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Abstract

Severe injuries are the major cause of death in those aged under 40, mainly due to road traffic collisions. Endocrine,

metabolic and immune pathways respond to limit the tissue damage sustained and initiate wound healing, repair

and regeneration mechanisms. However, depending on age and sex, the response to injury and patient prognosis

differ significantly. Glucocorticoids are catabolic and immunosuppressive and are produced as part of the stress

response to injury leading to an intra-adrenal shift in steroid biosynthesis at the expense of the anabolic and

immune enhancing steroid hormone dehydroepiandrosterone (DHEA) and its sulphated metabolite

dehydroepiandrosterone sulphate (DHEAS). The balance of these steroids after injury appears to influence outcomes

in injured humans, with high cortisol: DHEAS ratio associated with increased morbidity and mortality. Animal

models of trauma, sepsis, wound healing, neuroprotection and burns have all shown a reduction in pro-

inflammatory cytokines, improved survival and increased resistance to pathological challenges with DHEA

supplementation. Human supplementation studies, which have focused on post-menopausal females, older adults,

or adrenal insufficiency have shown that restoring the cortisol: DHEAS ratio improves wound healing, mood, bone

remodelling and psychological well-being. Currently, there are no DHEA or DHEAS supplementation studies in

trauma patients, but we review here the evidence for this potential therapeutic agent in the treatment and

rehabilitation of the severely injured patient.
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Background

Before the modern era of resuscitative medicine and sur-

gery, and the reorganisation of emergency hospital care

into major trauma centres, the likelihood of survival fol-

lowing a traumatic injury was down to the individual’s

physiological response to injury. Survival is achieved via

a complex set of metabolic, endocrine and immuno-

logical pathways [1–3] that mobilise fuel sources and

minimise blood loss, so that our vital organs may

continue to be perfused and function. There is growing

interest in this physiological response to major trauma

and how to manipulate recovery to improve patient out-

comes further. That the response may be malleable and

include modulation by sex steroid hormones is driven by

clinical observations of lower mortality rates in females

[4] and lower incidence of pneumonia post-injury com-

pared to males [5]. Additionally, those trauma victims

aged over 75 years have an increased morbidity and mor-

tality rate [6]. The differences in sex steroid hormones

and their precursors between genders and across the

lifespan may thus influence outcomes in the trauma pa-

tient population [7].
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Review

The endocrine, immune and metabolic response to trauma

As previously reviewed [1, 3], the metabolic and endo-

crine response to trauma is mediated through the

hypothalamus. Via baro-, volu- and pain receptors, the

hypothalamus receives multiple signals as a result of

the injury, which initiates the acute phase response and

activation of the pituitary, adrenal and sympathetic

nervous system pathways, which induces the character-

istic ‘fight or flight’ response. Central to this response is

cortisol (Fig. 1).

Cortisol is vital in the immediate response to trauma

as it increases blood glucose via protein catabolism, pro-

moting hepatic gluconeogenesis and allowing for an in-

crease in gluconeogenic precursors from triglyceride

breakdown. Cortisol also acts upon cells of the immune

system, including macrophages [8] and neutrophils, pre-

venting their excessive accumulation in damaged tissues

and areas of inflammation but also potentially limiting

the anti-microbial effects by inhibiting their function [9].

In addition to inhibition of cytokine production, cortisol

decreases the production of pro-inflammatory leukotri-

enes and prostaglandins [10].

The hypothalamic–pituitary axis should, in theory, re-

ceive negative feedback from cortisol to prevent further

release of corticotropin-releasing hormone (CRH) and

adrenocorticotropic hormone (ACTH) [1, 3]. A second

adrenal steroid hormone affected by trauma is dehydro-

epiandrosterone (DHEA), an androgen precursor, which

is mostly present in the circulation in its sulphated form,

dehydroepiandrosterone sulphate (DHEAS). After injury,

serum DHEAS levels fall, and the synthesis of cortisol

overtakes that of DHEAS [11], which is plausibly due to

inhibition of DHEA sulphation, which is down regulated

in acute inflammation and sepsis [12].

Initiated via blood loss and tissue damage, dama-

ge-associated molecular patterns (DAMPs), such as

high-mobility group box (HMGB)-1 [13], are secreted

from activated neutrophils [14] and necrotic cells [15].

Necrotic cells evoke a strong reaction due to the release

of mitochondrial DNA and cellular constituents such as

formylated peptides [16, 17]. DAMPs can directly

activate neutrophils and monocytes via specific DAMP

receptors [14], with activation of both C3a and C5a

complement [18] synergistically causing the production

and subsequent release of interleukins thereby generat-

ing the systemic inflammatory response syndrome

(SIRS) [2].

The SIRS response is accompanied by a compensatory

anti-inflammatory response syndrome (CARS) [19], to

restore homeostasis. If the resolution of inflammation is

not achieved via anti-inflammatory cytokines, CARS

may progress to the persistent inflammation, immuno-

suppression and catabolism syndrome (PICS) [20, 21].

Compounding the problems that have arisen from the

initial injury, the PICS clinical picture may involve: re-

duced oxygen and nutrient delivery via macro and

microcirculatory impairment [20]; acquired weakness in

the intensive care unit (ICU) [22] and a subsequent de-

pendence on mechanical ventilation; muscle atrophy,

Fig. 1 The hypothalamic–pituitary–adrenal (HPA) axis and the biological responses that occur as a result of traumatic injury. The resulting increase in

circulating levels of cortisol and a reduction in dehydroepiandrosterone (DHEA) has been shown to affect several biological responses, such as the

inhibition of neutrophil function

Bentley et al. Burns & Trauma            (2019) 7:26 Page 2 of 13



which is related to increased multi-organ failure [23];

and increased sepsis [24].

Therefore, a clinically driven research solution to pro-

mote a shorter period in catabolism, more rapid return

to anabolism and the recovery of immune function is re-

quired if we are to improve patient outcomes following

significant injury.

DHEA/DHEAS and the response to trauma

Differences between the sexes in response to injury have

been observed. Being male and a victim of trauma is asso-

ciated with increased mortality, length of hospital stay and

secondary complications such as infections and multiple

organ failure. This suggests that the female sex steroid

hormones may have a protective effect in trauma [7, 25].

The apparent female advantage [26] and differences in

survival with age [27] have led to the consideration of the

role of the sex steroid precursor hormone DHEA, whose

levels decline with age and differ between the sexes.

DHEA is predominantly synthesised in the zona reti-

cularis of the adrenal cortex [28] in response to stimula-

tion by ACTH. Both DHEA and DHEAS are secreted

from the adrenal cortex, with peak concentrations of

10 μM (DHEAS) and 10 nM (DHEA). In humans, serum

levels of both DHEA and DHEAS change significantly

across the lifespan [29]. Large amounts are produced

during fetal development and after an initial rapid de-

cline immediately after birth [30] synthesis resumes

when adrenarche occurs between 6 and 8 years [31].

DHEA and DHEAS levels continue to rise throughout

puberty and peak during the second decade of life with

absolute levels of circulating DHEAS lower in females

than males throughout life [32]. By the third decade of

life, DHEA and DHEAS levels decline [33], being as little

as 10–20% of peak by the eighth decade [34], a

phenomenon termed the adrenopause.

DHEA is sulfonated by the sulfotransferase family 2A

member 1 (SULT2A1) to DHEAS [35] in the adrenal

cortex and during first-pass metabolism in the liver and,

as such, would have implications upon oral DHEA sup-

plementation. The levels of circulating DHEAS are sev-

eral folds higher than DHEA [36], acting as a reserve to

be readily converted by steroid sulfatase (STS) to DHEA

in the endoplasmic reticulum [37, 38]. Only 5% of

DHEA in males with normal testicular function is con-

verted to testosterone [39]. However, in premenopausal

females, 40–75% of the circulating testosterone comes

from DHEAS. This is in stark contrast to the 90% of

oestrogens that are derived from DHEAS in the post-

menopausal female [39]. Some of the known biological

functions of DHEA are shown in Fig. 2.

DHEA has been shown to modulate the action of

glucocorticoids, such as cortisol [40]. We have reviewed

the numerous immune effects of DHEA and DHEAS

previously [41] and have shown that DHEAS but not

DHEA enhances neutrophil superoxide generation via

protein kinase C (PKC) mediated pathway, thereby aug-

menting an essential immune response to infection [42].

We and others have also suggested an influence of

DHEA/DHEAS on anti-viral innate immune function. In

Addison’s disease, in which autoantibodies target the ad-

renal cortex, patients are supplemented with sex steroids

and glucocorticoids but not DHEA/DHEAS. These pa-

tients have reduced natural killer (NK) cell cytotoxic

function [43] and increased susceptibility to respiratory

infections [44]. These patients also show a reduced in-

nate anti-viral response in peripheral blood mononuclear

cells, specifically reduced chemokine (C-X-C motif ) lig-

and (CXCL)9 and CXCL10 production in response to

stimulation with interferon [45]. However, supplementa-

tion with DHEA did not improve NK cell function in

these patients [43].

Cortisol levels are preserved with age and, as men-

tioned previously, are elevated after severe injury, as well

as sepsis [24]. In addition to being potent suppressors of

the immune system, glucocorticoids promote an intra-a-

drenal shift in steroid biosynthesis, being produced at

the expense of DHEAS [46]. This increases the cortisol

to DHEAS ratio which is associated with a range of poor

outcomes in trauma victims [47–51], with further

exacerbation of this ratio in those with adrenopause,

associated with suppressed neutrophil function and

increased risk of infections [9].

Our group has shown in a 6-month observational

study of major trauma patients that DHEAS levels

were reduced within days of injury to almost un-

detectable levels. DHEAS remained low throughout

the follow-up period, despite DHEA returning to nor-

mal by 3 months. Resolution of the DHEA: cortisol

ratio to that of healthy controls provides an insight

into potential clinical benefits, namely, a decrease in

nitrogen excretion and increase in biceps brachii

muscle thickness, suggesting a reversal of catabolism

with the normalisation of DHEA levels [52, 53]. The

DHEAS: cortisol ratio is proposed to represent a

balance between the catabolic effects of cortisol and

the regenerative effects of DHEAS [54, 55] and its

modulation may benefit the trauma patient. Unlike

DHEAS, DHEA is readily available in various formu-

lations. As a result, the vast majority of clinical stud-

ies have employed DHEA supplementation as a route

to influencing this ratio and our review, therefore, fo-

cusses on this intervention.

DHEA and DHEAS deficiency after trauma and critical

illness

Twenty-two studies investigating the level of DHEA and

DHEAS after critical illness have been identified by our
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group [9, 11, 12, 56–74]. Only two studies have measured

DHEA [72, 74] via the gold standard method of liquid-

chromatography mass-spectroscopy (LC-MS) [75] in trau-

matically injured patient. Although Brorsson et al. [72]

demonstrated a significant decrease in both DHEA and

DHEAS levels within the study duration of 96 h, these

short-term follow-up studies with often mixed clinical

populations, make direct comparisons to the young and

non-septic trauma populations unclear. Foster et al. study

in 102 severely injured patients, 41 of whom were young

male soldiers, identified that in addition to low DHEA and

DHEAS levels for up to 6months post-injury, the down-

stream suppression of androgens highlights an opportun-

ity to intervene in adrenal androgen synthesis in the

medium to longer term recovery after both battlefield and

civilian trauma [53]. Despite its potential, interventional

studies have yet to be designed to address both DHEAS

and DHEA's ratio with cortisol in traumatically injured

patients.

The benefits of DHEA and DHEAS in recovery after

trauma

To our knowledge, no human studies have utilised DHEA

supplementation in trauma patients at any stage of their

recovery, despite being proposed [34]. Similarly, DHEAS

has yet to be used as an intervention in any human

trauma studies. It may be that DHEAS supplementation

would be more beneficial than DHEA in potentiating

the immune function, such as enhancing reactive

oxygen species (ROS) production by neutrophils via

activation of nicotinamide adenine dinucleotide phos-

phate (NADPH) oxidase [76]. However, what we do

know is that supplementation of DHEA in healthy sub-

jects, via oral administration, will result in first-pass

metabolism and thus a conversion of DHEA to DHEAS,

resulting in either immune or downstream androgen or

oestrogenic benefits.

Animal models have demonstrated numerous benefits

from DHEA supplementation such as improved hyper-

glycaemia [77], decreased mortality after trauma-induced

haemorrhage [78], neurogenesis [79] and wound reper-

fusion [80], all of which pose a considerable burden to

the recovery from injury. It is important to note that ro-

dent adrenal DHEA production is modest [81]. Rodents

possess the necessary mechanisms to convert exogenous

DHEA to sex steroids [82], but caution is required in ex-

trapolating rodent data to humans.

Inflammation and immune effects

A retrospective analysis of the trauma register from

2002 to 2005, reported bilateral femoral shaft fractures,

which are often accompanied with abdominal injuries

and blood loss, as being an independent risk factor for

pulmonary failure [83]. A mouse model was used by

Fig. 2 The physiological effects of dehydroepiandrosterone/dehydroepiandrosterone sulphate (DHEA/DHEAS) in humans. Restoration to normal

DHEA and DHEAS levels are associated with a range of positive biological functions such as, increased (↑) bone mineral density and decreased (↓)

fat mass, across a range of body systems that include the bone and central nervous system (CNS), high density lipoprotein (HDL)
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Lichte and colleagues to confer if subcutaneous DHEA

administration (25 mg/kg/day) would control the sys-

temic inflammation seen in the treatment of these injur-

ies. Replicating the musculoskeletal damage that is

observed in a bilateral femoral fracture, DHEA supple-

mented mice benefited from a reduction in serum

tumour necrosis factor (TNF)-α, interleukin (IL)-1β,

IL-6, IL-10, monocyte chemoattractant protein (MCP)-1.

However, DHEA did not improve markers of pulmonary

inflammation [84].

Animal and human studies indicate that steroid hor-

mones influence cellular immunity. The reversal of

trauma-induced suppression of splenocyte proliferation,

macrophage TNF-α, IL-1 and IL-6 production [78, 85]

and IL-2, IL-3 and interferon (IFN)-γ secretion from

splenic T cells [85, 86], improved mortality rates [78]

and prevention of increased serum corticosterone [86]

have all been observed following the administration of a

single subcutaneous injection of DHEA in rodent

models of traumatic haemorrhage. Additionally, Ober-

beck et al. demonstrated that DHEA supplementation

normalised splenocyte apoptosis and lymphocyte migra-

tion in haemorrhagic shock [87]. In mice models of sep-

sis, a frequent complication in the recovering trauma

patient, the administration of DHEA has been shown to

improve survival [87]. Mouse models of thermal injury

have demonstrated increased resistance to pathogenic

challenges when compared to controls [88] and reduced

inflammation and tissue necrosis [89] when subcutane-

ous DHEA was administered. Conversely, other forms of

steroids, including DHEAS, exhibited no protective

effects [89].

There are very few studies on the effects of DHEA or

DHEAS on human immune cells. DHEAS has been

shown to directly stimulate the action of NADPH oxi-

dase and reactive oxygen species production and thus

improve neutrophil function [42]. This effect may be

unique to neutrophils as these immune cells are the only

leukocytes that express the organic anion transporting

polypeptide (OATP-D) required for DHEAS uptake. The

very low levels of DHEAS seen after trauma may thus be

a contributor to reduced neutrophil function in trauma

patients [90]. In contrast, in the hyperglycaemic environ-

ment that is often present after trauma and infection,

DHEA, a glucose-6-phosphate dehydrogenase inhibitor,

has been shown to reduce neutrophil superoxide pro-

duction in a dose-dependent manner [91].

Recently, Corsini et al. have identified DHEA conver-

sion to androgens and subsequent binding to androgen

receptors, as a necessary step in the DHEA-induced

monocyte activation and its potential use for immune

modulation [92]. DHEA may also prevent monocyte ad-

hesion in endothelial cells, appearing to act via its

oestradiol and dihydrotestosterone metabolites [93]. This

conversion of DHEA to downstream metabolites may

occur within macrophages, which may also be important

for local immunomodulation, although the conversion

does depend upon the maturation of the monocyte to a

macrophage in tissues [94].

Wound healing

Trauma results in physical injury which may be acute (a

result of the initial trauma) or chronic (due to impaired

wound healing). Wound healing begins immediately after

the injury and involves a series of overlapping phases with

the sequential recruitment of immune cells, fibroblasts,

stem cells and endothelial cells to mediate tissue repair

and extracellular matrix deposition [95, 96].

Advances in surgical techniques have led to the rise in

the use of tissue flaps to improve the outward appearance

and functionality that has been lost. Rats pre-treated with

DHEA had markedly improved muscle flap microcircula-

tion and haemodynamics and were protected against is-

chaemia and reperfusion injury [80]. A similar study by

Ayhan and colleagues supplemented rats with intravenous

DHEA and showed a reduction in activation of leukocytes,

improved red blood cell velocity and capillary perfusion in

the muscle flap microcirculation, with the protective effect

most likely a result of delayed expression of Mac-1 integ-

rin, L-selectin and CD44 molecules on leukocytes [97].

Topical administration of DHEA has also acted as a medi-

ator of tissue repair to ultra violet (UV) light damaged

skin [98].

How DHEA exerts its effects on wound healing are not

precisely known. Excessive inflammation is a causative

factor in delayed wound healing, and DHEA supplementa-

tion inhibits nuclear factor kappa-light-chain-enhancer of

activated B cells (NF-κB) DNA binding activity, resulting

in the dampening of gene transcription of IL-6 and

TNF-α [99]. Alternatively, it may be DHEA conversion to

both androgens and oestrogens that is involved, as sex

hormones have also been shown to be anti-inflammatory

[100, 101]. In a mouse model of age-related delayed

wound healing, Mills et al. observed that topical adminis-

tration of DHEA accelerated wound healing, dampened

the inflammatory response via mitogen-activated protein

kinase (MAPK) and phosphatidylinositol 3 (PI3) kinase

pathways. The authors suggested this beneficial response

was due to DHEA conversion to oestrogen [102].

Interestingly, animal models of wound healing have

shown that DHEA has no observable effects in the

young. This is possibly due to circulating oestrogens be-

ing sufficient in the young, or supra-physiologically high

levels of oestrogen via DHEA conversion exerting no ef-

fect upon wound healing [102]. Although this suggests

that topical DHEA may benefit the older trauma pa-

tient, there is currently insufficient data to suggest
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routine administration for wound healing, across all

trauma demographics.

Psychological and neurological effects

Traumatic brain injury (TBI) is a major cause of mortal-

ity and morbidity, with 1.4 million patients per year at-

tending hospital in England and Wales [103]. DHEA and

DHEAS may be synthesised by the brain independently

with levels higher in the central nervous system (CNS)

when compared with blood [104, 105]. In rats, DHEA

supplementation (40 mg/kg for 5 days subcutaneously)

has been shown to promote neurogenesis in the hippo-

campus and survival of newly formed neurons [79].

Additionally, supplementation of a DHEA analogue has

been shown to improve cognitive and motor skills via a

beam walk test in TBI rats, with authors hypothesising

the action via retardation of glial scar formation and

neurite regrowth helping to restore reflexes and memory

[106]. Hoffman and colleagues observed similar results,

albeit that the DHEA administration was delayed until

7 days post-injury, with improvements in a battery of be-

havioural tests [107]. This benefit of DHEA directly may

be via neural stem cells, increased nerve growth factor

(NGF) and brain-derived neurotrophic factor, potentially

conferring neurogenic, neuronal survive advantages

[108, 109]. Again, no studies to date have investigated

the use of DHEA supplementation in a human neuro-

trauma cohort, with this relatively cheap supplement,

potentially providing a safe medium to long-term aid to

recovery and possibly pain perception [110] in these

patients.

The psychological aspect of trauma is often overlooked

in recovery; with an incidence of post-traumatic stress

disorder (PTSD) approximately 10% in those who have

been subjected to trauma [111] and depressive symp-

toms in 42% of patients, issues may occur any time from

6 weeks up until 20 years post-injury [112, 113]. The

DHEAS: cortisol ratio predicted stress resilience in male

military personnel; lower symptoms of PTSD and

depression and finally demonstrating improving symp-

toms over time [114]. A raised cortisol: DHEAS ratio in

old hip fracture patients was associated with the devel-

opment of depression after injury [49], thereby detri-

mentally impacting the individual during a period of

immune and psychological vulnerability. A 15-year

follow-up in a population of Vietnam veterans, both

age-adjusted and fully adjusted analysis, showed that

both cortisol and the cortisol: DHEAS ratio were posi-

tively associated with hypertension [48]. As a result, both

studies suggest the need to maintain an adequate

DHEAS: cortisol ratio for the prevention of long-term ill

health after stressful events.

DHEA levels are also inversely correlated with depres-

sive symptoms in adults under 64 years [115], with

higher serum DHEAS levels in older adults shown to be

protective against the onset of depression [116]. Unfor-

tunately, in the healthy older population, DHEA supple-

mentation has not proven beneficial for well-being and

depressive symptoms [117]. DHEA supplementation in

those with moderate depression [118] and psychiatric

disorders [119–121] and adrenal insufficient women

[122] has shown potential for mental health. In older

men, a relatively low dose of 25 mg of DHEA per day

showed improvements in joint pain, hormonal profile

and clinical status [123]. A 6-month DHEA supplemen-

tation of males and females with profound androgen de-

ficiency noted minor to modest improvement in

psychological well-being [124]. However, it is when

DHEA is converted to DHEAS that a greater impact

upon the gamma-aminobutyric acid (GABA) [125] and

the N-methyl-D-aspartate (NMDA) [126] receptors may

result in a psychological benefit.

Body composition

Several studies have suggested a positive effect of DHEA

on bone biology. Wang and colleagues treated ovariecto-

mised mice with DHEA and observed a significantly in-

creased bone cancellous compared with that of control,

suggesting that DHEA can improve bone tissue morph-

ometry of this postmenopausal model [127]. In a further

sub-study with the calvariae of neonatal mice, the au-

thors proposed that DHEA increases the anabolic

metabolism-related organelle content in osteoblasts, im-

proving mechanical strength [127]. A recent study inves-

tigating the effect of a Brucella abortus infection on

mouse osteoblast function showed that DHEA treatment

reversed the effect of the infection upon osteoblasts by

increasing their proliferation, inhibiting apoptosis and

restoring differentiation and function [128].

In postmenopausal women, DHEA given orally in-

creased bone mineral density in both the lumbar spine

and femoral neck [129], which may be attributable to

the conversion of DHEA to both oestrogens and active

androgens in bone [130]. DHEA appears to promote the

proliferation and inhibition of osteoblasts via the MAPK

signalling pathway independent of an androgen or

oestrogen receptor, thus suggesting the supplementation

may directly exert its effect via a specific DHEA receptor

[131]. Additionally, the osteoanabolic action of DHEA

may act upon the adrenally insufficient patient by in-

creasing levels of osteocalcin and bone mineral density

(BMD) [132–134]. A 6-month 50 mg DHEA supplemen-

tation in older males with low DHEAS levels improved

total body BMD [135]. Improved BMD was also observed

in osteoporotic patients when administered 100mg per

day of DHEAS over the same period [136]. In 225 women,

aged 55–85, who were supplemented with 50mg per day

for 1 year, a positive effect upon the lumbar spine BMD
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was observed [137]. Jankowski and colleagues also investi-

gated the effect of DHEA supplementation upon those

with low levels of DHEAS. Their study of 70 males and 70

females demonstrated significant improvements when

compared to placebo, for an increase in hip BMD in both

sexes and spine BMD in females [138]. As traumatic injur-

ies and hip fractures are comprised of characteristic long

bone and soft tissue injury, the potential effect of DHEA

as a means of improving a patient’s bone profile in recov-

ery may be advantageous.

The loss of muscle mass and function with age, sarco-

penia, has also been targeted by DHEA. However, the ef-

fect upon males has been variable, from a minimal effect

on muscle mass [139] to reduced body fat and increasing

muscle strength after 1 year of DHEA supplementation

[140]. A 6.1% reduction in fat mass in healthy 50–

65-year-old males, with significant improvement in mea-

sures of muscle strength of the knee (15%) and lumbar

strength (13.9%), has been reported with 6 months of

DHEA [141]. DHEA was also able to reduce both vis-

ceral and abdominal fat while improving insulin sensitiv-

ity [141]. These beneficial effects upon insulin sensitivity

may be mediated by increased oestrogen and androgen

levels, but also independently, by an increase in

Insulin-like growth factor (IGF)-1 [142], an important

anabolic hormone. Studies in adrenal insufficiency,

which may mimic the low levels of DHEA and DHEAS

seen after trauma, did not reveal any significant effect of

DHEA replacement on body composition, or bone pa-

rameters [132–134, 143, 144]. The rapid and prolonged

loss of muscle mass, as well as low levels of DHEA, in-

crease the risk sepsis in trauma populations [52, 53].

Therefore, DHEA supplementation may improve both

the size and strength of the rehabilitating patient as well

as helping to support organ function during acute illness

especially as a result of ICU-acquired weakness.

Benefits of DHEA over up and downstream sex hormone

supplementation

DHEA is the precursor for the androgenic and

oestrogenic hormones. It is unlikely that supplementa-

tion of 17α-hydroxypregnenolone or pregnenolone (up-

stream steroid hormones) would be of benefit as both

may be converted to cortisol during the stress response.

After the initial acute phase of injury, when cortisol is

essential, prolonged hypercortisolaemia in the weeks

after injury may initiate immunosuppression by exacer-

bating the trauma-induced increase in the circulating

concentration of this glucocorticoid [145].

Downstream androgens, such as testosterone, have been

considered. Driven by the need to overcome liver toxicity

of exogenous testosterone supplementation, the analogue

oxandrolone has been used in both adults [146] and chil-

dren [147]. Although its use has been unproven in the first

month after trauma in a mixed population [148], it is in

burn injury, where it has been seen to act positively to

mitigate the hypermetabolism and catabolism observed in

those who have a total burns surface area of > 20%,

without side effects [149]. Oxandrolone still requires

well-designed optimal dose-finding studies to be under-

taken in the heterogeneous trauma population so that the

efficacy and safety of this drug may be put through the

rigour of a larger multi-centre randomised controlled trial

[150], over an effective duration, in order to overcome the

hypermetabolic and catabolic state observed after injury

across a range of demographics [52, 53].

In summary, DHEA has potential advantages over sup-

plementation with downstream hormones. As the pre-

cursor for the androgenic and oestrogenic hormones, it

can benefit male and female patients, and unlike oxan-

drolone, it may be converted to DHEAS which we have

previously shown to enhance neutrophil function and

thus potentially offer protection against infection [9, 42].

Practicalities: dosing, delivery and safety of DHEA

supplementation studies

Consideration and challenges in a trauma cohort

Studies investigating the dosing and delivery routes of

administration of DHEA supplementation trauma pa-

tients are fraught with difficulties. As patients will be

critically ill, there is a high likelihood that they will be

subjected to polypharmacy. This may adversely affect

the true profiling of DHEA. Nevertheless, there are

some key factors to consider for any DHEA supplemen-

tation study.

Due to DHEA metabolism in the liver, any patients

with pre-existing or chronic liver failure should not be

recruited; known thromboembolic events in the last 12

months and any pre-disposition to thrombosis are also

contraindicated, as DHEA’s androgenic potential may

result in altered coagulation [151]. As patients clinical

therapy may involve the administration of drugs and

blood products to counteract any blood loss or long-

term admission, daily monitoring of changes to docu-

ment adverse events are necessary. Patients taking

hormone replacement therapy, antipsychotic medica-

tion and with known hypersensitivity to DHEA [152],

should be excluded. Similarly, those who have known

or previous hormone-sensitive malignancies or invasive

cancer, and prostatic hypertrophy due to DHEA supple-

mentation increasing downstream metabolites in both

males [153] and females [154] may need to be excluded.

Although women with poor oocyte production have

been shown to benefit positively from DHEA supple-

mentation of 50 mg/day [155], the recruitment of preg-

nant trauma patients would be inadvisable due to the

lack of available data.
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Concurrent DHEA and testosterone therapy have not

been tested, but available data suggest the avoidance of

such an approach [152], due to oral DHEA increasing en-

dogenous testosterone [156]. Therefore, intake of any

drugs influencing the metabolism of steroids in the

months before injury should act as an exclusion criterion

for potential patients [157]. Administration of progester-

one and DHEA may also yield false-positive results when

it comes to using commercially available progesterone as-

says [158], which may be overcome by using LC-MS [75].

Maxillo-facial injuries or a non-functioning gut may

prohibit sublingual or oral administration and compli-

ance to the study protocol; therefore, an adaptable study

design is needed to generate pilot data. By monitoring

gastric residual volumes (GRV), a surrogate marker of

gastrointestinal motility [159], and seeking expert statis-

tical advice on overcoming potential trial pitfalls, identi-

fication of an appropriate dose and route of DHEA may

be identified for use in a randomised controlled trial.

Current DHEA therapeutic indications, investigated doses

and method of administration

Researchers have attempted to circumvent first-pass

metabolism by providing DHEA supplementation via dif-

ferent formulations and routes. Transvaginal [160], trans-

dermal [161], subcutaneous pellets [162] and buccal/

sublingual [163, 164] routes have all been investigated and

shown to increase the DHEA: DHEAS ratio. Oral and

buccal/sublingual delivery provide the most broadly

acceptable and practical route for self-medicating. How-

ever, for any future clinical trials, the method of delivery

must be one that is not only efficacious but feasible given

the injuries sustained.

A DHEA buccal dose of 50mg can increase free testos-

terone, total testosterone, androstenedione and DHEAS

levels, with 5mg shown to double DHEAS within 5–10 h,

prior to returning to the pre-treatment levels within 24 h

[163]. However, in the most investigated cohort,

peri-menopausal females, 90% of studied doses have been

at < 50mg/day given orally [165]. Previous studies have

shown that supplementation with 50mg DHEA orally

once daily in the older population restores serum DHEA

and DHEAS levels to that of men and women in the third

decade of life [166, 167]. As expression and activity of ster-

oid metabolising enzymes in peripheral target tissues,

which may be influenced by inflammatory cytokines [38],

we cannot assume that downstream conversion of DHEA

in patients with acute trauma and associated inflammatory

response will be identical to that in healthy volunteers.

Thus, the pharmacological profile of DHEA supplementa-

tion via different routes, at different doses in recovering

trauma patients requires investigation via an innovative

study design.

Possible side effects of DHEA supplementation

Cochrane reviews of DHEA supplementation in peri-

and post-menopausal females [165], systemic lupus ery-

thematosus [168], assisted reproduction [169] and older

Fig. 3 Dehydroepiandrosterone/dehydroepiandrosterone sulphate (DHEA/DHEAS): a potential therapy to the burden of traumatic injury? A

schematic diagram identifying if this safe, well-tolerated, early sex-steroid could be added to the future care package of those who have been

injured? Well-designed studies are needed first to identify the dose and the route of administration, prior to any large multicentre, randomised

controlled trial
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adults [117] have attempted to assess its safety. Although

DHEA has been used at different doses with no deleteri-

ous side effects, longer-term studies have reported mild

cases of hirsutism and acne [170–172]. The highest daily

dose reported to date, in both males and females, was

1600 mg/day for 28 days [173]. Nair and colleagues

undertook the longest placebo-controlled, randomised,

double-blind study in older men (75 mg/day) and

women (50 mg/day) for 2 years. The authors monitored

prostate volume, prostate-specific antigen, liver function,

electrolyte levels and haemoglobin and did not observe

any significant differences between the groups [174].

From the published literature, we could only find

four publications that have utilised the sublingual

and/or oral route for administration of DHEA. The

studies used different daily doses of DHEA varying

from 10 to 50 mg and were carried out for 2 weeks to

4 months [163, 164, 175, 176]. In only one of these

four studies [164] was mild acne reported as a side

effect of supplementation. The current data suggest

that DHEA, certainly in short-term supplementation,

should be regarded as safe without significant side

effects. However, the outcomes, dose and administra-

tion route of DHEA supplementation require con-

firmation via feasibility and pilot studies in those with

traumatic injury (Fig. 3).

Conclusions

The endocrine response to traumatic injury has been

well studied. However, the role of DHEA and DHEAS in

severe clinical trauma is relatively unexplored, with the

majority of studies focusing upon the cortisol responses.

This is despite recent data suggesting that it is the corti-

sol to DHEAS ratio that is the superior prognostic factor

for short and long-term outcomes. Results have indi-

cated that levels of the early sex-steroid hormones,

DHEA and DHEAS, are low immediately after injury

and remain below normal for over 6 weeks and longer,

particularly in the older patient. Animal models and pre-

vious reviews have hypothesised that exogenous supple-

mentation of DHEA is warranted. The immunological,

anabolic, neurocognitive, wound and mood enhancing

profile reported in animal models, and also some human

studies, provide an opportunity to support trauma pa-

tient recovery holistically. However, there is a need for

studies in the trauma population to first identify the

dose, route and duration of DHEA supplementation that

would restore levels to those of the healthy adult.
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