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S

When using smoothing splines to estimate a function, the user faces the problem of
choosing the smoothing parameter. Several techniques are available for selecting this
parameter according to certain optimality criteria. Here, we take a different point of view
and we propose a technique for choosing between two alternatives, for example allowing
for two different levels of degrees of freedom. The problem is addressed in the framework
of a mixed-effects model, whose assumptions ensure that the resulting estimator is
unbiased. A likelihood-ratio-type test statistic is proposed, and its exact distribution is
derived. Tests of linearity and overall effect follow directly. We then extend this idea to
additive models where it provides a more attractive alternative than multi-parameter
optimisation, and where it gives exact distributional results that can be used in an analysis-
of-deviance-type approach. Examples on real data and a simulation study of level and
power complete the paper.

Some key words: Additive model; Degrees-of-freedom test; Smoothing parameter selection; Smoothing spline.

1. M

Selecting a value for the smoothing parameter, or equivalently the effective degrees of
freedom, is a well-studied problem in nonparametric regression. In Fig. 1(a) given below,
for example, one could ask if the solid line describes the relationship between the two
variables well enough or if a more flexible fit, like the dashed line, is needed. The aim of
this paper is to provide a test statistic for choosing between two such alternatives.

We consider the model

y
i
= f (x

i
)+e
i
, (1·1)

for each individual i of a sample of size n, where y
i
is the outcome, x

i
the explanatory

variable, f the function describing the relationship between x
i
and y

i
, and e

i
the error

term. We focus on the estimation of f by smoothing splines. It is well known that the
smoothing spline fit is computed as a linear transformation of the vector y= (y1 , . . . , yn )T
and that the fitted values are y@

l
= (I+lK)−1y=S

l
y; see Green & Silverman (1994,
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pp. 18–9) and the Appendix for more details. The parameter l controls the smoothness
of the fit, which can also be defined through the effective degrees of freedom (Hastie &
Tibshirani, 1990, Ch. 3; Wahba, 1990, p. 63):


l
=tr (S

l
)= ∑
n

i=1

1

1+ld
i
, (1·2)

where d
i
are the eigenvalues of the matrix K; the quadratic form y@T

l
Ky@
l

measures the
roughness of the fitted function. There is a strictly monotone relationship between l and

l
, allowing us to work with this latter notion, which ties in gracefully with parametric

linear modelling concepts.
Classical approaches for selecting l or 

l
have considered the optimisation of some

optimality criteria, such as estimators of the mean squared error. This is the case for
crossvalidation or Mallows’ C

p
, for example. Another common approach is to derive

analytical expressions for the mean squared error, from which the optimal value of the
parameter can be obtained. This optimal value usually depends on the underlying
unknown function, for which a pilot estimate must be ‘plugged in’. Instead, we construct
a test statistic for choosing between two predefined alternatives, much as in parametric
modelling. Furthermore, it is usual practice to use such tests in building additive models
(Hastie & Tibshirani, 1990). This approach avoids the optimisation of a multi-dimensional
criterion; an additive model with p terms has p smoothing parameters. By limiting the
parameter choice for each term to a small number of alternatives defined in terms of
degrees of freedom, we allow the user to make some pragmatic choices. For example there
might be four ordered alternatives for a term, such as ‘absent’, ‘linear’, ‘4 degrees of
freedom’ and ‘8 degrees of freedom’, and the techniques discussed in this paper allow us
to test hypotheses for choosing among them.

There are essentially two different approaches to model (1·1); either f (x) is considered
to be a fixed unknown function or else is assumed to be a realisation from a particular
Gaussian process. They both lead to the same smoothing spline estimate but to different
inference models. We choose the latter approach, also known as a ‘mixed-effects model’,
since it avoids issues of bias by making stronger assumptions about the stochastic model
for f.

Section 2 gives the basics of this mixed-effects model. The test statistic we are interested
in is derived in § 3. A real example is worked out in § 4, which is followed in § 5 by a
simulation study of the properties of the likelihood-ratio statistic. Finally, § 6 considers
the extension to additive models. Technical details are collected in the Appendix.

2. M-    

Mixed-effects models have gained popularity for analysing longitudinal and other
correlated-data scenarios, and they provide a useful representation for smoothing splines
(Lin & Zhang, 1999; Wahba, 1990). Consider the mixed-effects model

Y=Xb+Zu+e, (2·1)

made up of a linear fixed effect Xb, a nonlinear random effect Zu and an independent
error term. In (2·1), X=[1 x]µRn×2, where x= (x1 , . . . , xn )T is the vector of predictor
values, b= (b0 , b1 )T are unknown parameters, and Z=Z(x)µRn×(n−2) is a matrix rep-
resenting nonlinear functions of x. The columns of Z are orthogonal to the columns of
X. Successive columns of Z are increasingly rough, as measured by the quadratic penalty
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matrix K, and are scaled to have decreasing Euclidean norm; see the Appendix for further
technical details about Z. The vector u~N(0, t2I

n−2
) is a random effect, and hence its

product with Z produces a random component nonlinear in x, whose size is controlled
by the variance parameter t2. The vector e~N(0, s2I

n
) is the error term, independent of u.

The best linear unbiased predictors for b and u of model (2·1) satisfy the following
equations (Henderson, 1950; Robinson, 1991):

(XTX)b@=XT(y−Zu@ ), (ZTZ+lI
n−2

)u@=ZT(y−Xb@ ),

where l=s2/t2 is assumed known. These equations are obtained by maximisation of the
joint density of y and u with respect to b and u under the normality assumptions; see
Henderson (1973) and Robinson (1991).

It follows from the orthogonality XTZ=ZTX=0, see the Appendix, that the estimators
for b and u are

b@= (XTX)−1XTy, u@= (lI
n−2
+ZTZ)−1ZTy. (2·2)

The ‘unbiased’ aspect of these predictors refers here to the property that the average
value of the estimator is equal to the average value of the quantity being estimated, that
is E(u@ )=E(u). They can also be seen as posterior means in an empirical Bayes model.

We show in the Appendix that the fitted values obtained with (2·2), namely y@
l
=

Xb@+Zu@ , are the same as y@
l
=S
l
y. This shows (Speed, 1991) that the best linear unbiased

predictors obtained for this particular mixed-effects model are identical to the smoothing
spline obtained by penalised least squares.

So far we have assumed t2 and s2 to be known; the marginal likelihood for Y, which
is N{Xb, s2 (I

n
+l−1ZZT )}, also allows inference about these parameters, or the noise-to-

signal ratio l. For example, l could be estimated by maximum likelihood; see Wecker &
Ansley (1983) and Wahba (1990, pp. 63–4). This approach is called the generalised maxi-
mum likelihood criterion and is equivalent to the maximum likelihood estimation derived
from model (2·1). In this paper, we derive a likelihood-ratio-type test for choosing between
two alternatives. Our approach is identical to the inference that would have been obtained
on the variance parameters by empirical Bayes.

3. A    

3·1. Derivation of the test statistic

Suppose that s is known. The inference about the smoothing parameter can be carried
out on the parameter t of the marginal distribution of Y. We consider the test of the null
hypothesis H0 : t=t0 versus the alternative hypothesis H

A
: t=t1>t0 , corresponding to

the test of H0 : l=l0 versus H
A

: l=l1<l0 , or equivalently H
0
: =

l
0

against
H
A

: =
l
1

>
l
0

.
Denote by l

t
(y) the density associated with the marginal distribution of Y, a

N{Xb, s2 (I
n
+l−1ZZT )} distribution, and consider the corresponding log likelihood-ratio

statistic

log l
t
1

(y)− log l
t
0

(y)3 (y−Xb)T{(I
n
+l−1
0

ZZT )−1− (I
n
+l−1
1

ZZT )−1}(y−Xb)

=yT{(I
n
+l−1
0

ZZT )−1− (I
n
+l−1
1

ZZT )−1}y,

where the last equality holds because (I
n
+l−1ZZT )−1=I

n
−Z(lI

n−2
+ZTZ)−1ZT and

ZTX=0.
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We can define a test statistic by

T=yT{(I
n
+l−1
0

ZZT )−1− (I
n
+l−1
1

ZZT )−1}y

=yT(S
l
1

−S
l
0

)y=yT(y@
l
1

−y@
l
0

), (3·1)

where y@
l
=S
l
y are the fitted values. Gray (1994) develops a similar testing procedure in

the setting of survival analysis, the semiparametric proportional hazard model, to test
linearity and no effect. In both these particular testing situations, the penalised likelihood
ratio statistic Q

l
in Gray (1994) is equivalent to our statistic (3·1) when transferred to the

Gaussian regression setting. Note however that our formulation gives a general testing
framework where we can test more sophisticated hypotheses on degrees of freedom than
simply linear and overall effect.

The distribution of T depends on s2; see § 3·3 below. One can either plug in a reliable
estimate, or consider a ratio-type statistic such as

L=
yT(S
l
1

−S
l
0

)y

yT(I−S
lA
)y
=

yT(yA
l
1

−y@
l
0

)

yT(y−y@
lA
)

, (3·2)

for some value lA . We will discuss issues related to the choice of lA in § 3·3 along with the
distribution of the statistic L.

For projection operators, as in linear regression, statistic (3·2) is equivalent to the
statistic that would compare the sums of squared residuals of the fits, because in this case
yT(y−y@ )= (y−y@ )T(y−y@ )=d(I−H)yd2, where H is the hat matrix. In fact, the heuristic
approach used by Hastie & Tibshirani (1990, Ch. 3) and Chambers & Hastie (1991, Ch. 7)
for the comparison of the degrees of freedom of two nonparametric fits is inspired by the
theory of linear models and makes use of the information contained in the residual sum
of squares by means of the test statistic

F=
{d(I−S

l
0

)yd2−d(I−S
l
1

)yd2}/(n
1
−n
0
)

d(I−S
l
1

)yd2/(n−n
1
)

, (3·3)

which is approximated by an F
n
1
−n
0
,n−n
1

distribution with n
i
=tr (2S

l
i

−S
l
i

ST
l
i

) for
i=0, 1. This assumes that the numerator and the denominator in (3·3) are approximated
by independent x2

n
1
−n
0

and x2
n−n
1

variables respectively. A further and computationally less
expensive approximation consists of taking n

i
=tr (S

l
i

), as used in S-Plus.
Let us investigate the numerous levels of approximation involved in this procedure.

The approach relies on a model of the form

y
i
= f (x

i
)+e
i
, (3·4)

where f (x
i
) is supposed to be fixed and e

i
is the random component, for which a N(0, s2 )

distribution is usually assumed. Therefore, the exact distribution of the numerator in (3·3)
is a linear combination of noncentral x2

1
variables. Hence, saying that the numerator is

x2
n
1
−n
0

distributed accounts for two different sources of approximation. First, function
estimators defined by smoothing techniques based on model (3·4) almost always suffer
from bias, which is neglected when using (3·3). Secondly, the weighted x2

1
combination is

approximated by a unique x2 variable. The same comments apply to the denominator in
(3·3). In addition, the F-approximation does not take into account the dependence between
the numerator and denominator of (3·3).

The procedure using F could be improved by refining the distributional properties
(Hastie & Tibshirani, 1990, pp. 66–7), but the bias problem will still be present. In our
Bayesian procedure, we finesse the bias by assuming the mixed-effects model.
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3·2. Particular cases and generalisation

Test statistic (3·2) tests linearity by testing H0 : =2 versus H
A

: >2, giving a com-
petitor of the linearity test of Azzalini & Bowman (1993). It can also test overall effect,
equivalent to a term being dropped, by testing H

0
: =1 versus H

A
: >1. The general-

isation to the test of composite hypotheses of the form H
0
: =

l
0

against
H
A

: =
l
1

>
l
0

, unspecified, can be obtained by estimating  and s2 using restricted
maximum likelihood under model (2·1) and using the estimated  instead of 

l
1

.
The test statistics are obtained by plugging the appropriate operators for S

l
into (3·2),

such as the hat matrix H for a linear fit and the averaging operator 11T/n, with
1= (1, . . . , 1)T, for the constant fit.

3·3. Distribution of the test statistic under H0
The numerator of statistic (3·2) is a quadratic form in normal variables, and equals

s2Wn
i=3

c
i
z2
i
under H0 , with c

i
=1− (d

i
+l−1
0

)/(d
i
+l−1
1

) and z
i
being independent standard

normal variables; see the Appendix and Gray (1994). The c
i
’s are in fact the eigenvalues

of (I
n
+l−1
0

ZZT ) (S
l
1

−S
l
0

). The denominator of (3·2) under H0 is distributed according
to a s2Wn

i=3
b
i
z2
i

distribution, where the b
i
are the eigenvalues of (I

n
+l−1
0

ZZT ) (I
n
−S
lA
)

and are equal to (d
i
+l−1
0

)/(d
i
+lA−1 ).

Note that linear combinations of x2 variables have been well studied (Johnson & Kotz,
1970, Ch. 29), and algorithms are available for computing relevant probabilities (Davies,
1980; Farebrother, 1990).

Although the distribution of its numerator and its denominator are known, the distri-
bution of L itself does not belong to a known family. One could consider approximating
each of the two linear combinations of x2

1
variables by a x2 variable that matches the first

moment; that is we approximate the numerator with a x2∑ c
i

distribution and the denomi-
nator with a x2∑b

i

distribution. Then, if the two variables are almost independent, the
distribution of L is approximately (W c

i
/W b
i
)F∑ c
i
,∑b
i

, with

∑ c
i
=tr{(I

n
+l−1
0

ZZT ) (S
l
1

−S
l
0

)}, ∑ b
i
=tr{(I

n
+l−1
0

ZZT ) (I
n
−S
lA
)}.

Both these traces have computationally more appealing expressions, as shown in the
Appendix. To guarantee approximate independence between the numerator and the
denominator of the statistic in (3·2), one has to choose a ‘small’ value lA for the smooth-
ing parameter. However, it is easy to construct simple examples, involving a ‘small’ lA in
which the weights b

i
of the x2 combination of the denominator in (3·2) are spread out,

which could render inadequate the single x2 approximation suggested above. A better
approximation can be obtaining through a two-moment correction.

However, one is usually interested in obtaining p-values, which can be computed exactly
much more easily by noting that the p-value pr(L>vobs ), for the value vobs of (3·2) from
the dataset, can be rewritten as

pr[yT{S
l
1

−S
l
0

−vobs (I−S
lA
)}y>0]=pr (R>0). (3·5)

The distribution of R is again a linear combination of x2 variables because
R=Wn

i=3
e
i
z2
i
, with

e
i
=c
i
−vobsbi=1−

d
i
+l−1
0

d
i
+l−1
1
−vobsbi .

The e
i
are the eigenvalues of (I

n
+l−1
0

ZZT ){S
l
1

−S
l
0

−vobs (I−S
lA
)} although details are

not given here.
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This approach is appealing because it is scale invariant and is not affected by the lack
of independence between the variable of the numerator and the denominator in (3·2). The
same approach has been used by other authors; see for instance Azzalini & Bowman
(1993). The choice of lA is irrelevant and we suggest using lA=l

1
to avoid additional

computations. In this case, we have that e
i
=1− (1+vobs ) (di+l−10 )/(d

i
+l−1
1

).

3·4. Computational aspects

The complete exact procedure is of complexity O(n3 ), although statistics L and R can
be computed in linear time because fitted values can be obtained in O(n) steps. The
complexity of the algorithm is essentially due to the extraction of eigenvalues of dense
matrices. One could improve this by considering either low-rank splines (Eilers & Marx,
1992; Hastie, 1996) or numerical algorithms that intelligently extract only the largest
eigenvalues (Bai et al., 2000, Ch. 4). However, the speed of modern computers is such that
samples of up to moderate sample sizes can be handled in very few seconds. Thanks to
expressions (A·3) and (A·4), the approximation to the distribution of (3·2) by an F distri-
bution involves only O(n) computations. If this approximation proves accurate, it substan-
tially reduces the computational burden of the procedure.

Procedure (3·3) based on sums of squared residuals is of order O(n2 ) when the degrees
of freedom are computed as n

i
=tr (2S

l
i

−S
l
i

ST
l
i

), even if the statistic F itself can be com-
puted in linear time. The computational price goes down to O(n) when the approximated
degrees of freedom n

i
=tr(S

l
i

) are used instead.

4. E

We apply the test developed in the previous section to the vineyard dataset studied by
Simonoff (1996, p. 287) and as given in Chatterjee et al. (1995).

The data consist of the grape yields of a vineyard on a small island in Lake Erie. The
vineyard is divided into 52 rows and the 52 observations in the dataset correspond to the
sums of the yields of the harvests in 1989, 1990 and 1991. The yield is measured as a
number of ‘lugs’, a lug being a basket used to carry the harvest grapes.

Suppose we want to choose the degrees of freedom from the set {6, 10, 14 }.
Along the lines of an analysis of deviance, we perform two tests. The first one corresponds
to Fig. 1(a), and compares a spline fit with 6 degrees of freedom, which defines H0 , to a
spline fit with 10 degrees of freedom, H

A
. According to the statistic (3·2), the null hypothesis

is clearly rejected, with p-value<0·002. Figure 1(b) corresponds to the fit of a spline with
10 degrees of freedom, under H0 , versus a spline with 14 degrees of freedom. In this case,
the null hypothesis is not rejected, p-valuej 0·2, meaning that we do not need as many
as 14 degrees of freedom to describe the relationship between the row in the vineyard and
the amount of grapes yielded. We end up by retaining a fit with 10 degrees of freedom.

5. S

5·1. Protocol

Here we conduct a small simulation study to compare the F-approximation of § 3·3 to
the exact result, and to the heuristic procedure in (3·3). The simulation setting is defined
by the marginal null model

Y~N{Xb, s2(I
n
+l−1
0

ZZT )}, (5·1)
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Fig. 1. Fit comparison on the vineyard dataset. (a) compares a spline fit
with =6 (solid line) to a spline fit with =10 (dashed line); (b) com-

pares a fit with =10 (solid line) to a fit with =14 (dashed line).

with b= (1, 5)T, s2=0·52 and l0 corresponding to =4. The alternative hypothesis
considers a smoothing parameter l1 corresponding to =7. Moreover, X=[1 x], with
x~Un(0, 1) generated at the beginning of the simulation. We will compare the following
situations.

Case 1: L~ (W c
i
/W b
i
)F∑ c
i
,∑b
i

with W c
i
and W b

i
according to (A·3) and (A·4) and lA

corresponding to =20.
Case 2: R~W e

i
z2
i
.

Case 3: F~F
n
1
−n
0
,n−n
1

, with n
i
=tr (2S

l
i

−S
l
i

ST
l
i

).
Case 4: F~F

n
1
−n
0
,n−n
1

, with n
i
=tr (S

l
i

).
Cases 1 and 2 use our procedure based on statistic (3·2) with approximate F and exact

distribution respectively. Case 3 is the procedure based on statistic (3·3) with the matching
degrees of freedom, whereas Case 4 is the same procedure but with approximated degrees
of freedom.

Five thousand simulations were run with sample sizes n=40 and n=100 and with the
precision in Davies’ algorithm set to 0·0001.

5·2. Discussion of p-values and level

Figure 2 shows some Q–Q plots of the p-values of each technique against the uniform
distribution for sample size n=40. The plots for n=100 were virtually identical. These
plots show that the approximation to the distribution of (3·2) corresponding to Case 1
does not produce uniformly distributed p-values, but rather a distribution with shorter
and lighter tails. A slightly larger deviation from the uniform distribution is observed in
the upper tail, which is fortunately of minor interest in a testing procedure. The use of
the test statistic F, in Cases 3 and 4, gives rise to even worse results than for Case 1. In
both cases, the distribution of the p-value is far from the uniform target and is clearly
skewed, particularly so in Case 4. Moreover, p-values near to 1 never appear in the
simulation for these two cases. As expected, the exact distribution yields uniformly distrib-
uted p-values.
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Fig. 2. Q–Q plots of the simulated p-values of the test statistic (3·2) against the quantiles of the uniform
distribution when testing H0 : 0=4 versus H

A
: 1=7. Sample size is n=40.

Next we examine the actual levels of the test with respect to nominal levels of 1%, 5%
and 10%, estimated empirically from the simulations and shown in Table 1. The last line
of Table 1 gives the standard deviations of the level estimation, which do not depend on
n. As expected theoretically, the level computed by the exact distribution, Case 2, behaves
well: the nominal level is always covered by approximate 95% confidence intervals. For
the approximation in Case 1, the actual level ranges between 38% and 77% of the nominal
level, whatever the sample size. The behaviour of the actual level is particularly bad at
the extreme of the distribution; see the results at the 1% nominal level. In Case 3, the
results are similar to those of Case 1, with an actual level in a range of 28–84% of the
nominal level. Nevertheless, both tests under Cases 1 and 3 are conservative. This is not
the case for the approach in Case 4, which is clearly not on target. This is of no surprise
in view of Fig. 2 and is a consequence of the accumulation of different sources of approxi-
mation. Approximate 95% confidence intervals do not cover the true nominal level in
these cases, except for Case 4 with n=100 at the 1% level.

Table 1. Actual levels of the test statistic (3·2) under techniques
defined by Cases 1, 2, 3 and 4 when testing H0 : 0=4 versus
H
A

: 1=7. T he standard deviations of the level estimation,
given in the last line, do not depend on n

Nominal 1% Nominal 5% Nominal 10%
Case n=40 n=100 n=40 n=100 n=40 n=100

1 0·0038 0·0038 0·0296 0·0318 0·0692 0·0774
2 0·0086 0·0108 0·0452 0·0548 0·0952 0·1040
3 0·0028 0·0036 0·0284 0·0298 0·0720 0·0840
4 0·0068 0·0076 0·0678 0·0724 0·1674 0·1728

St. dev. 0·0014 0·0014 0·0031 0·0031 0·0042 0·0042

It seems therefore that the F-approximation to statistic (3·2) can be conservative, but
it has the advantage of being inexpensive. The exact result is computationally more expens-
ive, but the gain in accurarcy is high. Use of the accurate exact distribution is therefore
strongly recommended when computationally feasible. The heuristic procedure in Case 4
can even be nonconservative. The approaches in Case 1 and Case 2 both outperform the
results obtained by Case 3 and Case 4.
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5·3. Power

Following the same protocol as in § 5·2, we also conducted a power study for a sequence
of alternatives corresponding to 

l
1

=5, . . . , 12 when n=40. We simulated the response
Y from model (5·1) with l0 replaced by l1 .

The power curves, corrected to ensure a level of 5%, for Cases 1–4 are displayed in
Fig. 3. These results show an overall superiority of the test statistics developed in this
paper over the other approaches we considered. The power of the F-approximation of
our test statistic, Case 1, is almost as high as the power of the exact test. For a similar
computational cost, and considering that the error on the level was of the same magnitude,
the F-approximation of Case 1 does a better job in terms of power than the approaches
in Cases 3 and 4.

S
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4 6 8 10 12

Degrees of freedom

1·0

0·8

0·6

0·4

0·2

0·0

Case 2
Case 1
Case 4
Case 3

Fig. 3. Simulated powers of the test statistics for Cases 1–4,
corrected to ensure a level of 5%.

6. E   

The problem of the choice of the smoothing parameter is even more relevant in additive
models, where one would prefer to avoid the optimisation of an optimality criterion over
a p-dimensional space. From now on, we consider a p-dimensional additive model of the
form

y
i
=b
0
+ ∑
p

j=1
f
j
(x
ij
)+e
i
, (6·1)

for i=1, . . . , n. Additive models admit a Bayesian formulation, which is a natural
extension of the single predictor case, starting from the mixed-effects model

Y=b
0
1+Xb+ ∑

p

j=1
Z
j
(x
j
)u
j
+e,

with 1= (1, . . . , 1)T, b= (b1 , . . . , bp )T and (X)
ij
=x
ij
. As a result, the marginal distribution

of Y is N{b
0
1+Xb, s2(I

n
+W
j
l−1
j

Z
j
ZT
j
)}.

Additive models are usually fitted via the backfitting algorithm, and at convergence the
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solution can be written as y@
l
=R
l
y=W

j
R
l
j

y, for a vector l= (l
1
, . . . , l

p
)T of smoothing

parameters. The degrees of freedom of the overall fit is 
l
=tr (R

l
), which can be decom-

posed into its p components tr (R
l
j

). However, this definition of the single component
degree of freedom is not attractive from the computational point of view (Hastie &
Tibshirani, 1990, pp. 128–9). We will use instead the definition


l
j

=tr (S
l
j

)−1, (6·2)

where S
l
j

is the smoother matrix obtained when fitting by smoothing spline the jth
predictor only. The subtraction of one is because of the global constant term isolated in
model (6·1).

To perform a test on the degrees of freedom of the kth component of model (6·1), we
define a test statistic by analogy with (3·2). Formally, we would like to test the hypothesis
H
0
: 
k
=

k,l
0

(l
k
=l
k,0

) versus H
A

: 
k
=

k,l
1

>
k,l
0

(l
k
=l
k,1

), while keeping the
other parameters fixed as in the analysis-of-deviance approach to building additive models.

By analogy with the single predictor setting, we suggest the test statistic

LAM=
yT(R
1
−R
0
)y

yT(I−R
1
)y

, (6·3)

where R
i
, for i=0 or 1, is the smoother matrix obtained at the convergence of the

backfitting algorithm with the set of parameters including l
k,i

.
For the value vAM,obs taken by LAM , the p-value is computed by

pr(LAM>vAM,obs )=pr[yT{R
1
−R
0
−vAM,obs (I−R

1
)}y>0]

=pr(RAM>0).

The distribution of RAM under H0 is a linear combination of x2
1

variables, where the
weights are the eigenvalues of the matrix (I

n
+W
j
l−1
j,0

Z
j
ZT
j
){R
1
−R
0
−vAM,obs (I−R

1
)}.

This follows again from general results on the distribution of quadratic forms in normal
variables.

We remark that, as in the one-predictor case, statistic (6·3) can be extended to test
composite hypotheses, and used to assess linearity and overall effect at no additional cost.

We illustrate the use of this procedure on a diabetes dataset (Sockett et al., 1987; Hastie
& Tibshirani, 1990, p. 304), which comes from a study aiming at describing the factors
that affect the patterns of insulin-dependent diabetes mellitus in children. The relationship
between the concentration of C-peptide and the predictors Age and Base.Deficit, a measure
of acidity, is under study for n=43 children. We consider the model

log(C-peptide)=b
0
+ f
1
(Age)+ f

2
(Base.Deficit). (6·4)

Figure 4 shows the curves fitted by smoothing splines with Age=2, solid line in
Fig. 4(a), and Base.Defect=3, in Fig. 4(b). Let us focus on the predictor Age. Is this fit
flexible enough to describe the true underlying relationship? We can consider allowing
more degrees of freedom for this variable, say 4 or 6 degrees of freedom, see Fig. 4(a),
keeping the degrees of freedom of Base.Deficit equal to 3. We use statistic (6·3) to compare
these alternatives. The test of the null hypothesis H

0
: Age=2 versus the alternative

H
A

: Age=4 yields a p-value of 2×10−6 indicating clearly that 2 degrees of freedom are
not enough. The test of H

0
: Age=4 and H

A
: Age=6, conditional on 3 degrees of

freedom for Base.Deficit, yields a p-value of 0·56, which suggests that 6 degrees of freedom
are probably unnecessarily high for describing this relationship.
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Fig. 4. Additive fit of the diabetes dataset. (a): Age with Age=2 (solid),
Age=4 (dotted) and Age=6 (dashed). (b): Base.Deficit with Base.Deficit=3.

A

Eva Cantoni thanks the Swiss National Science Foundation for its support. Trevor
Hastie was partially supported by the National Science Foundation, and the National
Institutes of Health. This work has been carried out during the post-doctoral year of Eva
Cantoni at Stanford University.

A

T echnicalities

Details for the mixed-eVects formulation. Smoothing splines are the solution of the penalised
criterion

J( f )= ∑
n

i=1
{y
i
− f (x

i
)}2+l P { f ◊(t)}2 dt. (A·1)

If we assume that the solution is a spline, and for a parameterisation in terms of
f= ( f (x

1
), . . . , f (x

n
))T, the penalty in (A·1) can also be written as f TKf; see Green & Silverman

(1994, p. 13) for details.
We define the eigenvalue decomposition of K=UDUT with UUT=UTU=I

n
, and partition it

as follows:

[U
1

U
2
] AD1 0

0 D
2
B CUT1UT

2
D , (A·2)

with D1=diag(0, 0) and D2=diag (d3 , . . . , dn ), where d
i
, for i=3, . . . , n, are the nonzero eigen-

values of K. The columns of the matrix U1 span the linear space and are orthogonal to the columns
of U2 . This implies that U2 will be orthogonal to any linear function of x; in particular, we will
have UT

2
X=0.

Using decomposition (A·2), we have that

S
l
= (I+lK)−1=U

1
UT
1
+U
2
(I
n−2
+lD

2
)−1UT

2
.
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The matrix Z=Z(x) in model (2·1) is defined by the relationship U
2
D
2
UT
2
= (ZZT )−; see also

Wahba (1990, pp. 16–20) and Speed (1991). This implies that Z=U
2
D−1/2
2

, and that ZTX=0.
Moreover, the best linear unbiased predictor fitted values obtained with (2·2) are

y@=Xb@+Zu@=X(XTX)−1XTy+Z(lI
n−2
+ZTZ)−1ZTy

={U
1
UT
1
+U
2
D−1/2
2

(D−1
2
+lI
n−2

)−1D−1/2
2

UT
2
}y={U

1
UT
1
+U
2
(I
n−2
+lD

2
)−1UT

2
}y,

which shows the equivalence with the decomposition of S
l
.

Distribution of T . We have that

T=yT{(I
n
+l−1
0

ZZT )−1− (I
n
+l−1
1

ZZT )−1}y

= (y−Xb)TZ{(l
1
I
n−2
+ZTZ)−1− (l

0
I
n−2
+ZTZ)−1}ZT(y−Xb)

=y*T{D−1
2

(l
1
I
n−2
+D−1
2

)−1−D−1
2

(l
0
I
n−2
+D−1
2

)−1}y*

=s2zT(I
n−2
+l−1
0

D−1
2

){D−1
2

(l
1
I
n−2
+D−1
2

)−1−D−1
2

(l
0
I
n−2
+D−1
2

)−1}z

=s2 ∑
n

i=3
c
i
z2
i
,

where

y*=UT
2
(y−Xb)~N{0, s2(I

n−2
+l−1
0

D−1
2

)},

and z=s−1(I+l−1
0

D−1
2

)−1/2y* follows a standard normal distribution.

F-approximation. Consider first W c
i
=tr{(I

n
+l−1
0

ZZT ) (S
l
1

−S
l
0

)}. We have

∑ c
i
=tr{(I

n
+l−1
0

ZZT ) (S
l
1

−S
l
0

)}

=tr[U
2
(I
n−2
+l−1
0

D−1
2

){(I
n−2
+l
1
D
2
)−1− (I

n−2
+l
0
D
2
)−1}UT

2
]

=
l
0
−l
1

l
0

tr{U
2
(I
n−2
+l
1
D
2
)−1UT

2
}=
l
0
−l
1

l
0

{tr (S
l
1

)−2}, (A·3)

where we used the fact that UT
1
U
2
=0 and tr (U

1
UT
1
)=2. Similarly,

tr (I
n
−S
lA
)=n−tr (S

lA
), tr{l−1

0
ZZT(I

n
−S
lA
)}=

lA

l
0
{tr (S

lA
)−2}

give

∑ b
i
=tr{(I

n
+l−1
0

ZZT ) (I
n
−S
lA
)}=n+A lAl

0
−1B tr (SlA )−2

lA

l
0
. (A·4)

R

A, A. & B, A. (1993). On the use of nonparametric regression for checking linear relationships.
J. R. Statist. Soc. B 55, 549–57.
B, Z., D, J., D, J., R, A. & V  V, H. (2000). T emplates for the Solution of
Algebraic Eigenvalue Problems: A Practical Guide. Philadelphia: SIAM.
C, J. M. & H, T. J. (Ed.) (1991). Statistical Models in S. Belmont, CA: Wadsworth.
C, S., H, M. S. & S, J. S. (1995). A Casebook for a First Course in Statistics and
Data Analysis. New York: Wiley.
D, R. B. (1980). [Algorithm AS 155] The distribution of a linear combination of x2 random variables.
Appl. Statist. 29, 323–33.
E, P. H. C. & M, B. D. (1992). Generalized linear models with P-splines. In Advances in GL IM and
Statistical Modelling. Proceedings of the GL IM92 Conference, Ed. L. Fahrmeir et al., pp. 72–7. New York:
Springer.



263Smoothing splines inference

F, R. W. (1990). [Algorithm AS 256] The distribution of a quadratic form in normal variables.
Appl. Statist. 39, 294–309.
G, R. J. (1994). Spline-based tests in survival analysis. Biometrics 50, 640–52.
G, P. J. & S, B. W. (1994). Nonparametric Regression and Generalized L inear Models:
A Roughness Penalty Approach. London: Chapman and Hall.

H, T. (1996). Pseudosplines. J. R. Statist. Soc. B 58, 379–96.
H, T. J. & T, R. J. (1990). Generalized Additive Models. London: Chapman and Hall.
H, C. R. (1950). Estimation of genetic parameters (abstract). Ann. Math. Statist. 21, 309–10.
H, C. R. (1973). Sire evaluation and genetic trends. In Proceedings of the Animal Breeding and
Genetics Symposium in Honour of Dr. Jay. L . L ush, pp. 10–41. Champaign, IL: Am. Soc. Anim. Sci.–Am.
Dairy Sci. Assoc.–Poultry Sci. Assoc.
J, N. L. & K, S. (1970). Continuous Univariate Distributions, 2. Boston: Houghton-Mifflin.
L, X. & Z, D. (1999). Inference in generalized additive mixed models. J. R. Statist. Soc. B 61, 381–400.
R, G. K. (1991). That BLUP is a good thing: The estimation of random effects (with Discussion).
Statist. Sci. 6, 15–51.
S, J. S. (1996). Smoothing Methods in Statistics. New York: Springer-Verlag.
S, E. B., D, D., C, C. & E, R. M. (1987). Factors affecting and patterns of

residual insulin secretion during the first year of type I (insulin dependent) diabetes millitus in children.
Diabetologia 30, 453–9.
S, T. (1991). Comment on ‘That BLUP is a good thing: The estimation of random effects’. Statist. Sci.
6, 42–4.
W, G. (1990). Spline Models for Observational Data. Philadelphia: SIAM.
W, W. E. & A, C. F. (1983). The signal extraction approach to nonlinear regression and spline

smoothing. J. Am. Statist. Assoc. 78, 81–9.

[Received April 2001. Revised August 2001]


