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Degrees of Freedom in Adaptive Modulation:
A Unified View

Seong Taek Chungtudent Member, IEEEBNd Andrea J. Goldsmitlsenior Member, IEEE

Abstract—We examine adaptive modulation schemes for flat- achieved by varying the transmit power alone [14]. Moreover,
fading channels where the data rate, transmit power, and instanta- [6] also indicates that varying both power and rate leads to
neous BER are varied to maximize spectral efficiency, subject to an a negligibly higher capacity over varying just the rate alone.

average power and BER constraint. Both continuous-rate and dis- H Sh it that the BER i bitraril
crete-rate adaptation are considered, as well as average and instan- owever, shannon capacity assumes that the IS arbitranly

taneous BER constraints. We find the general form of power, BER, Small, coding schemes are random and of unbounded length
and data rate adaptation that maximizes spectral efficiency fora and complexity, and there is no delay constraint. Therefore
large class of modulation techniques and fading distributions. The capacity results do not necessarily yield insight into the best
optimal adaptation of these parameters is to increase the POWer 5 yantive schemes to use under more practical constraints. There
and data rate and decrease the BER as the channel quality im- . . ; -

proves. Surprisingly, little spectral efficiency is lost when the power is much recgnt work on adaptive m(_)dulatlon that varies one or
or rate is constrained to be constant. Hence, the spectral efficiency tW0 modulation parameters. In particular, [1]-[3], [6], and [7]

of adaptive modulation is relatively insensitive to which degrees of investigate adapting power and/or rate, [4] and [9] investigate

freedom are adapted. adapting rate and coding, and [5] investigates adapting power,
Index Terms—Adaptive modulation, communication systems, rate, and instantaneous BER. However, no unified study on the
fading channels, spectral efficiency. tradeoffs in adapting all combinations of different modulation

parameters has been previously undertaken.

In this paper we provide a systematic study on the increase
in spectral efficiency obtained by optimally varying combina-

DAPTIVE MODULATION is a promising technique to tions of the transmission rate, power, and instantaneous BER.
increase the data rate that can be reliably transmitted owge assume that the resulting adaptive modulation schemes are

fading channels. For this reason some form of adaptive modutabject to an average power and BER constraint. We do not con-
tion is being proposed or implemented in many next generatigigler symbol rate adaptation since it is difficult to implement in
wireless systems. The basic premise of adaptive modulatiorréal systems. The effect of adaptive channel coding is also not
a real-time balancing of the link budget in flat fading througBonsidered. We first analyze adaptive modulation with contin-
adaptive variation of the transmitted power level, symbol trangeus rate adaptation, where the set of signal constellations is un-
mission rate, constellation size, BER, coding rate/scheme,restricted, and then consider the more practical scenario where
any combination of these parameters [1]-[7], [9], [13], [16]only a discrete finite set of constellations is available. Analysis is
Thus, without wasting power or sacrificing BER, these scheméene for both an average and an instantaneous BER constraint.
provide a higher average link spectral efficiency (bps/Hz) b@ur goal is to determine the impact on spectral efficiency of
taking advantage of flat fading through adaptation. Good perfaielapting various modulation parameters under different constel-
mance of adaptive modulation requires accurate channel estia@on restrictions and BER constraints, for a large class of mod-
tion at the receiver and a reliable feedback path between theuation techniques and fading distributions.
ceiver and transmitter. The impact of estimation error and delayThe remainder of this paper is organized as follows. The
on adaptive modulation schemes has been studied in [7]-[9]Section Il describes the system model, including the average

Adaptive modulation provides many parameters that c@ower and BER constraints. Section Ill presents the BER
be adjusted relative to the channel fading, including daggproximations used to derive the optimal adaptive modulation
rate, transmit power, instantaneous BER, symbol rate, agcheme. We derive the optimal rate, power, and BER adaptation
channel code rate or scheme. The question therefore arisestestegies under different constellation restrictions and BER
to which of these parameters should be adapted to obtain gamstraints in Section IV. Numerical results and plots of spectral
best performance. Results from [6] indicate that the Shannefficiency, optimal power adaptation, optimal BER adaptation,
capacity of a flat-fading channel is achieved by varying botnd optimal rate adaptation are presented in Section V. We
transmission rate and power, and this capacity can also éamine constant power and constant rate adaptation in Sec-

tion VI. Conclusions will be given in Section VII.
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University, Stanford, CA 94305 USA (e-mail: stchung@dsl.stanford.edkll'v . . . . .

andrea@systems. stanford.edu). e assume a discrete-time channel with stationary and ergodic
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Fig. 1. System model.

Let S denote the average transmit signal powérdenote the and for discrete rate adaptation it is given by
variance ofz[i], B denote the received signal bandwidth, gnd

denote the average channel power gain. With appropriate scaling rR = Yit1
of S, we can assume thgt = 1. There is a feedback path B z% kzL p(v)d~ bps/Hz )

from the receiver to the transmitter for sending channel esti-

mates. This path is assumed to be instantaneous and error-ffg@ rate adaptatioh(~) is typically parameterized by the av-
so the channel gain estimajéi] = g[i]. The impact of feed- erage transmit powes and the BER of the modulation tech-
back delay and channel estimation error on the performanggue, as discussed in more detail in Section IV.

of adaptive modulation has been studied in [7]. For a constantye assume an average transmit power constraint given by
transmit powerS, the instantaneous received SNRvig] =
Sgli]/o%. We denote the transmit power at timewhich is a
function of~[i], by 5 (7[¢]). The received SNR at timiis then

v[i](S(~[i])/S). Sinceg[i] is stationary, the distribution off:] _ .
is independent of, and we denote this distribution by(~). For the BER, we assume either an average (A-BER) or an instan-

When the context is clear, we will omit the time referencel- taneous (I-BER) constraistThe instantaneous BER constraint

ative toy and S(~). We also assume ideal coherent phase di2plies that the system must maintain a constant probability of

tection. bit error for each fading value. This is more restrictive than the
The parameters that can be adapted at the transmitter incl@4grage constraint. There are two possible definitions for the av-

the transmission rate, power, and instantaneous BER. We \ii{9€ BER constraint:

consider both continuous rate adaptation (C-Rate), where the

7

Amshmhﬂvsg- (3)

E[number of error bits per transmissjon

set of signal constellations is unrestricted, as well as discrete BER = Einumber of bits ber ransmission (4)
rate adaptation (D-Rate), where only a discrete finite séY of [ P p
constellations is available. For the D-Rate case the rate regmn
. N-1 . .
boundaries{~; },_," define the range of values over which number of error bits per transmissibn
the different constellations are transmitted. Specifically, we as- BER = E _ P i . (5
number of bits per transmission

sign one signal constellation and a corresponding data rate of

kihblts/sym_bol to esch rﬁ\te. regifn;, vi+1) (g S ”5 N E_l)' Definition (4) is slightly better than (5) since, for a stationary
whereyy = oo. When the instantaneous SNRalls within a ., org0dic fading process, (4) gives a more accurate measure
given reglon, the as_soue_lted signal constellation is transmitted e ota] number of bits received in error divided by the total
No signal is transmitted # < -o. ThuS,yo Serves as a Cutoff ;o1 of pits received. We will therefore consider only the first

SNR below which the channel is not used. We will find thatﬁefinition in deriving the optimal power and rate adaptation.

in the C-Rate case there is also an optimized cutoff vale,  \yhen applied to continuous rate adaptation (4) becomes
below which the channel is not used. Thus, for both continuous

and discrete rate adaptation, when the channel quality is signif- [ BER(Y)k(7)p(y)dy
icantly degraded, the channel should not be used. BER = T k()p(0)d
The spectral efficiency of our modulation scheme equals its o MUPLYEY

average data rate per unit bandwidti/ B). When we send and when applied to discrete rate adaptation (4) becomes
k(v) = log,[M (] (bits/symbol), the instantaneous data rate is

(6)

k(v)/T, (bps), wherel’, is the symbol time. Assuming Nyquist Zf\:ol ki [7 BER(y)p(v)dy
data pulsesB = 1/1,), for continuous rate adaptation the BER = N_ﬂ]; oy p . (7)
spectral efficiency is given by > im0 vifz. p(v)dy

R 0o IThe average BER is typically used to characterize quality for voice commu-
o i nications in fast fading. For data systems, the frame error rate is typically the
- /0 k(’y)p(’y)d’y bits/s/Hz (1) quantity of interest, and this can be computed from the instantaneous BER.

B
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[ll. BER APPROXIMATIONS '
roximation

In order to obtain the optimal power and rate adaptation fc 1" : : o
different modulation schemes, for each modulation techniqi
we need an expression for its BER in AWGN that is easily in
verted with respect to rate and power. Unfortunately, for mo 4
nonbinary modulation techniques (e.g., MQAM and MPSK
an exact expression for BER is hard to find. Often the BEI, ™
with Gray bit mapping [10] at high SNR'’s is approximated 5‘1%10-
the symbol error rate (SER) divided by the number of bits pe
symbol(log, M). Closed-form expressions for SER of MQAM 107
and MPSK as functions of transmission rate and power can :
found in [10]. But these expressions are neither easily invertib
nor easily differentiable in their arguments. These properties e 1
needed for adaptive modulation design. Therefore, we now i , _ , , S
troduce new tight BER approximations for several modulatio "’ s mn 5 20 w0 a0
techniques in AWGN that can be easily differentiated and ir- SR B
verted. We later use these approximations to derive the optingg) ». BER approximations for MQAM.
power and rate adaptation of the corresponding adaptive modu-
lation techniques. |

- I :
i:0i1 — Approximation (10)
'} O Exact[12, Tabte lI}

A. BER Approximation for MQAM T [ T )

— - Modsl 3 (13)

The expression for the BER of square MQAM with Gray bit ;-
mapping in AWGN as a function of received SNRS(v)/5)

and constellation siz&/ = 2*() is approximately [10], [11] 107 1
10- . ERERREE) | L AN > : —
9 1 . COR RN e R
BERM@an ~ 1— & SRR T eSOy Ry T )
I\IQAI\I(W) k(,}/) < vV 2"(7)) 107 I NN R N R ":\: I 3
= 5 dnan
xerfc 1")—2k(w) — (8) o

where the approximation is tightest at high SNRs. This expre

sion is not easily differentiable or invertible in its powgty) TP e N SN R | T
or ratek(-y), so we now consider a different approximation witt ° ° ° © R * ® 0
these properties. We find an approximation for BER tight to
within 1 dB for k(’y) > 2 and BER< 103 ag Fig. 3. BER approximations for MPSK using Models 1, 2, 3.
1.6 S However, the approximation (10) is not easily invertible and dif-
BERmqam(7) ~ 0.2exp [W] (9) ferentiable in its arguments. Therefore we now consider BER
approximations that have such properties.

By curve-fitting, we find three different BER approximations
In Fig. 2 the tightness of this BER approximation (9) to th?nat are valid fork(v) > 2 within 1.5 dB of error forBER <

standard formula (8) is shown. 10~2. The bounds are given as

B. BER Approximation for MPSK _gy S
The BER expression for MPSK in AWGN with Gray bitmap- ~ Model 1 BERypsk () ~0.05 exp [W] (11)
ping andM = 2¥(") is commonly approximated as [10] o
72
. ~ S
1 S(’y) . . Model 2 BERMPsK (’y) ~0.2exp [—21-9k(7) 1 . (12)
BERwmpsk(7) = -—erfc| 4/y—===sin (2]“(”) . (10)

k() S

_gy20)
Model 3 BER]\'IPSK(’Y) ~0.25 exp [m] . (13)
In Fig. 3 we show that the approximation (10) provides an ex-

cellent fit to the exact BER for MPSK given in [12, Table I1]. o o
hese approximations are plotted in Fig. 3 as “Model 1,”

2In[7, eq. (17)] a similar expression was used with 1.5 in the exponentinstéMOdel 2,"and “MOdel 3, where they a_re Show_n to be close
of 1.6. This approximation is looser. to the exact BER in [12, Table II], especially at high SNRs.
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C. Generic Form of BER Approximations get that the power and BER adaptation that maximize spectral

The approximations (9) and (11)—(13) for all modulatior?]cfiCienCy satisfy
techniques can be written in the following generic form:

k —
S5(v) @ = max M()\lBER -1
7S S 2f(k() |, =
BER(v) = ¢1 exp ( )) (14) 550 A2S
2
where —M 0 (18)
o (k)
C27Y k() ( )
F(k(y) =278 — ¢y (15)
for nonnegative:(y), and
c1, c2, andes are positive fixed constants, angdis a real con-
stant. Note that for the BER bounds on MQAM and MPSK dis- )\2§f(k(ry))
cussed above, = 1, —1, or 0, andl < ¢z < 2. The generic BER(y) = Nk () (19)
expression (14) is valid for MQAM and MPSK to within 1.5 dB
of error fork(y) > 2 andBER < 1072, Moreover, from (14), (18), and (19) we get that the optimal rate

adaptationk(~) is either zero or the nonnegative solution of
IV. OPTIMAL RATE, POWER, AND BER ADAPTATION

)\1BER -1 f(k(’y)) . 1 )\101027/&‘(’}0
In this section we determine the optimal rate, power, and BEr( ( P )) — af(k( )) = ’YT In m .
adaptation for maximizing spectral efficiency in the followmg VINE gyt k(v) > 2 K
Ok(y) k()
four cases: continuous rate adaptation with an average BER con- (20)

straint (C-Rate A-BER), continuous rate adaptation with an iffhe values of:() and the Lagrangians; and X, are found
stantaneous BER constraint (C-Rate I-BER), discrete rate addpough a numerical search such that the average power (3) and
tation with an average BER constraint (D-Rate A-BER), arBER (6) constraints are satisfied. More details on the numerical
discrete rate adaptation with an instantaneous BER constraearch process are described in Appendix A. Numerical results
(D-Rate I-BER). Our analysis here applies for any fading diger the resulting adaptive policies and corresponding spectral
tribution. Clearly the instantaneous BER constraints are spea#iciency are given in Section V.

cases of the average BER constraints, and will therefore have a

lower spectral efficiency. B. Continuous Rate and Instantaneous BER (C-Rate |-BER)

We now derive the optimal continuous rate and power
A. Continuous Rate and Aage BER(C-Rate A-BER) adaptation to maximize spectral efficiency (1) subject to
We now derive the optimal continuous rate, power, and BEIRe average power constraint (3) and an instantaneous BER
adaptation to maximize spectral efficiency (1) subject to the agonstrainBER(y) = BER. This case was investigated in [7]
erage power constraint (3) and the average BER constraint (6. MQAM, and we now extend that analysis to more general
This is a standard constrained optimization problem, which v@edulations using our generic BER expression (14). We can

solve using the Lagrange method. The Lagrange equation isinvert (14) to expresé(y) as a function of the power control
S() and the fixed bit-error-ratBER as

J(k(7),S()) = /0 B k(y)p(v)dy k()

Y [ / " BER(y)k(1)p(~)dy

o ) temfer - — 25080 20, k(1) 2 0
- BER / K] w ()
0, else.
+ Ao [ / S(y)p(y)dy — s} (16) (21)

. . . To maximize spectral efficiency (1) we create the Lagrangian
The optimal rate and power adaptation should satisfy P y @) grang

EA——T (17) J(S(v) = /OOO k(y)p(v)dy + A UOOO S(y)p(y)dy — ?JZ.Z)

Ik(7) 95(7)
The optimal power adaptation must be nonnegative and satisfy

with the additional constraint that(v) and .S () are nonneg-
ative for all~. Let f(k(v)) be as defined in (15). Then using aJ

the generic BER expression (14) in (16) and solving (17) we S(y) 0, S(v)20 k)20 (23)
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Solving (23) for.S(v) with (21) for k(v) yields the optimal From (21) the optimal rate adaptation then becomes

power adaptation 1 ( )
— log, ( Y270
1 1 k(y) =19 ¢z 22 \0)” (31)
5(v) - — = 5(7)20,k(y) >0, 3
5 = ca(n2)hs 7K (v) 2 (v) 2 0, else
0 else wherevyo = —(1/K ) is a cutoff fade depth below which the
(24) . . . C
where channel is not used. Note that in the previous section it was
the positivity constraint on powgiS(~) > 0) that dictated the
Ke—_ 2 (25) cutoff fade depth, whereas it is the positivity constraint on rate
il <BER> (k(v) > 0) that determines this cutoff. We can rewrite (30) in
4 111 -
' terms ofy, as
The power adaptation (24) can be written in the more simplified g 1 1
v ) 2>
form % = { Yo(—K) + ~—K)y 1= (32)
g 1 0, else.
Q = { w= vK’ S 20, k(7) 20 (26) This power adaptation is anverse-waterfillingsinceK is neg-
S 0, else. ative, less power is used as the channel quality increases above

The constant: in (26) is obtained from the average power cont-he optimized cutoff fade deptfy. The value ofyo must satisfy

straint (3). Although the analytical expression for the optimgﬁ'e average power constraint (3):

power adaptation (26) looks simple, its behavior is highly de- 11 1 g — 1 33
pendent on the, values in the BER approximation (14)—(15). . Kl T ” plyydy =1. (33)
In the BER approximations of Section Il takes values 1;-1 L N _ _
or 0. We now investigate the behavior of the optimal power and3) BER Approximation (13)4 = 0: Whene, = 0, K =

rate adaptation scheme for each of these values. >0, so from (26)

0

1) BER Approximations (9) and (11; = 1: Whenc, =1, S _ {u kE(v) =20, S(v) =20, (34)
K is positivé . Thus . must be positive foiS(y)/S = u — S lo else.
(1/7K) to be nonnegative. Moreover, féf positivek(y) = 0 This ison—offpower transmission: either power is zero or a con-
for anyS(v) = 0. With 11 = 0 (26) can be expressed as stant nonzero valdeFrom (21) the optimal rate adaptatibfr)
() 1 1 5 0 with this power adaptation is
— >
%_{%K K (v) 2 27) . .,
0, else _) —loga |l — ), 7=
- . , k() =19 ¢s . (35)
wherevy > 0 is a cutoff fade depth below which no signal 0, else

is transmitted. Note that the cutoff is dictated by the positivity
constraint on powefS(vy) > 0). The cutoff valuey, must wherey, = —(In(BER/c1)/c2p) is a cutoff fade depth below

satisfy the average power constraint (3) as which the channel is not used. As in Section IV-B-Il, it is the
o 111 1 rate positivity constraint that determines the cutoff fade depth
/ e L_ — ;} p(y)dy = 1. (28) 0. The optimal power adaptation as a functionygfis
Yo 0
The optimal power adaptation (27) isnaterfilling in power: & _ @, Y2 Y (36)
more power is used as the channel quality increases above the S 070 else
optimized cutoff fade depth,. The same form of optimal power
adaptation was previously derived in [7], since the BER approwhere Ky = —(In(BER/c;)/c2). The value ofy, is deter-

imation used in [7] is of the same form as (9) and (11). The omined from the average power constraint to satisfy
timal rate adaptation, obtained by substituting (27) into (21), is

K oo
L, 0 [ par=1. 37)
E(v) = alOgQ <%> = (29) 70 S
else. So for all our BER approximations, the optimal adaptive rate

?

o schemes (29), (31) and (35) have the same form while the op-
~ 2) BER Approximation (12f4 = —1: Whencs = —1, K ima| adaptive power schemes (27), (32) and (36) have different
is negative. From (21), with" negative we must have > 0 ¢5yms. |n other words, although all three BER approximations
in (26) to makek(v) > 0. Then the optimal power adaptationg, \psK (11)-(13) are tight, they lead to the same optimal
such thatS(v) > 0 andk(y) > 0 becomes adaptive rate policy but very different optimal adaptive power

1
S(v) _ ) b= ==, k(’y) >0 (30) 4In [5] a similar formula forS(~) was obtained based on a similar BER ap-
S vK proximation withc, = 0. However, the power adaptation in [5] did not specify
0, else. a cutoff value: power is constant fal fading values, but the rate gets asymp-

. . — totically small in bad channels. Therefore, this strategy leads to a suboptimal
%From (25) the sign o = —c»/ (“4 hl(BER/ﬁ)) depends only o4,  gpectral efficiency as power is allocated below the optimal cutpfiefined by
sincec; ande, are positive constants afid< BER < ¢;. (37).
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= mog'e: e The optimal power adaptation is obtained by solving the fol-
vol Twmaaseal|  lowing equation forS(+):

. aJ
=0. 39
i a5 (vy) (39)
L _ i Similarly, the optimal rate region boundaries are obtained by
" ' ’ solving the following set of equations fot:
5 aJ
i =0, 0<i<N-1. (40)
i
| From (39) we see that the optimal power and BER adaptation
. must satisfy
] IBER(y) —X2
= v % S Y S Vit 41
| 95(7) o ST Som (41)
-10 -5 0 5 10 15 20 25 30 35 40
1 Substituting (14) into (41) we get that
Fig. 4. S(v)/S in Model 1, 2, 3 for MPSKBER = 103, 7 = 30 dB). .
BER(y) = v (/]:) (42)
Vi

policies. The optimal power adaptations (27), (32), and (36) PWherex = SA2/coA1. This form of BER adaptation is similar

Elotted n F|g..4 for Rayleigh fading witlBER . 1.0 3.and to thewaterfilling power adaptation, since the BER decreases
V= 30.d.B' This figure clearly_shows thg water-filling, NVEISEs the channel quality improves. Now setting the BER in (14)
water-filling, and on—off behavior of the different schemes. Note ual to (42) and solving fo () yields

that the cutoffy, for all these schemes is roughly the same. \/\Feq 9 Yy

also see from this figure that even though the power adaptation S() = S(7), v << Y41 (43)
schemes are different at low SNRs, they are almost the same at

high SNRs. Specifically we see that for < 10, the optimal where

transmit power adaptations are dramatically different, while for Si(y) . |:)\f(ki):| F(ks)

~ > 10 they rapidly converge to the same constant value. From — )
the cumulative density function ef also shown in Fig. 4, the e
probability thaty is less than 10 is 0.01. Thus, although the opand S(+) = 0 for v < o. We see from (44) tha$(~) is dis-
timal power adaptation corresponding to low SNRs is very digontinuous at the; boundaries.

ferent for the different techniques, this behavior has little impact \We now consider the optimal rate region boundaries. From
on spectral efficiency since the probability of being at those log0) we get that

SNRs is quite small.

0<i<N-1 (44
c1vk;

BER(y;) —BER — L — 22 5i(0) = Siza ()

MNOA ki ks ’
C. Discrete Rate and Avage BER(D-Rate A-BER) 0<i< N — 11 ' ' (45)

In the discrete rate case, the rate is varied within a fixed seﬁ .
{k‘}N—l and we assign raté; to the rate regioriy, vi11) wherek_; = 0andS_;(~) = 0. Unfortunately, this set of equa-
‘4i=0 © "+ tions is very difficult to solve for the optimal boundary points

Under this fixed rate assignment we wish to maximize spec- . : .
- . 1~ }. However, if we assume that(~) is continuous at each
tral efficiency through optimal rate, power, and BER adaptati
%lfmdary then we get that

subject to an average power and BER constraint. Since the se
possible rates and their corresponding rate region assignments
are fixed, the optimal rate adaptation corresponds to finding the
optimal rate region boundarieg, i = 0,..., N — 1. The La-
grangian for this constrained optimization problem is

BER(%):BER_%, 0<i<N-1  (46)

for some constant. Under this assumption we can solve for the
suboptimal rate region boundaries as

J (735 S(7) =T, gcicn (47)
Vit1 kZ
= > h / p(y)dy for some constant. The constant$ andp are found numeri-
OsisN-L 7 cally such that the average power (3) and BER (7) constraints
Yit1 _ are satisfied. Note that the region boundaries (47) are subop-
A Z kw/ (BER(v) — BER)p()dy timal sinceS(~) is not necessarily continuous at the boundary

SrEN regions, and therefore these boundaries yield a suboptimal spec-
> = tral efficiency. However, we will see in Section V that these sub-
A2 [L SMp(dy S} ) (38) optimal boundaries yield a spectral efficiency close to that of
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12

continuous rate adaptation, so they impose little penalty on tf
discrete rate policy.

T
— C-Rate A-BER
-+ C-Rate I-BER
—- D-Rate A-BER (suboptimal)
— - D-Rate i-BER

D. Discrete Rate and Instantaneous BER (D-Rate I-BER)

With the same discrete rate s@tz}f\:_ol and the same rate
assignment; to region[v;,v;+1) as in the previous section,
we now assume an instantaneous BER constraint, so tF
BER(y) = BER. Under these constraints the optimal powel
adaptation is given as

S()

Maximum Spectral Efficiency (bps/Hz)

_ h(ki)
S v (48)

whereh(k;) = —(1/c2)In (BER/cy) f(k:). We find the op-

timal rate region boundaries that maximize spectral efficienc o r s = = = o
Average SNR (dB)

using the Lagrangian method. The Lagrange equation is give..

as Fig. 5. Spectral efficiency for MQAM.
Yit1
J(Wla Y2400y ’7]\7) = Z kz / p(’Y)d’Y 15 . 1.5
0<i<N-—1 i : :
Yit+1 ] k 1
+A / o Z)p(’y)d’y —-1]. 2
0<i<N—177i v ? s
(49)
00 10 éO 30 40 0 1.0 2>0 36 40

The optimal rate region boundaries are obtained by solving t
following equation fory;.

1.5

¥ (dB)

15

¥(dB)

(b)

alJ
=0, 0<¢<N-1 (50)
a’}/z 1 1
ln Ig
This yields % s 7 s
h(k
Yo = ( O)p (51) 0 0 .
k() 0 10 20 30 40 [} 10 20 30 40
Y (dB) v (dB)
and () (d)
hik:) — h(k;_ Fig. 6. S(v)/5 for MQAM (BER = 1073, 7 = 30 dB).
%:if—%;ﬂplsiSN—l (52)
P~ il

is calculated with suboptimal rate region boundaries. The
optimal power control scheme§(v)/S, for BER = 1073
is given in Fig. 6. We see from these figures that the optimal
transmit power follows a smooth water-filling with respect to
Although our derivations are for general fading distributions; under the C-Rate A-BER and C-Rate I-BER policies while
modulations, and BER approximations, we compute our ntire optimal power adaptation curve is quite steep under the
merical results for adaptive MQAM in Rayleigh fading base®-Rate A-BER and D-Rate I-BER policies. The optimal BER
on the BER approximation (9). We assume a BER requiremeatdaptation BER(v), for BER = 1072 is given in Fig. 7.
of either10~2 or 10~7. For the discrete rate cases we assuni@r the C-Rate A-BER policy we see that the BER decreases
that 6 different MQAM signal constellations are available, comonotonically, is within an order of magnitude of its target
responding to 2 (4 QAM), 4 (16 QAM), 6 (64 QAM), 8 (256value, and is above this target at SNRs befowhe fluctuation
QAM), 10 (1024 QAM), and 12 (4096 QAM) bits/symbol.  of BER in the D-Rate A-BER policy is smaller than that in
The average spectral efficiencies for the four adaptati@+Rate case and goes above and below this target often. The
policies (C-Rate A-BER, C-Rate I-BER, D-Rate A-BER, andptimal rate adaptatiork(), for BER = 1072 is given in
D-Rate I-BER) are plotted in Fig. 5. The spectral efficiencieBig. 8. All four rate adaptation schemes show that more bits
of all four policies under the same BER constraints are veaye transmitted ag increases. Although Figs. 6— 8 shdigy),
close to each other. The spectral efficiency of D-Rate I-BERER(~v), andk(v) for BER = 10~2, plots for these functions
is slightly higher than that of D-Rate A-BER since the latteat BER = 10~7 indicate similar trends.

wherep is determined by the average power constraint (3).

V. NUMERICAL RESULTS
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Skttt For our numerical calculations we use MQAM constellations

with a target BER of eithei0—2 or 10~ 7 under Rayleigh fading,
as in Section V.

Ew“—
@ S = S HE A. Constant Power
bl A =i B HHIE - e GO i 1 In this section we maximize spectral efficiency assuming a
10— i L = ~———  constant transmit power with a cutoff threshold below which the
1(08) channel is not used. We first consider the C-Rate I-BER policy.
(@) The average power constraint (3) dictates that with threshgld
D-Rate A-BER (suboptimal) the constant transmit powei(v) = S satisfies
107" ; — T T T r :
S 1
10°E : : E == 7o N (53)
ccémﬂ \[\[\\\[\\\/\[\: 5 o P(’Y)d’Y
N ol : : 1 The ratek(~) should be adapted as follows. From (21)
10750 é 1‘0 1I5 2‘0 2‘5 3‘0 3’5 40 k(’y)
¥ (dB)
1
®) _ cL 1Og2 Cq — CQL ES) s Y Z Yo
Fig. 7. BER(y) for MQAM (BER = 10-%,75 = 30 dB). = In <BER> Ly p(v)dy
€1
0, 0 <7 <.
15 T ; - 15 (54)
of ; - 0 Then the spectral efficiency is given by
shoo L s N VN oo
: . : » R / 1 c2y 1
7 - == —log |aa— ——= 7= p(v)dy.
ol N B Jy e I <BER) S5 p(y)dy
[} 10 20 30 40 0 10 20 30 40
¥ (B} ¥ (dB) ‘1
. (55)
@ ®) By optimizing (55) with respect tgy, we can find the maximum
' : 8 . value of spectral efficiency. Numerical values of this maximum
' ' : : spectral efficiency are given in Fig. 9. The spectral efficiency
A‘° A"’ loss is less than 1% when compared with the maximum possible
£ 5 spectral efficiency obtained using the adaptive power C-Rate
5 5 A-BER policy (Section IV-A), so the two curves are indistin-
: . : : guishable in Fig. 9.
% o 20 @ @ % e m w If we assume the threshold = 0, then the constant transmit
108 ¥ (@8 power isS(v) = S. The data rate is then given by
(© (d)
Fig. 8. k(7) for MQAM (BER = 10~2, 5 = 30 dB). .
C
K(y) = —logy |es— — e (56)
VI. CONSTANT POWER AND RATE ® In < )
€1

We now consider further restriction on the degrees of freedamith a spectral efficiency of
in our adaptive modulation policies. Specifically, we now re-
strict our system to have either constant transmit power or con-
stant rate. Restricting our adaptive policies to maintain a con- £ _ /Oo 1 log B C27 (7)d (57)
stant transmit power or rate significantly simplifies the hard- B~ J, 3 82 |4 BER Tppae
ware complexity of the system. In addition, a constant transmit In < 1 )
power is desirable in multiuser systems to reduce variations in
interference power, and constant rate transmission is desirakilemerical values of this spectral efficiency are also given in
for applications with simple hardware and constant throughpiig. 9. We see that optimizing the threshelgresults in little
These restrictions will result in some loss of spectral efficiengyerformance improvement relative to the zero threslioid=
relative to the nonrestricted policies described in Section IV, b0t case, especially at high SNR’s. We do not analyze the spectral
we will see that this penalty is not very large. efficiency of the C-Rate A-BER policy with constant transmit
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T T
C-Rate A-BER (Section IV-A)

adaptation, the instantaneous BER is often lower than our target
C-Rate I-BER with threshold
C-Rate |-BER w/o threshold

C-Fate I-GER wio tvesno v : BER.. T_his is due_to the rate discretizatior_1 gnd copstant power
D-Rate I-BER , . restriction. In particular, for the spectral efficiency given by (60)

' : and shown in Fig. 9, the average BER ranges 603 « 10~7

t0 0.051 % 10~7, while our target instantaneous BER1&™" .
Thus, in this case we are below our target BER by more than an
order of magnitude.

We now consider the D-Rate A-BER policy with constant
transmit power. The optimal solution is hard to find as was also
the case in Section IV-C. As a suboptimal solution, we will use
the discrete rate region boundaries of the D-Rate I-BER policy
discussed in the previous paragraph. We scale each value of
these discrete rate regions equally such that the A-BER con-
straint (7) is satisfied exactly. Spectral efficiency then follows
. ‘ ; , , ; the same formula as (60) with the scaled discrete rate region

© ‘5 L emgenmm D % “ boundaries. Numerical values are given in Fig. 9. Even though
we obtain the spectral efficiency of this D-Rate A-BER policy
Fig. 9. Spectral efficiency for adaptive MQAM with constant transmit powefysing suboptimal rate regions, the spectral efficiency is between
75% and 95% that of the optimal power C-Rate A-BER policy.
power, since its efficiency will lie between the efficiency of théVe also investigated D-Rate A-BER policies with piecewise
C-Rate I-BER policy with constant power and that of the adagonstant power, where the power is constant within each D-Rate
tive power C-Rate A-BER policy. region, but can be different for different regions (constellations).

We now consider the D-Rate I-BER policy with constanyVe found that allowing piecewise constant power led to negli-
transmit power. We use the same set of signal constellationsg#¥e spectral efficiency gain over just constant power for the
were used for the D-Rate policies in Section®/ &£ 2, 4, 6,8, D-Rate A-BER policies, as shown in [5].

10, and 12 bits/symbol) and we Igt; } denote the rate region

boundaries, as in Section IV-C. The average power constrat Constant Rate

(3) dictates that with thresholg, the constant transmit power
S(vy) = S satisfies

o
+
©
*

Maximum Spectral Efficiency {bps/Hz)

We now consider constant rate policiesfstan take on only
one optimized value. Let us first assume an I-BER constraint.
From (48), the optimal power control scheme to maintain the

i = Oo; (58) BER target over ally for ratek is
s [, p(y)dy
i i BER St _ [ME
To satisfy the instantaneous BER constraditiR(v) < BER —r={ ", 7= (61)
for all v and to maximize spectral efficiency we must satisfy the S 0, else

BER constraint at each boundary point
where the threshold valug, is obtained from the power con-
—C2%i m straint (3):
—— | <BER,
2030 — ¢y /°° h(k)
8l

0<i<N-—1 (59)

BER(%;) ~c1 exp

p(y)dy =1 (62)

0

and the spectral efficiency is
since for a constant transmit poMBER(y) < BER(~;) for

vi < v < «;41. Therefore, we find the optimal rate region

R o>
boundariesy; (0 < i < N — 1) by solving (59). Spectral effi- 5= k/ p(y)dy. (63)
ciency is then given by o
No1 We obtain the optimum value df to maximize spectral effi-
B - Z kip (v < v < vig1). (60) ciency at each average SNR value by numerical search. The
B o resulting spectral efficiency values are given in Fig. 10. Here

the penalty in spectral efficiency is about 10% with respect to
Numerical values for (60) are given in Fig. 9. The spectral effthe adaptive power C-Rate A-BER policy (Section IV-A) if we
ciency of this scheme is between 70% and 90% of the C-Raten't restrict the fixed raté& to be an integer. If we restrict the
A-BER policy with optimal power adaptation. This penalty isvalue of% to be an integer (as would be needed in practice) then
predictable since we have removed two degrees of freedom wittie spectral efficiency decreases. However, as we see in Fig. 10,
respect to the adaptive power C-Rate A-BER policy: power atite restriction oft to integer values does not significantly de-
BER adaptation. For a constant transmit power with discrete ratease spectral efficiency.
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T T T
— C-Rate A-BER (Section IV-A) — |-BER:10™°
- O Integer Rate I-BER . 1-BER:10~7
+- Noninteger Rate I-BER P
4 Integer Rate A-BER r : : : ~ A-BER10 o
10{{ - % Noninteger Rate A-BER : . ) — - A-BER:107

Maximum Spectral Efficiency (bps/Hz)

1
10 15 20 25 30 35 40 0 5 10
Average SNR (dB)

Fig. 10. Spectral efficiency for adaptive MQAM with constant rate. Fig. 11. S(v)/S for MQAM (7 = 30 dB) for constant rate.

Now consider the A-BER constraint. Assume a threshald differences in the rate restriction (integer or noninteger) and

below which no data is sent. The Lagrangian as a function gkp ¢onstraint (average or instantaneous). Al of these policies

power Is show a penalty of about 2 dB relative to the optimal adaptive
00 power C-Rate A-BER policy of Section IV-A.
J(S(’Y)) Ik/ p(y)dy In the constant rate case, an optimal transmit power level
" 0o could approach infinity when the channel gain is very small,
+ X\ {k / (BER(7) — BER) p(fy)dfy:| which results in a bad peak-to-average-power ratio (PAPR). The
¥ optimal transmit power levels for the constant rate transmission
- T schemes are shown in Fig. 11. By comparing Figs. 6 and 11, we
A { L Sp(vdy S} ’ (64) see that the constant rate schemes have much worse PAPR than

he adaptive rate schemes.
The optimal power adaptation is obtained by solving the foﬁ- P

lowing equation.

0

0

VIl. CONCLUSION
aJ

=0. (65) We have shown that the maximum spectral efficiency of adap-
95() tive modulation is nearly the same under continuous and dis-
From (64), this becomes crete rate adaptation as well as under an instantaneous or av-

erage BER constraint. We have also derived the optimal power,
OBER(y) — —A2 (66) rate, and BER adaptation for these schemes for a large class

a5(v) kAL of modulation techniques and general fading distributions. Re-

Then the optimal power control is stricting the power or rat.e of the adaptive modulation to be con-
stant achieves near optimal performance in most cases. There-

S(v) SAg OO fore using just one or two degrees of freedom in adaptive modu-

EANZANE Y e (67) lation yields close to the maximum possible spectral efficiency

S vk e obtained by utilizing all degrees of freedom. Therefore, the pa-

meters to adapt should be chosen based on implementation

. . . r
The optimal BER adaptation is also derived from (67) and (14),  i1erations

as

BER(y) = 5 (k) (68) APPENDIX A

AL vk In Section IV-A, in order to solve (20) undéf~) > 0 and
Using numerical search techniques, the optimal vatand S(v) > 0 while satisfying the average power constraint (3) and
thresholdv, are found. Details are described in Appendix Bthe average BER constraint (6), we Wdathematicgd17], a nu-
The corresponding spectral efficien@y f;o p(’y)d’y) is plotted merical math package. Specifically, for a fixad and, S, we
in Fig. 10. As the figure shows, the spectral efficiency in thisseMathematicato find the functionk(~) over all~ that sat-
case is quite close to that of a fixed-rate policy with an I-BERfies (20) (using the “FindRoot” command for eagh This
constraint, so we do not get much gain by relaxing the I-BERnction k() was also defined to be zero if{~y) > 0 and
constraint. Fig. 10 also shows the case when the constant t8fg) > 0 were not satisfied. Onck(~) is known, the BER
is restricted to integer values. We see that all constant r4tBER(vy)) and power(S(v)) can be found as a function of
policies yield almost the same spectral efficiency regardlessusing (18) and (19). We useldsection metho(il8] to find A
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and X, S that satisfy the average power constraint (3) and the[s] A. J. Goldsmith and L. Greenstein, “Effect of average power estima-
average BER constraint (6). tion error on adaptive MQAM modulation,” iRroc. IEEE ICC’'97 June

1997, pp. 1105-1109.
[9] D. L. Goeckel, “Adaptive coding for time-varying channels using out-

APPENDIX B dated fading estimates|EEE Trans. Communvol. 47, pp. 844-855,
] ~ _ June 1999.
In Section VI-B,\ = (f(k)/k) (A2S5/A1c2) canbe expressed [10] J. G. ProakisDigital Communications2nd ed. New York: McGraw-
; Hill, 1989.
asa fun.Ctlon of the cutoff fade deptvb from the average BER [11] I. Korn, Digital Communications New York: Van Nostrand Reinhold,
constraint (6) and (68) as 1985,
[12] P. J. Lee, “Computation of the bit error rate of coheréfitary PSK
foo ( )d with Gray code bit mapping/EEE Trans. Communvol. COM-34, pp.
Y = BER S 2T (69) 488-491, May 1986.
= T

[13] D. L. Goeckel, “Robust adaptive coded modulation for time-varying
channels with delayed feedback,” Rroc. 35th Annu. Allerton Conf.
Commun., Control and CompuSept. 1997, pp. 370-379.

[ Sp(n)dy

Then from (67) the transmit pOWéi(’y)/F can be expressed in [14] G.Caire and S. Shamai, “On the capacity of some channels with channel

state information,TEEE Trans. Inform. Theorwol. 45, pp. 2007-2019,

terms of and~y as Sept. 1999.

[15] G. Caire, G. Taricco, and E. Biglieri, “Optimum power control over
oY fading channels,JEEE Trans. Inform. Theorwol. 45, pp. 1468-1489,
S(,Y) - _1 i f(k) (70) July 1999.
S ay | veo ’ [16] A.J. Goldsmith and S. Chua, “Adaptive coded modulation for fading
channels,1EEE Trans. Communvol. 46, pp. 595-602, May 1998.

[17] S. Wolfram,The Mathematica Bogkth ed: Wolfram Media and Cam-

From the average power constraint 3% expressed using (70) bridge, 1999.

as

The spectral efficiency i% j‘;o p(vy)dy from (71). We find~,
that maximizes this spectraT efficiency usinbisection method

[18].

[18] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flanniy,
merical Recipes in 2nd ed. Cambridge, U.K., 1997.

1 1
kE=—1log, |ca+ — . (72)
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