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We propose a description of linearised vacuum perturbation of a Kottler
metric in terms of four unconstrained scalar functions, invariant with re-
spect to the infinitesimal coordinate change gauge. We present a derivation
of the generalised Regge–Wheeler and Zerilli equations in this scheme.
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1. Introduction
This communication summarizes results from [1] — a way of reducing the

perturbation ADM data for the linearised Cauchy problem for the vacuum
Einstein equation on a spherically symmetric background to a set of four
unconstrained functions, invariant with respect to the coordinate gauge.

2. Preliminaries
We choose the following convention for the Einstein equation:

2Rµν −Rgµν + 2Λgµν = 16πTµν . (1)

We restrict ourselves to vacuum solutions (Tµν = 0) and assume gµν to be
a perturbed Kottler metric, which is a general [2] spherically symmetric
∗ Talk presented by P. Waluk at the 3rd Conference of the Polish Society on Relativity,
Kraków, Poland, September 25–29, 2016.

(391)



392 P. Waluk, J. Jezierski

vacuum solution of (1), that encompasses Minkowski, Schwarzschild and
(Anti)de Sitter spacetimes as special cases [3]:

ηµν = −fdt2 + 1
f

dr2 + r2
[
dϑ2 + sin2 ϑdϕ2

]
, f(r) = 1− 2m

r
− r2

3 Λ .

We adopt a coordinate system: (x0, x1, x2, x3) = (t, ϑ, ϕ, r) and ask that the
structure of spacetime corresponds to the symmetry of the background:

Σs = {x0 = s, r0 ≤ x3 ≤ r∞} =
⋃

r∈[r0,r∞[
Ss(r) , Ss(r) = {x ∈ Σs : x3 = r} ,

where we will use space-like hypersurfaces Σs as our initial surfaces. We
choose the ADM formulation of the Cauchy problem and perform a standard
procedure of passing to the linear approximation. As the ADM momentum
for ηµν on Σs vanishes, the linearised momentum equals in value that of the
full solution. Thus, our set of linearised initial data has the form of(

hkl, P
kl
)
, hkl = gkl − ηkl , P kl = P kl(gµν) .

We use the following convention of indices: greek letters (α, β, γ) and co-
variant derivative symbol ; correspond to the four-dimensional geometry of
the whole spacetime. Small latin letters (a, b, c) — to the three-dimensional
geometry of the hypersurfaces Σs. Big latin letters (A,B,C) correspond
to spherical coordinates and || denotes the covariant derivative defined by
internal geometry of spheres Ss(r). Note that covariant derivatives in the
linearised theory are defined by the background metric.

3. Construction of invariants

Raw ADM data consists of twelve functions. We expect that four of
these can be eliminated by gauge freedom of the linearised theory: hµν →
hµν + ξµ;ν + ξν;µ and further four should be fixed by the Gauss–Codazzi
constraints. This leaves four true degrees of freedom. To extract them, we
first split ADM data into scalar (and pseudo-scalar) functions, using the
two-dimensional geometry of the spheres foliating our Cauchy surface:

H := ηABhAB , χAB := hAB − 1
2ηABH ,

S := ηABPAB , SAB := PAB − 1
2ηABS .
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Polar (Even) Axial (Odd)

Scalar h3
3 , H , P 3

3 , S —

Vector
h3

A
||A , P 3A

||A h3A||Bε
AB , P 3A||BεABh3

A, P
3

A

Traceless tensor
χAB

||AB , SAB
||AB χC

A||CBε
AB , SC

A||CBε
AB

χAB , SAB

Axial and polar degrees of freedom decouple in the linear theory, allowing
us to consider each set separately. Axial scalars reduce to the following pair
of gauge-invariant combinations:

y := 2Π−1r2P 3A||BεAB ,

Y := Π

(
◦
∆ + 2

)
h3A||Bε

AB −Π
(
r2χCA||CBε

AB
)
, 3 .

The symbol
◦
∆ denotes the Laplace–Beltrami operator on a unit sphere

and Π :=
√
f
√

det ηkl = r2 sinϑ. From the polar set, we obtain

x := r2χAB ||AB −
1
2

(
◦
∆ + 2

)
H + B

[
2h33 + 2rh3C

||C − rfH, 3
]
,

X := 2r2SAB ||AB + B
[
2rP 3A

||A +
◦
∆P 3

3

]
,

B :=
(
◦
∆ + 2

)(
◦
∆ + 2− 6m

r

)−1
.

The operator B is easily seen to be non-local. However, this non-locality
concerns only individual spheres, i.e. compact sets. B is local with re-
spect to the radial and temporal variable. We, therefore, call this operator
quasi-local.

4. Dynamics
We chose this particular set of invariants because it constitutes of two

conjugate pairs — the xs and ys — corresponding to reduction of the sym-
plectic form of the system and bound together by equations of motion

ẋ = f

Π
X , Ẋ =Π

r2

{(
fr2x, 3

)
, 3 +

[
◦
∆ + f(1−2B) + 1− r2Λ

]
Bx

}
,

(2)

ẏ = f

Π
Y , Ẏ =Π

{
∂3

[
f

r2

(
r2y

)
, 3

]
+ 1
r2

(
◦
∆ + 2

)
y

}
. (3)
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It can also be easily related to the works of Regge and Wheeler [4] and
Zerilli [5], whose well-known equations can be rediscovered, in a generalised
and gauge invariant form, in our scheme. Equations of motion induce de-
formed wave equations on x and y. By splitting the invariants into spherical
harmonics and making an appropriate change in the radial variable

x = exp(iσt)Yl(θ, φ)Z
(+)
l (r)
r

, y = exp(iσt)Yl(θ, φ)Z
(−)
l (r)
r

,
dr∗

dr = 1
f
,

V (+) := − f
r2

[(
◦
∆−

6m
r

)
+ 36m2

r2

(
◦
∆ +2

)−2( ◦
∆ + 2− 2m

r
+ 2

3r
2Λ

)]
B2 ,

V (−) := − f
r2

(
◦
∆ + 6m

r

)
,

we may cast these wave equations into a form resembling the Zerilli (polar)
and Regge–Wheeler (axial) equations(

d2

dr∗2 + σ2
)
Z

(±)
l Yl = V (±)Z

(±)
l Yl .

5. Conserved charges
In the splitting above, the mono-dipole part distinguishes itself from

higher multipoles. The following coefficients vanish by construction:

dip(x) = mon(y) = mon(Y ) = dip(Y ) = mon(X) = dip(X) = 0 .

This implies, by (2) and (3), that mon(x) and dip(y) are constant in time.
Their general form can be integrated from the constraint equations

mon(x) = α

r − 3m , dip(y) = β

r2 .

Integration constants α and β are conserved charges — the mass and angular
momentum of the perturbation. Note that mon(x) is divergent if we work
in a spacetime region containing r = 3m. We then need to choose the mass
parameter of the background so that the perturbation mass α = 0.

6. Final remarks
Our set of four unconstrained invariant functions encompasses full in-

formation about the linearised perturbation of a Kottler metric (see [6] for
a way to reconstruct perturbation data from the invariants). We believe this
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scheme can find application in such areas of study as analysis of stability,
gravitational wave research and attempts at describing quasilocal energy of
gravitation.
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