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Deinterleaving Pulse Trains Using Discrete-Time

Stochastic Dynamic-Linear Models
John B. Moore, Fellow, IEEE, and Vikram Krishnamurthy, Member, IEEE

Abstract—Pulse trains from a number of different sources are

often received on the one communication channel. It is then of

interest to identify which pulses are from which source, based on

different source characteristics. This sorting task is termed dein-

terleaving. In this paper we next propose time-domain techniques

for deinterleaving pulse trains from a finite number of periodic

sources based on the time of arrival (TOA) and pulse energy,

if available, of the pulses received on the one communication

channel. We formulate the pulse train deinterleaving problem

as a stochastic discrete-time dynamic linear model (DLM), the

“discrete-time” variable k being associated with the kth received

pulse. The time-varying parameters of the DLM depend on the se-

quence of active sources. The deinterleaving detection/estimation

task can then be done optimally via linear signal processing

using the Kalman filter (or recursive least squares when the

source periods are constant) and tree searching. The optimal

solution, however, is computationally infeasible for other than

small data lengths since the number of possible sequences grow

exponentially with data length. Here we propose and study two of

a number of possible suboptimal solutions: 1) Forward dynamic

programming with fixed look-ahead rather than total look-ahead

as required for the optimal scheme; 2) a probabilistic teacher

Kalman filtering for the detection/estimation task. In simulation

studies we show that when the number of sources is small, the

proposed suboptimal schemes yield near-optimal estimates even

in the presence of relatively large jitter noise. Also, issues of

robustness and generalizations of the approach to the case of

missing pulses, unknown source number, and non-Gaussian jitter

noise are addressed.

NOMENCLATURE

N
Ti, ~i

tk

!/k

yk=~l...,yk

Sk=i

xk=x~....,xk

r;

Number of signal sources.

Period and phase of ith source.

Noise-free TOA of kth pulse.

Observed TOA of kth pulse (2.2).

If ith source generated the kth

pulse.

State of process; Xk = e~ if

sk =’i (2.1).

Last time source i was active up

to and including arrival of kth

pulse (2.3).
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~(xk), G(Xk), ~(xk)

DLM

FDP

KF

MAP

PT

RLS

TOA

WGN

State space representation of

DLM (2.7).

Dynamic linear model.

Forward dynamic programming.

Kalman filter.

Maximum a po.steriori.

Probabilistic teacher.

Recursive least squares.

Time of arrival.

White Gaussian noise.

L INTRODUCTION

P
ULSE trains from a number of different sources are often

received on the one communication channel. It is then of

interest to identify which pulses are from which source, based

on the assumption that the different sources have different

characteristics. This sorting task is termed deinterleaving. It

has applications in radar detection and potential applications

in computer communications and neural systems. In this paper

we address, in the first instance, the problem of deinterleaving

time-interleaved pulse trains from a finite krzowvt number of

periodic sources, We assume that observations of the time of

arrival of the pulses are obtained in additive white Gaussian

noise without any information of the pulse amplitudes and

phases. The aim is to deinterleave the received signal, i.e.,

to detect which source is responsible for each received pulse.

From this it is trivial to estimate the periods and phases of

the periodic pulse-train sources, although the detection and

estimation tasks are intimately linked.

A number of suboptimal heuristic solutions have been

proposed for deinterleaving, e.g., histogramming [1], folding

[2]. These techniques work well when the jitter noise is small.

In addition they require prior information about the periods of

the sources to select appropriate initial conditions.

In this paper, we first formulate the pulse-train deinterleav-

ing problem as a stochastic discrete-time dynamic linear model

(DLM) (see pp. 212-215 in [3], [4]). A DLM is a time-varying

linear system formulated in state space form with the state

matrix and observation matrix at each time instant belonging

to a finite set of possible values. In the deinterleavin,g case.

the discrete-time instants are not the pulse times of arrival but

rather integers indicating the pulses number. Thus the “time”

instant k indicates the arrival of the kth pulse. Then the state

and observation matrices at each “time” instant k, termed here

pulse instant k, depend on which source is active to generate

the Lth pulse. The state at each pulse instant consists of the
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periods of the sources and the last arrival time for each of

the sources. If the pulses contain energy (e.g., amplitude)

information about the sources, this information can also be

incorporated in the state vector.

If the actual source sequence was known, e.g., when there

is only one periodic source, then optimal estimates of the

state of the DLM and hence the periods of the sources

can be obtained using a Kalman filter (KF) or using re-

cursive least-squares (RLS) parameter estimation when the

pulse periods are constant. However, in general, when there

is more than one source, because the actual source sequence

is not known, the optimal solution involves evaluating the

prediction-error cost of each source sequence and choosing

the sequence with the minimum cost. The number of possible

source sequences increases exponentially with the data length

and so this procedure is not computationally feasible for other

than short data segments with few sources (typically about

20 data points and three sources). Clearly, forward dynamic

programming, in its simplest form cannot be used effectively

to pick the optimal sequence because the costs at any stage of

the multistage decision process are dependent on the history

of the sequence (path).

In this paper we propose two suboptimal solutions to the

Jcinterleaving problem. These suboptimal solutions can be

viewed as tree-pruning algorithms that attempt to eliminate

low probability paths so as to achieve a computationally

feasible algorithm.

1) Forward dynamic programming (FDP) with jixed look-

ahead: As described above, FDP in its rudimentary form

cannot be used to obtain the optimal path sequence. We

propose a scheme that combines the optimal full tree-search

algorithm over a short segment (look-ahead interval) to reject

improbable paths and FDP to update the most likely sequences

and costs terminating at each source at each pulse arrival,

That is, over the look-ahead interval the KF prediction error

of all sequences is evaluated. For fv sources with a look-

tihead of A the computational cost is 0( IVA+3). Typically,

for a small number of sources (iV < 10), simulations show

that for satisfactory performance, the look-ahead required is

about 3, and so the computational cost is not excessive.

Of course, if the look-ahead interval is the length of the

observation sequence, then the algorithm is the optimal full

tree-search algorithm mentioned above. The tree-pruning al-

gorithms presented in [5, ch. 2], are very similar to FDP with

look-ahead,

2) Probabilistic teacher (PT): PT algorithms have been

proposed for estimating DLM’s in [6], [10]. If the a pri-

ori probabilities of the sources (related to the periods) are

known exactly then the estimates of the periods using PT

asymptotically tend to the optimal estimates. In fact, as shown

in simulation studies for sequences of reasonable length, PT

using the correct a priori probabilities yields estimates of the

periods as good as the estimates when the true source sequence

is known. When the a priori probabilities are not known,

we compute a posferiori probabilities and use PT with these

probabilities to obtain state estimates of the DLM. However,

PT using a pos[eriori probabilities is prone to error propagation

and is not robust to initial conditions.

Finally in this paper, robustness issues are studied when

the assumptions on the models are relaxed. In particular, we

consider the following cases: Missing or supemume~ (extra)

pulses; pulses with energy information. We propose modified

algorithms for dealing with these cases.

Simulation studies show that both suboptimal algorithms

yield useful estimates providing the initial state estimates are

chosen sufficiently close to the true values.

This paper is organized as follows: In Section H we for-

mulate the deinterleaving problem as a DLM and present the

optimal solution, which is computationally feasible only for

short data sequences. In Sections 111and IV our two suboptimal

solutions using FDP with look-ahead and PT are described. In

Section V simulation examples are presented. In Section VI

issues of robustness, including the presence of missing and

supemumery pulses, are addressed.

II. PROBLEM FORMULATION

In this section, we first present the pulse-train signal model

in its simplest form. The estimation objectives for deinter-

leaving the pulse trains are then described in terms of this

model. We formulate the deinterleaving problem as a DLM

suitable for estimation by a KF. A parametrized DLM, which

is suitable for RLS estimation, is also given. If the pulses

contain energy information of the sources, we show that this

information can also be incorporated in the DLM. We show

how to evaluate the one-step prediction-error costs using a KF

or RLS estimator. Finally, the optimal solution, which involves

a full tree search and the prediction-error costs using either a

KF or RLS estimator, is given.

A. Signal Model

Consider N signal sources, each generating periodic pulse-

trains with period Ti, i = 1. . . . . lV. That is, T’ is the period of

the ith source. We assume that the pulses contain no amplitude

or width information and consequently no information about

the pulse source. The pulses are then interleaved, i.e., summed

at the receiver in a single noisy communication channel. Let

~i denote the time of arrival (TOA) at the receiver of the first

pulse from source z in the absence of measurement noise. That

is, @i is the phase of the ith source. Let t~ denote the noise-

free TOA of the kth pulse at the receiver. Here k ● 1+ where

~+ denotes the set of positive integers. Let sk = i denote that

source i is active at pulse instant k. Thus Sk E [1. . ~].

Let ei. i = 1,. ~ , IV, be unit column vectors in R’Y with 1 in

the ith position. Let ~k G {e 1. . . . . C,Y} denote the state of

the process in that

Xk = ez if .Sk = i. (2.1)

Example: Consider two periodic sources (IV = 2) with

periods T’ = [11.17] and phases # = [3. 4]. In Fig. 1 we show

the pulse trains from the two sources. The interleaved pulse

train is also shown. Fig. 2 shows the corresponding evolution

with pulse number of the sequence of active sources.

Let ~k denote the obserted TOA of the kth pulse at the

receiver. The observations :Vkare in fact t~. contaminated by
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Fig. 1. Pulse trains in absence of jitter.
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Fig, 2. Source sequencing

additive jitter noise wk as follows

yk = t~+wk, Wk N NIO,O;]. (2.2)

Here ‘Wk is zero-mean white Gaussian noise (WGN) with

known variance cr~:. Let yk denote the sequence of obser-

vations till time k: yk = (Y1. ~.. , yk). We assume that all

pulses are detected, i.e., there are no missing pulses. We also

assume that if 1 pulses arrive simultaneously at the receiver,

these i pulses are detected and yk = Yk+l = ~. “ = llk+l-1.

This is a practical assumption if the pulses have energies that

are additive.

B. Deinterleaving Objects

1) Estimation: Obtain a sequential optimal (minimum mean-

square error) estimate of the source periods T and phases d,

given the ~-length observation sequence Y..

2) Detecfion: Detect the pulse-train sequence (Skgiven the

observation sequence yk, 1 < k < ~ and thereby deinterleave

the pulse train. Equivalently, obtain an optimal. say maxi-
“ MAP ~

mum a posferiori (MAP), estimate of .YL.denoted .Yk

{e~.. e~}.

C, Formulation as Dynamic Linear Model

We now formulate the deinterleaving problem as a DLM

suitable for estimation by a KF.

Let A?fidenote the sequence (xl. ,X,). There are IV’

possible source sequences. Let S:. . S:’ denote all these

possible source sequences, termed paths, of length K. So
p) wlthp~ [1.~’] and x: = e; if SE =2.s: = (sy . . . ..sK

Let ~~ denote the last time source i wasactive uP to and

including the arrival of the kth pulse. (We initialize ~~ by

setting it to @ until source z becomes active). We can express

~~, k E 1+ by the following dynamical equation

,{”.
~~ + Ti, if k + lth pulse is due to source z

7;+1 = 7;
otherwise

r: =(#)’.

Define the RN vectors

~~ =(~j,...,TkN), T’=(T1,.. TN).

#=(@’,...,)’).

We can write (2.3) as

~k+l = Tk + dia,g (~k+l)T

T]=q$

tk= Tj~k

(2.3)

(2.4)

(2.5)

where for any RAr vector z = (zl. ”~. .zN). diag (~) =

diag(zl,. ., ,Z.A,)and T. rk are defined in (2.4).

Define the “state vector” Xk as

Then ~k can be expressed in standard state-space form

following DLM

~k+l ‘~(xk+l)$k + G(xk)~k,wk - N[o, fi?]

Yk =~’(xk)~k + Wk>wk w NIO, R].

(2.6)

as the

(2.7)

Here ?)k is an independent white-Gaussian noise process with

variance Q = c;, R = uC, Xk = ~i if Pulse k is due to

source i, and

(
I,v ONX~

)
~(xk+l) = diag (Xk+l) ~A “

~’(xk) ‘( OIXIY XL). G(xk) = Oz.Nxl. (2.8)

In (2.8), O&f. N denotes a matrix of dimension 11 x ~ with

elements zero and l,v is the identity matrix with dimension

N x N. For a given source sequence {Xk }, Kalman filtering

(smoothing) can be used to estimate Xk (z1 ) as we shall

describe in Section II-E.

A related useful model formulation is (2.7) with

‘k=(rk;~‘=t) ‘2’)

(
I.v oNx,\ o.yx,y

~(xk+l) = O,vx,y I.Y O,vx,v

dia~ (X~+~ ) I,v IV )

H(xk) = (OIX,Y .3”[. XL)

G(Xk) =03Nx1. (2.10)

For a given sequence, KF estimates of T.@, and ~ can be

obtained using this model.

-- —



MoORE AND KRISHNAMURTHY: DEINTERLEAVING PULSE TRAINS

1) Models with Pulse Energy Information: If the pulses

contain energy (e. g., amplitude) information of the source

thatgenerated them, then the above DLM can be augmented

to include this information as follows: Let ai denote the

amplitude of pulses generated from the ith source. Define

(1’ = (al. , UN). Each observation now is a vector yk

consisting of WGN noise-corrupted measurements of the

TOA and pulse amplitude. Thus the DLM can be expressed

;ij (2.7) with z~ = (T’. ~’. (J’)’. G(X~) = 03NX1

(
IN ONXN O,vXN

F(A”~+l) = cliag (X~+l) IN ON~~

ON.~ ON.& IN )

(
Olx,y XL

~’(xk+l) = olx,\T

OIXN

Olx,v XL) (2.11)

where R is diagonal.

For the rest of the paper we shall tackle that harder problem

where pulse amplitude and width information are not available.

2) S?ochasfic Sources: Itis also possible to consider more

general DLM’s in (2.7) when G(X~)ok # O. The driving noise

r~ allows modeling of sources that are active at random time

lmstants or have randomly varying amplitudes. For example,

ie model allows for time-varying or stochastically varying

periodic sources by replacing IN in the (1, 1) block of

F(Xk+l ) in (2.8) with ~~h for some scalar a ~ O and setting

G(X~ ) # O and o: # O. If a >1 then the periods are larger,

if m = 1 the periods remain constant, and if a < 1 the periods

get smaller.

D. Parametrized Dynamics Linear Model

We now present an alternative formulation of the deinter-

leaving problem as aparameterized DLM suitable for estima-

tion via RLS.

It is possible to re-express the DLM (2.7), (2.8) as follows

Zk+l = zk + diag (X~+l)

()
y, =x~(z, 1) $ + Wk (2.12)

where zk ~ ~~=2 diag (Xt ). So for a given source sequence

%k, (2.12) can be expressed as

Yk = qj(~k)~ + Vk (2.13)

where qj(~k) = xj(zk 1) is path dependent and corre-

sponds to the familiar regression vector. Also 0 = (T’ ~’)’.

The measurements yk are linear in the unknown parameter 6.

Thus recursive least squares (RLS) can be used to estimate the

parameter 0 in (2. 13) for a given SOUrCe SeqUenCe {Xk } i see

-iection II-E. The RLS algorithm is independent of the noise

\ariance a~,.

I E, Path -Dependent Estimators

I We now show how to estimate the DLM states and

I Parameters using either a KF or RLS for a given source
sequence (path)

1) Kalman Filter Estimator:

S;, denoted as path p, let F~

ciated DLM matrices in (2.7).

Y~, let

X;+llk = -E{Xk+llYk,S;}

30Y5

For a source sequence ~k n

G:, and H; denote the asso-

Given the noisy observations

q+llk ‘E{(xk+l – Zk+llk)(zk+l – ‘r{+llklsf} (2.14)

be the predicted state estimate and the predicted state-

covariance estimate at time k + 1 given the path p. Notice that

the covariance estimate is independent of the observations.

Denote the one-step output prediction error at time k +

1 given the path p as ek+l. The KF for the DLM (2.7)

conditioned on the path p and observations Y. is as follows

x~+llk =Ff+ld’,k_, + ~~e~

. H[’X~lk_l
)

F:;l G:QG:’

(

–1

K: =F:E;lk_l H: Hf@lk_lH: + R
)

4-+1 ‘!/k+l – ‘:+l T;+llk ke[l... ts] (2.15)

initialized with a priori estimates x~lo and ~~lo.

2) Recursive Least Squares Estimator: Let rf (see 2.13)

denote the “regression” vector associated with the path p. Let

01 and P:, denote, respectively, the RLS parameter estimate

of 6’and the covariance matrix based on path p. Thus

p: = E{(O; - 0)(0: - 0) ’1s’[} (2.16)

which is independent of the observations Y,.

Denote the one-step output prediction error at time k +

1 given the path p as ek+l. The RLS estimator for the

parameterized DLM (2.12) conditioned on the path p and

observations Y. is given by

or’ – t?~~+1 — k + ‘~+l%+lei+l

P:+l =P: – P:7/:+1[1 + ‘7J+1P:7~+J1

“~~+pf=rsv’’4+1‘?/k+l – %+lO;. kE[l, . . ..K] (2.17)

initialized with a priori estimates d? and p;. In a Bayesian

context, we have from Stemby [81 that if P: + O as k + x.

then O: + 6 as. with (~~–~)’(d~–~) = ~(~~). see also [9].

The parametrized DLM (2. 12) gives us useful insight into the

persistence of excitation conditions on & required for RLS

parameter estimation: For Xk=z w T)[to have full rank we need

at least two pulses from each source. Useful suboptimal but

asymptotically optimal estimation can be achieved by working

with block-diagonal versions of Z~=2 qt?)~.

3) Remarks: a) The RLS estimator cannot be used to esti-

mate stochastic sources or sources with time-varying periods

without introducing forgetting factors or working with the

appropriate KF formulation.
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b) If the measurement jitter is modeled as colored noise

using an augmented model, then an augmented KF can be

applied. If the colored-noise model has unknown parameters

then an extended Kalman filter (EKF) (see [7], pp. 296-301)

would have to be used instead of the KF. In the least-squares

case, an extended least-squares (ELS) scheme (see [7], pp.

279-286) could be used instead of RLS.

F. Prediction Error Cost for u Sequence

The noise sample-path dependent KF or RLS one-

step prediction-error cost of the path p denoted as ,J~ is

calculated as

(2.18)

k=l

where ~k is defined in (2. 15) for the KF estimator

and in (2. 17) for the RLS” estimator. Also 13{Jj} =

~:=1 (H’(X/J ~~lk_l ~(xk) + ~).

Of course, in the case (2.7), (2.8), the costs J: and J!3{J~}

are identical to those associated with the RLS parameter

estimation of the model (2. 13).

G. Optimal Scheme

Given a sequence of observations 1’., evaluate sample-

path one-step prediction-error costs of all iV’ possible source

sequences (paths) S:. p = 1., . ~. N“. Pick the optimal (MAP)

path p“ as

p“ = arg min J: (2.19)
P

where J: is defined in (2. 18). Thus we have the optimal

‘“MAP} = {x:”}sequence S~” with {A ~,

Of course the KF on path p“ yields filtered estimates of

thestate and hence of T. By running a Kalman smoother on

the path p* we can then evaluate E{ xl ]Y., S:’} and so obtain

fixed-interval smoothed estimates of the source periods T and

source phases ~.

Similarly. the RLS estimator on path p* yields optimal

estimates of the periods and phases.

H. Computational Cost

1) Kalman Filter: Because of the structure of ~~+1 and

H:, the computational cost for implementing (2. 15) can be

reduced from the usual cost of 0(IV3) to 0(iV2). This is

because computing E~lA_l ~f~~ E~l&~ requires ~(~2)

multiplications: all the other computations in (2. 15) require

additions. So the total computational cost if 0(lV’+2), which

makes a full-tree search impractical for large IV or ~.

2) /?LS Estimator; The computational cost for implement-

ing (2. 17) at each instant k is 0(lV2 ). So the total cost for a

full tree search is 0(iVm+2).

1. Estimation of a Sitlgle Source

In the special case when N = 1. the actual source se-

quence is known: l-k. = cl. VA. Then the KF (2.15) ‘or

least-squares estimator (2. 17) with 1) = 1 yields optimal filtered

estimates of the source period. Also, by using a fixed-interval

Kalman smoother, smoothed estimates of the phase can tX

obtained. We illustrate the estimation of a single source in

simulation studies.

III. FORWARD DYNAMIC PROGRAMMING WITH LOOK-AHEAD

In this section we present our first suboptimal solution to

the deinterleaving problem. It combines the optimal full-tree

search algorithm proposed in Section II-D over short segments

A at each pulse k and then use FDP to maintain the best .V

paths (in terms of prediction-error costs) prior to and including

pulse k where each path terminates at a different source. We

choose to work with the KF prediction errors. However, the

RLS prediction errors can also be used. Similar schemes have

also been used for tree pruning in [5].

Let r~ denote the KF prediction-error cost of the best

sequence (i.e., the sequence with minimum error cost among

all sequences) ending in source i at time k based on a A look-

ahead. Similarly .~~(&~, ~~lk_ ~ denotes the KF predicted state

and state covariance, respectively, at time k based on the best

sequence ending in source i at time k with a A look-ahead.

Initialize: Set Z;l[). .c~lo, rj=O.Ofori=l. ..V.

lteratiorrs: Given Z~lk_l,T~lk_l, r~.p~.i = 1. . i’V.

Step 1. A look ahead to eliminate unlike scquen(cs: For

p = 1 to f’v~+l, evaluate prediction-error costs J:+ ~,k+~ for

each A + 1 length sequence s:. . . ~. SI+A. Here

k+A

J:+l k+~ = ~ (4’)2 (3.1)

t=k+l

and is computed based on the observations :Vk.. . . . :y~+i.

Partition these costs into J’V2subsets according to whether

S: = 2,s; +1 —–j. i=l . . . ..lV. j. JV. ... JV. Let c,Jbe the

minimum cost in each partition.

Step 2. Forward dvnamic programming: Using the N* best

costs cjj to Step 1, we obtain via FDP the best sequence ending

in source j at time k+ I for each j,:j = 1. ,V

r;. + ~ ;= min (i; + ~~: i..j6[l. .~Y]

pi+ ~ = argmin c~,,+ r’;. (3.2)
,

Here, Pj+ ~ denotes the active source at time k of the best

sequence ending in source j at time k + 1.

Step 3. Kalman jilter update: For j = 1. V run the

following N Kalman filters in parallel

~~+llk = ~(Cj)I[\A~~l + ~~,(~k – ~’(~{.+~)r~~~~~ )

(

I-( f’,, ) I$AT: ~ –

[

.1

Jy+llk = ~;i+:] ~(’Pi?+l) ~(+i+l )’q;kul

1
–1 .1

H(P~+l)+n H’(P;+l)X;;A+)
F’((, )

+ G($9~+1 W’(w{+l)

[

.1

l((. = ‘(cJ)x;/~::, H(&) ‘(pi.+] )’X;;A::]

H(p:+,) + n-’ (3.3)

.,...— -
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Actually, Z:+l ,k and ~~+1 ,k are computed during Step 1, we

present Step 3 for clarity.

Step 4. Set k to k + 1 and repeat beginning at Step 1 until

k=~–l. Ifk=K-l, then i*=argminir~.

1) Backtracking: Start with X: = e,.. For k = K –

l., l: If Xl+l=ei, i~[l, ”.”, ~]thenX;=eP; +l. ~us

.Y; . k = 1,. . ~, ~ is the estimated sequence of active sources.

Again the KF estimate at time ~ from the optimal path Xi

yields filtered estimates of T. Also a fixed-interval Kalman

Smoother on path xi yields smootied estimates of xl and

hence T,@

2) Computation Complexity: For a look-ahead of A, we

need to run Kalman filters on fVA+l sequences at each pulse

instant. Now the computational requirement for each sequence

is AO(N2 ) (see Section II-E). So the total complexity at each

pulse instant is AO(NA+3).

Choice of A: We are unable to give a comprehensive de-

sign rule for selecting A. However, in simulations studies we

show that choosing 3 < A < 5 usually yields satisfactory

estimates. It may be possible to use a similar analysis to that

in [5] to compute the probability of losing a source in terms

of A.

IV. PROBABILISTICTEACHER

Our second suboptimal scheme assumes that the sources

are active at independent random time instants. Of course,

if the sources are known to be periodic, then the prob-

ability of the source being active is proportional to its

pulse frequency.

The probabilistic teacher (PT) makes a random decision as

to which source is active at each time instant as follows: Let

~k be the estimated active source at time k using the PT. Also

let ~k denote the sequence of past decisions Xl, . . . . X~ from

the PT based on the observations yk. Then with ~/c+l, the

PT decides which source is active at time k + 1 by selecting

(.me source at random according to the a posterior probabilityy

density of the sources at time k + 1.

Even though the decision as to which source is active is

made at random, on the average the density function used

in the estimation is the same as the correct density for

learning the values of the parameters [6]. This means that

the PT scheme is statistically the same as learning without

a teacher. Convergence of the PT scheme is proved in [6]

under mild conditions. The main condition for convergence

is that the possibility of reaching the correct value start-

ing from the initial prior distribution of parameters is not

ruled out.

We now present the PT approach to deinterleaving in detail:

!-et T denote the a priori probability vector of the sources:

– ~(xk = ei). Let * denote our estimate of 7r.,,—

Assumption: The sources are independent, i.e., P(X~ =

C;lX&~) = P(X~ = e~) = 7Tj.

Then, given a sequence of observations Y., the PT performs

deinterleaving as follows:

Initialize:

iterations

. . . “

set~110, ZIIO.

Given Ekl&l,~k\&l.

3097

Step 1. Supervised learning:

1) Comput~ the a posterior probability density .f(X~+l =

ejlyk+l.y~,~k),~ = 1.”. N. We do this as follows: from

Bayes rule

~(x~+~ = ejlvk+l, Yk, ~k)

= f(Yk+llxk+l = ej, yk, ~k)f(xk+l = ejlyk,ik)

f’f(yk+llxk+l = ei,yk,zk).f(xk+l = eilyk,zk)

i=l

(4.1)

Let us now evaluate the terms on the RHS of (4.1). Be~ause

the sources are assumed independent, ~(xk+l = ej ly~, Xk ) =

f(xk+l = ej) = tj. The density .f(!/k+llxk+l = e,, Yk, ~k)

is very difficult to calculate due to the time-vm’ying nature

of the DLM. So we approximate this density by a Gaussian

density that has the same first two moments [10] to obtain

.f(yk+llxk+l = ‘~,ykzk) w ‘IH(e~)z;+llko ~+ll’

Q~+l = H(ej)’ ~ H(ej) + R. (4.2)

k+llk

Here z~+llk and~~+l, j= l,.. ., N are computed using the

KF equations as

.Z~+llk :~(ej)Zkl&l + ~~(yk – ~’(xk)~klk-l)

X;+llk =~(ej)(~klk-1 – ~klk-l~(xk)

~ [~’(xk)~klk-d@k) + R]-l

)
. H’(xk)~klk_l F’(ej)

+ G(&) QG’(&)

K~ =~(ej)xklk-l~(xk )[~’(xk)~klk-1

~(ik) + R]-l. (4.3)

2) Set Xk+l = ej for a randomly chosen ~. ~ E

[1, ~~ , N], a<cording to the a posreriori density ~(~k+l =

ejlyk+l, yk, ~k).

Step 2. Kalman filter update: For X/c+l = e;, the PT state

and covariance updates are

~k+llk = ‘;+llk~ ~k+llk = ‘:+llk (4.4)

where z~+l ,k and ~~+llk are computed in (4.3).

Step 3. Set k to k + 1 and repeat beginning at SteP 1. until

k=~–1.

1) Computational Complexity: Because ~~+1, j =

1,... , N is required to be computed, the computational

complexity is 0(N3 ) at each instant k. Thus, compared to the

FDP with look-ahead, the PT scheme is particularly attractive

when there are 2 large number of sources.

2) Known a priori Probabilities: If the relative frequen-

cies of the periodic sources are accurately known (with the

actual frequencies and periods not known) then the a priori

probabilities I? can be accurately computed from these relative



3C98 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL.42,NO 1I.NOVEMBER l%

25 1

m -

15
/

,, . h
10~j ““’ 0-3

5 -

01 I
o 20 40 60 &l 100 120 140

Fuknurabk

Fig.3. Period estimate of single source in medium and large jitter noise,

Parameters: .Y = 1. T = 11, d = 50, Noise variances: a:, = 9arrd 1 x 104.

Initial estimate: .rj,0 = (l.l), Y1,O = lo~ x 1~,

frequencies. Simulations show that in such a case, instead of

using the a posterior probabilities in Step 1, one can use the

a priori probability estimate t to get excellent estimates of T.

Of course, z~+llk and ~~+llk,j = 1, .IV do not have to be

computed, only xi+ ~,k and ~~+1 ,k are required in Step 2. SO

the computational requirement is 0(1’V2) at each pulse instant.

Thus, if the statistics of the sample path (the source prob-

abilities) are known, the periods can be estimated despite the

fact that the actual source sequence is unknown.

We first

pulse train

V. SIMULATION EXAMPLES

consider the simplest case of a single periodic

in jitter noise. Then the performance of the two

suboptimal schemes proposed in Sections III and IV, i.e., FDP

with look-ahead and PT are studied.

A, Estimation of a Single Source

We illustrate the optimal performance of the scheme in

Section II-F for estimating the period of a single periodic

pulse train in jitter noise.

TO a computer-generated periodic pulse train T = 11,

r/I= 50 was added jitter noise with variances a; = 9 and

104, respectively. The estimation scheme was initialized with

Z~lo = (1. 1), zllo = 103 x 12. Fig. 3 shows the evolution of

the KF period estimate given by :Ck+l lk( 1). Notice that when

~u = 3, the period estimates converge to the true value in

less than 30 pulse instants. When the jitter noise is extremely

large (cr.. = 100), the estimates are close to the true values

after 80 pulse instants. After 100 pulse instants, the period

estimate is 11.04.

Discussion; Besides being of independent interest, the sin-

gle source example illustrates that for general interleaved pulse

trains, if the source sequence is known, then the pulse trains

can be estimated optimally using a KF.

Fmb 0.6

Somw%1
0.4

1

Prob 0,6‘ ‘-2

j Sommo: ‘1

0,4
I

0’:= “!=
o 1 ‘2 3 0 1 2 3

Jitter rinse vsriance Jitternoise varisace

(a) (b)

Fig. 4. Source error probabilities.

A=l I

{E

A-

A = 3,4,... .-

,. .-----

0 0.5 1 1.5 2 2,5 3
Jitter noise variarree

Fig. 5. Average error probabilities.

B. FDP with Look-Ahead

1) Error Probabilities: Here, the same interleaved pulse

train as in the example of Section 11 is used: T’ = [11, 17],

4’ = [3, 4]. Initial estimates ‘ere chosen as ~1 ]0 =
(10.22. 1,2), X110 = IJ, (i.e., the 4 x 4identity matrix). For

2 = [011 ~1weJ-aJ-ttheFDPvarious jitter-noise variances CJu,

with look-ahead A = 1, . ...5.

Let us define the error probability of a source z as

p; = number of undetected pulses from source i
(5.1)

number of pulses from source i ‘

Fig. 4 shows how P: and P: depend on o~, and A. For

A = 1, i.e., FDP with no look-ahead, Source 2 is never

tracked. All pulses are detected as due to Source 1. Therefore,

for A= l,P$ sOand P$%l.

For A = 2 the algorithm tracks both sources for low jitter

noise, ff~, < 0.5. For larger m~,, Source 2 is not tracked and

all pulses are detected as due to Source 1, i.e., P(l x O and

r: = 1.

For A = 3.4, 5. ... both sources are tracked with no

noticeable improvement in performance for A > 3. As

expected PFl, P: increase with cr~,.

Fig. 5 summarizes the information in Fi,g. 4 by showing the

average error probabilities, ~ (P: + P~).

2) Estimatiotr of Two Sources: An interleaved pulse train

with jitter noise was generated with parameters N = 2.

a:, = 9.0, T’ = (11. 80). 4’ = (3. 4). Initial estimates were

~l(j = (60.96.2. 1). X11O= 14. A was taken as 3,chosen as x;’

Fig. 6 shows the evolution of the KF estimates of Tl and T*,

which are given by xk+llk ( 1) and .lA.+11k(2). respectively.

Notice from Fig. 6 that despite r-r:, being relatively large,

accurate estimates of T1 and Tz are obtained after about 300

pulse instants.
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r,:, 7, Evolution of period estimates using FDP with look-ahead. Parame-

‘:r\: .V = 3,u~, = 9.0. T’ = (11. 30.80 ),c’ = (3. -!. 6). Initial estimate:

I/[) = (39.40.90.3.4.2).

3) Estimation of Three Sources: An interleaved pulse train

with jitter noise was generated with parameters N = 3,0~, =

9.0.7” = (11,30,80), # = (3,4,6). Initial esitmates were

~lo = (39.40 .90)3,4,2 ), ZI10 = 16. Fig. 7 showschosen as xl

the evolution of the KF estimates of T1, T*, T3. Again af-

ter about 300 pulse instants the estimates approach to the

true values.

4) Estimation of Eight .$ow-ces: An interleaved pulse train

with jitter noise Was generated with parameters N =

~.o~, = 1.T’ = (11. 19.39.53,83,113.139, 160),4’ =

:1.4.6,7.4.10,3. 1). Initial estimates were chosen as z~lo =

{7. 14.38.49.83.113.140. 160.3,4,6, 7,4.10.3, 1). llllo =

102 x 116. Fig. 8 shows the evolution of the period estimates.

Also shown are the estimates of rk defined in (2.4). Notice

that all eight sources are successfully tracked.

Discussion: 1) Choice of look-ahead ~: In general we

found that for larger o:,, to successfully track the sources, it is
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Fig.8. Estimation of eight sources using FDP with look-ahead. Parameters:

.Y = 8.u;, = 1.T’ = (11.19 .39,53,63,113 .139.160 ).o’ = (3.4.6.7.

4. ]0.3. 1). Initial estimate: J’\10 = (~. 14.38 .-19.83.113.140 .16 0.3.4. G.

7.4. 10.3. l),s, /0 = 102 x 116.

necessary to choose a larger look-ahead A. Also, the greater

the separation of the periods, the smaller the A necessary to

track the sources.

2) Effect of irzi[ial conditions: Extensive simulation studies

show that the smaller periods are less sensitive to initial

conditions. For example, in the two-source-estimation example

above, if the initial estimate of T2 is larger than 100 (i.e.,

20 from the true value) then Source 2 is not tracked. In

comparison, initial estimates of Source 1 could be taken up to

70 and the sources still tracked. We found that for o~ S 25.

both sources were accurately estimated.

3) Threshold ejjecr: Simulations shows that the FDP algo-

rithm with look-ahead exhibits a threshold effect in that for

A < A,n the estimates are poor and for A ~ A,,, the estimates

appear invariant of A and so are optimal, or at least virtually

optimal. Notice from Fig. 4 and Fig. 5 that for A ~ Am = 3,

the source-error probabilities do not improve. Also the period

estimates do not ‘get any better. Thus

estimates for A 2 3 are “optimal.”

in Fig. 4 and Fig. 5, the
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Initial estimate: .r\,O = (1.1,1,1,1,1).

C, Probabilistic Teacher

The performance of the PT algorithms proposed in Section

IV are now illustrated.

1) Known a posteriori Probabilities: Here we consider

the case where the probabilities of the sources, i.e.,ri, z =

1, . . . . N are known accurately. We show that in such a

case using the a priori probabilities instead of a posreriori

probabilities still results in satisfactory period estimates of

the sources.

2) Estimation of Three Sources: The same 3-source

interleaved pulse train as in the three source example

in Section V-A was used. We added large jitter noise to

this chain, cr~ = 36.

Assume that a priori probabilities ~z, i.e., Ti /E~ T’ are

known. The PT algorithm was used with these known a priori

probabilities instead of computing a posterior probabilities.

Initial estimates were taken as: z~lo = (1, 1,1, 1.1, l),~llo =

16. Fig. 9 shows the evolution of the period esitmates. Notice

that despite the fact that the jitter noise is large and the initial

conditions are far away from the true values, after 3000 pulse

instants the estimates are close to the true values.

3) Estimation of Five Sources: An interleaved pulse train

with jitter noise was generated with parameters N = 5, m; =

64.0, T’ = (11, 19,39.83, 120), # = (3,4,6,7,4). Initial

estimates were: x;,0 = (1.1,1 .l,l.l.l.l.l,l), z,p = 110.
Fig. 10 shows the evolution of the period estimates.

Discussion: In general, the estimate of the larger periods

converged slowly. This is because there are fewer data points

from the sources with larger periods than that of the frequent

sources. We found the PT algorithm using known a priori

probabilities to be extremely robust to initial conditions, jitter

noise. and missing pulses.

4) A posteriori Probabilifie.s: The same 3-source interleaved

pulse train as in the three-source example in Section V-A was
used. Jitter noise with O: = I was added to this puke train.

We used the PT algorithm with a posterior probabilities

on these data. We incorrectly assumed that N = 4. The
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Fig. 11. Evolution of period estimates using PT with a po.rferiarlprobabili-
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initial parameters were z 110 = (1,1,1 .1.1.1 .1.1) .X, IO =

106 x ls, mi = 1/4 (so no a priori information was used).

Fig. 11 shows the evolution of the period estimates. Notice

that the estimates of two of the sources converge to 22, i.e., a

multiple of the period of the first source. The estimates of the

other two sources converge to the true values.

We found in general though that the F’T scheme with a

posterior probabilities is not robust to initial conditions. For

initial conditions far away from the true parameter values.

the Gaussian approximation for the a posterior density is not

adequate and the scheme may not necessarily recover.

VI. ROBUSTNESS ISSUES

In Section II-A we assumed that all transmitted pulses

are detected at the receiver without error. We now con-

sider the case where if 1 pulses arrive simultaneously at

the receiver. they are detected as a single pulse :yk. (in-

..-—
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Fig. 12. State estimates using FDP in presence of missing pulses. Param-
eters: .Y = 2, u?.. = l.O. T’ = (11.30).0’ = (3.4). Initial estimate:

stead of being detected as 1 pulses as in Section II-A). We

gll,e suitable modifications to the FDP algorithm with look-

: !lcad to cope with this example of missing pulses. We also

wow that similar modifications can be used to deal with

the case of sttpemumery (extra) pulses. Finally, simulation

examples are presented to illustrate the performance of the

FDP with look-ahead and PT schemes in the presence of

missing pulses.

A. FDP with Look-Ahead for Missing Pulses

Recall in the FDP with look-ahead algorithm given in Sec-

tion III, ~~+1 ~+~ is computed in Step 1 from the observation

sequence yk, . . . . !/k+A, see (3.1). TO cope with the possibility
of missing pulses we essentially compare the prediction errors

assuming there was no missing pulse with that assuming

[!lere is a missing pulse. Consequently Step 1 and Step 4 are

modified as follows:

Modified Step 1: For p = 1 to NA+l, evaluate prediction

error costs

J:+l k+A based on observation sequence

{Yk>Yk+l> yk+2:”””, yk+A} (6.11

7&+A based on observation sequence

for each A+ 1 length sequence s:, ~, , , s~+~. Notice that

‘]f’+l,k+A are computed based on the assumption thatthere

:ire no missing pulses at time k. Also ~k+l,k+A is computed

n the assumption that there is a missing pulse at time k,

Partition the costs ~~+1 ~+~ into Nzsubsets according to if

‘1) be the$[=Z!L~~+I=~.i=l....N.~ =l..”..Let~iJiJ
minimum cost in each partition.

Similarly partition the ~~+ ~,k+~ costs into the same N*

‘2) denote the minimum cost in each partition.subsets and let Cij

Based on the prediction errors, J (no missing pulse) and ~ (one

3tot

missing pulse) we make a decision whether there is a missing

pulse at time k as follows:

[1) and,:f~)Compare the minimum elements in c,,

‘2) decidethat there is no missingIf mini,~ c~~) < miui, j C,j ,

(1) Vz, j.pulse. Set c~j = C12,

Otherwise, it is decided that there is a missing pulse at time

k. Set Cij = Cf~),VZ,j.

Modified Step 4: If it was decided in Step 1 that there

was no missing pulse at time k, then set k to k + 1 and

repeat beginning at Step 1. Otherwise go to Step 1 without

incrementing k.

1) Supernumery Pulses: To cope with the possibility of

supemumery (extra) pulses, the above procedure is slightly

modified:

Step 1: Replace (6.2) with ~+~,~+A based on observation

SeqUenCe {Yk+l, yk+2, . . “ , Yk+A+l }. This iS computed based

on the assumption that there is an extra pulse at time k.

Step 4: If it was decided in Step 1 that there was no extra

pulse at time k then set k to k + 1 and repeat beginning at

Step 1. Otherwise, go to Step 1 and set k to k + 2.

2) Simulation Example: Here we compare the perfor-

mance of the standard FDP look-ahead scheme with that

proposed above in the presence of missing pulses. We

generated a noisy interleaved pulse train with parameters

IV = 2,u: = l.O, T’ = (11.30),@’ = (3.4). Also,

if more than one pulse arrives simultaneously at the

receiver, it is assumed that only that pulse is received

at the particular pulse instant and that the other pulses

are missed.

We ran both the standard FDP with look-ahead and the

modified scheme proposed above on these data. We choose

A = 3. Initial estimates used were z~lo = (4, 27.3, 4). Ello =

106 x 14. Fig. 12 shows the evaluation of Tk, where rk

is defined in (2.4). Notice that the standard scheme loses

track of the second source after 12 pulses. The modified

scheme satisfactorily ,tracks both sources. Also. the period

estimates converged to 10.01 and 29.98, which are close to

the true values.

B. Probabilistic Teacher for Missing Pulses

The PT scheme proposed in Section IV using known a priori

probabilities of the sources is extremely robust to missing

pulses. Recall that PT is based on the assumption that the

source are random and so there is no necessity of the source

being periodic. Consequently, missing pulses do not affect the

performance of the PT scheme.

A noisy interleaved pulse train was generated with param-

eters: N = 3,0~, = 36.0. T’ = (11.30 .80). d’ = (3.4.6).

Also, if more than one pulse arrives simultaneously at the

receiver, it is assumed that only that pulse is received at

the particular pulse instant. The PT algorithm with known a

priori probabilities was run on the data with initial estimates:

x~lo = (l.l.l.l.l,l)..ZIIO = 106 x 16. Fig. 13 shows the

evolution of the period estimates. Notice

is extremely robust to missing pulses.

that the PT scheme
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Fig, 13. Period estimates using PT with known a priori
probabilities in presence of missing pulses. Parameters:

.Y = 3. U:, = 36.0. T’ = (11.30.80).17’ = (3.4.6). Initial

estimate: ‘~’l/0 = (1.1.1.1.1.1).21/0 = 10’ XI(l.

C. Other Robustness issues

1) Filtered pulses: In some practical examples, the received

signal from each source can be modeled as the response

of a linear system to a periodic pulse train. If this linear

system for each source is stable and minimum phase. then

preprocessing by an inverse filter could be used to reconstruct

the pulse train. Otherwise, approximate reconstruction and

pulse-detection techniques could be used.

2) Non-Gaussian noise: The KF is the minimum-variance

filter and so will still yield useful results when the jitter noise

is non-Gaussian.

3) Change in the number of sources: A source dropout

is said to occur if a source stops generating pulses. In the

FDP algorithm with look-ahead, source dropout can be

detected since this leads to ramping prediction errors. If the

prediction errors exceed a particular threshold, then detection

theory can be used to obtain the probability of a detected

dropout. Also, below the threshold, detection theory gives

us a probability of missed dropout. The algorithm could

be reset once a dropout is detected. That is. the associated

state covariance could be increased.

If a new source suddenly were to become active, again this

could be detected using prediction errors and detection theory

and the algorithm reset to include an additional source.

D. Other Approaches

We have addressed two suboptimal techniques for estimat-

ing DLM ‘s. Other techniques such as probabilistic editor,

quasi-Bayes schemes ([3], pp. 214-215) are also used for esti-

mating DLM’s and may yield useful results in deinterleaving.

If the source sequence is modeled as a N-state Markov chain,

the observations can be formulated m a dynamic linear system

driven by the Markov chain. It may be possible to use results

from the theory of hidden-Markov-model estimation to achieve

deinterleaving. This is one current area of research.

VII. CONCLUSION

We have formulated the pulse train deinterleaving problem

as a discrete-time stochastic dynamic linear model (DLM). The

DLM allows the derivation of an optimal solution via standard

techniques, although this is computationally expensive. We

then proposed two suboptimal solutions that yield useful

results. Simulations show that these suboptimal schemes are

virtually optimal when the initial estimates of the periods and

phases are reasonably close to the true values.
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