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DEHN SURGERY AND SATELLITE KNOTS
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C. MCA. GORDON1

Abstract. For certain kinds of 3-manifolds, the question whether such a manifold
can be obtained by nontrivial Dehn surgery on a knot in S3 is reduced to the
corresponding question for hyperbolic knots. Examples are, whether one can obtain
S3, a fake S3, a fake S3 with nonzero Rohlin invariant, S1 X S1, a fake S] X S2,
S] X S2 # M with M nonsimply-connected, or a fake lens space.

1. Introduction and statement of results. In the present paper we show that for
certain kinds of 3-manifolds, the question whether such a manifold can be obtained
by nontrivial Dehn surgery on a knot reduces to the corresponding question for
simple knots. By Thurston's uniformization theorem for Haken manifolds [27], a
knot is simple if and only if it is either hyperbolic (i.e. its complement possesses a
complete hyperbolic structure with finite volume), or a torus knot. Since the
manifolds obtained by Dehn surgery on the latter can be completely described (see
[20], and §7), we essentially have a reduction to the case of hyperbolic knots.

If Kis an (unoriented) knot in (oriented) S3, and r = m/n G Q L) {oo}, (m, n) =
I, let (K; r) denote the closed, oriented 3-manifold obtained by Dehn surgery of
type r on K. (We use the terminology of [21, pp. 258-259]; see §2.) The unknot is
denoted by O, so that (O; r) is the lens space L(m, n), if | m \¥= 0,1, or S3 =
(O; l/n), or S1 X S2 — (O;0). The manifolds to which our arguments apply are
those that are atoroidal, that is, contain no imcompressible torus. Our main result
may then be stated as follows. (Throughout, all 3-manifolds are oriented, ~ denotes
orientation-preserving homeomorphism, and # connected sum.)

Theorem 1.1. Suppose (K; r) is atoroidal, where K ¥= O. Then there exist simple
knots K0, Kx,.. .,Kk, with K¡ j= O for 1 < i « k, and K0 # O if k = 0, together with
positive integers v0— 1, «,,...,vk, such that

k k
(K; r)#  # {O; r/v2) a # (*,; r/v2).

;=1 (=0

Most of our results are more or less direct consequences of Theorem 1.1.
For instance, in the case of homology spheres, r— l/n, we have the following.
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688 C. MCA. GORDON

Theorem 1.2. Let (K; l/n) be atoroidal (resp. a homotopy 3-sphere), where K ¥= O.
Then there exist nontrivial simple (resp. hyperbolic) knots K0, Kx,...,Kk such that

(i)ifn¥> ±1,
k

(K;l/n)^#(Kr,l/n),
i=0

(ii)//«= ±1,

(*;±1)*#(*,;±1)#    #   {K,;±±),i=o /=y+i

for some j, -1 <j < k.

The extra restrictions on the surgery coefficients are consequences of Litherland's
results [16] on Dehn surgery on satellite knots with winding number > 1.

Theorem 1.2 yields the following. (Note that a hyperbolic knot is necessarily
nontrivial.)

Corollary 1.3. // S3 (resp. a fake 3-sphere, resp. a homotopy 3-sphere with
nonzero Rohlin invariant) can be obtained as (K; l/n) for some knot K ¥= O, and
n 7e 0, then S3 (resp. a fake 3-sphere, resp. a homotopy 3-sphere with nonzero Rohlin
invariant) can be obtained as (K*\ l/n*) for some hyperbolic knot K*, and n* ^ 0.
Furthermore, n* = n, unless, in the first two cases n = ±1, in which case n* = ±1 or
±4.

The conjecture that (K; l/n) is never a homotopy 3-sphere for K ¥= O and n ¥" 0,
(i.e. that all nontrivial knots have Property P) has been studied fairly extensively.
(See [14, Problem 1.15] and references therein.) Corollary 1.3 shows, in particular,
that it is true if and only if it is true for hyperbolic knots.

Closely related to the question whether (K; l/n) can ever be S3 for K ¥= O and
n ^ 0 is the question whether knots are determined by their complements. Precisely,
we have

Theorem 1.4. Knots are determined, up to ambient isotopy, by the oriented homeo-
morphism types of their complements, if and only if hyperbolic knots are.

Next we consider the possibility of obtaining a manifold of the form S1 X S2 # M
by Dehn surgery on a knot. Here M is necessarily a homology 3-sphere (possibly
S3), and we must have r = 0, so that in this case the Dehn surgery is a genuine
surgery corresponding to the canonical 0-framing of K. The question whether this
can occur for nontrivial K is equivalent to [14, Problem 1.17]. In particular, there is
the conjecture that all nontrivial knots have the so-called Property R, i.e. that (K; 0)
cannot be homeomorphic to S' X S2, for K =£ O. (See [14, Problem 1.16].)

We shall reduce these questions to the case of hyperbolic knots, but first we have
the following relatively straightforward result, which does not use Theorem 1.1.

Theorem 1.5. If K is a satellite with winding number > 1, then (K; 0) is not of the
formS{ X S2#M.
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DEHN SURGERY AND SATELLITE KNOTS 689

Theorem 1.1 with r = 0, plus an additional argument, yields

Theorem 1.6. Suppose (K;0) s S1 X S2 #M, where Ki-O. Then there exist
hyperbolic knots K0, Kx,...,Kk such that

k
(A:,;0) =S'X52 #M„       0 < i < k,   and   M s # M¡.

i = 0

Corollary 1.7. S1 X S2 (resp. a fake S1 X S2, resp. S1 X S2 # M with irx(M) ^
1) can be obtained as (K; 0)for some knot K ¥^ O if and only if S1 X S2 (resp. a fake
Sl X S2, resp. S1 X S2 #M with mx(M) =h 1) can be obtained as (K*;0) for some
hyperbolic knot K*.

That part of Theorem 1.2 which refers to homotopy spheres, Theorem 1.6, and
Corollaries 1.3 and 1.7, deal with situations which presumably do not occur. Here is
another result of this type. (By a fake lens space we mean a closed, oriented
3-manifold with finite cyclic (possibly trivial) fundamental group, which is not
homeomorphic to any lens space, including S3.)

Theorem 1.8. A fake lens space can be obtained as (K; r) for some knot K if and
only if a fake lens space can be obtained as (K*; r/v2) for some hyperbolic knot K*
and positive integer v.

Another consequence of Theorem 1.1 is

Theorem 1.9. A prime atoroidal manifold M is of the form (K; r) for some knot
K t^ O if and only if it is of the form (K*\ r/v2 ) for some simple knot K* and positive
integer v.

In particular, this applies to Seifert fibre spaces with orbit surface S2 and three or
fewer singular fibres, for example lens spaces and the Brieskorn homology spheres
2(/?, q, r). Again, since it is known exactly which of these occur as the result of
Dehn surgery on a torus knot (see [20] and §7), the question of which others can
occur is reduced to the case of hyperbolic knots. (In the case of lens spaces, however,
(but only in that case), beware that K* may be trivial.)

Since a hyperbolic 3-manifold is prime and atoroidal, and can never be obtained
by Dehn surgery on a torus knot, Theorem 1.9 implies

Corollary 1.10. A hyperbolic 3-manifold M is of the form (K; r) for some knot K
if and only if it is of the form (K*\ r/v2) for some hyperbolic knot K* and positive
integer v.

In [27, §5], Thurston shows that Dehn surgery on a hyperbolic knot almost always
yields a hyperbolic manifold, as a special case of a more general result on attaching
solid tori along some of the boundary components of a hyperbolic 3-manifold. Using
this more general result (which is also needed in our proof of Theorem 1.1) we prove
the following.

Theorem 1.11. (i) For all K,(K; r) is irreducible for all but finitely many r.
(ii) // K is not a torus knot, then (K; r) has infinite fundamental group for all but

finitely many r.
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690 C. McA. GORDON

In particular, this implies Theorem 2 of [17], that all nontrivial knots "almost"
have Property P.

We remark that (i) is also a special case of a recent result of Hatcher [9].
Our approach is to consider a decomposition of the exterior X of K into atoroidal

pieces. By [27], each piece is either hyperbolic or a Seifert fibre space. If the piece
containing 3 A' is hyperbolic, we apply the general finiteness result of Thurston
mentioned above. If it is Seifert fibered, then K is either a composite or a cable knot,
and these can be treated directly.

The paper is organized as follows. In §2 we establish some terminology and
conventions. In §3 we prove some elementary facts about tori in 3-manifolds, and do
some homological calculations relating to Dehn surgery on satellite knots. This
enables us to prove Theorem 1.5. We also prove the basic reduction lemma (Lemma
3.7) which asserts that if some Dehn surgery on a satellite knot yields an atoroidal
manifold, then certain related Dehn surgeries on "simpler" knots yield related
atoroidal manifolds. To make this precise, we have to define an appropriate notion
of the complexity of a knot. This we do in §5, after first (in §4) making some
remarks on the decomposition along tori of a knot exterior into atoroidal pieces. The
definition of complexity that we use is a combination of the genus of the knot and
the maximum number of nonparallel incompressible tori in its exterior. The proof
that it has the desired properties uses results of Schubert [22] on the genus of satellite
knots and the finiteness theorem of Thurston mentioned above. In §6 we prove all
the results stated in this introduction, except Theorems 1.5 and 1.11. In §7 we
consider the special cases of Dehn surgery on composite and cable knots, the latter
providing a good illustration of the reduction process used to prove Theorem 1.1.
We examine the case of iterated torus knots in some detail, and in particular
describe all the Dehn surgeries on these which yield lens spaces or connected sums of
lens spaces. This problem has also been studied by Fintushel-Stern in [3]. However,
our point of view provides an alternative to the link calculus approach of [3], and
moreover some of the statements in [3] are incorrect.2 In §8 we give the proof of
Theorem 1.11, making use of the results of §7. §§9 and 10 deal with some other
aspects of the question whether (K; 0) can be of the form S] X S2 # M, if K ¥= O.
For instance, in §9 we make some remarks on certain group-theoretic questions
related to whether this can occur with ttx(M) ^ 1, and in particular observe that this
would be impossible if the Whitehead conjecture were true. In §10 we show that if
(K; 0) is homeomorphic to Sl X S2 #M, then K is homotopy-superslice (see §10 for
definitions).

I should like to thank Ray Lickorish for useful conversations concerning some of
this work. I should also like to thank the Departments of Mathematics of the
University of California at Santa Barbara and the University of Cambridge for their
hospitality during the period in which the work was carried out.

2 See correction to [3], Math. Z. 178 (1981), 143.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DEHN SURGERY AND SATELLITE KNOTS 691

2. Terminology. We work in the smooth or PL category.
Let K be an unoriented knot in oriented S3. (Two knots are considered to be equal

if they are ambient isotopic; similarly for embedded circles in other 3-manifolds.)
Let N( ■ ■ ■ ) denote tubular neighbourhood. The exterior of K is X — S3 — int N(K).
Note that if K =£ O, then dXi& incompressible in X.

Let/: S1 X Z)2^/V(/\)bea homeomorphism which determines the Q-framing of
K, i.e. [f(Sl X *)] = 0 G HX(X), * G dD2. Now choose (arbitrarily) an orientation
of K. This determines longitude-meridian classes A,/x E Hx(dX) by setting X =
[f(Sx X *)], * G dD2, and ¡i = [/(* X dD2)], * G S1. If r = m/n G Q U {oo},
m, n G Z, (m, n) = I, then (K; r), the result of Dehn surgery of type r on K, is
XL>hSx X D2, where h: Sx X 3D2 -» dX is a homeomorphism such that
[h(* X 3D2)] = wju + nX G Hx(dX), * G S\ The manifold (K; r) is independent
of the choice of orientation of K [21, pp. 258-259].

J will always denote a circle in intS1 X D2 which does not lie in a ball in
S1 X D2 and is not a core of Sx X D2 (i.e. is not isotopic to S] X (0,0)). The winding
number of J is the integer w > 0 such that //,(/) -» Hx(Sl Xi)2)=Z (unlabelled
maps are induced by inclusion) has image wZ. The exterior of/is Y = S1 X D2 —
int /v"(/). The hypotheses on 7 imply that each component of 3 Y is incompressible in
Y

Let A:be a knot, and/: S1 X D2 -^ 7V(A") as above. Then J(K) denotes the knot
f(J) in S3. If K J= O, then /(A") is a satellite of K, with winding number w. K is
simple if it is not a satellite. Recall that a compact 3-manifold M is atoroidal if every
incompressible torus in int M is parallel to a component of 3M. Then K is simple if
and only if its exterior X is atoroidal.

Let us say that J (as above) is simple if any solid torus V C int Sl X D2 with
/ C int V has as a core either J or a core of S1 X D2. If Y (the exterior of 7) is
atoroidal, then / is simple. (One should beware that the converse is false, however.
Counterexamples may be obtained by locally tying any prime knot in a core of
Sx X D2. A less obvious kind of counterexample is illustrated in Figure 1.) It is a
consequence of Haken's finiteness theorem (see [10, Lemma 13.2]), applied to
incompressible tori, that any satellite knot can be expressed as J(K) with K =£ O
and J simple.

Figure 1
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692 C. MCA. GORDON

Let a, ß G HX(S] X dD2) be given by a = [S1 X *], * G dD2, ßG[*X dD2],
* G S1. Note that HX(Y) s Za © Z/i,, where ju, is the class of a meridian of N(J).
(We shall sometimes not distinguish notationally between a homology class and its
image under a map induced by inclusion.) There exists a homeomorphism g:
Sl X D2 -» N( J) which determines the 0-framing of J, i.e. such that, for * G dD2,
[g(Sl X *)] = wot in HX(Y). Then Xx = [g(S] X *)] G Hx(dN(J)) is a longitude class
of J. For r = m/n G Q U {oo}, we define (J; r) to be Y Uh S] X D2, where h:
S1 X 3Z>2 -* dN(J) is a homeomorphism such that [h(* X dD2)] = mju, + nXx G
Hx(dN(J)). Note that for all A, if/, g are as above, thenfg determines the 0-framing
oiJ(K). Hence (J(K); r) s X U (7; r), identified via the restriction of/to 3(7; r)
= 3(S' XZ)2)^3tV(Ä") = 3A'.

For s G Z, let fs: S1 X D2 -» Sl X D2 be the homeomorphism given by
ts(6,(r, <p)) = (0,(r, <p + 50)). If J C int S1 X D2, let /f = ts(J). Thus /a is the
image of J under the operation of cutting 5' X D2 along a meridian disc, twisting s
times, and regluing.

By a (/j, q)-curve on the boundary of a framed solid torus V we mean a simple
closed curve which represents p ■ meridian + q • longitude in Hx(dV). Let C C
S1 X D2bea(p, #)-curveon S1 X ^Z)2. If A" is any knot, Cp q(K) is the (/>, q)-cable
of A", and in particular, Cp q(0) — T is the (p, ¿¡r)-torus knot. When we use the
notation Cp , we always assume (for nontriviality, and because our knots are
unoriented) that q > 2 ( p may be negative).

If M is a closed, (connected) 3-manifold, M~ will denote M — int 5, where
B G Miss. 3-ball.

Z„ denotes Z/nZ.
(•••) denotes the normal closure of a set of elements in a group.
Throughout, K will denote a knot in S3, X the exterior of K, J a simple closed

curve in int 5' X D2 (nontrivial in the sense described above), Y the exterior of J, w
the winding number of /, and r = m/n G Q U {oo}.

3. Preliminary lemmas. We begin with two simple geometric lemmas.

Lemma 3.1. Let M be a closed, orientable 3-manifold, and T C M a compressible
separating torus. Then T bounds S1 X D2 # P for some summand P of M.

Proof. By the loop theorem-Dehn lemma, there exists a 2-disc D G M such that
D H T — dD is essential on T. Surgery on T using D yields a 2-sphere S G M. Since
T separates M by hypothesis, so does 5. Thus M = P # Q, where the closures of the
components of M — S are P~ and Q~ . Dually, T is obtained from S by the surgery
corresponding to the attachment of a 1-handle h] to (say) P~ . Then T bounds
P~ Uh] ~S[ X D2 #P.    D

The following lemma can be refined, but will suffice for our purposes.

Lemma 3.2. Let Mx, M2 be closed, orientable 3-manifolds, and suppose there exists
an incompressible torus TCMl#M2. Then there exists an incompressible torus
7" C M^ or M2 , with im7r,(7") = imTrx(T) (up to conjugacy).
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Proof. Let S be the 2-sphere which defines the connected sum decomposition
M, # M2, and make T transverse to S. Then T (1 S consists of a finite collection of
disjoint circles; let C be one which is innermost on S. Then C = 3D for some 2-disc
D C S such that D n T = C. Also, since T is incompressible, C = dE for some
2-disc E G T. Now T may be modified by replacing E by D, and then isotoping D
slightly off S in the appropriate normal direction so as to decrease the number of
components of T n S by at least one. Continuing, this eventually yields a torus 7"
satisfying the conclusion of the lemma.    □

The next two lemmas are straightforward homological calculations. We use the
terminology established in §2.

Lemma 3.3. (i) 77,((7; r)) ^ Z © Z(H1>m).
(ii) The kernel of 77,(3(7; r)) -> 77,((7; r)) is the cyclic subgroup generated by

nw2 m      _      .,
7-r« + 7-rp,    z/w^O;-   (w, m) (w, m)

ß, ifw = 0.

Proof, (i) 77,((7; /•)) s /^(YyínX, + mix,) as (Za © Zpx)/(nwa + m¡ix). Thus
77,((7; r)) is presented by the matrix (nwm). By the euclidean algorithm, this is
equivalent to (0 d), where d = (nw, m) = (w, m) (since (w, n) = 1).

(ü) Let G = ker(77,(3(7; /•)) -» 77,((7; r))). Since 7j i-> wjtt, in 77,(Y), we have (see
(i) above) that aa + bß G G if and only if, for some k G Z,

aa + bw¡ix = k(nwa + mpx)

in 77,( Y) = Za © Z/i,; that is a = knw, bw — km.
If w = 0, then a = 0, and ¿> is arbitrary, so that G is generated by ß.
If w 7e 0, then the least positive A: satisfying few = km is w/(iv, m). The corre-

sponding values of a and b are then nw2/(w, m) and /n/(iv, m) respectively, giving
the stated result.    D

Recall (§2) that (J(K); r) s X U (J; r).

Lemma 3.4. Let T G (J(K); r) be the torus along which X and (J; r) are identified.
Then the image of 77,(7) -> HX((J(K); r)) s Zm is wZm.

Proof. Under 77,(7) ^ HX(X)^Z, anO and ß\-*l, and HX((J(K); r)) s
HX((J; r))/(a) s Z/^/Ym/i,). Since /? i-» wfi, under 77,(7) -♦ 77,((7; r)), the result
follows.    D

Let M be a closed, orientable 3-manifold with HX(M) s Zm, m G Z. If v G Z, let
us temporarily say that M is v-atoroidal if M contains no incompressible separating
torus 7 such that the image of 77,(7) -» HX(M) is vZm. (Of course, "separating" is
only relevant if m = 0.)

Lemma 3.5. If (J(K); r) is w-atoroidal, where K ¥= O, then (J; r) s S1 X D2 #P
for some summand P of (J(K); r).
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Proof. Let 7 C (7(A"); r) be the torus along which X and (7; r) are identified.
By Lemma 3.4 and the assumption that (J(K); r) is w-atoroidal, 7 is compressible.
Since K ¥= O, Tis incompressible in X, and the result now follows from Lemma 3.1.
D

Lemma 3.6. If (J(K); r) is w-atoroidal, where Ki=0, then either w = 0 or
(w, m/(w, m)) — 1.

Proof. By Lemma 3.5, (7; r) s S1 x D2#P. In particular, ker(77,(3(7; r)) -*
HX((J\ r))) contains a primitive element. By Lemma 3.3(ii), this implies that either
w = 0 or (nw2/(w, m), m/(w, m)) = 1. But

/    nw2 m     \ _ I m     \ _ l m     \
\(w,m)' (w,m) j      \     ,(w,m)l      \   '(w,m)l'

hence the result.    D
We can now give the
Proof of Theorem 1.5. By Lemma 3.2, S1 X S2 # M (M a homology sphere) is

t>atoroidal for all v ¥^ 0. But by Lemma 3.6, (/(A"); 0), K ¥= O, can be w-atoroidal
only if w = 0 or 1.    D

The next lemma is the basis of the reduction procedure which eventually yields
Theorem 1.1. We remark that the notion of u-atoroidality was introduced essentially
only to prove Theorem 1.5, and will not be used subsequently, although we retain it
in the statement of Lemma 3.7.

Lemma 3.7. Suppose (J(K); r) is w-atoroidal, where K ¥= O. Then
(i) there exists P such that

{J(K);r)^(K;r/w2)#P,    and    (7(0); r) = (0; r/w2) #P;

(ii) ifw = 0, then (J(K); r) s (7,(0); r) for alls.

Proof. By Lemma 3.5, (7; r) s S1 X D2 # P for some summand P of (7(7v ); r).
Therefore (/(A"); r) » X U (Sl X D2 #P). Now under the identification of 3*
with 3(7; r), X corresponds to a, and fi to ß. By Lemma 3.3(h), * X dD2 G
3(5' X D2 #P) = 3(7; r) represents nw2a/(w, m) + mß/(w,m), if w ¥- 0, or ß, if
w = 0. Hence

(j(K);r) =(IU S1 X D2) #P =(K; m/nw2) #P = (K;r/w2)#P.

(Note that if w = 0, r/w2 is to be interpreted as oo, even if r — 0.)
The same argument, with O in place of A (so that X is replaced by a solid torus),

shows that (7(0); r) = (O; r/w2)#P. This proves (i).
To prove (ii), suppose w = 0. Then (A; r/w2) — (K; oo) = S3, and the above

argument gives (7; r) s S] X D2 # (J(K); r). Hence, for any s,

(7ÍO); r) ¡sS' X 7J>2 U {S] X D2#(J(K); r)) =(J(K); r).

(The fact that S} X D2 U S" X D2 must be S3 follows simply by comparing the
homology of both sides, although of course it is not hard to work out the explicit
boundary identification.)    D
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The equations in (i) combine to give the symmetric equation

(J(K); r) # (0; r/w2) ^(J(O); r) # (K; r/w2),

which is the only form in which Lemma 3.7(i) will be used in the proof of Theorem
1.1.

The argument used to prove (ii) above generalizes easily to show that, if P is as in
(i), then, for all s,

(js(0); r + sw2) =(0;r/w2 + s)#P.

We make no use of this, however.

4. Atoroidal decompositions of knot exteriors. Throughout this section, we shall
restrict to 3-manifolds that are compact, oriented, irreducible, and whose boundary
components are incompressible tori.

Let 9 be the union of a collection of disjoint, nonparallel, nonperipheral, incom-
pressible tori in the interior of such a 3-manifold M, and let | 9"| denote the number
of components of 9". Then by Haken's finiteness theorem [10, Lemma 13.2], the
integer t(M) = max{| 9"| : 5" as above} is well defined. M is atoroidal if and only if
t(M) — 0. If | 5" | = t(M), say that 5" is a maximal system of tori for M. Note that if 9
is a maximal system, then the components of M — int JV(9" ) are atoroidal. There-
fore, by [27], each is either hyperbolic (i.e. its interior has a complete hyperbolic
structure with finite volume) or belongs to a small class of Seifert fibre spaces. If
they are all of the latter kind, then we shall say that M is a special graphmanifold (see
[28]). Thus the special graphmanifolds are precisely those manifolds in the class
described at the beginning of this section whose volume (in the sense of Gromov, see
[27, §5]) is zero. (We remark that although it turns out that the subsystem of 9",
obtained by amalgamating as many of the Seifert fibred pieces as possible into larger
Seifert fibred pieces, is unique [11,12], it is only the existence of a maximal system
that we shall need.)

Suppose M = Mx U M2, with Mx n M2 a union 9^ of tori in 3M¡, i = 1,2, and
suppose that no component of Mi is homeomorphic to S] X S1 X I, i = 1,2. Then
clearly

(*) t(M)^t(Mx) + t(M2) + |9~| .

Now say that M is anannular if every properly embedded annulus in M is parallel
into dM. (It is not hard to show that an atoroidal manifold is either anannular or
belongs to a rather small class of Seifert fibred spaces.)

Let M — Mx U M2 as above, and suppose that M, is anannular. Then (*) is
actually an equality, since any incompressible torus 7 in int M can be isotoped off
9". (First make 7 transverse to 9. Using a standard innermost disc argument, we
may, by an isotopy of 7, eliminate from 7 n 9 all simple closed curves which bound
discs on 7. Thus we may assume that 7 n 9 consists of a finite number of parallel
essential simple closed curves on 7, separating 7 into annuli. If 7 n 9" ¥= 0, at least
one of these annuli, A, say, is contained in Mx. Since M, is anannular, A is isotopic
(rel 3/1) into ?T, and so there is an isotopy of 7 which eliminates at least dA from
Tn 9.)
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Now let A" be a knot with exterior X, and let 9 be a maximal system of tori for X.
Let M be the component of X — int A/(9") which contains dX. The special role
played by cable and composite knots in the present context is described in the
following lemma.

Lemma 4.1. 7/M is a Seifert fibre space, then K is either a torus knot, a cable of a
nontrivial knot, or a composite knot (according as dM has one, two, or three
components).

Proof. It is shown in [11, Lemma VI.3.4] that any Seifert fibre space contained
with incompressible boundary in a knot exterior is either the exterior of a torus knot,
the exterior of some Cp in S1 X D2, or a (disc-with-holes) XS1. (In the present
setting, the only possibility in the latter case is a (disc-with-2-holes) X S1.) It is then
not hard to show that these possibilities correspond to the possibilities for K listed in
the lemma. We omit the details.    D

If we define the volume of K to be the volume of X (see [27, §6]), then Lemma 4.1,
together with induction on t(K) (see Lemma 5.2), gives

Corollary 4.2. The volume of K is zero if and only if K is in the class generated by
O under the operations of connected sum and cabling.    D

Another description of the above class is that it is the class of fibred knots whose
monodromy has all its irreducible components (in the sense of Thurston [26]) of
finite order. By [19], it may also be characterized as the class of knots which are
attracting closed orbits for a nonsingular Morse-Smale flow on S3 (although there
the possibility of connected sum seems to have been overlooked).

5. A notion of complexity. Let g( K ) denote the genus of K.

Lemma 5.1. Suppose K ¥= O. Then
(i) ifw s* 1, g(K) < g(7(A")), andg(J(0)) < g(J(K));

(Ü) if w = 0, g(Js(0)) < g(J(K)) for all s.

Proof, (i) This follows immediately from the inequality

g(7(A-))^wg(A-)=g(7(0)),
which is proved by Schubert in [22, §12, p. 192].

(ii) If w = 0, let g(7) be the minimal genus of an orientable surface spanned by 7
in S1 X 7>2. Then it follows from [22, §12, Hilfssatz 1] that g(J(K)) = g(J). But
clearly g(Js(Oy) < g(7) for all s, hence the result.    D

If A" is a nontrivial knot, with exterior X, we define t(K) = t(X).
The following is an immediate consequence of (*) of §4, with Mx — X, M2 — Y,

and 9"= 3X

Lemma 5.2. IfKJ-O, then t(K)< t(J(K)).    D

Recall the definition of a simple curve 7 C int Sl X D2 (§2).

Lemma 5.3. Let 7 be simple, with w — 0, and suppose K ¥= O. Then there exists s
such that 7,(0) ^ O and t(Js(0)) < /(7(A)).
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Proof. Recall that Y is the exterior of 7 in S1 X D2. The two components of 3 Y
are 30Y = 3(5' X 7J>2), and 3, Y = dN(J). Let 9"be a maximal system of tori for Y
We claim that 90Y and 3, Y lie in the same component M of Y — int JV(9 ), and that
M is not a Seifert fibred space.

To establish the first assertion, let 7 be any incompressible torus in Y By an
argument like that used in the proof of Lemma 3.1, 7 either bounds a solid torus V
in Sl X D2, or lies in a ball in S' X D2. If the former holds, we must have J G V
since 7 is incompressible in Y. Since 7 is simple, 7 must then be parallel to either
30Yor3,Y

Hence each component 7 of 9^lies in a ball in S1 X D2, and therefore 30 Y and 3, Y
can be joined by a path in Y missing 7. It follows that they can be joined by a path
in Y missing 9", that is, 30 Y and 3, Y belong to the same component of Y — int N( 9" ).

We now show that M is not Seifert fibred. This follows from considerations like
those in [11, Lemma VI.3.4] (see Lemma 4.1 above), but for completeness we include
a proof anyway.

If M were Seifert fibred, then there would exist an annulus A G M, namely the
S'-bundle over an arc in the orbit surface joining the images of 30Y and 3,Y, and
missing the images of the singular fibres, with one component of dA in 30Y and the
other in 3,Y. Now consider the standard (unknotted, 0-framed) embedding of
S1' X D2 in S3, and let C be the core of the complementary solid torus. In this way
regard Y as the exterior of the 2-component link C U 7. Let X¡, ¡u, G 77,(3^),
i = 0,1, be longitude-meridian pairs for C, J respectively. Note that, since the
linking number Lk(C, 7) = w = 0, A,. i-> 0 in 77,(Y) s Zju0 © Z/i,, /' = 0,1. Since
dA n 3,Y, z = 0,1, are homologous in Y, we must then have [dA n 3,Y] = ±A, G
77,(3, Y), i = 0,1. Therefore A extends to an annulus A' G S3 with dA' = C U 7. But
C is unknotted, and Lk(C, 7) = 0, so that C U 7 is the unlink, contradicting the
assumption that 7 does not lie in a ball in S1 X D2.

The exterior of 7(0) is homeomorphic to S1 X D2 U Y, attached via some
homeomorphism h: Sx X dD2 -* d0Y. The exterior of 7,(0) is then S] X D2 U Y,
attached via hgs, where gs: S1 X dD2 -+ S1 X 37J>2 is given by gs(6, cp) =
(6 + s<p, <p). We regard this as (S[ X D2 U M) U (Y- M) = Ms U (Y - M), say.
Now by [27, Theorem 5.9], for all but finitely many integers s, Ms is hyperbolic, and
is therefore irreducible, atoroidal, anannular, and has incompressible boundary.
Choose such an s. Then 7S(0) ¥= O, since 3, Y is incompressible in Ms U (Y — M).
Also, from (*) of §4 (with equality) we have

t(j,(o)) = t(T=^M) + \%\ .
On the other hand, the exterior of 7( A") = A' U Y= XU MU (Y- M), so that (if
A" t¿ O) (*) gives

,(/(#)) > í(*) + t{T=Ü) + |9ï +1 > íU(O)),
as required.    D

We now define the complexity c(K) of a knot A" by c(A") = (g(A"), r(A")), and
order lexicographically, so that c(A,) < c(A"2) if and only if either g(A",) < g(A"2),
or g(A",) = g(A"2) and t(Kx) < t(K2). (We also set t(0) = 0.)
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The following is an immediate consequence of Lemmas 5.1, 5.2, and 5.3.

Lemma 5.4. Suppose K ¥= O. Then
(i) ifw ^ 1, c(A") < c(7(A")), andc(J(0)) < c(7(A"));

(ii) if w = 0 and J is simple, there exists s such that Js(0) ¥= O and c(Js(0)) <
c(J(K)).    D

6. Main proofs.
Proof of Theorem 1.1. Since the set of ordered pairs of nonnegative integers is

well ordered by the lexicographic ordering, we may prove this by induction on c(A').
So suppose (A"; r) is atoroidal, K ¥= O.
If A" is simple, we take k = 0, K0 = A".
If K is not simple, then A" = 7( A"'), say, where K' ¥= O and 7 is simple. There are

now two cases.
(1) w = 0. By Lemma 5.4(ii), there exists 5 such that 7,(0) =£ O and c(Js(0)) <

c(K). By Lemma 3.7(h), (7,(0); r) s (K; r). Hence the result follows by induction.
(2) w > 1. By Lemma 3.7(i) we have

(a) (A"; r) # (O; r/w2) ^(7(0); r) # (K, r/w2).

In particular, (7(0); r) and (A"'; r/w2) are atoroidal. Furthermore, by Lemma
5.4(i), c(A"') < c(A"), and c(7(0)) < c( A"). Therefore, by inductive hypothesis,

k' k'
(b) (AT'; r/w2) #  # (O; r/w2v'2) a # (*,'; r/w2v'2),

i=I 1=0

as in the statement of the theorem. Similarly, if 7(0) ^ O,

k* k*
(c) (7(0); r) #  # (O; r/v*2) a # (K*; r/v*2),

/ — 1 /=o

say. If 7(0) = O, we still have a (trivial) equation of this form, by taking k* = 0,
K* = 0,v* = l.ln either case, (a), (b), and (c) yield

Ar* k'
(K; r) # (O; r/w2) #  # (O; r/v*2) # (O; r/w2t;,'2)

i=i i=i
k' k'

= # (A,*; r/v*2) # (A",'; r/w2^'2).
i'=0 i'=0

If K'q ¥= O, this is an equation of the desired form for (K; r). If K'0 = O, the desired
equation is obtained by cancelling (O; r/w2) on the left-hand side with
(A"0; r/w2v'02) = (O; r/w2) on the right.    D

Proof of Theorem 1.2. Without the extra restrictions on the surgery coefficients,
the result is an immediate consequence of Theorem 1.1, and (in the homotopy sphere
case) the fact that torus knots have Property P.

The restrictions on the surgery coefficients follow from a result of Litherland [16].
Although not explicitly stated, the proof in [16] (see particularly Proposition 2 and
its proof, and the proof of Theorem 1 in §7) shows that if (7; l/n) s S1 x 7>2 #P,
where n ¥= 0, then either w = 0 or 1, or w = 2 and n = ±1. (In fact, it is shown that
in the latter case, only one of the values ± 1 is possible, but we shall not use this.)
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Now recall that in the inductive step in the proof of Theorem 1.1, consideration of
(A"; l/n) is replaced by consideration of either (Js(0);l/n) (if w = 0), or
(7(0); l/n) and (A"'; 1/ww2) (if w > 1). Therefore, if | n |> 1, so that w = 0 or 1,
the surgery coefficient remains unchanged, whereas if n = ± 1, so that w = 0,1, or 2,
the surgery coefficient either remains unchanged or becomes ± \. This implies the
stated result.    D

Proof of Corollary 1.3. This is an immediate consequence of Theorem 1.2, and
the fact that the Rohlin invariant of (A"; ± \) is necessarily 0. (The Rohlin invariant
of (A"; l/n) is na(K), where a( K) is the arf invariant of K [5].)    D

Proof of Theorem 1.4. This will follow at once from Theorem 1.1 once we have
established the following claim: If K ¥= O, then there exist K' ¥= K and an orienta-
tion-preserving homeomorphism X' -> X if and only if (K;l/n) = S3 for some
«7^0.

To do this, first suppose we have K' ¥^ K and an orientation-preserving homeo-
morphism g: X' -» X. Let A, ix. be a longitude-meridian pair determined by some
orientation of K. Then, for some orientation of A"', and corresponding longitude-
meridian pair A', ju', we have (g\ dX')J(X') = X, (g\ 3A")%(/i') = jti + nX, for some
n G Z. Hence (A"; l/n) a (K'\ oo) a S3. Also, if n = 0 then g would extend to an
orientation-preserving homeomorphism (S3, A"') -* (S3, A"), implying that K' = K.

Conversely, suppose (A"; l/n) a S3, for some n ^ 0. So S3 ^ X UhS] X D2,
where [h(* X dD2)] - n + nX G Hx(dX). Let K' be the knot represented by the
core of Sl X D2. If A" = A"', there would exist an orientation-preserving homeomor-
phism of S3 taking K to A"'. This would induce an orientation-preserving homeomor-
phism g: X -» X such that (g\ dX)^(X) = eA, (g| dX)^(p) = £jtt + neX, where e =
± 1. Thus (g\ dX)t would have infinite order, contradicting Johannson's finiteness
theorem [12, §27]. (See the discussion in [25, p. 35].)    D

To apply Theorem 1.1 to the possibility of obtaining 51 X S2 #M by surgery on
a nontrivial knot, we need the following lemma.

Lemma 6.1. Suppose (AT; 0) a S1 X S2 # M. Then (A>, 0) is atoroidal.

Proof. Since any knot group has weight 1, ttx((K; r)) has weight 1, for all A", r.
Hence, under the hypothesis of the lemma, Z * irx(M) would have weight 1.

Now let M a #(?=, Mi be a prime factorization of M; in particular, each M¡ is
irreducible. If S1 X S2 # M contained an incompressible torus, then, by Lemma 3.2,
so would Mp for some/7, 1 <p =£ q. This M would then be a Haken manifold, and
therefore Tix(Mp) would be residually finite (Thurston, unpublished, see [27]), and
nontrivial. But Z * irx(Mp), being a quotient of Z * ttx(M), would also have weight 1,
contradicting [4], (For further discussion of these matters, see §9.)    D

Proof of Theorem 1.6. In view of Lemma 6.1, this follows from Theorem 1.1 and
the fact that for a nontrivial torus knot, (A";0) is a bundle over Sx with fibre a
surface of genus > 0. (If A"0 = O in Theorem 1.1, just cancel an Sx X S2 on both
sides.)    G

Proof of Theorem 1.8. First note that since Dehn surgery on a torus knot never
yields a fake lens space, it suffices to prove the statement with " hyperbolic" replaced
by "simple".
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So suppose (A"; r) = M is a fake lens space. By Theorem 1.1, there exist simple
knots K0, Kx,...,Kk and positive integers v0= 1, vx,...,vk such that, writing
L, = (O; r/v2) and ß, = (A",; r/v2), we have

k k
(d) M#   #L,a#ß..

1=1 1=0

If /w = 1, the result is contained in Corollary 1.3, so suppose otherwise. Then note
that if some g, a S3, we must have / > 1 and L, a S3, so that M satisfies an
equation of the form (d) with a smaller value of k. We may therefore suppose that
no Qi is homeomorphic to S3. In that case, if trx(Q¡) = l for some i, then Q¡ is a fake
3-sphere, and we are done. If not, then since -nx(M# #k=x L¡) is a free product of
k + l cyclic groups, irx(Q¡) must be cyclic, for each i = 0,1_,k. But by hypothe-
sis, the left-hand side of (d) is not a connected sum of lens spaces, so some Q¡ is a
fake lens space.    □

Proof of Theorem 1.9. By Theorem 1.1,
k k

M#  #(0;r/v2)^#{K,;r/v2),
1=1 1=0

with Kt simple. Since M is prime, it follows that (Ky, r/v2) s M # #,e/(0; r/v2)
for some y, 0 <j < k, and some 7C {l,...,k}. Let r/v2 expressed in its lowest
terms be m¡/n¡. Note that m¡\m. Then

77,(m# #{0;r/v2))^Zm®®Zm¡.

But Hx((Kj\ r/v2)) is cychc, so we must have | mi, | = 1, and therefore (O; r/v2) a S3,
for all i G I. Therefore (A/, r/v2) = M.    □

7. Composites, cables, and iterated torus knots. As we remarked in §4, composite
and cable knots arise naturally as special cases when one considers a decomposition
of the exterior of a knot along tori into atoroidal pieces. We need to examine the
effect of Dehn surgery in these cases in order to prove Theorem 1.11.

For composite knots, we have the following. (See also [1, Lemma 2 and 5, §7].)

Lemma 7.1. 7/A" is composite, then (K; r) is irreducible and contains an incompress-
ible torus for all r G Q.

Proof. Suppose A" = A", # A"2. Then X ^ Xx \J A X2, where X¡ is the exterior of
K¡, and A G dXt is a meridional annulus, i — 1,2. Let r = m/n as usual. Then
(A"; r) a (Xx U,, A^) U V, where F is a solid torus. There are longitude-meridian
pairs X, p G Hx(dX) and A0, jti0 G Hx(dV) such that the homeomorphism/: dV -* dX
by means of which Kis attached to X satisfies/„(ju0) = mp + «A,/+(A0) = up + vX,
where mv — nu= 1. Therefore/^\p) = vp0 — nX0. Hence (A"; r) = (XX UB V) U
X2, where B is the annulus dXx — int A on dXx and a neighbourhood of a
(v, -«)-curve on dV. Now since r G Q, n =£ 0, and so B is incompressible in V. Also,
B is incompressible in Xx, and, if A", ¥= O, dXx is incompressible in Xx. Hence W =
Xx U B V is irreducible and has incompressible boundary. Thus, if A"2 =?= O, (K; r) =
W U X2 is irreducible and contains an incompressible torus.    D
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If n = 1, so that we have (A", # A"2; m), the result of genuine w-framed surgery on
A", #A"2, then, in the above proof, v = 0 and 73 is a longitudinal annulus on dV.
Thus W a Xx, and (A", #A"2; m) a Xx U X2 is obtained by gluing together the
exteriors of A", and A"2. (This has also been observed by S. Akbulut.) In fact,
orienting our knots and using the notation of [6] (in that notation, (AT; m) —
M(0, K; 1,0, m,-1) a M(0, K; -1,0, -m, 1)), exphcitly computing the identifica-
tion of the boundaries of Xx and X2 shows that

M(0,Kx #K2;-l,0, m,l) a M(KX, K2; -1,0, m, 1).

Next we consider Dehn surgery on cable knots. This provides a good illustration
of Lemma 3.7. Recall that we assume q > 2.

Lemma 7.2.

fC    .,\si5'XZ)2#L(<7./'),    */' = /*.
1  p'«'r)      [S'XZ)2, //m = «W±l,

and otherwise is a Seifert fibre space with incompressible boundary.

Proof. S1 X D2 has a Seifert fibration with orbit surface D2 and one singular
fibre of multiplicity q, in which Cp is an ordinary fibre. Hence Y, the exterior of
Cp in S1 X D2, has a Seifert fibration with orbit surface an annulus and one
singular fibre of multiplicity q. Let TV be a 0-framed tubular neighbourhood of C
in Sl X D2. Then it is not hard to show that the ordinary fibres on dN are
(pq, l)-curves on dN.

Now consider (C ; r) = Y U V, where F is a solid torus and dV is identified
with 37V. If the boundary of a meridian disc of F (an (m, «)-curve on dN) does not
correspond to an ordinary fibre on dN, that is, if r ¥" pq, then the Seifert fibration of
Y extends to one of (Cp ; r). This has orbit surface D2 and (possibly) singular fibres
of multiplicities q and | npq — m | (npq — m is the intersection number of a (/7ö, 1)-
curve on dN with an (m, n)-curve). If npq — m = ±1, then we have only one
singular fibre, so that (Cp q; r) = Sl X D2. Otherwise, there are two singular fibres,
and (Cp  ; r) is a Seifert fibre space with incompressible boundary.

It remains to consider the case r = pq. To do this, let W = Sl X {D2 G S1 X D2,
so that Cpq C 3W. Then Y may be expressed aslfU^Z, where ZsS'xS'x/,
and /4 is an annulus which is a neighbourhood of a (/>, o)-curve on dW, and a
neighbourhood of a nontrivial curve in S1 X 51 X {0}. Also, dA is a pair of
(/70, l)-curves on the 0-framed tubular neighbourhood N of C in S1 XT)2,
separating 3A7 into two annuli/4,,.42, say, where Ax G dWànàA2 G dZ.

Let M = (Cpq, pq). Then M a (W UA Z) U F, where 3F and 3/V are identified in
such a way that 3^4 bounds a pair of disjoint meridian discs 75,, D2 in K. 7), and 7)2
decompose K as the union of two 3-balls 73,, 7?2, which we may suppose numbered
so that the 2-sphere A U £>, U D2 separates M into W U Bx and Z LS B2, where 77,
(regarded as a 2-handle) is attached along A¡, i — 1,2. Thus W U 77, a L(g, />)" ,
and Z U 7i2 a (S1 X 7J2)" . It follows that M a S1 X D2#L(q, p), as stated.    D
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Since the winding number of Cp q is q, we obtain (see Lemma 3.7)

Corollary 7.3.

t„ ,„\   \   ¡(K> p/<i)#L(q> p)>   'fr = pq>
\Cp,q(K);r) a^" [(AT;r/V), ifm = npq±l,

and otherwise, is the union (along their boundaries) of the exterior of K and a Seifert
fibre space with incompressible boundary.    D

The second case of Corollary 7.3 shows that Theorem 2(ii) of [3] is false.
Taking K = O in Corollary 7.3, so that we have Cp q(0) = Tp the (p, a)-torus

knot, one obtains the following. (For nontriviality, we assume here that q s* 2 and

\p\>2.)

Corollary 7.4 (Moser [20]).

/_,        ,\L(p,q)#L(q,p),     ifr=pq,
1 p'q,r)^{L(m,nq2), ifm = npq±l,

and otherwise is a Seifert space with orbit surface S2 and three singular fibres of
multiplicities q, | p \ , and | npq — m | .    D

Let [px,qx;p2,q2\ • • ■ ; pk, qk] denote the (px, ö,)-cable of the (p2, o2)-cable
of • • • the (pk, qk)-toms knot. (As usual, we assume o, > 2, 1 < i < k, and \pk\^ 2.)
Such a knot is called an iterated torus knot. Note that its exterior is a special
graphmanifold (§4).

The following theorem describes the manifolds obtained by Dehn surgery on an
iterated torus knot. For brevity, we use 5 to denote some Seifert fibre space with
orbit surface S2 and three singular fibres, and G to denote some special graphmani-
fold with at least one incompressible torus, so that " • • • is S" means " • • • is a
Seifert fibre space with orbit surface S2 and three singular fibres", and so on. We do
not specify precisely the particular 5 's and G 's that occur, although their determin-
ing invariants could be worked out from the proof. We also assume k > 2, the case
k — 1 being covered by Corollary 7.4.

Theorem 7.5. ([/>,, qx; p2, q2; ■■■; pk, qk]\ r), r G Q, may be described as follows:
(i)r=pxqx,px =qxp2q2± 1:

k = 2: L(px,qxq22)#L(qx,±l),
k = 3: S#L(qx,±l),
k>3: G#L(qx,±l).

(ii) r — pxqx, but not case (i):

k = 2: S #L(qx, /?,),
k^3: G#L(qx,px).
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(iii) a, = 2,/7, = 2p2q2 ±l,r = 4p2q2 ± 1:

k = 2:     L{4p2q2±l,4q2),
k = 3
k>3

S,
G.

(iv) m = npxqx ± 1, but not case (iii):

k = 2:     S,
k>3:     G.

(v) otherwise: G.
Proof. Let

k= [puQú ••■;pk>4k]> Ki = [p2>qi> •■■ ;/?*>?*]>
and

K2 = [Pi, q-i\ ■■■ ;7>*>i*L   if*>3.
Then by Corollary 7.3, M = (K; r) = (Cp¡ q¡(Kx); r) is G unless either r = pxqx or
m = rt/7,a, ± 1. In particular, this establishes (v). We examine the two exceptional
cases separately.

Case 1. r = pxqx. By Corollary 7.3,

AÍ = (*",;/>,/?,) #£,(?,,/>,).
If k = 2, then (A",; px/qx) = (T¿ , ; /7,/fl,), which by Corollary 7.4 (since/7,/a,

is not an integer), is

L(/>i><M22)>    úPi =q\P2qi± ».
5", otherwise.

If ¿»3, then (A",;/?,/a,) = (Cpiq2(K2); px/qx), and by Corollary 7.3, this is

fe />i/?i?f)>    if/'i = û,y72fl2± 1, (a)
G, otherwise.

In turn, by Corollaries 7.3 and 7.4, (K2; px/qxq\) is

5,      iffc = 3,
G,     iik>3,

unless
P\= q\qlPtf3±x- (b)

But equations (a) and (b) imply qxq2(p2 — qjPrfi) = 0 or ±2 (according as the
± l's in (a) and (b) are the same or different), both of which are impossible since
(/>2> Í2) = 1 and fli> fl2 ** 2. Hence (b) cannot occur.

This establishes (i) and (ii).
Case 2. m — npxqx ± 1. (c)

Then (by Corollary 7.3) M a (A",; m/nqf). Note that (c) implies (m,qx) = 1, so
that m/nq2 is in its lowest terms; in particular, it is not an integer.

If k — 2, it follows from Corollary 7.4 that M is

L{m, nq2ql),    if m = nq2p2q2 ± 1, W
S, otherwise.
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If k 3= 3, Corollary 7.3 shows that M is

( A2 ; m/nq2q¡ ),     if (d) holds,
G, otherwise.

In turn, (A"2; m/nq2q2) is

S,     iîk = 3,
G,    ifk>3,

unless
m = nq2q¡p3q3±l. (e)

But as in Case 1 above, equations (d) and (e) are inconsistent.
It remains to examine when (c) and (d) can both hold. Subtracting, we obtain

nq\(P\ ~ q\Piq-i) = 0 or ±2. The first possibility givespx = qxp2q2, contradicting
(P\^q\)~ I- So the ±l's in (c) and (d) are different, and since m and n are
determined only up to simultaneous sign change, we may assume that we have a -1
in (c) and a + 1 in (d), giving

"<7i(/>i - 4,/72tf2) = 2.

Therefore qx = 2, and n — ±1, px — qxp2q2 = ±1, so px = 2p2q2 ± 1.  By (d),
m — ±4p2q2 + 1, giving r = 4p2q2 ± 1. Finally, if k — 2,

M^L(m,nq2q2)=L{±4p2q2+ 1, ±4q2) a L{4p2q2 ± 1,4a2).    D

The question as to when (and which) lens spaces or connected sums of lens spaces
can be obtained by Dehn surgery on an iterated torus knot is considered by
Fintushel-Stern in [3]. For lens spaces, the case k = 2 of Theorem 7.5(iii) is Theorem
1 of [3]. However, for connected sums of lens spaces, the case k = 2 of Theorem
7.5(i) shows that the statement of Theorem 4 of [3] is incorrect. Also, in [3] the
authors show that for some knot K, (K; ± 155) = 7(31,17) #L(5,4), and deduce
from their Theorem 4 that A cannot be an iterated torus knot. However, by Theorem
7.5(i) ([31,5; 2,3];-155) a ¿(31,17) #1,(5,4). The question whether a connected
sum of nontrivial lens spaces can be obtained by Dehn surgery on a knot other than
an iterated torus knot seems to still be open.

Finally, we remark that essentially the same argument as that used for the case
k > 3 of Theorem 7.5 shows the following.

Theorem 7.6. If K ¥= O, then (CpuqCpiqCp^(K); r) contains an incompressible
torus for all r G Q.    D

8. A f initeness theorem.
Proof of Theorem 1.11. We shall prove the theorem by induction on t(K).
If t(K) = 0, then A is either hyperbolic or a torus knot. In the first case, (A"; r) is

hyperbolic (and therefore irreducible with infinite fundamental groups) for all but
finitely many r by [27, Theorem 5.9]. In the second case, only (i) is relevant, and this
follows from Corollary 7.4.

So suppose r( A" ) > 0, and consider a maximal system of tori 9" for X. Let M be
the component of X — int N(9 ) which contains dX. Since 9^0, 3M has at least
two components. There are two cases.
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Case 1. M is a Seifert fibre space. Then, by Lemma 4.1, either A = Cp q(K'),
K' =£ O, or K = A", # A"2, A", ̂  O ^ A"2. If A" = A", # K2, the result .follows from
Lemma 7.1. If K = Cpq(K'), then t(K') < t(K) (by Lemma 5.2) and the result
follows from Corollary 7.3 and induction.

Case 2. M is hyperbolic. Let Mr denote the result of " Dehn surgery" of type r on
M along dX (defined using the framing of N(K)). Then by [27,Theorem 5.9], Mr is
hyperbolic, and therefore irreducible with incompressible boundary, for all but
finitely many r. Then, for these r, (K; r) a (X — M) U Mr is irreducible and
contains the (nonempty) disjoint union of incompressible tori dMr = d(X — M).    D

9. Some group-theoretic conjectures. In this section we consider the question
whether (A";0) can ever be homeomorphic to Sl X S2 # M with irx(M) ^ 1, and
make some elementary remarks on some related group-theoretic questions.

Recall that a group has weight 1 if it is generated by a single conjugacy class. Since
having weight 1 is preserved under passing to a quotient, and since a knot group is
generated by the conjugacy class of a meridian, it follows that w,((A"; /•)) has weight
1 for all r. In particular, if (A";0) a 51 X S2 # M, then Z * ttx(M) has weight 1.
This raises the following question, attributed to Kervaire (see [13, pp. 116-117]).

Question 9.1. If G ¥= 1, can Z * G have weight 1?
If follows from [4] that the answer is "no" if G has a nontrivial finite quotient.

(More generally, it follows from [4] that if G is residually finite, and R G Z * G is a
relator with nonzero exponent sum in the generator of the Z factor, then the
canonical map G -» Z * G/(R) is injective.) We remark that all known (closed)
3-manifold groups satisfy this hypothesis, for the only known closed 3-manifolds are
connected sums of Seifert fibre spaces, hyperbolic manifolds, and Haken manifolds.
All three classes are known to have residually finite fundamental groups (the last is
an unpublished result of Thurston), and residual finiteness is preserved under
formation of free products [8].

In [14, Problem 5.7], Freedman notes that a nontrivial free product G * 77 can
have weight 1 if G and 77 have torsion (for example, if G a Zp, generated by g,
77 a Zq, generated by h, and p, q are coprime, then G * H/(gh)= 1), but asks: if G
is torsion-free, is one of the canonical maps G, 77 -» G * 77/(7?) always an injection,
for any R G G * 77? The answer to this is "no", however. For if g G G ¥= 1 satisfies
G/(g")= 1, for some integer « > 1, and h G H has order n and satisfies H/(h) = 1,
then G * H/(gh) = 1. It is not hard to find examples of this kind with G torsion-free.
Indeed, they exist in the context of Dehn surgery, for Corollary 7.3 shows that for
any A, p, q, itx((K; p/q)) * Zq has weight 1, and one can certainly arrange that
7T,((A; p/q)) be torsion-free (for example, this will always be the case if A" is
composite, by Lemma 7.1).

A more appropriate conjecture is perhaps the following.
Conjecture 9.2. If G and 77 are torsion-free, and R G G * 77, then one of the

canonical maps G, H -* G * 77/(A) is injective.
Closely related to this is
Conjecture 9.3. If G and 77 are nontrivial and torsion-free, and R G G * 77, then

G * H/(R) is nontrivial.
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Certainly Conjecture 9.2 implies Conjecture 9.3, and for countable groups, they
are equivalent, since any countable torsion-free group can be embedded in a
countable torsion-free simple group. (For example, use the HNN-construction to
embed the given group in one such that all non tri vial elements are conjugate, as in
[18, Theorem 3.3, pp. 188-189].)

Another related group-theoretic conjecture is the following.
Conjecture 9.4. IfR G Gx * G2 * G3, then the canonical map G¡ -> Gx * G2 * G3/(R)

is injective for some i, 1 < i < 3.
Again, since any countable group can be embedded in a countable simple group

[18, pp. 188-189], for countable groups this is equivalent to
Conjecture 9.5. If G¡ =£ 1, i = 1, 2, 3, and R G Gx * G2 * G3, then

G, *G2*G3/(R)¥- 1.
This would of course imply the impossibility of obtaining the connected sum of

three nonsimply-connected manifolds by Dehn surgery on a knot. (This question is
raised in [3].)

An interesting first case of Conjecture 9.5 to consider might be Z2 * Z3 * Z5.
Finally, we observe that the impossibility of obtaining S] X S2 #M with ttx(M)

7^ 1 by surgery on a knot would follow from the Whitehead conjecture that a
subcomplex of an aspherical 2-complex is aspherical [29].

Let G be a perfect group such that there exists a connected 2-complex X with
irx(X) a G, H2(X) = 0, and ir2(X) ¥= 0. Note that the fundamental group of any
nonsimply-connected homology 3-sphere M is such a group (take I to be a
2-dimensional spine of M~ ).

Theorem 9.6. Let G be as above, F a free group of rank n, and Rx,.. .,Rn G G * F.
Then the Whitehead conjecture implies that G * F/(RX,.. .,Rn)^ 1.

Proof. We have G * F/{Rx,...,Rn)~ w,(Y), where Y is the 2-complex obtained
from X by adding n 1-cells and n 2-cells in the obvious way. Since HX(X) = H2(X)
= 0, the euler characteristic x(%) = 1. Hence x(^) = '• Now suppose irx(Y) — 1.
Then H2(Y) = 0, and hence Y is contractible. The Whitehead conjecture would then
imply 772( A') = 0, a contradiction.    D

Corollary 9.7. The Whitehead conjecture implies that no nonsimply-connected
homology 3-sphere can bound a contractible 4-manifold with no l-handles.    D

Corollary 9.8. The Whitehead conjecture implies that (A";0) is never homeomor-
phic to Sl X S2 # M with irx(M) ^ I.    D

10. Superslice knots. Adopting the terminology of Brakes [2], we say that a knot A"
is superslice if A" bounds a disc D in 77" such that the double 2(7i4, D) is
homeomorphic to the standard (unknotted) sphere pair (S4, S2). Equivalently (by
[24]), (B,D)XI is homeomorphic to the standard pair (775, 773); see [7] for
examples. Let us also say that A" is homotopy-superslice if (S3, K) — d(V, D) for
some (locally flat) disc D in a homotopy 4-ball V, such that 2(V, D) = (2, S), say,
where 2 — S is a homotopy S]. (By a fairly straightforward duality argument in the
infinite cyclic covering, 2 — S is a homotopy S1 if and only if 77,(2 — S) a Z.)
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Kirby-Melvin [15] show that (A";0)aS'1 X S2 implies that K is superslice.
Related to this, one has the following, which is presumably well known to the
experts.

Theorem 10.1. 7/(A";0) = S{ X Sl #M, then
(i) M is the boundary of a contractible 4-manifold with one 0-handle, no l-handles,

one 2-handle, and one 3-handle;
(ii) K is homotopy-superslice.

Proof, (i) Let 734 U h2 be the result of adding a 2-handle h2 to 774 along A with
the 0-framing, so that we have 3(774 U h2) a (A"; 0) a S] X S2#M. Now let h3 be
a 3-handle whose attaching sphere is * X S2 C (Sx X S2y C S] X S2 # M. Let
W = B4 U h2 U h3. Then dW a M, and W, being simply-connected and acyclic, is
contractible.

(ii) Consider the double 2W of W, and denote the two copies of W in 2W by Wx
and W2. Let B be the copy of 774 in Wx, say, and let V — 2W — int 77. Then V is a
homotopy 4-ball, and A" C dV bounds the 2-disc D G Wx — int 77 C V, where D is
the core of the 2-handle h2 in Wx. Note also that V - D ^V - h2 a W2U h\ where
ft1 is the dual 1-handle to h3 in Wx. Since W2 is contractible, it follows that
V - D « S\ Now let (2, S) = 2(V, D). Then 2 - S = 2(V - D), so that
w,(2 - 5)aZ, and hence 2 - S - S1.    G

To show that Theorem 1.5 does not follow from superslice considerations, for
example, Theorem 10.1(ii), we observe that there exist satellites with arbitrary
winding number which are superslice. This follows (for example with 7(0) = O)
from

Theorem 10.2. If K and7(0) are superslice, then J(K) is superslice.

Proof. Let (S3, K) = 3(774, D), where 2(774, D) a (S4, S2). Let g: £>2 X {D2 ->
774 be an embedding onto a tubular neighbourhood of D = g(D2 X (0,0)). It is
convenient to assume (as we may do, by an isotopy) that J G Sl X {D2. Since 7(0)
is superslice, 7 bounds a disc A C D2 X {D2 G D2 X D2 such that 2(7>2 X D2, A)
a (S4, S2). Then 7(A) = g(7) bounds the disc g(A) C 774.

In the double 2(D2 X D2), let the two copies of the first 7J>2-factor be D+ , D_ .
Then D+ X {D2 and D_ X {D2 are identified along dD ± X {D2, and the closure of
the complement of (D + U7)„) X {D2in2(D2 X D2) is homeomorphic to D3 X S1.

Let g: (D+ U7»_ ) X {D2 -* 2B4 a S4 be the embedding determined by g in the
obvious way. Since 27) is unknotted in S4, the closure of the complement of the
image of g in S4 is homeomorphic to D3 X S1. Since any homeomorphism of
S2 X S] extends over D3 X S\ it follows that g extends to a homeomorphism
2(7>2 X D2) -» 54. Thus 2g(A) = g(2A) is unknotted in S4, showing that 7(A) is
superslice.    D

For comparison with Theorem 10.2, we take this opportunity to remark that the
proof given in [7, III] actually proves a little more than is explicitly stated there (in
Theorem 3.1), namely
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Theorem 10.3. If w = 0, K is slice and 7(0) is superslice, then J(K) is superslice.
D

([7, Theorem 3.1] has the stronger hypothesis 7(0) = O.)
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