx (the only zero will be (p = 0, x = kxpAx = 0)), one has to look at
the index of ((I - Xfx)x,pa(X)), which is (deforming a(X) to -signa) just
-sign a Index(7 - Xfx).

Case of a hyperbolic orbit. If the orbit is hyperbolic, then the above argument
applies after writing R x E = E* © Range(7 — fx), where E* is some comple-
ment of Range(7 - fx). In this case we have that fv(x ,v ) = y* + (I - fx)y,
with y* ^ 0, so that

(7 -K)(x,p) = ((I -fx)(x + py) - py*, - Imzx).
Now replace y by ry and consider the index of ((I - fx)x - py*, -Imz,) or
else, for X < 1, X close to 1, the index of ((I-Xfx)x-Xpy* ,(l-X)p-Xlmzx).
Fix X < 1, so close to 1 that 7 - Xfx is invertible. Then I-XK will also be
invertible with the same index. Then y* e Range(7 - Xfx), so that y* =
(I - Xfx)z(X) (in the previous case y* = aAx , z(X) = kAx ) and

(I-XK)(x,p) = ((I-Xfx)(x-pXz(X)),p(l-X-lmXzx(X))-lm(zx-pXzx(X))).
Now, since I-XK is invertible, the only zero is at (x = 0,p = 0). But then

x- pXz(X)=0,        p(l-X-lmXzx(X)) = 0.
If we set a(X) = l-X-Xlmzx(X), then a(X) ^ 0 (if not, the vector (pXz(X),p)
would be in ker(7 - XK)). Deform x - pXz(X) to x, as well as z, - pXzx(X)
to z,  and then a(X) to sign a (A). Thus,

Index(7 - XK) = signa(A) Index(7 - Xfx).
What we have just proved is given in the following.

Proposition 4.15. The normalized S -index of an isolated hyperbolic orbit is
(0,signa(A)(-l)^"' /«0), where «( is the algebraic multiplicity of X~x asan
eigenvalue of fx, 0 < Xl < 1, «0 is the order of the isotropy subgroup of the
orbit, X is fixed, close to I, and X < 1. If the orbit is simply hyperbolic, with
fv(x ,v ) = aAx ®w,then sign a ( X) = -signa.

4.5. Applications. It is our aim now to show how the S -degree is related to
Fuller's and Dancer's degrees.
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Autonomous differential equations: Fuller's degree. In [F], Fuller defined an
index for sets of periodic orbits of the autonomous differential equation

(4.8) dx/dt = g(x)

where g is a C -vector field over a smooth differential manifold Af in R   .
We shall restrict our discussion to the case M = RM . By the regularity of the

vector field g, the autonomous differential equation (4.8) has, for each initial
point x G R^, a unique solution Y(x,t). Note that Y(x,0) = x and that
Y(x,t + s) = Y(Y(x,t),s); thus the translation on t gives an action on R   .

Our study will not be in the geometrical space R^ as done by Fuller, but in
the space of 2^-periodic functions, where the group action is given explicitly
in terms of Fourier series. For this, by letting x = vt, the differential equation
(4.8) becomes

(4.9) vy(x) = g(y(x)),       y = dy/dx.

Thus 27T/V-periodic solutions of (4.8) correspond to 27i-periodic solutions
of (4.9) and vice versa.

1 2      1We shall identify the real numbers mod 2% with 5 and the spaces L (S ),
W ' (S ) of real functions y : S  —► R with scalar products

r2n

(y\>y2) =       C^ + ^i^)^'       e = 0,l,
Jo

are identified with the space of Fourier series Y^0yne'n'c > y_„ = yn > sucn
that £-~0 + en2)\yn\2 < oo, £ = 0,1, respectively.

Observe that the map y y-y vy - g (y) defines a C -Fredholm operator from
rl,2/pKÍÍ    •    . r2(S )     into L

operator defined by
Wl'2(Sl)M into L2(Sxf . Let K: L2(SX)M - ^''V)^ be the continuous

^ U> + X>/"T    = ̂ o + I>/"T/''n •
V «7^0 J n¿0

Clearly, the operator K can be regarded as a compact operator from L (S )
into itself as well from WX,2(SX)M into itself. Notice that the differential equa-
tion (4.9) is equivalent to the integral equation

(4.10) uz-Kg(x0,z) = 0

where y(x) = x0 + z = J2-Z *,/"' > x-n = xn ■
Let F = {x = (x0 ,x, ,x2, ... ): x0 G R^ , x„eCM , « > 1} be the Hubert

space endowed with the norm ||x||2 = |x0| + £„>0« |xj . Define on E an
S -action as follows:

iip     _ , i<f imp .e  x — (Xq , e   x,, ... , e    xn , ... j,
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which corresponds to the translation y(x + tp). Therefore, (4.8) is equivalent
to the system of an infinite number of equations

(4.11) iunxn- gn(x0,xx, ...) = 0,        «>0,

where
l   r2n -■ v   f2niv _-

gn(xQ,xx, ■■■)■= gn(y) = 2¿ J    g(y{x))e   *dx = — J       g(x(t))e ' v dt.

Thus,
1      f2n -inx

g„(e"x) = ^ /    g(y(x + tp))e mT dx = e'"9gn(x),

that is, (4.11 ) gives a S ' -equivariant equation in E of the form x - f(x, v ) = 0
with

f(x,u) = (l/u)(ux0 + g0(x),gx(x)/i, ... ,gn(x)/in, ...).

To define the degree of the map x - f(x, v) we have to make the following
basic assumptions (see [F]).

Let co be an open bounded subset of R x R+ such that the differential
equation has no periodic solutions x(t), with period 2n/u (not necessarily
minimal) such that (x(t), u) e dw for some t. This assumption ensures that
if (x, v) e co and x is a point on a periodic solution x(t) with frequency v ,
then (x(t),v) e co for all t. Moreover, if x is a stationary solution of (4.8),
that is, g(x) = 0, then (x, v) is also a solution for all u ; thus, since co is
bounded (x ,v) & co, that is, the set co cannot contain stationary solutions.
We shall also assume that v > S > 0 in co.

If (x,v) e co with x = x(t), for some periodic solution with frequency
v, then y(x) = x(t) is bounded and also y(x) = g(y(x))/u will be bounded
(uniformly on co). Hence the corresponding Fourier series will be bounded
(uniformly for any periodic solution in co) by some constant R.

Let fi = {(x, v) e E x R+ : ||x|| < R, (x(t) ,v) e co} where x(t) = y(x) =
£-oo-x«e""r with x-n = xn • Since any function in W ' (S ) is continuous,
we have that if (x, u) is close to (x , v ), then x(t) will be close to x (t) for
all t. Then the set fi is open. Clearly fi is also invariant under the S -action
(we leave Sx to act trivially on R). Finally, any periodic solution (x(t) ,v) e to
of (4.8) will give exactly one solution (x,u) e fi of x - f(x,v) = 0, and
conversely. In particular, x - f(x, v) ^ 0 for all (x, v) e dQ.

Now let K: E —* E be the linear operator defined as

Ax = A(x0, x,, ... , xn ,...) = (x0, x, //,..., xjin, ...).

Then we can write f(x ,v) = (1 /'v)(vx0 + Kg(x)). Clearly, the map / is com-
pact. Indeed, if {x"} is a bounded sequence in E, then {y"(x)} is bounded
in W ' (S )M, hence it has a converging subsequence in C°(SX)M (the embed-
ding is compact) and {g(y"(x))} will converge as well. Thus the normalized
S -degree is well defined for the map (x - f(x ,v)) on fi.
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Since stationary solutions x0 of the differential equation (4.8), that is, g(x0)
= 0, correspond to invariant solutions of the equation x - f(x, v) = 0 on fi,
one has that x0-/0(x0,0, ... ,0,v) = -(l/u)g0(xQ,0, ... ,0) = -g{xQ) ¿ 0
in fi. Hence the degree of the invariant part of x - f(x ,v) is always zero.

We shall now compute the S -index of an isolated periodic solution. For
this we first have to identify the derivatives of the map f(x, v) and then apply
Proposition 4.15.

If (x , v ) is a solution of x-f(x, v) = 0, corresponding to the 27z-periodic
solution y (x), then

fx(x° ,v°)x = x0 + (l/v°)K(B(x)y(x)).

Here B(x) is the matrix (gix(y (t))). , where gt is the z'th component of the
map g, and B(x)y(x) = B * x , the convolution of B and x . Note that since
y(x) is continuous B(x)y(x) is also continuous as well as K(By). Moreover,

fM°,.I/0) = —ñiKg(x°) = —^(0,x°x,x2, ...) = -q(xJ-x°).
V V V

In what follows we shall use simplified notation: / and fv will stand for
fx(x ,u ) and fv(x ,v ), respectively.

Let A be the infinitesimal generator of the group Sx , that is, Ax = (0, zx,,
2z'x2, ... ). Since g is of class C , then Ax G E, corresponding to y (x)
(y°(x) = B(x)y°(x)), so that AKx = x - x0 = KAx . If (7 - Xfx)(x) = z, then
x - Ax0 - X(l/u°)K(By) = z . In particular, zQ = (1 - X)x0 - (l/u°)X(By)0
and if z belongs to the domain of A, by applying A , we have that Ax -
X(l/v )(By) + (1 - X)x0 = Az + zQ, which corresponds in Wx ' (SX)M to the
integrodifferential equation (for X ̂  1 )

y-(l/u°)XBy + (l -X)x0 = z + zQ.

If X = 1 and z = 0, then any element in ker(7 - fx) will give a 27r-periodic
solution of y - (l/u )By = 0, and conversely since (By)0 = v (y)0 = 0.
Moreover, if X = 1 and z = fv = -(l/u°)(x° - x°) = -(l/u°)KAx° , then a
solution of (7 - fx)x = fv will give a solution of y - (l/u )By = -(l/u )y
with y G ker(d/dt - ( 1 /u°)B)2, where d/dt -(l/u°)B is a Fredholm operator
of index 0 from WX'2(SX)M into L2(SX)M. Thus, to say that the orbit is
hyperbolic (in the sense of Definition 4.14) means that ker(d/dt - (l/u )B)a
is one dimensional for all a > 1 ; that is, x is a simple eigenvector of d/dt -
(l/u°)B. This is the usual definition of hyperbolicity (in this setting simple
hyperbolicity and hyperbolicity coincide).

We shall thus assume that the periodic solution is hyperbolic. As in the last
section, we shall denote by z, one of its nonzero 1-dimensional (complex)
components, with its corresponding harmonics m, . For the solution recall that
z,  is real and positive.
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To compute the S '-index, instead of looking at the integrodifferential equa-
tion, we shall now recall the argument given in [I.M.V]. For a hyperbolic orbit,
the operator (7 - K) considered in §4.4 has the form ((7 -fx)x- pfv , - Im z, )
and is invertible. Hence, the operator ((I - fx)x - pfv + XKx, - Im z, ) is also
invertible provided that X is small. We also have that the index of the orbit
is the same (a small compact perturbation does not alter the index). However,
(7 - f+ XK)x = 0 is equivalent to

(4.12) x-xQ-(l/u°)K(By) + XKx = 0.

In particular, ax0 = (l/v°)(By)0 and, applying A to (4.12), we have that
Ax - (l/u°)(By) + Xx = 0, corresponding to y - ((l/u°)B - X)y = 0. But
the operator d/dt - ((l/u°)B - X) has, on Wx ' (SX)M , a kernel generated by
y(x) = e~ zQ>(x)w with w e ker(<P(27i) — e n I), where <P(t) is the fundamen-
tal matrix for y -(l/u°)By, <P(0) = 7, and e " are the Floquet multipliers of
the «0th iterate of the return map. Furthermore, the algebraic multiplicity of
d/dt - ((l/v°)B - X) is the algebraic multiplicity of 0(2n) - e n I (for details
we refer to [I.M.V]). Thus for X > 0 and small, the operator I - fx+ XK is
invertible. Now, the perturbed operator can be written as

[\l-fx + XK)(x + -j-cJpAx0) , -Im(z, + j^pAz°x + j-^mxpz0xjj

because fv = -(l/u°)KAx° and (7 - fx)Ax° = 0. Since I - fx + XK is
invertible, the deformations x + (l/Xv )xpAx and t(Imx + (l/Xu°)pxAx )
are admissible. Hence, the normalized S -index of the hyperbolic orbit is

Index(7 -fx + XK)/nQ,

provided X > 0 and small.
Increasing X, one will get a possible change of index at a point XQ such that

e " ° is a Floquet multiplier. To see this we shall argue as follows.
Let T = I - fx + XQK , let P0 be the projection onto the constants, F0x = x0 ,

and let F0 be the space of Fourier coefficients with L -norm. Then

K(A+P0) = IE,        (A + P0)K = IEo.

Set f = (A + P0)T. Then T = KT and the operators T and f have the
same kernel. In fact, if z = Tx then Az + z0 = Tx and if y = Tx then
Ky = Tx. Moreover, if z = Tx and Tz = 0 then also Tz = 0 but not
necessarily T x = 0, since the operators T and K do not commute unless
B is constant. Hence the generalized kernels of T and T do not coincide in
general.

Moreover, the operator f coincides with the map Ax - (l/v )By + X0x,
corresponding to the differential equation y-(l/v )By + X0y , with generalized
kernel of multiplicity equal to the algebraic multiplicity of e n ° as a Floquet
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multiplier. Then T-(XQ -X)K will give, after the composition with A + P0, the
operator T-(XQ-X)IEo. Both operators have a generalized algebraic multiplicity
(as Fredholm operators) defined as the sign of the determinant of the matrix
given, for T - (X0 - X)K, by

(X0 - X)(IE - Q)K(IE - RQK(X0 - X))-XP = B(X),

where F is a projection from F onto ker T, Q a projection from F onto
Range T, and 7? is a pseudo-inverse of T defined by TRQ = Q, RT(I-P) =
I -P.

Likewise, we have for the operator T - (X0 - X)IE   that

(a0 - X)(IEo - Q)(IE - RQ(X0 - X))-XP = B(X)

where TRQ = Q and RT(I - P) = I - P.
Now, for a given Q, one may choose Q = (A + P0)QK, R = RK and

conversely, for a given Q, one may take Q = KQ(A + P0), R = R(A + P0)
(clearly, Q and Q are projections onto Range f and Range T respectively and
R, R have the right properties). Moreover, IE-RQ(X0-X) = IE-RQK(X-X0),
IEo-Q = (A + P0)(IE-Q)K. Thus,

B(X) = (A + P0)B(X).

Hence, there is a change in the sign of the determinant of B(X) if and only if
there is a change of sign in the determinant of B(X). This will be the case if
and only if the algebraic multiplicity of 0, as an eigenvalue of T, is odd (see
[lo»-

Thus at each Floquet multiplier one has a change of index of I - fx + XK
equal to (-1)", where « is the algebraic multiplicity of the multiplier itself.

Now consider, for X > 0, the deformation

(4.13) x-xx0 + x(XKx-(l/u°)KBy),        tg[0,1],

which corresponds to the differential equation

(4.14) y + (\-x)x0 + x(Xy-(l/u°)By),       tg[0,1].

Applying A + PQ to (4.13), one obtains Ax + (1 - t)x0 + t(Ax - (1/V )By).
Moreover, multiplying the differential equation (4.14) by ytr and taking X >
(2/z/°)|7i|, where |5| = maxT |ß(J(T)|, one gets, after integrating on [0,27t],
that

(l-T)|x0|2 + T^||y||2--^(5y,y))>(l-T)|x0|2 + T(A--^|ß|)||y||2.

Hence, (4.14) is an admissible homotopy when X is sufficiently large. Clearly,
for x = 0 the index is 1. Thus we have the following.
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Proposition 4.16. The normalized S -index of the hyperbolic orbit (e'9x , v )
is (-1)^"' /«0, where «; is the algebraic multiplicity of the Floquet multiplier
e2nh > 1.

Therefore the normalized S '-degree with respect to fi is minus the Fuller
degree on co. The minus sign comes from the fact that when defining Fuller's
degree one looks at periods T = 2n/v . The change from periods to frequencies
has degree -1.

Gradient maps: Dancer's degree. In [Da], Dancer considered fixed points of
maps which are gradients of real-valued functions g(x) with the property that
g(e'9x) = g(x), where x is in a real Hubert space with an isometric action of
S   given by e'9 . Then

(Dg(e'9x), el9h) = (Dg(x), h) = (e~i9 Dg(ei9x) ,h).

Thus the map Dg is .s'-equivariant; i.e., Dg(e'9x) = e'9Dg(x). Note that
each 2-dimensional representation of the group S will give rise to a complex
structure; thus we shall write fi := gx + ig    for the representation (x. ,y.),

identified with x¡ + iy¡.  If we let / = (f0,/,,...), then clearly f(e'9x) =
el9f(x).

Furthermore, by taking the derivative of g(e'9x) - g(x) with respect to tp ,
we have that Ke(Ax,f(x)) = 0 where A = (0,imx, ...) is the infinitesimal
generator of the group.

If the map / is compact and defined on an invariant open bounded subset
fi of the Hubert space and f(x) ^ x , for any x e <9fi U fi , then Dancer
defined a S -degree by first approximating the map / with finite-dimensional
S -equivariant gradient maps fn and then approximating the fn's with maps
which have only a finite number of orbits. For each of these orbits, Dancer
defined an index which, in our notation, can be written as

Index((x0-/0(x),Re(z,-/,(x)),z2-/2(x), ... ,zn-fn(x)); Fn{z, gR+})/«0,

for an orbit with z, > 0 and the order of its isotropy subgroup equal to n0 .
Now consider the equation

(4.15) vAx + x-f(x) = 0,
where the map / is assumed to be finite dimensional. By taking the inner
product of (4.15) with Ax, one has that z/||^x||2 = 0 ; that is, either x = xQe
fi and x0 - f(x0) = 0, which is not possible for x G fi , or v = 0 and
then one has a solution of x - f(x) = 0. Thus e'9x° is an isolated solution
of x - f(x) = 0 if and only if (e'9x° ,0) is an isolated solution of (4.15).
Moreover, for (4.15) one has a normalized Sx-index given by

— Index(x0-/0(x),zV«1z1 + z, - fx(x), ivm2z2 + z2 - /2(x), ... , -Imz,)
"o

= \ndey.(vAx + x - f(x), - Im z, ),

where the index is computed at ((x° ,z°x,z2, ... ), 0).
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Let U be a small neighborhood of (x ,0) such that equation (4.15) has
(x , 0) as the only solution. Consider in U the deformation

(4.16) (xvAx + vi(l - x)ex + x - f(x) - (1 - T)zTm(z, - fx(x))ex, - Imz,),

where ex = (0,1,0, ... ,0). We shall now show that (4.16) is admissible.
Indeed, if we have a zero of (4.16) then, taking the inner product of the first
component with Ax, we obtain that

tz/||^x||   +v(l - x)mxzx + (x - f(x),Ax) - (1 - t)z, Im(z, - /,) = 0.

But in U, z, = z, > 0 ; thus the z,-component of the equation (4.16) = 0 is

ivmxxzx + iv(l - x) + z, - Re/, - zTm/j 4-/(1- t) Im/, = 0.

Hence
Tz/px||2 + v(l -x)mxzx + (l - x)zx Im/, = 0,

rim/, = («z,tz, + 1 - x)u.

If x = 0, then v = 0, Im/, =0, and hence x - f(x) = 0, which is not
possible on d U. On the other hand, if x ^ 0 then Im /, has the same sign as
v. But if v = 0, then Im /, = 0, x - f(x) = 0 and if v ¿ 0 then x = 1,
Ax = 0, x - f(x) = 0, which is not possible since z, ^ 0.

Hence, (4.16) gives an admissible deformation. In particular, for x = 0, we
have that

(viex +x-f(x)-ilm(zx -fx)ex, -Imz,)
= (x0 - /0, Re(z, - /,) + iv ,z2 - f2,..., - Imz,).

Since the map (Im z,, v) i-> (v , - Im z, ) has degree 1, we have the following.

Proposition 4.17.

— Index(x0 - /0, Re(z, - /,), z2 - f2, ... , zn - fn ; F n {z, G R+})
"o

= normalized S -index of the orbit.

That is, Dancer's degree and our degree coincide.

Note that if / is a c'-map (this is the case if g is C2), then 7 - fx(x°)
is the derivative of the map vAx + x - f(x) with respect to x at (x°, 0),
and Ax is its derivative with respect to v . Moreover, Ax is in the kernel
of I - fx(x ). Thus, to say that (x ,0) isa hyperbolic orbit means that Ax°
generates ker(7 - fx(x0)) and, since Ax° g Range(7 - fx(x0)), 1 is a simple
eigenvalue of fx(x°) (thus simple hyperbolicity coincides with hyperbolicity).
Note that fx(x0), being the Hessian of g, is symmetric; thus hyperbolicity
means simply that dimker(7 - fx(x0)) = 1 .
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Proposition 4.18. 7/1 is a simple eigenvalue of fx (x0) for the infinite-dimensional
problem, then the normalized index is (—l)¿-,n'/n0, where «0 is the order of
the isotropy subgroup of x° and £«, is the number of eigenvalues of fx(x0)
greater than 1.

Indeed, it is enough to approximate the map / by fn (Ax is not a compact
operator). For this map a = -1 (see Proposition 4.15) and the result follows.

Periodic solutions of differential equations with fixed period. Consider the
problem of finding 27i-periodic solutions of the equation

y = g{y,v),     yeRM,ueR,

in some domain co c RM x R such that there are no solutions on d to. Clearly,
g(x,v) = v~xg(x) would be the special case of the situation considered by
Fuller.

As before, this problem can be converted into a 5 -equivariant problem in
E = {(x0,x,, ...),x0 G RM , xn eCM} with norm ||x||2 = ||x0||2 + Y^n2\xn\2 •
That is finding solutions of

x - f(x,v) = x - xQ - Kg(x, v)
in the open bounded invariant subset fi of E, defined as before, such that
there are no solutions on 9fi.

Assume that /(x0,z^) ^ x0 ; i.e., there are no stationary solutions in fi.
Then the 5'-degree reduces to the degree of the equivariant part.

Let (e'9x , v ) be an isolated orbit corresponding to (y (x), v ). Then

fx(x°,v°) = x0 + K(B(x)y(x)),
r  ,    0 Ox v        ,    0 <h

fv(x ,v ) = Kgv(y ,v ).

In what follows we shall write f and fv to denote fx(x ,v ) and fv(x ,v )
respectively.

Now the operator ((7 - f )x - pfv, - Imz,) is invertible if and only if
dim ker(<I>(27r) - 7) = 1 and Kgv & Range(7 - fx) ; that is, the equation (after
applying A + PQ)   Ax - Bx = gv or else y - By = gv has no solutions.

Let z be the unique solution of the adjoint problem z + Blrz = 0. Then,
necessarily, J0" gv • zdx / 0. If 1 is a simple eigenvalue of <P(27z), then
x is not in Range(d/dt - B) and z can be normalized in such a way that
/0 n x ■ z dx = 2n . Since the operator d/dx - (B - X) is invertible for X small
and positive, the equation (7 - fx+ XK)x = fv has a unique solution x and
the index of the operator ((I - fx)x - pfv , -Imz,) will be the index of the
operator

((7 - fx + XK)(x - px'), - Im(x - /zx'), - plmx'x).
Assuming that ImxJ / 0, then (x = 0, p = 0) is the only zero of the above
operator. Hence, deforming x - px' to x, and repeating the arguments given
in the study of the Fuller index, we obtain the following proposition.
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Proposition 4.19. If the equation y - By = 0 has the only solution y = x° and
gv is such that (gv,z) ¿ 0, where z is a solution of z + Buz = 0, then the

nonstationary solution x has normalized Sx-index = -signlmxj(-l)^"'7"0,
where ni is the multiplicity of the Floquet multiplier X¡ > 1. 7/1 is a simple
Floquet multiplier, then sign Im x¡ = sign(gv,z), where z  is normalized by
(z,x°) = l.

1 ~)In fact, since codimRange(7 - fx) = 1, any two vectors Kz    and Az
1 2such that (z ,z) and (z , z) have the same sign will give the same sign for

sign Im x¡ (replace gv by tz + (1 - t)z ). If 1 is simple then x gives
x = X~ Ax , KAx  = x  - x0 .

Remark 4.20. One could have defined "Floquet multipliers" in the abstract set-
ting. In fact, suppose that E is compactly contained in F0 and that A: E —► EQ

s'is a Fredholm operator of index 0, with ker A = coker A = E    . Let P0 be the

projection of E onto E , i.e., onto the constants, and let K: E0 —> E be
the map such that (A + P0)K = IE and K(A + P0) = IE . Note that the com-
pactness assumption implies that lim,. ^ zz( = +oo. Assume that fx is also
defined on EQ and is continuous from FQ into E (these two last assump-
tions could be replaced by asking that I - fx + XK is invertible for X large
and positive). Finally, assume that F0 is a Hubert space, so that the identity
(e'9x,e'9x) = (x,x) implies that (Ax,x) + (x,Ax) = 0; thus (Ax,x) = 0
when the operator A is regarded as a real operator, if not Re(^4x,x) = 0.
Thus, if T = I - fx + XK and f = (A + PQ)T, then T = KT. Since the
operator T is of the form 7-compact on E, then it is Fredholm of index 0
for all X.   We also have that  T: E —> E0  is Fredholm of index 0 and that
*** ~ 2 2
Tx = Ax - (A +PQ)fxx + Xx . Furthermore, Re(Fx,x) = a||x|| - c||x|| >0
for X > c, where c = \\(A + P0)fx\\, as an operator from EQ into itself. Thus
the Fredholm operator A - (A + P0)fx : E —► F0 has no eigenvalues X, if X is
large enough. Hence its spectrum is discrete (see [ I0, p. 43]). Let Xx, ... ,XN
be the positive eigenvalues of A - (A + PQ)f with algebraic multiplicity «(
(e2nXi are the Floquet multipliers). Then, if (e'9x ,v ) is a hyperbolic orbit,
its normalized S -index is, as above, -signlmxj(-l)^"' . If 1 is a simple
Floquet multiplier one obtains the same relation as before.

Remark 4.21. If there is no parameter v and the differential equation y = g(y)
has no 2^-periodic solution on dco c R then all the information is given
either by pt(I - f) (see Theorem 4.4) or by deg(7 - /, fi) without taking into

cl
account the action (this degree is always 0 if fi    = 0 ; see Theorem 4.4(h)).

Appendix

A. Definition of nM(SN). Let T be a compact Lie group acting linearly and
isometricalry on both RM and R*.   Let R* = (RM)r, R' = (RNf be the
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corresponding fixed-point subspaces. Thus any point z g R will be written as
z = (x,y), x G R and y e RM~ . We shall define the T-homotopy groups
in a particular fashion. This is suggested to us by our construction of the T-
degree when considering maps of the form (<P0, <I>), where <P0 : R —> R is
T-invariant, 4>: RM —y RN~ is T-equivariant, and finally when passing to the
cylinder construction by adding a real parameter. More precisely, let BR =
{(x,y) G RM: \\x\\2 + \\y\\2 < R2} and let <T be the set of all T-equivariant
maps

F: [OJIx^^RxR'xR^',        F ¿ 0 on ö([0,1] x BR),
of the form

F(t,z) = (f0(t,z),%(t,z)Mt,z))
where f0 is a real-valued function, <I>0 is T-invariant, and <1> is T-equivariant
(here T acts trivially both on [0,1] and on R). If k > 0, / = 0, then we
restrict the class f to maps F which have f0(l ,0) positive. If k = 0, 1 = 0,
we take only maps F which have fQ(l ,0) and f0(0,0) both positive. Observe
that the T-equivariance of the map F yields immediately

(*) <D(í,x,0) = 0   foranyxGR*, ieR.

These mappings are divided in T-homotopy classes: F ~ G if there exists a
continuous T-homotopy

77: d([0,1] x BR) x [0,1] -> R x R; x R*-'^}

such that
(a)77(i,z;0) = F(/,z) and H(t,z;l) = G(t,z) for any (t,z) e d([0,1] x

(h) H(-;x)eê' for any re [0,1].
In order to endow the set of these T-homotopy classes with a group structure,

we shall need the following result.

Proposition A.l. For any Fee? there exists G e <£ such that F ~ G and
G(t,z) = (1,0,0) for all (t, z) e (d[0,1]) x BR.
Proof. Let A = (d[0,1]) xBR . Then A is a closed and T-invariant set. Clearly
the T-homotopy F(t,xz) is admissible on A for any x e [0,1]. Thus the
restriction of F to A is T-homotopic to the map H(t,z) := F(t,0), (t,z) e
A . Due to (*), the map 77 is of the form

H(t,z) = (f0(t,0),%(t,0),0)eRxRl xRN~\{0},        (t,z)eA.

Now let G be the map defined by G(t,z) = (1,0,0), (t,z)eA. We will
show that, under the above assumptions, the maps 77 and G are T-homotopic.
Indeed,

(i) If / > 0, then H(t ,z)e(Rx r'\{0}) x {0}, for any (t,z)eA. Thus,
taking a path in R/+'\{0}, we have that 77 ~ G on A .
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(ii) If / = 0 and k > 0, then H(t,z) = (f0(t,0),0) ^ 0, for any (t,z)e
A . Since F G I?, it turns out that its restriction to the set

3{(i,z)e[0,l]xfir z = x}

is a continuous map from S   into R\{0} . Thus, in particular, the map
f0(t,0) is positive. Hence 77 ~ G on A .

(iii) If I = k = 0, then 77 is T-homotopic to G since f0(0,0) and /0(1,0)
are both positive, by assumption.

Now, using the T-equivariant Borsuk homotopy extension theorem, the map
F will be T-homotopic to a map in I? which extends the map G to all of
d([0,l]xBR).   Q.E.D.

We shall denote by nM(S ) the totality of T-homotopy classes of maps in
f . We shall also denote by [F]r the class which contains the map F and by
0r the class containing the constant map c with value (1,0,0) on [0,1 ] x BR .

Remark A.2. The class 0r is also the class of all maps F which have a non-
vanishing T-equivariant extension to the cylinder [0,1 ] x BR . Indeed, if one
has a nonzero T-equivariant extension F of F to the above cylinder, then us-
ing the deformation (tí\tz) the map F is T-homotopic to the constant map
(/0(0,0),0,0), which is clearly homotopic to c. The converse is just a di-
rect consequence of the Borsuk homotopy extension theorem for T-equivariant
maps.

To proceed further we need a concept of addition on nM(S ). To this end
let F and G be any two maps belonging to ^. By virtue of Proposition A. 1
we may assume that F,A = G,A = (1,0,0). Define their sum F © G as the map

( F(2t,z) if 0<t<\ and zeBR,
F®G(t,z)= \ , ~I G(2t - 1, z)    if \ < t < 1 and z g BR.

Clearly the T-homotopy class [F © C7]r depends only on the two classes [F]r
and [C7]r. Hence we have the following.

Definition A.3. The addition in 7iM(S  ) is given by

[F]r + [G]r = [F®G]r.

This addition turns out to be associative (see [G, p. 7]), the class 0r is
the neutral element of the group, and the inverse element of [F]r is the class
[F o 0]r , where 6(t,z) = (1 - t,z) for any (t ,z) e [0,1] x BR . Therefore,
nM(SN) is a group under the addition defined above.

Moreover, the following result holds.

Proposition A.4. The group nM(S ) is abelian, provided k > 1.
Proof. First, let us observe that if we write z e BR as z = (x,y) with x =
(x0, x), x0 G R, then in the T-homotopy class [F]r we can always choose a
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H(t, z ; t) = <

map with value (1,0,0) on the set A+ = {(t,z) e [0,1] x dBR: x0 > 0} (we
can choose as well a map with value (1,0,0) on the set A" = {(t, z) e [0,1] x
dBR: x0 < 0}). Indeed, let A be the set defined by A = A+ U(d[0,l]) x BR.
Then A is closed and T-invariant. Let F e W and let G(t, z) = (1,0,0)
for (t,z) e A. Then the restriction FA of F to A and the map G are
T-homotopic, via the homotopy defined as follows:

/    x0cosT7C/2 + RsinT7r/2   xcosT7r/2   ycosxn/2\
V' ajx) '      oCÖ      '      ^(x)     /

if (t,z)eA+ and x e [0,1],
(1,0,0)   otherwise,

— 1 1/2where a(x) = (1 + R   x0sin^r) '  .
Thus, using the T-equivariant Borsuk homotopy extension theorem, the map

F is T-homotopic to a map having value (1,0,0) on A+ .
Now we are in a position of proving that nM(S ) isabelian. Indeed, consider

two maps F, and F2 such that

Fx(t,z) = (1,0,0)   for any (í,z)g^+

and

F2(t,z) = (1,0,0)   for any (t,z)eA~.
Define the T-equivariant homotopy

' F,(2í-t,z) for (t,z)eA~ , 0<2t-x<l,
H(t,z;x)= I F2(2t-(l -x),z)   for (t,z) e A+ , 0 <2t - (I - x) < I,

. (1,0,0) otherwise.
Simple computations give that 77 is admissible. Moreover,

7/0G[F,]r + [F2]r   and   77, G [F2]r + [F,]r.

Thus nM(S ) is an abelian group.   Q.E.D.
The following remarks are in order.

Remark A.5. The addition used in the additivity property of the T-degree (see
Property (e) in §2) coincides with that of Definition A.3.

To see this, let F and F, be as in Property (e); that is, F, F, : [0,1] x BR —y
RN+X are T-equivariant, nonvanishingon <9([0, i]xBR), and F(t,z) = Fx(t,z)
for (t,z) e [j,l]xBr By the definition of the sum in nTM(SN), the T-
homotopy class [F]r - [F,]r is induced by the map

A(f,z) = j

Now consider the T-homotopy

Hr(t,z) = i[

F(2t,z), 0<t<{-, zeBR,
Fx(2-2t,z),        \<t<l, zeBR.

F((2-x)t,z), 0<t< \, zeBR,
Fx((2-x)(l-t),z),        \<t<l,zeBR.
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Clearly, 77T is admissible. Hence [«]r = [770]r = [77, ]r. But 77, is nothing
else than the map (2.3) introduced in Property (e).

Remark A. 6. Let fi be a bounded open T-invariant subset of RM and let
/: fi —y R be a T-equivariant map such that degr(/,fi) is defined. Assume
that fi t¿ 0. Then the map / can be decomposed as / = (<P0, <I>) with
<D0(z) G R' = (RN)r and <D(z) g R^-7 for any z G fi. Decompose z e RM as
z = (x,y) with x G (RMf = Rk and y e RM~k .

Since / # 0 on 9fi and <P(x,0) = 0 for any (x,0) G fi, we have that
O0(x,0) / 0 for any (x,0) G dfir. It follows that deg{f,}(<D0|fir,fir) is also

defined and is an element of nk(S ). Therefore, deg{i.(<I>0|fi ,fi ) / 0, ,
implies degr(/,fi) ^ 0r .

Remark A.7. Let fi and / be as above. Moreover assume that k — I = 0. By
Proposition A. 1 it follows that in order to be able to use the group structure of
nM(S ) one has to impose the extra assumption 0 £ fi. As already observed in
§4, this is one of the basic assumptions when defining both Fuller's and Dancer's
degrees.

B. The T-equivariant Freudenthal suspension theorem. In this part of the Ap-
pendix we first state an equivariant Freudenthal suspension theorem in a form
which is suitable for our purposes and then elucidate its meaning for specific
examples.

We begin with some definitions. Let T be a compact Lie group acting linearly
and isometrically on R , R , R , and Rv = V, respectively. Let lso(S + )
denote the set of all isotropy subgroups of points in S + —the boundary of
the unit ball in R x R*' x Rp (we assume tacitly that the action of T on
the first factor R is trivial). If (t,x,y) is any point in R x R x R , the
fact that the action is linear implies that T(/ x  . = T(( x 0) n T{/ 0  . and that
lso(SM) c \so(SM+P) .If He \so(SM+p), then we set

k = dim(RMf,    m" = dim(RM)H = k + zH ,    pH = dim(RPf,
/ = dim(R  )  ,    «    = dim(R  )    =l + y   ,    and   v    = dim(R )   .

If 77 = {e}, then of course m  = M, pe = P, ne = N, and v   = v .
Finally, let F be an element of I?, that is, in the class of all T-equivariant

maps defined on [0,1] x BM+P with values on R x R* x Rf and nonzero
on SM+P = d([0,l] x BM+P) (with the restriction on the signs of /0(0,0)
and /0(1,0) when / = 0). Thus, according to §A of this Appendix, we may
consider the T-homotopy class [F]r of the map F as an element of the group
7irM+p(SM+P). Moreover, for V = R" we define the V-Y-equivariant suspension
XK(F) of the map F as

¿ZV(F)(t,z,v) = (F(t,z),v),    if(t,z,v)e[0,l]xBM+Px V.
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Clearly, X    defines a group homomorphism

Z    ■ nM+p(S )^nM+P+v(S )'

[F]rK-[XK(F)]r.
We are now in a position to state the following version of the T-equivariant

Freudenthal suspension theorem (see [H, Theorem 2.4] and [Na, Theorem 2.3]).

Theorem B. The equivariant suspension homomorphism X is an isomorphism
if the following conditions hold:

(i) if He lso(SM+P) with v" > 0, then pH >k-21 + z" -2y" + 2;
(ii) if K,H g lso(SM+p)  with K < 77 and vK > v", then pK -p" >

k-l + z" -yK + 2.

We shall now show the use of this suspension theorem when some particular
representation of T is chosen.

Example B.l. Assume that T acts trivially on V (= R"). Thus X is the
usual suspension homomorphism when no action is present. In this case for
any subgroup 77 of T we have that v =v. Hence condition (ii) of Theorem
B is void. Assume moreover that T also acts trivially on R and that the
following dimensional inequality holds:

P > M - 21 + 2

(or F > k - 21 + 2 if zH = y" for any 77 G lso(SM)).
By Theorem B, we have that X is an isomorphism. Thus we may always

stabilize the T-homotopy group by taking trivial actions.
In particular, under the above assumptions, the T-degree has the complete

addivity property; i.e., no suspension of maps is needed (see §2).
Furthermore, for T-equivariant maps /: S ~ —► R \{0} (as in the sus-

pension property in §2) the one-dimensional forgetful suspension X (forgetting
equivariance)

X(y)(x,, ... ,xM ,xM+i) = (j (x,,... ,xM) ,xM+x)

becomes an isomorphism provided that
(1) k - 2/ + 3 + zH - 2y" < 0 for any 77 G Iso^"').
Clearly (1) implies condition (i) of Theorem B. Note that (1) holds if either

M - 21 + 3 < 0 or else zH = yH for any 77 G lso(SM~x) and k - 21 + 3 < 0.
pExample B.2. Now consider the case R   = rV  (r-copies of V) with

(2) r>M-l + 2
(or r > k - I + 2, if zH = yH for all 77 G lso(SM+P)).

Then, according to Theorem B, X is an isomorphism. Indeed, the di-
mensional assumption (2) implies (i) since for any 77 G IsoíS"^4^) we have
M>k + zH and p" = rv" > r if vH > 0 . Moreover, given A, 77 G lso(SM+P)
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such that A < 77 and vK - v" > 0 then pK - p" = r(vK -v")>r. Hence
condition (ii) of Theorem B is also satisfied (note that yH <yK if K < 77).

It is clear then that a way to stabilize the T-degree, in the infinite-dimensional
case, is to insert sufficiently many copies of V (M -1 + 2 additional copies)
into R^.

Example B.3. We now consider the case of an S1-almost semifree action. Let
(RMf = Rk , (RNf = R', and Rw = R* x Cm , R* = R x C" being the
action on Cm :

¿mo9:=(eimo9zx,...,eim°9zJ

and on C"
e'"fí = (*'",fílf...,***'$„)

where «,,..., nn are multiples of «0. Thus the only isotropy subgroups are
S or Zmo ({e} if m0 = 1). We make the additional assumption that either
m = 1 orm<n+l-(k- l)/2.

Let R = {0} and V = R. Then the second condition in the theorem is
void and the first reads as:

k < 21 - 2 for 77 = Sx    and   k <2l-2 +4n-2m if H = Zm .

It is clear that both conditions can be met by adding enough copies of R. Now
for m = 1 one is reduced to k < 21 - 2 if « > 1, k < 21 - 4 if « = 0. If
1 < m < n + 1 — (k — l)/2, the second condition is always satisfied provided
that k < 21 - 2 and 2n + I > 3 if \k - l\ is odd and 2n + I > 4 if \k - l\ is
even. But if \k - l\ is odd and m > 1 then k - I < 2« - 3, while if \k - l\
is even and m > 1 then k - I < 2« - 2. Thus X is always an isomorphism
provided that k < 21 - 2 except for m = 1, « = 0 ; then one needs k < 21 - 4
and « = 0, m = 2, I = k + 2 = 2 or 3. By adding Rr one may achieve this
isomorphism if r> k -21 + 2 (r > k - 21 + 4 if « = 0, « = 1 ; r = 4-1 if
n = 0, m = 2, I = k + 2 = 2 or 3). If k = 1 +1, m = n then one is in the
stable range if / > 3 .

If R'' = {0} and V = C with action em°9 , then the first condition reads as
k <2l-2 + 4n-2m and the second one as k < I + 2«-2. If m = 1 one needs
only k < l + 2n-2. If m > I and \k-l\ is odd then k < l + 2n-2 is the only
condition. If « > 1 and \k - l\ is even then k < I + 2« - 2 and k > 2 (this
excludes the cases k = 0, 1 = 0, n = 1 , m = 2 ; k = 0, « = 0, 1 = 2, m = 2;
k = 1, 1=1, n = l, m = 2; k = 1, 1 = 3, « = 0, « = 2). By adding Cs
with action e""09 , one will get an isomorphism for 2s > k - / - 2« + 2 (5 = 2
for the cases « = 0, « = 1, k = I = 0 or 1). If k — I + 1, m = n, one is
in the stable range as soon as « > 1 , as noticed in [I.M.V] for the case of the
degrees defined by Fuller and Dancer.

Note that our results in §4, by looking directly at the groups, are better.
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Example B.4. Let Y = Sx be the group of complex numbers of norm 1 and let
the actions be described as follows:

imw, -,       , im\<p im2m imm<p       ,e   9(x,zx,...,zJ = (x,e      zx,e    rz2,...,e       zm),
into, ,        , in,q> in2<p innip      ,

e  v(x,zx,z2, ... ,zn) = (x,e     zx,e     z2,...,e     zn),

both on RM = Rk x Cm  for x G Rk  and z¡. e C,  i = 1,...,«, and on
R"-R'xC" for x g R' and z( e C, z = 1,...,« .

On RP = Rr x Cs, for (zx, ... ,zs) eCf , let the action be given by

isa ,   is\ip issip     ,e vz = (e irzx, ... ,e   vzs).

Here RP is a finite-dimensional subspace of an infinite-dimensional S -Banach
space E .

First, note that if 77 G lso(SM+P) then 77 is either {e} or a finite cyclic
group or the whole group Sx .  Let ßV be the subset of the subgroups of S
consisting of Sx, {e}, Z   where q divides one of the mx, ... , mm .  Thus
ßf contains lso(SM) and all subgroups of the finite groups in Iso^^). For

ff KMH in ßff one may assume that whenever v >0 or ï > v , if K < H,
for some finite-dimensional subspace F of F the conditions (i) and (ii) are

ff ff ff Psatisfied: in fact, if p < k-2l + z —2y +2 then add to R the subspace V ;
this will increase pH by dimR V. Thus one will get to the point where either

ff ff ff ffp    > k - 21 + z   -2y   +2 or there is no subspace of E such that v    > 0.
K ff ff K K ffSimilarly, if p   - p   < k - I + z   - y   +2, adding V will increase p   - p

K ffby ü   —v    and the same phenomenon will happen.
Let 77 be in lso(SM+P) ; then one has to check the inequalities only if 77

does not belong to ßü'. Then zH = 0, 77 is not Sx, and 77 e Iso^),
p" >2 + ps\ pH>k-2l + 2 if vH >0,and pK -p" >k-l + 2 if / > v"
but then pK -pH > 2. By adding [(k-l)/2] (that is, (k-l)/2 if \k-l\ is even
or (k-l+ l)/2 if \k-1\ is odd) copies of E, one will get pK-pH >k-l + 2
and p" >(k-l + 2)/'/2 + k-l + 2>k-2l + 2.

Note that if one seeks nonconstant periodic solutions of autonomous difieren-
K fftial equations, one has to consider at least two-dimensional systems: p   -p   >ii

4, p   >2,k = l+l,l>2; one is directly in the stable range. Note also that
ci

for the additivity property of the degree, one needs dim F > k - 21+2 . If this
is not the case, one may add R   on both sides with p = k-2l + 2- dim E   .

C. Results on nM(S ). In this section we gather some facts on the structure of
nM(S ). We shall restrict our attention to results which are of interest mainly
for the generalized T-degree introduced in this paper.

The first theorem is an analog of the well-known classical results in ordinary
homotopy theory (when no group action is present). Namely, nM(SN) = 0 for
Af < A.
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Theorem C.l. Assume that k < I. If zH < yH for any H e lso(SM), then
nrM(SN) = Or.

A proof of Theorem C.l, when T is a finite group, can be found in [A,
Proposition 2.4]. To prove Theorem C.l for the case when T is a general
compact Lie group one has to modify the proof given in [K, Proposition 2.12]
and use the obstruction theory developed in [t.D, §8.3].

The next result is a version of the Hopf classification theorem for T-equivari-
ant homotopy groups. We first need some preliminary notation. Let 77 be a
subgroup of T. Then | WH\ will denote the order of the Weyl group WH =
N(H)/H, where A(77) is the normalizer of 77 in T. By degBfH we simply
mean the Brouwer degree of the restriction fiH : (SMf -y (SM)H of a T-
equivariant map /: SM —> SM .

Theorem C.2 [t.D, Theorem 8.4.1]. Assume that k = I > 1 and
(i) zH = yH for any H e lso(SM) ;

(ii) zH + 2 < zK for any K,He lso(SM) with K < 77.
Then nM(SM) # 0r, and nM(SM) is characterized by

{degBfH: H e lso(SM) with \WH\ < +00}.

Furthermore, if K ,77 G IsotS"^) with A < 77 then degBfK is determined
by degBfH modulo 1^771, in the sense that fixing these degBf all possible
degÄ fK for K < H fill the whole residue class modulo \ WH\.

We now wish to discuss Theorem C.2 in the special case when Y = S acts
linearly on R*'. The commutativity of Sx yields that A(77) = S for any
isotropy subgroup 77 of S . Hence the only 77 for which the order of ^77
is finite is S   itself.

Assume that k = I > 1. The arguments used in Examples B.3 and B.4 give
ff Kthat assumption (i) of Theorem C.2 is satisfied and that z + 2 < z for any

A,77 G Iso^), A < 77. Hence (ii) of Theorem C.2 is also satisfied. Let
f(x,z) = (f0(x,z),foo(x,z)) be an S -equivariant map where /0 is the S -

\£     Ç-1 X/t     ç 1

invariant part of / on (S ) and x e(S ) . Then degs, (/) is uniquely
determined by the Brouwer degree of the map f0. Thus the map / is T-
homotopic to the map (f0(x, 0), z) since both maps have the same S -degree.
In particular, the Brouwer degree of the map / (forgetting the equivariance)
can be computed (see [I.M.V, Proposition 2.1]) and on the basis of the above
arguments it turns out to be the Brouwer degree of the map f0 .

If, in Theorem C.2, the only assumptions are k = I and (i), then a similar
complete characterization of %M(SM) can be found in [H.l, Theorem 4.5] in
terms of the degrees of mappings associated to the isotropy subgroups 77 which
have their Weyl group of finite order. On this subject we also refer to [Da. 1],
where a correct version of a result of Rubinstein is given.
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We close this section by making two final remarks.
If T is a finite group, then one can stabilize the group nt(S*) using the

category of all "allowable" representations of T (this can be done as in Example
B.2), and by [A, Theorem 4.3], the stable group is a finitely generated abelian
group. Moreover, if one forgets the group action on SM (not on the suspension)
then 7i^(SN) ~ 7it(SN /Y). This is [A, Theorem 5.4]. However, it is not clear
to us if this sort of results are of any interest for our problems.

Finally, in the case of a general compact Lie group T there is a theoretical
way to compute the stable T-homotopy groups (see [t.D, §8.3]). However, this
involves the total space of the universal principal bundle associated to 1^77,
which is not easy to handle.

D. Proofs of §4. Since the proof of Theorem 4.6 is rather long, we shall split it
in a few steps. We start with the following.

Lemma D.I. Let F,, F2 be two extensions of F such that Fx ~ F2 on C =
I x B0 x {Z = 0} relative to dC. Then

■ Ax=IxB0x(Bn{Zhc = --- = Zm = 0})
~ s\ ~ relative to dA., if\k - l\ odd,
F. ~ F, on <

1       2       p2 = 7xJß0x(5n{Z/!c_,=--- = Zm = 0})
relative to dA2, if\k- l\ even.

Proof. Let h(x,t) denote the homotopy between F,  and F2. For i= 1,2,
set A. = Ai x {0} u C x [0,1] uAt x {1} and let 77,.: I^RxR'x C"\{0} be
defined by

!F, (x)     if x € A¡, x = 0,
«(x,t)   if (x,t)gCx[0,1],
F2(x)      if x G A¡■, x = 1.

The problem of extending the homotopy Hi is similar to the one studied at
the beginning of §4 with k now replaced by k + 1. Thus, if k + 2h <l + 2n
the map 77( can be extended to Ai x [0,1]. Hence, the assertion holds for any
« < hc - 1 in the case that \k - l\ is odd and for any h < hc - 2 if \k - l\ is
even.    Q.E.D.
Remark D.2. At this point, if \k - l\ is odd or k - I > 2« - 1, then degK(F)
could depend at most only on the first extension (f0,5>0) of the invariant part
of F. This has been used in [I.M.V].

For the moment, we shall denote by deg^(F,F) the degree of the map F
obtained from the extension F = Fh (i.e., the homotopy class of Fh).

Lemma D.3. (a) If F and G are representatives of the same class [F]5, in
nSk+2m.(S'+2n), then the sets

{degK(F,F)}   and   {deg^(G,G)}

are equal. Hence we will denote them by {degK([F], [F])}.
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(b) 7« computing {deg^QF], [F])} one may assume that the restriction of F
to 9(7 x B0 x (Bn{Zhc = ■■■ = Zm = 0})  is of the form (1,0,0).  All the
different degrees are classified by /'„([F]), with [F] e nk+x+2,h _X) .(Sl+2n).

(c) {degK([F] + [G], [F] + [G])} = {degK([F], [F])} + {degK([G], [Ö])}.
(d) {deg^fF], [F])} reduces to a single element; that is, {degK([F], [F])} =

degK([F]) is independent of F, if and only if {degÄ:([0], [0])} = 0.
s1 iProof, (a) Let F ~ G on d(I x BQ x B), let hx denote the S -homotopy

joining F and G, and let F be an extension of F to I x B0 x (B x {Zh =
• • ■ = Z    = 0}).   By the equivariant Borsuk extension theorem, the map G

will also extend to G on the same set and F ~ G through a S -homotopy 77T
which extends hx. Thus, for any F one has an extension G of G such that
degK(F ,F) = degK(G, G) (restrict the homotopy 77T to the set

9(7 x B0 x (B n {0 < Zhc < R,Zhc+i = ■■■ = Zm = 0})).

By reversing the roles of F and G one has assertion (a).
(b) Let F be a S'-extension to 7 x BQ x (B n {Zhc = ■ ■ ■ = Zm = 0}) of

the restriction of F to d(I x BQ x (B n {ZA = • • • = Zm = 0}). Thus F ~
(1,0,0) on 9(7 x B0 x (B n {Zh = ■■■ = Zm = 0}) since we can deform F via
F(xt,xx,xZ) to (/0,Ô0,0)(0,0) and then to (1,0,0) (see A). Hence, by the
equivariant Borsuk extension theorem, the map (1,0,0) has a S -equivariant
extension to d(I x B0x B) with the same set of possible degrees as F .

Note that for the map  (1,0,0)  one may choose any element in  nk+x(S )
(= the group of homotopy classes of maps from (I x B0,d(I x B0)) into (Rx
R \{0} ,(1,0)) as the first extension (fQ, Ö0). Similarly, one may choose as F
(since F = (1,0,0) on d(I x B0x (Bn{Zhc = ■ ■ ■ = Zm = 0})) any element of

7Tfe+1+2(A _,) .(S + "), regarded as the set of S -homotopy classes of maps from

IxB0x(Bn {Zhc = ■ ■ ■ = Zm = 0}) into RxR'x C"\{0} with value (1,0,0)
on the boundary (see Remark D.4). Since the map F is defined for 0 < Zh <
R, the possible degrees may differ if ¿'„([F]) / /„([ö]) for two equivariant
extensions F and G of ( 1,0,0) to the set IxBQx(Bn{Z^ = ■ ■■ = Zm = 0})
(note that one needs only the ordinary homotopy).

(c) Since the addition is defined on the t variable only, the result follows
from (b) adding the extensions.

(d) If the set of degrees reduces to a single element, then deg^tOJJO]) =
deg/c((l ,0,0)) = 0. Conversely, if deg^tO],[0]) = 0 then the map defined as

(F onIxB0x(Bn{Zhc = --=Zm = 0}),
1(1,0,0)    for 0 < Zh < R
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is trivial, that is, Xt([F]) = 0 (following Remark D.4, take y = Zh ¡R). One
may then extend F to Zh = ■ ■■ = Zm = 0 as (1,0,0) and get a unique
degree.   Q.E.D.
Remark D.4. Let C = 7 x BQ x (B n {Zhc = ■ ■ ■ = Zm = 0}) and let dC be its
boundary. Then the group of 5 -homotopy classes of equivariant maps

F: (C,9C)^(RxR/xC"\{0},(1,0,0))

is isomorphic to nk+x+2,h^_x) .(S + "). Indeed, given an equivariant map

F: (C,dC) -* (Rxr' xC"\{0},(1,0,0))

we define an element of nk+l+2,h _n .(S + ") in the following way: take y e
7 = [0,1], with trivial action, as a new variable and then define on d(C x I)
an equivariant map as follows:

(F fory = 0,
1(1,0,0)   on the rest of the boundary.

Conversely, given a S'-map F: d(C x/)^RxR'x C"\{0} , i.e., a represen-
tative of an element in itk+x+2,h _n .(S + "), we may construct a S -map, in
the same equivariant homotopy class, with value (1,0,0) on the complement
of C x {0} . In fact, we may assume that F = (1,0,0), if y = 1 (for y = 1,
one may first deform F to F(0,0,1), then to (1,0,0), and finally use the
equivariant Borsuk extension theorem). Now on the complement of C x {0}
the deformation F(t, x0, Z , xy + ( 1 - x)), Z = (Z,, ... , Zh _, ), is admissi-
ble. Then, the equivariant Borsuk extension theorem gives the result. Finally,
since the compositions of the two processes are the identity, the two groups are
isomorphic.

Proof of Theorem 4.6 in the cases (i) hc = 1 and (ii) «c > 1, \k - l\ odd.
(i) Let hc = 1 , k - I > 2n - I . In this case F = (/0,í>0) is any element

of nk+x(Sl). If n > 0, then x»([F]) = 0 (by deformation through the 2«-
equations).

If « = 0, k > I — I is the only nontrivial case. Then xt is an isomorphism
and any possible degree is realized by the trivial map. Thus, using the equality

{degK([F] + [0], [F] + [0])} = {degK([F], [F])}

= {degJC([F],[F])} + {degAr([0],[0])}!

one may always choose F in such a way that F is extendable to Zh   , = ■ ■ • =
zm = o.

(ii) Let hc > 1 and \k - l\ odd. If m = hc - 1 = « - (k + 1 - /)/2 and
hc = n + l-(k+l-l)/2, being the critical level for k+l+2rh , then 1 < m < hc.
From Theorem 4.4, we have xt{[F]) = 0, except for k + 1 = / and m = n,
where *,([/?]) = (A/m0")deg(/0,Ö0).
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Thus any degree is realized if A = m^ and, as above, one has an extension
for F, while if A > «îq only the multiples of N/m^ are realized. In fact, if
(/0,<I>0) is any extension of (1,0) to 7 x B0 (normalized to 1) of degree d,
then the map

^J^H(/o_i;è0,...,Z;j/mo(F0-||x0||)/(l-Z),...) + (1,0,0)

is an equivariant extension of (1,0,0), with zeros only at  Z   = 0,  f =

1,...,«, <I>0 = 0, /0 = -l,and |Z„+,|2 + --- + |ZJ2 = 7?2/4. For hc = n + l,
the A-degree of this map is dN/rn^  (see Theorem 4.4). On the other hand,
for d > 0, consider the equivariant map:

(i-^iz„+li'izn+.K^-i)'izn+,K'z;;/rzi+.z''
7n2/m0-y       y 7n„/m0-y       y \
^n+\     Zjn + \Z'2> ■■■ y^n+X     ^ n+\^n J   '

For Zn+X = 0, the above map coincides with the map (1,0,0). Furthermore,
it has only one zero at Z, = ••• = Zn = 0, t = \ , xQ = 0, |Zn+,| = A/2,
and for 0 < Zn+X < R, one may deform Zn+X linearly to 1 in all of the
components excepts the first. By the product formula of the degree, this map
has degree (-1) + d. Clearly, changing 2z - 1 into 1-2/, one generates all
the integers.   Q.E.D.

We would like to summarize what we have proved if « > 1. Namely,
S , ç,l+2n, ^ 7

7C/-l+2(n+l),-1-'3 ' — ^N/ml '

where the latter group is kerpt . For \k — l\ even and hc > 1 one has \k +
1 — l\  odd and m = hc — 1 = n — (k — l)/2 = hc.  Here we need to compute

*.(**+i+m> XS'+2n)) when m = hc>l   (hc = l only if hc = 2 , thus k - I =
2n-2).
Proof of Corollary 4.7. (i) If hc = 1 and « = 0, then ker/?t = {0} since any
degree is realized by the trivial map. On the other hand, the map (f0(t,x0,Z),
<P0(i,x0,Z)) being nonzero on 9(7 x BQx B), one may deform p„([F]s,) to
(f0(0,0,R),%(0,0,R)) (note that m > 1 = hc). Hence p,([F]sl) = 0.

(We add in passing that from here one may prove directly that any invariant
map from Sk+2 into Sl is trivial. Indeed, one may assume that / = ( 1,0) on
9(7 x B0) and since the map / depends only on \Z\ (m = 1) the deformation
f(t,x0,x\Z\ + (l-x)R) is valid.)

If h  = 1 and « > 1 , then from Lemma 4.3 the morphism pt is onto. Now,
given any element in nk+x(S,+ ") one may represent it as F = (fQ,®0,®)(t,x0)
with F of norm 1 and value (1,0,0) on 9(7 x BQ). Consider then the equi-
variant map

F(/,x0,Z,)=(^i(/0-l)+l,|Z,|<D0,...,Z,^/'"0i>J,...).
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Clearly, pt([F]s¡) = 0 and deg^F) = [F] (using y = |Z,|/A). To get the
isomorphism, it is enough to remark that deg^ is one to one on ker/?t when
it is well defined.

(ii) For « = 0, the assertion is clear.   Suppose then that  « >  1.   The
morphism x* on niç(S ) is such that

'•([/°'*°'z—°.°HW*.)i. i'-!:
since the composition of the map (of degree «,/«z0) defined as (t,x0,Zx) <-*
(/,x0,Z,",/mo) with zt([/0,O0,Z,]) induces the product by «,/«„ (see [W,
p. 479]). Since Î0 if / < 2,

Z if/ = 2,
Z2 if/>2,

one has the first result (the case k > I + 1 is not needed here).
On the other hand, if F has deg^(/) = [f], as above, one may perform the

following nonequivariant deformations: replace |Z,| by t|Z,| + (1 - x)R and
(Z^^zfVj) by

/     T        -(l-r)W       xZax 1-tWö,.
\(\-x) x      )\(x-l)Zax+ß    tZfA^

repeatedly on 9(7 x BQx B), i ^ j from 1 to « . Thus,

^(m)=[(/o^o'zr/mo<i>i'<i)2'---'^)]
À= —\f   <b   Z (¡>   O <I> ̂1L/O'^V^l^l 'v2' ••• 'Vn/Jm0

(see [W, p. 479]). It is clear that if [F] = [F,] + [F2], then x,([F]) = /,([F,]) +
X.([F2)).

Now, if A: - / = 2« - 1 , then the map F := ^/||g|| where

¿r(z,x0)=(2(^ + (2z-i)2>)-i,
^0

(2t - l)t(l - t)(R¡ - ||x0||2) ,x0Z(l - t)(R¡ - \\x0\\2)

has degree 1. In fact, consider on 9([0,1] x 7 x BQ) the map ((1 -y)(f0 —1) +
1,(1- y)O0, (1 - y)<P,).  In the last two terms, deform both factors (1 - y)
and t(l - t)(R2Q - ||x0||2)/||^|| to 1. If x0 = 0 and t = \, then /0 = -1, the
first term is 2y - 1, and one may deform it linearly to y - 1, obtaining a map
of degree 1.

Now, since k > I + 1 write (2t - 1, x0) := x0 © Z , Z eC. Then x%([F]) =
2       2 2[2(|x0| /R0 + (2t - 1) ) - 1 ,x0,Z,Z] using the same deformation of positive
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factors as above. Thus, deforming the first term linearly to R2 - 2|Z, |2 (look at
its sign on d(IxBQxB) if (xQ,ZxZ) = (0,0)) one gets the (fc-l)st suspension
of the Hopf map. This proves (ii).

(iii) One has 2hc = 2n - (k - I - I); thus if k < I + I then p, = 0 (|jfc - /|
odd), while if k > I + 1 then hc < n and pt is onto. Furthermore, whenever
deg^ is well defined and deg^F) = 0 then [F] = 0.

In the case that k < I - 1 and « > 0, consider the equivariant map

F-^-j\\ZhJ,(2t-l)\ZhJ,x0\Z^\,TicZlx,...,ZhcZhc_x,...,
yn\lma-7y    „     yni/mo-y    — -=n„lm0-= \
^hc       ^hciy^hc       ^Af    2'   ■■■yZjhc       ^h^nj  •

Then degK(F) = (-1) d and, changing 2z - 1 to I -2t, all the integers are
obtained.

If k > 1+ 1 > 2, writing x0 = (x0,x, ,y,, ... ,xn_K+x ,yn_hc+l), with
xn G R ~ ', consider the equivariant map

rtwlmçt-yd      d    yn-tlm^-y    „
^hc\  y^hc       ^ he   '2'F=^-j\Zhc\,(2t-l)\Zhc\,x0\Zhc\,Zrh

z(n„c-\)lm0j- Z"Hc¡m°(X   +ÍV ) Z"hJm°(x +ÍV )\

Then degK(F) = (-1) d and, changing 2t - I to I - 2t, all the integers are
again obtained.

Hence, if k ^ / - 1, then deg^. is an isomorphism from kerp^ onto the
integers. Furthermore, by performing rotations (Z%Zi, Z^Zf) of the type con-
sidered above we have that

Xm([F]) = s^^-^i _ (2/R)\Zhc\,zllmZdh^-2Zdx].

Since hc > 2 and k > 0, one is in the stable range and

X,([F]) = d(Ñ/m0 + d + hc)l.!+2nn,

where n is the Hopf map (by composition with Z, one gets the first factor;
in the second factor only the parity is important). Thus, ^t([F]) = 0 if d is
even or if d is odd and Ñ/m0 + hc is even. Note that if k = I - I and d is a
multiple of A/rnp then, if moreover A/«q is odd, one has that «-/«0 is odd
for all j's and Ñ/m0 + hc = Ñ/mQ + n + 1 is odd, too. Hence ^([F]) = 0 for
the extensions of the trivial map. Thus x, is well defined on ker/?„ = ZN/m„.

If / = 0 and k  is odd, set x0 = (y0,x0)  with x0 G R ~  , of the form
xo = (*i ,yXy. yx(k-\)i2yy(k-\)i2) and let <P(xo>zï be an invariant Urysohn
function with value 0 in an invariant neighborhood of x0 = 0 and Z =
(0, ... ,0,Zh )  with  0 < \Zh\ = a < R  (take for example a = A/2)  and
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value 1 in an invariant neighborhood (disjoint from the previous one) of the
set {||x0|| < R0 ,Z = 0} U {||x0|| > R0} U {||Z|| > R} . Let

«i/m0-l ZF(t,x0,Z) = (2t + 2cp(x0,Z)-l,(RZhc-aZx)

(RZhc - aZhcJn^)lm»-xZhc_x, z;^(x, +iyx),...,

zi;n-')/mv(,_1)/2+iy(k-m) y (*o T *<« - \zhc\))dK:lm<>) •

Since nk(S°) = 0 for A: > 1, the class of the map F belongs to kerpt and its
A-degree is well defined. From the definition of tp, the only zero of F is at
x0 = 0, Z, = • • ■ = Zh_x = 0, |ZJ = a , and < = \ . Now, if 0 < ZA < A,
deform Z^/m° to 1 for ; = hc,...,«, the part RZh - aZ¿ first to RZh and
then to 1 for j = 1,..., hc — 1. A final deformation of tp to 0 will give the
function

(2t - 1 ,ZX,... ,Zhc_x ,xx + iyx,... ,x{k_x)/2 + iy(k_x)l2, (x0 T- i(a - \Zhc\))d)
with degree ±d.

Finally, if / is such that pt([F]) ^ 0, one has that
^([(/0><D0,Z,"l/mo,...,z;y'"0,0,...,0)]) = 0

if hc < n , that is, if k > I + I . Thus the only nontrivial case is for k = I + I .
Hence *t([F]) = (A/mo)X2/!c[(/0,<D0)], which is nontrivial only if N/m"0  is
odd and / > 2.   Then all nfm0 are odd and A/«z0 + hc = N/mQ + n  is
even.   Q.E.D.
Remark D.5. The morphism found in the proof of (ii):

[/] e nk+x(Sl+2n) - [/0,%,Z,0,,<D2, ... ,<DJ G nk+2(Sl+2")

is a particular case of the following construction. Let B: Sr —» O(p) represent
an element of nr(0(p)) and let (/0,O): {x G R?+l: ||x|| < 1} -* R^'VÍO}
be an element of n (Sp)  such that  (y¿,«I»),. ,,=1 = (1,0).   Consider the map
J, : nr(0(p)) x nq(Sp) -» nr+q(Sp) defined by

Jt(B(X),(f0,<t>)(x)) = [/0(x),||A||5(A/||A||)<D(x)]
on 9{(/,x) G Rr+X xR,+l: ||A|| < l,||x|| < 1}. If p = q, then (/0,«>)(x) =

2 1(2\\x\\ - l,x(l - ||x|| )) has degree 1 (as follows from the previous argu-
ments) and Jt(B(X),(f0,%)) = [1 - 2||a||2,||a||7í(a/||a||)x] is the Whitehead
/-homomorphism used in [I]. In the present case r = 1, q = k+l, p = l + 2n ,
and X/\\X\\ is represented by Z, . Since

Z2    if / + 2« > 2,
nx(0(l + 2n)) ( Z     if / + 2« = 2,

one has that #t([F]) is of order 2 if / + 2« > 2. In particular, /t([F]) = 0 if
N/m0 is even (/ + 2« > 2). Since we will not need this construction here, we
shall not pursue its study.
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Proof of Theorem 4.6 in the case hc > 1 and \k-l\ even. If F is the extension
on Zh =0, then consider /„([F]) in the situation treated in Corollary 4.7.
Thus X*([F]) — 0, giving a well-defined A-degree, except if «c > 2, N/mQ + hc
even or hc = 2, Ñ/m0 odd, / + 2« > 2 and hc = 2, k = I = 0, and « = 1.
In the first two exceptions xt is onto and one may always extend the map to
the level Zh . The argument for the last case runs as for k — l—1.   Q.E.D.

Proof of Corollary 4.8. Since hc = n + 1 - (k - l)/2, if k > I + 2 then «c < «
and pt is onto. If k = I, then hc = n + 1 > « . Hence from Theorem 4.4, we
obtain pt = 0.

If N/m0 + hc  is odd (excluding the case  « = 1   and k = I = 0)  then
kerpt = 0.

If N/m0 + hc is even (excluding the case « = 1  and k = / = 0)  then
deg^F) is well defined.

Now, for k < I -2 and « > 0, we consider the equivariant map

((\Zhf-\ZnJ)2-\ZnJ\Zhf + (2t-l)2 + (R/2)\
ZAi(lZJ2-|z„+,|2 + /(2/- l)),|ZAJx0,ZAcZ„+2,       ,

7     7 y»\/moy     y ynn/m0 y  -,
^hc^hc-\y^hc       ^A,    1'"''    *t       ^K   n>

(if n = 0, the last terms are not present. If « = 0, k = 0, and 1 = 2 then
only the first two equations are present and the term Z2ZX may be replaced by
Z2ZX   and 2t - 1 by 1 - 2z respectively).

If k > I (thus n > 1 , since hc > I) let

X0 ~ (-*0'X1 >y\> ••• yXn-hc+\ '-^n-^+l)

with x0 G R . Define a map by

((|Z, I2 - |Z,|2)2 - |Z, |2|Z I2 + (2t-l)2 + (A/2)4, |ZA Ix,

:;/n% z,(iz,j2 - iz,i2 + ,-(2i- i)),z;;/WozA z2,
{nhc-i)/m0-y    y y "hc/mo/       ,   ■    \ ynjmo.7\nhc.x)lmo-y    y y-*!*/mo,        ,   jv \ 7"'m°(x + ZV ll

Note that the above two maps belong to kerpt and their A-degree is the class
of

Xfe+2(Ac-2)((|ZJ2 - |Z,|2)2 - |Z,|2|ZJ2 + (2t-l)2 + (A/2)4,

Zx(\Zhf-\Zx\2 + i(2t-l)))

where 0 < Zh < R (consider Zdx   if « = 0, k = 0, 1 = 2).
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Now perform the deformation

>2 / „2' 2

T"T  |zi|2-T    -(*\zhf + d-x)R2)\zx>2

,2' 2

+ .(*-}   +(2i-.)2.

If Z, = 0, then the first equation is positive unless x = 0, 2t - 1 = 0, and
Zh = A/2 (which is not a point on the boundary). If t = \ , \Zh\  - R /4 =
T(|Z,|2-A2/4),and |ZAJ2 + |Z,|2 = A2 then |Z,|2, Z¿ > A2/4 ; thus the first
equation is strictly negative. Writing the term

|ZAJ2 - A2/4 = (Zhc - R/2)(x(Zhc + A/2) + (1 - t)),

one gets the class of ((Zhc-R/2)2-\Zx\2 + (2t-l)2, Zx(Zhc-R/2 + i(2t- 1))),
2 2 2 2which is the Hopf map w: {(x, ,x2) G C : |x,| -I- |x2| < 1} —> 5 given by

w(x, ,x2) = (|x,|2 - |x2|2,x,x2). Recall that n generates n3(S ). If « = 0,
k = 0, and 1 = 2, one obtains ±dn by changing 2t-1 to 1 -2t. Furthermore,
by performing rotations on (Z^<I>(.,Z^O.) we have that

*.([A]) = X*+2(^2) (|ZAJ2-|Z1|2)2-|Z/1J2|Z,|2 + (2Z-1)2 + T^X

zl"""Zhhl-XZx(\Zhf-\Zx\2 + i(2t-l))

for x = 1   (the term Zhc    Z,   has to be replaced by Zhc       Z,   if n = 0,
k = 0, and 1 = 2).   Note that the homotopy is valid.   Replacing |ZA |    by
|ZA | (t + (1 - t)|Za |a_ ) and a similar scaling on Z, , one has, by the compo-
sition law,

X¿lF]) = d(±-he + 2-d)

■ X*+2(/!'-2)[(|Z2|2 - |Z, |2)2 - |Z, |2|Z2|2 + (2Z - l)2,

Z,Z2(|Z2|2-|Z,|2 + /(2Z-1))]

which is the composition of the map (Zx,Z2,t) <-y (|Z,|2 - |Z2|2 +
i(2t - 1),Z,Z2) (i.e., the suspension of the Hopf map) with the Hopf map
itself. Now no(X?7) generates nn+2(Sn) = Z2 for « > 2. Thus /'„([F]) gener-
ates Z2 if and only if d(Ñ/m0 - hc + 2 - d) is odd (d = 1 except for n = 0,
/c = 0, 1 = 2).
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Furthermore, if p„([F]) = [f0,Q>0] ̂  0 (hence k > I) then

x,(f0y%yZx"'/mo,... ,z;;/W0,0, ... ,0) = 0   if fc > / + 3

since then hc < n. If k = 1 + 2, then hc = n and *,([F]) = (N/m"0)l2n[f0,O0]
= (N/mn0)l2"pt([F]). Since p.([F]) = 0 for / = 0,1 then X¿[F]) ± 0 only
if (N/m0)" is odd: p,([F]) = n o Xw , or a suspension, if / > 2.

It remains to study the case n = I , k = I = 0. In this case, the equivariant
map

F := ((|Z2|2 - |Z,|2)2 - |Z2|2|Z,|2 + (2t-l)2 + (R2/4)2,
Z¡xlm°Zd2Zdx(\Z2\2 - |Z,|2 ± i(2t - 1)))

has A-degree ±d, according to the orientations (since the trivial map has ex-
tensions with A-degrees which are multiples of N/m0, one obtains the iso-
morphism). Furthermore, Xt([F]) = («,/w0 - d)d(n o Xw) ; here hc = 2,
and /„([F]) = 0 if d is a multiple of nx/mQ. Thus, x* is well defined on
ker/?„.   Q.E.D.
Remark D.6. If ß : R x R; x C" -y R x r' x Cn is the map defined by

(t,y0Xx,...,^)^(t,y0,^,...,C),
for vi > 1, of degree fT^, >tnen deg^/JF) = TJ^deg^F) (see [W, Theorem
8.2]; one has the suspension in the first variable). Thus, the induced map ßt

on itk+2m ,(S + "), m < hc, will be one to one (not onto) if either m < hc or
m = hc = 1 or m = hc > I, \k - l\ is odd, and k / / - 1. In the other cases
A is changed into NY[v¡ and A into ^v.n- ; thus these groups depend on
the action in the range. Furthermore, it is easy to verify that x*ß* = ß*X* ■ A
similar effect will be felt if m0 is replaced by 1 or by another common divisor
of the m 's. In fact, if on (£,,... ,£m) the standard S -action is given and on
(Z,, ... ,Zn) the action em°9 , then the induced homomorphism

8 • nk+2hSS      )^nk+2hcAS      )

is an isomorphism on Im/7t and on kerpt one has 6*[F] = m0c_ [F].
This can be proved either by using the composition law (<!;,, ... ,£h _, ,Çh ) ^
«r ' • • ■ 'C-i 'C) of degree mo~l fromtheset {|{| < 7?,0 < ^ < R} onto
{|Z|<A,0<Z<A} (note that Çh   being real positive, £,h   is deformable to
S,h Rm°~ linearly) or by looking directly at the generator of the group. Hence,
in order to have the degree of the invariant part nontrivial, there is no gain in
considering the action e""°9 if hc = 1 or \k - l\ is odd, and if \k - l\ is even
only if mQ is even and N/m0 + hc is even (note, however, that x* detects the

nontrivial elements in nk+2h (S + ")).

Proof of Theorem 4.9. (i) If fin{Z = 0} = 0, then 2t+2<p(xQ ,0)-l=2t+l for
x0 in any small neighborhood A of 9fi. Thus, p+([F]) = [2t+ 1 ,d>0(x0,0)] =
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0. Hence, if either m < hc or if m = «c = 1, n = 0, or hc > 1, \k - l\ is
even, k + l + n > 1 and Ñ/m0 + hc is odd then all the S -degrees vanish. By a
rotation in Z (hence equivariant) and a translation in x0, assume that (x0 = 0,
Z = (0, ... , 0, a)) belongs to fi, a > 0. In the case that fi n {Z = 0} ^ 0
one may assume that (x0, Z = (0, ... , 0, e)) is in fi, for any small e .

(a) Let hc = 1 and set 5* = 9{x0 e Rk : ||x0|| < A*0, 0 < Z, < R}. Any
element in nk(S + n~ ) can be written as (<I>0,0)(x0, Z, ), where O0 has values
in R and <f> has values in C . Furthermore, one may extend (<P0,0) radially
to the ball {(x0,Z,): ||x0|| < A0, 0 < Z, < R} in such a way that the map
(<I>0, 3>) is zero only at x0, Z, = a < R. Now define the equivariant map

(Ö0,Ö)(x0,Z,) = («D0(x0,|Z,|),Z,"l/mo<D(x0,|Z,|)).

This map has only one zero at x0 = 0, |Z, | = a. If 0 < Z, < A,, the class
of the map (2t + 2tp - 1,00, <P) is that of (2/- 1,<P0,<P), i.e., the suspension
of (O0,0) (indeed, first deform $ to <D and then 2t + 2tp - 1 to 2t - 1
recalling that tp(x0,0) = 1, tp(0,a) = 0). Conversely, given an equivariant map
(<P0, <P), the map (2t + 2<p - 1, Ö0, <I>) will be a suspension, for 0 < Z, < R,
if (<I>0, <I>) (x0, |Z, |) has a nonzero extension from the set 9fi n {0 < Z, < R}
to (ß\fi) n {0 < Z, < R} , for instance, if fi = {||x0|| < A0 , r < |Z,| < R} ;
then for Z, = r, the map (<P0, <P) is deformable to (O0, <I>)(0, r). Indeed, the
last map is extendable to 0 < Z, < r ; then the same holds for (<P0,0). For
||x0|| > R0 or |Z, | > R, one may extend the map radially without zeros.

If fin{Z = O}^0,take
(<D0,<D):({||x0||<e},||x0|| = £)-(lS'/+2"-',(l,0,...,0))

and get the map (Ô0,Ô): 9{||x0|| < A0, 0 < Z, < R} -> r' x C\{0} defined
by (O0,d>)(x0,Z)) = (Z,/e)((<D0,<D)-(l,0,...,0)) + (l,0,...,0),extending
(<P0, <P) as ( 1,0, ... , 0) for e < ||x0|| < RQ . Thus the zeros of (Ô0, Ô) are in
fi and one may repeat the above argument provided that / + 2« > 2 (if / = 0,1
and n = 0 there is nothing to prove); one obtains in this way any element in
kerpt which is a suspension.

(b) We now consider the case hc> I, \k - l\ odd. If k < I - 1 and « > 0,
the map
(a-\7   \  x    ~7d 7d y   7 7n'/m0y   y

yn2/mo-y    y n„/n¡o-y    y s
^hc       ^A,    1 ' "• 'At        ^hc^n>

has A-degree (-1)^^ and, changing ZhZd+x to ZdZn+x , we have that the
A-degree is (-l)k+xd.

If k > I + 1 > 2, the map
(n—\7   I    v     yn\lmo-yd yd   yn2/m0-y    y y{nhc-\)lmo-y    y
\U        ]Z,h\,X0,/Lhc ^hc^i   ,^hc ¿hc¿2,  ...  ,¿hc ¿hc¿hc_x,

Z""c/mo(x +iv ) Z""c/mo(x +iv ))
^hc \x\+ ly\)y ■■■ y^hc \x„-hc+l+lyn-hc+l>>

also has A-degree (-1) d.
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If / = 0, the map given in the proof of Corollary 4.8 already has the right
form. Note that if / > 1, replacing a with e, one also covers the case when
fi n {Z = 0} ,¿ 0. Moreover, if / = 0, with <P(x0,0) = 0, one cannot have
fin {Z = 0} ¿ 0 and <D(x0,0) ¿ 0 on 9fi, unless k = 0 also. The case
k = I = 0 will be treated below.

Let hc > 1 and \k - l\ even. If 1 < k < I - 2, then choose e so small
that the point x0 = 0, Z( = 0 if i ¿ hc, « + 1, Zhc, Zn+X with |ZA | = a,
lz„+iI = e> belongs to fi. Write x0 = (y0,x0) and consider the map

(,   2,-    ,2 2,„       ,2,2       a 2 .2 2 4
(e \ZK\  -a \Zn+x\ )  -¡ilZ„+il \zh)  + y0 + <* ,

ZhcZn+i(e2\Zhf - a2\Zn+\\2 + V0)»-*b'
~y     y ~y     y yni/m(j-y     y ynfíjmo-y     y    \
ZjhcZjn+2y ■■■ y^hc^hc-X y^hc       ^h^X ' ••• '^hc       ^hc^nj-

The zeros of the above map are in fi and one again gets a suspension by
deforming tp to 0. The coefficients e and a can then be replaced by 1. The
case fi n {Z = 0} ^ 0 can be treated in a similar way by taking e = a .

If I < I < k, choose e as before (i.e., such that x0 = (0, e, 0, ... , a) is in
fi). Writing x0 = (x0, vQ), the map

(,  2,„   ,2 2,„ ,2,2      a 2 2  ,      2  ,     4(e \ZK\  -a |Z,| )  -^jlz,l lz/J  +xo+a ,v0,

Z"h;/m"ZhZx((e\Zhc\)2 - (a\Zx\)2 + ix0),Zn¿""°ZhZ2, ... ,

z!r,m°zA-x>z::c/mo(xx+

has a nonzero A-degree. The case fin{Z = O}^0 can be treated in a similar
way by choosing e = a .

If k = 0, l>2, I + 2n>2, then the map

dZ/J ~ ö> lZll _ £'Z/ii-Z3' ••• 'ZAt-Z//2+l 'Zhc        Z1Z2'
yn2lmo-y        y ytn/mo-y        y \
^hc      z'/¡(.z'//2+2' •■■ y^hc      ^hc^hc-\>

has A-degree which is the (/ + 2« - 2)-suspension of the map (|Z,|-e,Z,Z2),
that is, the Hopf map (e = a if fi n {Z = 0} / 0).

If k = 0, 1 = 2, n = 0, then hc = 2 and via a rotation one may assume that
fin{Z2 = 0} £ 0. Then %(ZX, 0) = <P0(|Z, |, 0) / 0 on 9fi. Since / = 2, the
restriction of ^>0(\ZX |, 0) to 9fi extends without zeros to the set 0 < |Z, | < R.
Moreover, if the restrictions to 9fi of %(ZX ,\Z2\) and of O0(|Z,|,0) have
a nonzero extension to the two-sphere:   9{||Z|| < R, 0 < Z2 < R}, then the

2 2A-degree of the above map is the suspension of a map from 5"   into R \{0} ,
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which is always trivial. This is the case if either Q = {r < \Z\ < R} or
fi = {|Z| < R} (in this case 0 G fi).

If / = 0, k > 4 (then one is restricted to the case fi n {Z = 0} = 0 since
<P0(x0,0) = 0), write x0 = (x,, ... , xk/2), with Xj complex, and consider the
map

(Zhc      dZ/J ~ a + '(1*11   _ \x2\ ))yZhc      xxx2'Zhc      xT>y---yZhc   '    xkßy

(RZhc-aZx)"^/m°-XZx, ... ,(RZhc-aZhc_xr/m°-xZhc_x).

The zeros of this map are either if Z = 0, with <p(x0,0) = 1, or \Zh \ = a,
x0 = 0, Zi = 0, i = l,..., hc-1 with tp = 0, or if \ZhJ = a, x0 = 0, |Z(| = R
for some i with tp = 1. To compute the A-degree of this map, one may deform
the factor ZA"'/m° to 1 (for j = 1, ... , nk/2) and the factor RZh-aZ] to RZhc
and then to 1, since on these zeros tp = 1. Moreover, since the zeros of the
map (|ZJ-a-l-z(|x,|2-|x2|2), x,x2,x3, ... ,xk/2,Zx, ... ,ZK_X) are in fi,
one may deform tp to 0 and obtain the (2« - 2)-suspension of the Hopf map.
Since « > 3 , this generates the only nontrivial degree.

If / = 0, k = 2, consider the map

(Z;;/mo(|Z,J-í2 + /(|x1|2-|Z,|2)),Z,(AZAc-aZ,)',2/mt)-'(x,|Z/¡f|-ae),

Z2(RZhc-aZ2r/m°-X,...,Zn_x(RZhc-aZn_x)n"/m'>-X)

where e is so small that (Z = (e,0, ... ,0,a),x0 = (e,0)) belongs to fi.
Clearly the zeros of this map are either Z = 0 with tp(xQ, 0) = 1, or at \Zh \ =
a, Z;. = 0, x0 = 0 with tp = 0, or at \Zh \ = a, Z(. = 0, i > 2, |Z,| =
x, = e with  tp = 0, and \Zh\ = a,  |Z(.| = R for some  i, with tp = 1.
To compute its A-degree, one may deform z^l'm° to 1, RZh - aZi first to
RZh   and then to 1, xx\Zh\- ae to xxa and then to x, . Note that the map

2 2
(Zh - a + z'(|x,| - |Z,| ),Z,x, ,Z2, ... , Zn_x) has its zeros only in fi. Thus
tp may be deformed to 0 and hence one obtains a (2« - 2)-suspension of the
Hopf map. Note that this argument can be extended to the case k > 4.

If / = 0, k = 0, then hc = n + I and p,([F]si) = 0 (see Theorem 4.4).
If 0 G fi, then pt([F]si) = deg(2z" - 1) = 1. Thus, once again we cannot
have OGfi. In fact, the set B\Q is connected: if not, let fi, be the connected
component of 0, the set fi, would be bounded, invariant, and <I>0 ̂ 0 on 9fi, .
Then it follows from Theorem 4.4 that deg(<I>(Z|, ... ,Zn ,0),fi, n {Zn+X =
0}, 0) = (A/«o) deg(2z- 1)^0. But, from the generalized homotopy property,
this degree should be the degree of G>(Z,, ... ,Zn,R) with respect to fi, n
{Zn+X = R} = 0. Since the set B\Q is open, there is a path Z(t) from 0
to (R,0, ... ,0) which avoids fi. One may assume that the path is smooth
and that Zx(t) ¿ 0 for t > 0 (since the set Z, = 0 is a (2(« + 1) - 2)-
surface and the path is one dimensional: use transversality). Since e'9Z(t)
does not intersect fi, one may choose the path such that Zj(z') is real and
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positive for t > 0. At this point it is not difficult to see that one may choose
the path in such a way that it is induced from an equivariant homeomorphism
0(£,, ... ,Çn+l) = (Zx, ... ,Zn+x) such that the £, -real positive axis is sent into
the path (indeed, go to the orbit space where the action is free). Now consider
the map

«nu - a+mx\ - \^2\)C!?\^a+^n+x)(R^n+x - ^2r/m°-',

for « > 1, where (e, 0, ... , 0, a) e 6~ ' (fi), a > 0, e small enough, and R
such that the ball of radius R contains 8~'(fi). Choose the neighborhood A
of 9fi in such a way that ç(Çx,0, ... ,0) = I. The zeros of this map either
are £ = 0 (where tp = 1) or \Çn+x\ = a, \ÇX\ = \Ç2\, with |<j[.| = R for some j
(hence tp = 1 since one is outside 6~'(fi)), or £ = 0, j > 3, and |£,| = 0,
or e (hence tp = 0 since one is inside G~'(fi)).

For 0 < £n+, < R, deform the term ^xm° first to 1, the factors {RÇn+l -aCß
to RÇn+x and then to 1 (tp = 1 on the zeros of this deformation), ea to 0
(tp = 0 on the zeros of this deformation), and ^"»l^n+i t0 ^"m • One obtains
the map

(2/ + 2^-l,{(,+1-a + i(|{1|-|í2|),í1í2,í3,...,«,,)

and, by deforming tp to 0, the (2« - 2)-suspension of the Hopf map, if « > 1 .
Since the class of 0 o / is the class (in Z2 ) of the map F , one has the result
in this case.

Now let/ = 0,fc = 0,« = l (then hc = 2). If fi is such that any map
/(Z,, |Z2|) has a nonzero continuous extension / from 9fi n {0 < Z2 < R}
to  (B\Q) n {0 < Z2 < R}, then the class of (2t + 2tp - 1,/)   is the sus-

~ 2 1
pension of /, i.e., a map from S    into S , hence trivial.   For example, if

2 2 2 ffi = {(Z, ,Z2): (|Z2| - a) + |Z,| < r }, a > r, one may extend the map /
radially outside the ball.

(ii) If fi n {Z = 0} t¿ 0, one gets any element of kerp^, except if / = 0
besides the exceptions already encountered in the previous situations.

For the elements of lmpt, generated by the map

(f0(x0,t),%(x0,t),Zxn'/mo, ... ,Zm™/ma ,0, ... ,0)

in the case when m < hc and k > I (k > I if m = hc, thus hc < n), let
O0: 9{||x0|| < Aq} —y R \{0} represent any element in nk_x(S ~x). Extend O0
to the ball {||x0|| < R0} radially so that the only zero is at x0 = 0.   Thus,
the map (O0(x0), Z,"l/m°, ... , Zmm/m°, 0, .... 0) has its only zero at the ori-
gin and pt(2t + 2tp - 1 ,<P0) is the suspension of the class of the map <P0.
Conversely, if fi is such that any nonzero map defined on 9(fi n {Z = 0})
extends without zeros to (B\Q) n {Z = 0}, then the A1-class of the map
(2t + 2<p-l,%,Z"l/m°, ... ,Z^m/m°,0, ... ,0) is the suspension of the class of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DEGREE THEORY FOR EQUIVARIANT MAPS. I 507

(%,Zxi,m°,...,Z^m/mo,0,...,0). Note that if / = 0, since 0>(x0,0) = 0,
the equivariant map is nonzero on 9(fi n {Z =0}) if k > 0, but then
nk(S') = 0.

Finally, if k = I = 0 then Imp# = 0 except if m < hc. In fact, in this case
7r0(5°) = Z2 is generated by 2t - 1 and then (Z"'/m°, ... ,Z"m/m\0) covers
Imp,.   Q.E.D.

We now give a simple example, as already indicated in the introduction, of
a map having trivial generalized degree but its 5 -degree is nontrivial.

The same example shows that if one looked at the generalized degree on
isotropy subgroups, one would not gain more information on the S -degree of
the map (unless m = « and the action is the same both on the domain and on
the range of /).

Example D.7. Let D be the unit disk in C3 and let /:D-»RxC2 be defined
by

f(X, z,, z2) = (|z,|2 + |z2|2 -\,Xzx ,Xaz2) ;
—\a\if a is negative then Xa = X

The map / has generalized degree 0 in n5(S ) if and only if a is odd (see
[I0,p.9]).

In particular, if a = 1 the map

/(a,z,,z2) = (|z,|  +\z2\   -\,Xzx-K(X,zx,z2)z2,Xz2 + K(X,zx,z2yzx),
2 2 2where k(X,zx,z2) = 1 - (\X\  + |z,|   + |z2| ), is a nonvanishing extension of

f\0D to D ■
Now if we take on both C3 and R x C   the standard semifree S '-actions

e'9(X,zx,z2) = (X,e"pzx,e"pz2),       (X,zx,z2)eC3,

e,,p(y0 ,£, ,£2) = fro -<*'% ' *'%) '       fro ' zi ' z2) G R x c2 '

then the map f is S -equivariant and has ¿''-degree the couple (0,a + 1),
where 0 corresponds to the degree of the invariant part /(A,0,0) = -\ and
a + 1 comes from its equivariant part. To see this, use the S -homotopy

\z |2 + |z i2_ Ilzll    T- |Z2| 2 ' ( txa+x    (i -t)xa) \z2)) ■

Hence, a + 1 is the Brouwer degree of the map (|z,| + |z2|2 - j ,Xa+xzx ,z2)
with respect to the open set {(a , z,, z2) e D, z, G R+} .

Thus the S -degree of / is nontrivial if and only if ají -1 . In the case when
a = -1, the map f(X,zx ,z2) = (|z,| + |z2| - \ ,Xzx - k(X,zx ,z2)z2,Xz2 +
k(X,zx,z2)zx) is a nonvanishing Sx -equivariant extension of / to D.

Observe that the degrees of the map / on the isotropy subspaces do not give
any further information. Indeed, since the above S -action is semifree the only
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isotropy subgroups 77 of Sx are {<?} and Sx itself. If 77 = {e}, then the
degree of / is nontrivial only if a is even and, if H = Sx , then one is left
with only the invariant part of /.

1 o 2

If instead we now let S   act on both C   and R x C   as
e   (A,z,,z2) = (/l,í>vz,,é> rz2),

^(y0,^,^) = (y0,ei%,ei2%),

we may reduce the analysis to a A -almost semifree action by considering the
map /: C3 — R x C2 defined by

f(X,Zx ,Z2) = f(X,Zx ,z\) = (|Z,|2 + |Z2|2 -\,xzx ,xaz\),
where C. denotes C with the standard semifree S '-action. Now the map
/ has 5 -degree the couple (0,2 + a). To show this, we may proceed as
follows. To each map of the form (/0,/,,/2):C. -»RxC we associate the
5'-equivariant map (f0,fx ,/2):C. —>RxC2, where RxC2 stands for RxC2
with the ¿'-action (y0 ,<?/2% ,ei2fZ2).

This operation induces a multiplication by 2 for the ¿'-degree of the map

(|Z||  + |Z2|   — 2,x Z, ,A Z2)

from C. into RxC2 with the standard ¿'-action. Using the same argument
as above, we obtain that the map

(iz.i' + iz.Y-i^X.rz2)
has ¿'-degree equal to (0,2(2 + a)) and therefore our original map has ¿'-
degree equal to (0,2 + a).

If a = —2 , the map

(|Z,|   +|Z2|   - j,XZx - k(X,Zx ,Z2)Z2,X Z2 +k(X,Zx ,Z2) Z, )

is a nonvanishing ¿ -equivariant extension of / but it does not arise from a
map depending on the variables (X, z,, z2). In fact, the map (|z, | + |z2| -
j,Xzx,Xa z2), with the ¿ -action given by (*), has ¿ -degree (0,q,2 + q;)
which is never vanishing. This computation will be undertaken in [I.M.V.l].

We add a final warning: in general the T-degree of a map will have several
components (as in the last case) corresponding to different isotropy subspaces,
but the fact that one of these components is nonzero does not imply the existence
of zeros in the corresponding isotropy subspace, as the following example shows.

Consider on both RxC   and R x R x C the ¿ -action given by

e'9(x0,X,z) = (x0,X,e'9z),

e'9(yx,y2,i) = (yx,y2,e'9i).

The S -equivariant map

f(xQ,X, z) = (x02 + |z|2 - ¿ , |A|2x0 + |z|2 ,Xz),
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from the unit disk D in R x C2 into R x R x C has the invariant part

/(x0,A,0) = (x2-¿,|a|2x0)

with trivial generalized degree in 7i3(¿2). In fact, it has a nonvanishing exten-
sion to D given by

(x2 - \ , |a|2x0 + (1 - x2 - |a|2)x0) .

On the other hand, the other component of the S -degree of / is given by the
Brouwer degree of the map

(x2 + |z|2 - \ , |a|2x0 + (l-x\- \X\2 - |z|2)x0 + \z\2 ,Xz)
2 2 2 4-with respect to the set {x0 + \X\ +\z\ < 1, z e R }. Since the only zero of this

map is (x0 = -j, X = 0, z = £), it is easy to see that its degree is 1. Thus the
map / has nontrivial S -degree arising from its ¿ -equivariant component,
but the only zeros of / are (x2 = \, X = 0, z = 0) ; i.e., they belong to the
fixed-point subspace of stationary points.
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