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Abstract—We examine adaptive modulation schemes for flat-
fading channels where the data rate, transmit power, and instanta-
neous BER are varied to maximize spectral efficiency, subject to an
average power and BER constraint. Both continuous-rate and dis-
crete-rate adaptation are considered, as well as average and instan-
taneous BER constraints. We find the general form of power, BER,
and data rate adaptation that maximizes spectral efficiency for a
large class of modulation techniques and fading distributions. The
optimal adaptation of these parameters is to increase the power
and data rate and decrease the BER as the channel quality im-
proves. Surprisingly, little spectral efficiency is lost when the power
or rate is constrained to be constant. Hence, the spectral efficiency
of adaptive modulation is relatively insensitive to which degrees of
freedom are adapted.

Index Terms—Adaptive modulation, communication systems,
fading channels, spectral efficiency.

I. INTRODUCTION

A DAPTIVE MODULATION is a promising technique to
increase the data rate that can be reliably transmitted over

fading channels. For this reason some form of adaptive modula-
tion is being proposed or implemented in many next generation
wireless systems. The basic premise of adaptive modulation is
a real-time balancing of the link budget in flat fading through
adaptive variation of the transmitted power level, symbol trans-
mission rate, constellation size, BER, coding rate/scheme, or
any combination of these parameters [1]–[7], [9], [13], [16].
Thus, without wasting power or sacrificing BER, these schemes
provide a higher average link spectral efficiency (bps/Hz) by
taking advantage of flat fading through adaptation. Good perfor-
mance of adaptive modulation requires accurate channel estima-
tion at the receiver and a reliable feedback path between the re-
ceiver and transmitter. The impact of estimation error and delay
on adaptive modulation schemes has been studied in [7]–[9].

Adaptive modulation provides many parameters that can
be adjusted relative to the channel fading, including data
rate, transmit power, instantaneous BER, symbol rate, and
channel code rate or scheme. The question therefore arises as
to which of these parameters should be adapted to obtain the
best performance. Results from [6] indicate that the Shannon
capacity of a flat-fading channel is achieved by varying both
transmission rate and power, and this capacity can also be
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achieved by varying the transmit power alone [14]. Moreover,
[6] also indicates that varying both power and rate leads to
a negligibly higher capacity over varying just the rate alone.
However, Shannon capacity assumes that the BER is arbitrarily
small, coding schemes are random and of unbounded length
and complexity, and there is no delay constraint. Therefore
capacity results do not necessarily yield insight into the best
adaptive schemes to use under more practical constraints. There
is much recent work on adaptive modulation that varies one or
two modulation parameters. In particular, [1]–[3], [6], and [7]
investigate adapting power and/or rate, [4] and [9] investigate
adapting rate and coding, and [5] investigates adapting power,
rate, and instantaneous BER. However, no unified study on the
tradeoffs in adapting all combinations of different modulation
parameters has been previously undertaken.

In this paper we provide a systematic study on the increase
in spectral efficiency obtained by optimally varying combina-
tions of the transmission rate, power, and instantaneous BER.
We assume that the resulting adaptive modulation schemes are
subject to an average power and BER constraint. We do not con-
sider symbol rate adaptation since it is difficult to implement in
real systems. The effect of adaptive channel coding is also not
considered. We first analyze adaptive modulation with contin-
uous rate adaptation, where the set of signal constellations is un-
restricted, and then consider the more practical scenario where
only a discrete finite set of constellations is available. Analysis is
done for both an average and an instantaneous BER constraint.
Our goal is to determine the impact on spectral efficiency of
adapting various modulation parameters under different constel-
lation restrictions and BER constraints, for a large class of mod-
ulation techniques and fading distributions.

The remainder of this paper is organized as follows. The
Section II describes the system model, including the average
power and BER constraints. Section III presents the BER
approximations used to derive the optimal adaptive modulation
scheme. We derive the optimal rate, power, and BER adaptation
strategies under different constellation restrictions and BER
constraints in Section IV. Numerical results and plots of spectral
efficiency, optimal power adaptation, optimal BER adaptation,
and optimal rate adaptation are presented in Section V. We
examine constant power and constant rate adaptation in Sec-
tion VI. Conclusions will be given in Section VII.

II. SYSTEM MODEL

In this section we present our system model and notation,
following that of [7]. The system model is illustrated in Fig. 1.
We assume a discrete-time channel with stationary and ergodic
time-varying gain and additive white Gaussian noise .
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Fig. 1. System model.

Let denote the average transmit signal power,denote the
variance of , denote the received signal bandwidth, and
denote the average channel power gain. With appropriate scaling
of , we can assume that . There is a feedback path
from the receiver to the transmitter for sending channel esti-
mates. This path is assumed to be instantaneous and error-free,
so the channel gain estimate . The impact of feed-
back delay and channel estimation error on the performance
of adaptive modulation has been studied in [7]. For a constant
transmit power , the instantaneous received SNR is

. We denote the transmit power at time, which is a
function of , by . The received SNR at timeis then

. Since is stationary, the distribution of
is independent of, and we denote this distribution by .
When the context is clear, we will omit the time referencerel-
ative to and . We also assume ideal coherent phase de-
tection.

The parameters that can be adapted at the transmitter include
the transmission rate, power, and instantaneous BER. We will
consider both continuous rate adaptation (C-Rate), where the
set of signal constellations is unrestricted, as well as discrete
rate adaptation (D-Rate), where only a discrete finite set of
constellations is available. For the D-Rate case the rate region
boundaries define the range of values over which
the different constellations are transmitted. Specifically, we as-
sign one signal constellation and a corresponding data rate of

bits/symbol to each rate region ,
where . When the instantaneous SNRfalls within a
given region, the associated signal constellation is transmitted.
No signal is transmitted if . Thus, serves as a cutoff
SNR below which the channel is not used. We will find that
in the C-Rate case there is also an optimized cutoff value,,
below which the channel is not used. Thus, for both continuous
and discrete rate adaptation, when the channel quality is signif-
icantly degraded, the channel should not be used.

The spectral efficiency of our modulation scheme equals its
average data rate per unit bandwidth . When we send

(bits/symbol), the instantaneous data rate is
(bps), where is the symbol time. Assuming Nyquist

data pulses , for continuous rate adaptation the
spectral efficiency is given by

bits/s/Hz (1)

and for discrete rate adaptation it is given by

bps/Hz (2)

The rate adaptation is typically parameterized by the av-
erage transmit power and the BER of the modulation tech-
nique, as discussed in more detail in Section IV.

We assume an average transmit power constraint given by

(3)

For the BER, we assume either an average (A-BER) or an instan-
taneous (I-BER) constraint.1 The instantaneous BER constraint
implies that the system must maintain a constant probability of
bit error for each fading value. This is more restrictive than the
average constraint. There are two possible definitions for the av-
erage BER constraint:

number of error bits per transmission
number of bits per transmission

(4)

or

number of error bits per transmission
number of bits per transmission

(5)

Definition (4) is slightly better than (5) since, for a stationary
and ergodic fading process, (4) gives a more accurate measure
of the total number of bits received in error divided by the total
number of bits received. We will therefore consider only the first
definition in deriving the optimal power and rate adaptation.

When applied to continuous rate adaptation (4) becomes

(6)

and when applied to discrete rate adaptation (4) becomes

(7)

1The average BER is typically used to characterize quality for voice commu-
nications in fast fading. For data systems, the frame error rate is typically the
quantity of interest, and this can be computed from the instantaneous BER.
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III. BER APPROXIMATIONS

In order to obtain the optimal power and rate adaptation for
different modulation schemes, for each modulation technique
we need an expression for its BER in AWGN that is easily in-
verted with respect to rate and power. Unfortunately, for most
nonbinary modulation techniques (e.g., MQAM and MPSK)
an exact expression for BER is hard to find. Often the BER
with Gray bit mapping [10] at high SNR’s is approximated as
the symbol error rate (SER) divided by the number of bits per
symbol . Closed-form expressions for SER of MQAM
and MPSK as functions of transmission rate and power can be
found in [10]. But these expressions are neither easily invertible
nor easily differentiable in their arguments. These properties are
needed for adaptive modulation design. Therefore, we now in-
troduce new tight BER approximations for several modulation
techniques in AWGN that can be easily differentiated and in-
verted. We later use these approximations to derive the optimal
power and rate adaptation of the corresponding adaptive modu-
lation techniques.

A. BER Approximation for MQAM

The expression for the BER of square MQAM with Gray bit
mapping in AWGN as a function of received SNR
and constellation size is approximately [10], [11]

erfc (8)

where the approximation is tightest at high SNRs. This expres-
sion is not easily differentiable or invertible in its power
or rate , so we now consider a different approximation with
these properties. We find an approximation for BER tight to
within 1 dB for and BER as2

(9)

In Fig. 2 the tightness of this BER approximation (9) to the
standard formula (8) is shown.

B. BER Approximation for MPSK

The BER expression for MPSK in AWGN with Gray bit map-
ping and is commonly approximated as [10]

erfc (10)

In Fig. 3 we show that the approximation (10) provides an ex-
cellent fit to the exact BER for MPSK given in [12, Table II].

2In [7, eq. (17)] a similar expression was used with 1.5 in the exponent instead
of 1.6. This approximation is looser.

Fig. 2. BER approximations for MQAM.

Fig. 3. BER approximations for MPSK using Models 1, 2, 3.

However, the approximation (10) is not easily invertible and dif-
ferentiable in its arguments. Therefore we now consider BER
approximations that have such properties.

By curve-fitting, we find three different BER approximations
that are valid for within 1.5 dB of error for

. The bounds are given as

Model 1 (11)

Model 2 (12)

Model 3 (13)

These approximations are plotted in Fig. 3 as “Model 1,”
“Model 2,” and “Model 3,” where they are shown to be close
to the exact BER in [12, Table II], especially at high SNRs.
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C. Generic Form of BER Approximations

The approximations (9) and (11)–(13) for all modulation
techniques can be written in the following generic form:

(14)

where

(15)

, , and are positive fixed constants, andis a real con-
stant. Note that for the BER bounds on MQAM and MPSK dis-
cussed above , , or 0, and . The generic
expression (14) is valid for MQAM and MPSK to within 1.5 dB
of error for and .

IV. OPTIMAL RATE, POWER, AND BER ADAPTATION

In this section we determine the optimal rate, power, and BER
adaptation for maximizing spectral efficiency in the following
four cases: continuous rate adaptation with an average BER con-
straint (C-Rate A-BER), continuous rate adaptation with an in-
stantaneous BER constraint (C-Rate I-BER), discrete rate adap-
tation with an average BER constraint (D-Rate A-BER), and
discrete rate adaptation with an instantaneous BER constraint
(D-Rate I-BER). Our analysis here applies for any fading dis-
tribution. Clearly the instantaneous BER constraints are special
cases of the average BER constraints, and will therefore have a
lower spectral efficiency.

A. Continuous Rate and Average BER(C-Rate A-BER)

We now derive the optimal continuous rate, power, and BER
adaptation to maximize spectral efficiency (1) subject to the av-
erage power constraint (3) and the average BER constraint (6).
This is a standard constrained optimization problem, which we
solve using the Lagrange method. The Lagrange equation is

(16)

The optimal rate and power adaptation should satisfy

and (17)

with the additional constraint that and are nonneg-
ative for all . Let be as defined in (15). Then using
the generic BER expression (14) in (16) and solving (17) we

get that the power and BER adaptation that maximize spectral
efficiency satisfy

(18)

for nonnegative , and

(19)

Moreover, from (14), (18), and (19) we get that the optimal rate
adaptation is either zero or the nonnegative solution of

(20)
The values of and the Lagrangians and are found
through a numerical search such that the average power (3) and
BER (6) constraints are satisfied. More details on the numerical
search process are described in Appendix A. Numerical results
for the resulting adaptive policies and corresponding spectral
efficiency are given in Section V.

B. Continuous Rate and Instantaneous BER (C-Rate I-BER)

We now derive the optimal continuous rate and power
adaptation to maximize spectral efficiency (1) subject to
the average power constraint (3) and an instantaneous BER
constraint . This case was investigated in [7]
for MQAM, and we now extend that analysis to more general
modulations using our generic BER expression (14). We can
invert (14) to express as a function of the power control

and the fixed bit-error-rate as

else.
(21)

To maximize spectral efficiency (1) we create the Lagrangian

(22)
The optimal power adaptation must be nonnegative and satisfy

(23)
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Solving (23) for with (21) for yields the optimal
power adaptation

, ,

else
(24)

where

(25)

The power adaptation (24) can be written in the more simplified
form

else.
(26)

The constant in (26) is obtained from the average power con-
straint (3). Although the analytical expression for the optimal
power adaptation (26) looks simple, its behavior is highly de-
pendent on the values in the BER approximation (14)–(15).
In the BER approximations of Section III, takes values 1,
or 0. We now investigate the behavior of the optimal power and
rate adaptation scheme for each of these values.

1) BER Approximations (9) and (11): : When ,
is positive3 . Thus must be positive for

to be nonnegative. Moreover, for positive
for any . With (26) can be expressed as

else
(27)

where is a cutoff fade depth below which no signal
is transmitted. Note that the cutoff is dictated by the positivity
constraint on power . The cutoff value must
satisfy the average power constraint (3) as

(28)

The optimal power adaptation (27) is awaterfilling in power:
more power is used as the channel quality increases above the
optimized cutoff fade depth . The same form of optimal power
adaptation was previously derived in [7], since the BER approx-
imation used in [7] is of the same form as (9) and (11). The op-
timal rate adaptation, obtained by substituting (27) into (21), is

else.
(29)

2) BER Approximation (12): : When ,
is negative. From (21), with negative we must have
in (26) to make . Then the optimal power adaptation
such that and becomes

else.
(30)

3From (25) the sign ofK = �c = c ln(BER=c ) depends only onc ,

sincec andc are positive constants and0 < BER � c .

From (21) the optimal rate adaptation then becomes

else
(31)

where is a cutoff fade depth below which the
channel is not used. Note that in the previous section it was
the positivity constraint on power that dictated the
cutoff fade depth, whereas it is the positivity constraint on rate

that determines this cutoff. We can rewrite (30) in
terms of as

else.
(32)

This power adaptation is aninverse-waterfilling: since is neg-
ative, less power is used as the channel quality increases above
the optimized cutoff fade depth . The value of must satisfy
the average power constraint (3):

(33)

3) BER Approximation (13): : When ,
, so from (26)

else.
(34)

This ison–offpower transmission: either power is zero or a con-
stant nonzero value4. From (21) the optimal rate adaptation
with this power adaptation is

else
(35)

where is a cutoff fade depth below
which the channel is not used. As in Section IV-B-II, it is the
rate positivity constraint that determines the cutoff fade depth

. The optimal power adaptation as a function ofis

else
(36)

where . The value of is deter-
mined from the average power constraint to satisfy

(37)

So for all our BER approximations, the optimal adaptive rate
schemes (29), (31) and (35) have the same form while the op-
timal adaptive power schemes (27), (32) and (36) have different
forms. In other words, although all three BER approximations
for MPSK (11)–(13) are tight, they lead to the same optimal
adaptive rate policy but very different optimal adaptive power

4In [5] a similar formula forS() was obtained based on a similar BER ap-
proximation withc = 0. However, the power adaptation in [5] did not specify
a cutoff value: power is constant forall fading values, but the rate gets asymp-
totically small in bad channels. Therefore, this strategy leads to a suboptimal
spectral efficiency as power is allocated below the optimal cutoff defined by
(37).
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Fig. 4. S()=S in Model 1, 2, 3 for MPSK (BER = 10 ,  = 30 dB).

policies. The optimal power adaptations (27), (32), and (36) are
plotted in Fig. 4 for Rayleigh fading with and

dB. This figure clearly shows the water-filling, inverse
water-filling, and on–off behavior of the different schemes. Note
that the cutoff for all these schemes is roughly the same. We
also see from this figure that even though the power adaptation
schemes are different at low SNRs, they are almost the same at
high SNRs. Specifically we see that for , the optimal
transmit power adaptations are dramatically different, while for

they rapidly converge to the same constant value. From
the cumulative density function of also shown in Fig. 4, the
probability that is less than 10 is 0.01. Thus, although the op-
timal power adaptation corresponding to low SNRs is very dif-
ferent for the different techniques, this behavior has little impact
on spectral efficiency since the probability of being at those low
SNRs is quite small.

C. Discrete Rate and Average BER(D-Rate A-BER)

In the discrete rate case, the rate is varied within a fixed set
, and we assign rate to the rate region .

Under this fixed rate assignment we wish to maximize spec-
tral efficiency through optimal rate, power, and BER adaptation
subject to an average power and BER constraint. Since the set of
possible rates and their corresponding rate region assignments
are fixed, the optimal rate adaptation corresponds to finding the
optimal rate region boundaries . The La-
grangian for this constrained optimization problem is

(38)

The optimal power adaptation is obtained by solving the fol-
lowing equation for :

(39)

Similarly, the optimal rate region boundaries are obtained by
solving the following set of equations for:

(40)

From (39) we see that the optimal power and BER adaptation
must satisfy

(41)

Substituting (14) into (41) we get that

(42)

where . This form of BER adaptation is similar
to thewaterfilling power adaptation, since the BER decreases
as the channel quality improves. Now setting the BER in (14)
equal to (42) and solving for yields

(43)

where

(44)

and for . We see from (44) that is dis-
continuous at the boundaries.

We now consider the optimal rate region boundaries. From
(40) we get that

(45)

where and . Unfortunately, this set of equa-
tions is very difficult to solve for the optimal boundary points

. However, if we assume that is continuous at each
boundary then we get that

(46)

for some constant. Under this assumption we can solve for the
suboptimal rate region boundaries as

(47)

for some constant. The constants and are found numeri-
cally such that the average power (3) and BER (7) constraints
are satisfied. Note that the region boundaries (47) are subop-
timal since is not necessarily continuous at the boundary
regions, and therefore these boundaries yield a suboptimal spec-
tral efficiency. However, we will see in Section V that these sub-
optimal boundaries yield a spectral efficiency close to that of
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continuous rate adaptation, so they impose little penalty on the
discrete rate policy.

D. Discrete Rate and Instantaneous BER (D-Rate I-BER)

With the same discrete rate set and the same rate
assignment to region as in the previous section,
we now assume an instantaneous BER constraint, so that

. Under these constraints the optimal power
adaptation is given as

(48)

where . We find the op-
timal rate region boundaries that maximize spectral efficiency
using the Lagrangian method. The Lagrange equation is given
as

(49)

The optimal rate region boundaries are obtained by solving the
following equation for .

(50)

This yields

(51)

and

(52)

where is determined by the average power constraint (3).

V. NUMERICAL RESULTS

Although our derivations are for general fading distributions,
modulations, and BER approximations, we compute our nu-
merical results for adaptive MQAM in Rayleigh fading based
on the BER approximation (9). We assume a BER requirement
of either or . For the discrete rate cases we assume
that 6 different MQAM signal constellations are available, cor-
responding to 2 (4 QAM), 4 (16 QAM), 6 (64 QAM), 8 (256
QAM), 10 (1024 QAM), and 12 (4096 QAM) bits/symbol.

The average spectral efficiencies for the four adaptation
policies (C-Rate A-BER, C-Rate I-BER, D-Rate A-BER, and
D-Rate I-BER) are plotted in Fig. 5. The spectral efficiencies
of all four policies under the same BER constraints are very
close to each other. The spectral efficiency of D-Rate I-BER
is slightly higher than that of D-Rate A-BER since the latter

Fig. 5. Spectral efficiency for MQAM.

(a) (b)

(c) (d)

Fig. 6. S()=S for MQAM (BER = 10 ,  = 30 dB).

is calculated with suboptimal rate region boundaries. The
optimal power control scheme, , for
is given in Fig. 6. We see from these figures that the optimal
transmit power follows a smooth water-filling with respect to

under the C-Rate A-BER and C-Rate I-BER policies while
the optimal power adaptation curve is quite steep under the
D-Rate A-BER and D-Rate I-BER policies. The optimal BER
adaptation, , for is given in Fig. 7.
For the C-Rate A-BER policy we see that the BER decreases
monotonically, is within an order of magnitude of its target
value, and is above this target at SNRs below. The fluctuation
of BER in the D-Rate A-BER policy is smaller than that in
C-Rate case and goes above and below this target often. The
optimal rate adaptation, , for is given in
Fig. 8. All four rate adaptation schemes show that more bits
are transmitted as increases. Although Figs. 6– 8 show ,

, and for , plots for these functions
at indicate similar trends.
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(a)

(b)

Fig. 7. BER() for MQAM (BER = 10 ,  = 30 dB).

(a) (b)

(c) (d)

Fig. 8. k() for MQAM (BER = 10 ,  = 30 dB).

VI. CONSTANT POWER AND RATE

We now consider further restriction on the degrees of freedom
in our adaptive modulation policies. Specifically, we now re-
strict our system to have either constant transmit power or con-
stant rate. Restricting our adaptive policies to maintain a con-
stant transmit power or rate significantly simplifies the hard-
ware complexity of the system. In addition, a constant transmit
power is desirable in multiuser systems to reduce variations in
interference power, and constant rate transmission is desirable
for applications with simple hardware and constant throughput.
These restrictions will result in some loss of spectral efficiency
relative to the nonrestricted policies described in Section IV, but
we will see that this penalty is not very large.

For our numerical calculations we use MQAM constellations
with a target BER of either or under Rayleigh fading,
as in Section V.

A. Constant Power

In this section we maximize spectral efficiency assuming a
constant transmit power with a cutoff threshold below which the
channel is not used. We first consider the C-Rate I-BER policy.
The average power constraint (3) dictates that with threshold,
the constant transmit power satisfies

(53)

The rate should be adapted as follows. From (21)

(54)

Then the spectral efficiency is given by

(55)
By optimizing (55) with respect to , we can find the maximum
value of spectral efficiency. Numerical values of this maximum
spectral efficiency are given in Fig. 9. The spectral efficiency
loss is less than 1% when compared with the maximum possible
spectral efficiency obtained using the adaptive power C-Rate
A-BER policy (Section IV-A), so the two curves are indistin-
guishable in Fig. 9.

If we assume the threshold , then the constant transmit
power is . The data rate is then given by

(56)

with a spectral efficiency of

(57)

Numerical values of this spectral efficiency are also given in
Fig. 9. We see that optimizing the thresholdresults in little
performance improvement relative to the zero threshold

case, especially at high SNR’s. We do not analyze the spectral
efficiency of the C-Rate A-BER policy with constant transmit
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Fig. 9. Spectral efficiency for adaptive MQAM with constant transmit power.

power, since its efficiency will lie between the efficiency of the
C-Rate I-BER policy with constant power and that of the adap-
tive power C-Rate A-BER policy.

We now consider the D-Rate I-BER policy with constant
transmit power. We use the same set of signal constellations as
were used for the D-Rate policies in Section V ( , 4, 6, 8,
10, and 12 bits/symbol) and we let denote the rate region
boundaries, as in Section IV-C. The average power constraint
(3) dictates that with threshold , the constant transmit power

satisfies

(58)

To satisfy the instantaneous BER constraint
for all and to maximize spectral efficiency we must satisfy the
BER constraint at each boundary point:

(59)

since for a constant transmit power for
. Therefore, we find the optimal rate region

boundaries by solving (59). Spectral effi-
ciency is then given by

(60)

Numerical values for (60) are given in Fig. 9. The spectral effi-
ciency of this scheme is between 70% and 90% of the C-Rate
A-BER policy with optimal power adaptation. This penalty is
predictable since we have removed two degrees of freedom with
respect to the adaptive power C-Rate A-BER policy: power and
BER adaptation. For a constant transmit power with discrete rate

adaptation, the instantaneous BER is often lower than our target
BER. This is due to the rate discretization and constant power
restriction. In particular, for the spectral efficiency given by (60)
and shown in Fig. 9, the average BER ranges from
to , while our target instantaneous BER is .
Thus, in this case we are below our target BER by more than an
order of magnitude.

We now consider the D-Rate A-BER policy with constant
transmit power. The optimal solution is hard to find as was also
the case in Section IV-C. As a suboptimal solution, we will use
the discrete rate region boundaries of the D-Rate I-BER policy
discussed in the previous paragraph. We scale each value of
these discrete rate regions equally such that the A-BER con-
straint (7) is satisfied exactly. Spectral efficiency then follows
the same formula as (60) with the scaled discrete rate region
boundaries. Numerical values are given in Fig. 9. Even though
we obtain the spectral efficiency of this D-Rate A-BER policy
using suboptimal rate regions, the spectral efficiency is between
75% and 95% that of the optimal power C-Rate A-BER policy.
We also investigated D-Rate A-BER policies with piecewise
constant power, where the power is constant within each D-Rate
region, but can be different for different regions (constellations).
We found that allowing piecewise constant power led to negli-
gible spectral efficiency gain over just constant power for the
D-Rate A-BER policies, as shown in [5].

B. Constant Rate

We now consider constant rate policies, socan take on only
one optimized value. Let us first assume an I-BER constraint.
From (48), the optimal power control scheme to maintain the
BER target over all for rate is

else
(61)

where the threshold value is obtained from the power con-
straint (3):

(62)

and the spectral efficiency is

(63)

We obtain the optimum value of to maximize spectral effi-
ciency at each average SNR value by numerical search. The
resulting spectral efficiency values are given in Fig. 10. Here
the penalty in spectral efficiency is about 10% with respect to
the adaptive power C-Rate A-BER policy (Section IV-A ) if we
don’t restrict the fixed rate to be an integer. If we restrict the
value of to be an integer (as would be needed in practice) then
the spectral efficiency decreases. However, as we see in Fig. 10,
the restriction of to integer values does not significantly de-
crease spectral efficiency.



1570 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 9, SEPTEMBER 2001

Fig. 10. Spectral efficiency for adaptive MQAM with constant rate.

Now consider the A-BER constraint. Assume a threshold
below which no data is sent. The Lagrangian as a function of
power is

(64)

The optimal power adaptation is obtained by solving the fol-
lowing equation.

(65)

From (64), this becomes

(66)

Then the optimal power control is

(67)

The optimal BER adaptation is also derived from (67) and (14)
as

(68)

Using numerical search techniques, the optimal rateand
threshold are found. Details are described in Appendix B.
The corresponding spectral efficiency is plotted
in Fig. 10. As the figure shows, the spectral efficiency in this
case is quite close to that of a fixed-rate policy with an I-BER
constraint, so we do not get much gain by relaxing the I-BER
constraint. Fig. 10 also shows the case when the constant rate
is restricted to integer values. We see that all constant rate
policies yield almost the same spectral efficiency regardless of

Fig. 11. S()=S for MQAM ( = 30 dB) for constant rate.

differences in the rate restriction (integer or noninteger) and
BER constraint (average or instantaneous). All of these policies
show a penalty of about 2 dB relative to the optimal adaptive
power C-Rate A-BER policy of Section IV-A.

In the constant rate case, an optimal transmit power level
could approach infinity when the channel gain is very small,
which results in a bad peak-to-average-power ratio (PAPR). The
optimal transmit power levels for the constant rate transmission
schemes are shown in Fig. 11. By comparing Figs. 6 and 11, we
see that the constant rate schemes have much worse PAPR than
the adaptive rate schemes.

VII. CONCLUSION

We have shown that the maximum spectral efficiency of adap-
tive modulation is nearly the same under continuous and dis-
crete rate adaptation as well as under an instantaneous or av-
erage BER constraint. We have also derived the optimal power,
rate, and BER adaptation for these schemes for a large class
of modulation techniques and general fading distributions. Re-
stricting the power or rate of the adaptive modulation to be con-
stant achieves near optimal performance in most cases. There-
fore using just one or two degrees of freedom in adaptive modu-
lation yields close to the maximum possible spectral efficiency
obtained by utilizing all degrees of freedom. Therefore, the pa-
rameters to adapt should be chosen based on implementation
considerations.

APPENDIX A

In Section IV-A, in order to solve (20) under and
while satisfying the average power constraint (3) and

the average BER constraint (6), we useMathematica[17], a nu-
merical math package. Specifically, for a fixedand , we
useMathematicato find the function over all that sat-
isfies (20) (using the “FindRoot” command for each). This
function was also defined to be zero if and

were not satisfied. Once is known, the BER
and power can be found as a function of

using (18) and (19). We use abisection method[18] to find
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and that satisfy the average power constraint (3) and the
average BER constraint (6).

APPENDIX B

In Section VI-B, can be expressed
as a function of the cutoff fade depth from the average BER
constraint (6) and (68) as

(69)

Then from (67) the transmit power can be expressed in
terms of and as

(70)

From the average power constraint (3)is expressed using (70)
as

(71)

The spectral efficiency is from (71). We find
that maximizes this spectral efficiency using abisection method
[18].
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