
Dejong Function Optimization by means of a Parallel Approach to Fuzzified 
Genetic Algorithm 

 
Ebrahim Bagheri1, Hossein Deldari2 

1Department of Computer Science, University of New Bruswick 
2Department of Computer Engineering, Ferdowsi University of Mashhad 

1e.bagheri@unb.ca 
 

 
Abstract 

 
Genetic Algorithms are very powerful search methods 
that are used in different optimization problems. 
Parallel versions of genetic algorithms are easily 
implemented and usually increase algorithm 
performance [4]. Fuzzy control as another 
optimization solution along with genetic algorithms 
can significantly increase algorithm performance. Two 
variations for genetic algorithm and fuzzy system 
composition exist. In the first approach Genetic 
algorithms are used to optimize and model the 
structure of fuzzy systems through knowledge base or 
membership function design while the second 
approach exploits fuzzy to dynamically supervise 
genetic algorithm performance by speedily reaching an 
optimal solution. In this paper we propose a new 
method for fuzzy parallel genetic algorithms, in which 
a parallel client-server single population fuzzy genetic 
algorithm is configured to optimize the performance of 
the first three Dejong functions in order to reach a 
global solution in the least possible iterations. 
Simulations show much improvement in genetic 
algorithm performance evaluation. 
 
1. Genetic Algorithms 

 
Genetic Algorithms are non-determinist and chaotic 
search methods that use real world models to solve 
complex and at times intractable problems [13]. In this 
method the optimal solution is found by searching 
through a population of different feasible solutions. 
After the population is studied in each iteration, the 
elicits are selected and are moved to the next 
generation under genetic operators. After adequate 
generations, better solutions dominate the search space 
therefore the population converges towards the optimal 
solution.  
Genetic algorithm functionality is based upon Darwin's 
theory of evolution through natural and sexual 
selection. As weaker elements are overthrown in 
nature, weaker solutions are omitted here. The best 
solutions of the last generation under the crossover 

operator usually direct the search space toward better 
answers. Mutation is considered as an important 
secondary genetic operator and effect the final 
solution. 
In Genetics, attribute transfer in a gene sequence is 
done through common factors (Building Blocks). 
Consequently in genetic algorithms the parts of the 
genetic answer which have an effective role in the final 
solution are called the building block. The aim of 
genetic operator exertion on the population is to 
rearrange the building blocks placement to form 
effective compositions. 
Each element is usually built from a γ length binary 
string; therefore the search space will be 2γ. The initial 
population is randomly selected, although there may be 
different methods for specific problems but random 
selection is usually preferred to keep a suitable 
balanced distribution in the initial population. Each 
element is actually a codified version of the possible 
solution situated in a vast population. The genetic 
algorithm population evolves based on an evaluation 
function, selection, crossover, and mutation operators. 
The necessity to consider algorithm execution time and 
on the other hand reaching the global solution; makes 
correct population size selection an important task. 
Small population size may omit suitable solutions 
containing effective building blocks while big 
populations will increase the algorithm execution time 
and will waste computational resources. There should 
always be a trade off between population size and the 
two mentioned factors. 
Each element has a fitness value associated with it. 
This factor shows the extent of influence which the 
element has on the final solution. As genetic 
algorithms usually act as optimizers, this factor can 
estimate the satisfaction percentage of the result. Using 
the fitness value in the selection operator, elements 
with higher value will be selected for crossover, 
mutation and some times to be transferred directly to 
the next generation. 
Crossover is the dominant operator in genetic 
algorithms. The typical model of this operator 
randomly selects two different elements from the 



population and substitutes these elements from one 
point in the string. For example two sequences like A1 
and A2 can be considered as: 

00001110
11110110

2

1

=
=

A
A

 

There are γ points for crossover in an element with the 
length of γ. In this example point number 4 has been 
selected. With the application of crossover the 
elements for the next generation will be as follows: 
 

11111110`
00000110`

2

1

=
=

A
A

 

Different versions of this operator can be found in 
various texts. The given example is of a single point 
crossover although two point or even n point 
crossovers can be used. It's crucial to notice that with 
the increase in the number of points used in crossover, 
the effective building blocks may be divided and 
therefore ruined. 
Mutation is usually considered as a complementary 
operator. Its main purpose is to broaden the search 
space because using crossover alone may drive our 
results to one direction. For example having 11011 and 
selecting point 3 for mutation will result in 11111. 
As in nature, the probability of crossover application 
(Pc) is relevantly high where on the other hand 
mutation probability (Pm) is much lower. Many 
different methods have been proposed for initial 
genetic algorithm parameter setting. Dejong offered an 
initial population size of 50, 0.6 for Pc and 0.001 for Pm 
[2]. 
Different approaches can be taken to terminate a 
genetic algorithm's execution. One of the ways is to 
end the execution after a fixed amount of iterations. 
Another approach is to end the algorithm when the best 
fitness value of the elements in the population has 
reached a specific peak, or in other cases the execution 
can be terminated when all the elements are the same 
however this is the case when mutation is not used. 
 
2. Genetic Algorithms and Fuzzy Systems 
 
From the initial stages of the introduction of simple 
fuzzy logic algorithms [11] and their success, fuzzy 
logic and control have found extensive application and 
have been minutely studied, although many 
unanswered questions like the fuzzy knowledge base 
creation, fuzzy membership function modeling and 
even fuzzy system parameter selection remain. 
Therefore designing a fuzzy system needs detailed 
knowledge base structure and membership function 
parameters. Genetic algorithms have the potential 
ability to positively affect the fuzzy system parameter 

setting. Extensive researches in this field have 
exclusively concentrated on fuzzy membership 
function modeling or fuzzy knowledge base rule 
selection [15]. Other studies have focused on 
membership function modeling along with the 
knowledge base rule selection [14].  
The use of genetic algorithms for fuzzy performance 
optimization and modeling the structure of fuzzy 
systems are known as Genetic Fuzzy Systems [8]. The 
other approach for composing these methods is the 
effect of fuzzy control on genetic algorithms which 
creates the Fuzzy Genetic Algorithms [1]. Current 
issues in these kinds of algorithms are categorized into 
four classes. In the initial model, genetic algorithm 
parameters are adapted to the general conditions of the 
problem using fuzzy control. Fuzzy control systems in 
this approach are mainly designed using an expert and 
avoid premature convergence. The second model that 
also avoids premature convergence is the use of fuzzy 
logic to create novel crossover operators. The classical 
structure of genetic algorithms can also be changed to 
allow values other than the binary values to acquire 
values between 0 and 1. Fuzzy systems can also 
control the execution termination of genetic 
algorithms. In this method there is no need for explicit 
termination definition and the algorithm can infer the 
right termination time using fuzzy logic. This approach 
can avoid premature solutions due to insufficient 
generations and allow enough iteration. 
 
3. Parallel Genetic Algorithms 
 
The main goal of parallel algorithms is to divide a 
problem into many sub problems such that each of the 
sub problems could be executed on a single processor. 
Genetic algorithms could be parallelized in different 
ways. Some of the parallel methods use a single 
population while others divide the whole population 
into several smaller populations. Some of these 
algorithms are appropriate for supercomputers and the 
others can be implemented on cluster architecture [9]. 
Three different architectures for parallel genetic 
algorithms exist: 

1. parallel client-server single 
population  

2. parallel fine-grained single 
population  

3. parallel coarse-grained multi-
population 

In the first approach a centralized population is used. 
The fitness value assessment is done on different 
parallel processors; as genetic operators affect all the 
population in this method the model is called a global 
genetic algorithm. Parallel fine grained single 



population genetic algorithms are suitable for very 
large scale parallel architectures and are composed of a 
structured geometric population. The ideal execution 
condition for this method is when one processor for 
each element being processed is available. 
Because of several disperse populations and high 
information exchange; distributed genetic algorithms 
have a complicated structure. Information transfer in 
this kind of parallel genetic algorithms is called 
migration that is controlled by different factors [10]. 
The most popular parallel genetic algorithm is called 
multi-deme genetic algorithm, but understanding its 
performance because of the complexity of the 
migration process is a complicated task [5]. This type 
of genetic algorithms introduces fundamental changes 
in genetic algorithm structure and show different 
behavior compared to simple genetic algorithms.  
Multi-deme genetic algorithms are known with 
different names. In some cases they are called 
distributed genetic algorithms, but some times because 
the proportion of computational tasks is much higher 
than communicational tasks, they are named parallel 
coarse grained multi population genetic algorithms. 
Finally because of the isolated population model, they 
are also famous as island genetic algorithms. 
Due to the small population size in distributed genetic 
algorithms a faster global solution divergence is 
expected, however while comparing the two models 
the quality of the answers must be also considered. So, 
although a quicker result is obtained, the quality may 
be worse.  
The important point here is that although in the first 
approach the execution model of genetic algorithm is 
not changed but in the two latter approaches, the 
execution model is completely changed. For example 
in the client server algorithm the whole population is 
processed while in the other models only a portion of 
the population is evaluated. 
 The final method for genetic algorithm parallelization 
is to combine multi-deme genetic algorithms with a 
parallel client-server single population model or a 
parallel fine grained single population approach. This 
type of algorithm is called hierarchical genetic 
algorithm and contains the common attributes of both 
models. Hierarchical genetic algorithms usually 
provide optimal and faster results.  
 
4. Model Design and Implementation 
 
A cluster of personal computers with the Red Hat 
Linux version9.0 operating system was used as the 
parallel machine. MPI version 2.0 as an extension to 
MPI version 1.1 was used for the parallel programming 
library. 

Dejong functions were also used as the evaluation 
functions in the genetic algorithm structure. Dejong 
functions were initially introduced in his thesis titled 
"An analysis of the behavior of a class of genetic 
adaptive systems"[2].As these functions explain 
different problems of optimization in a novel way; they 
have been extensively used in different researches. For 
this reason we have used these functions to allow a 
direct comparison with the current available results 
[16]. In this research we have used the first three of 
these functions. Table 1 shows the structure of these 
functions. 
 

Table1. The structure of the first three Dejong 
functions 

Domain   Function Number  

12.512.5 ≤≤− nx  ∑
=

3

1

2

n
nx  1  

048.2048.2 ≤≤− x
  

2
1

2
2

2
1 )1()(100 xxx −+−

  
2 

12.512.5 ≤≤− nx  [ ]∑
=

5

1

)(
n

nx  3  

 
 
For the parallel algorithm, the parallel client-server 
single population genetic algorithm was chosen. The 
evaluation of each element was performed on a 
separate processor. After evaluation, the results were 
sent to the server because of the need to access global 
information. The fuzzy knowledge base engine was 
executed on the server processor. PGAPack from the 
Argon National Laboratory was used as the platform 
for the parallel genetic algorithm which was to a great 
extent changed and rewritten. 
 
The dynamic control of mutation probability and 
population size of each generation was done using the 
designed fuzzy inference system. At the end of each 
generation and based on system parameters, fuzzy 
inference was done on the following parameter basis 
shown in equations 1 through to 3. 
 

)(

)(
1

0 ζFitness
P

elementFitness

A j

P

i
i

j

j

∑
=

=                                   (1) 

 
j = Generation number, Pj = Population size in 
generation j, A0: The average fitness value of all 
elements over the fitness of the best element (ζ). 



 

∑
=

=
jP

i j

i
j

P
elementFitness

FitnessA

1

1
)(

)(ξ                         (2) 

 
 

j = Generation number, Pj = Population size in 
generation j, A1: The fitness value of the worst element 
(ξ) over the average fitness of all elements. 

 
 

12 −−= jjjA ζζ                                              (3) 

j = Generation number, A2: The variance of the fitness 
value of the best element in two consecutive 
generations. 

 
The design of the fuzzy inference engine was to some 
extent inspired by [17]. These coefficients are 
multiplied by the former value of the population size 
and the probability of mutation rate and generate new 
values to be applied in the genetic algorithms. 
The fuzzy knowledge base used to regulate the 
coefficient applied to the probability of mutation in 
each generation consists of 16 rules with three inputs. 
The fuzzy knowledge base controlling the coefficient 
applied to the population size in each iteration consists 
of 17 rules with three inputs. the fuzzy rules used 
(FAM) are clearly shown in table 2.in order to design 
the fuzzy membership functions, triangular functions 
named Small (1), Medium(2), and Big(3) with [0 0 
1.5], [0 1.5 3], and [1.5 3 3] coordinates were used.  
 
 
 

],,[;
)(

)(.

210 AAAfn
dyy

dyyy

CoG

V
fn

V
fn

fn ∈=
∫

∫
µ

µ

                (4) 

Mamdani inference engine which is the most 
commonly seen fuzzy methodology along with the 
Center of Gravity defuzzifier (equation 4) was 
employed in the inference engine structure. 
 
After algorithm execution, the results show that 
although in the earlier generations of the genetic 
algorithm , the values of the probability of mutation 
and the size of the population that are controlled 
dynamically, had significant changes but after few 
generations and with adaptation to the problem nature, 
changes decrease and finally reach stability and don't 
change after then.  Variance in the mutation probability 

which is controlled dynamically has been shown in 
Figure 2 and the changes for the fuzzy control of the 
population size of the genetic algorithm have been 
shown in Figure 3. 

A0 A1 A2 O 
1 1 1 1 
1 1 3 2 
1 2 2 2 
1 2 3 3 
1 3 1 2 
2 1 1 2 
2 1 2 3 
2 1 3 2 
2 2 1 2 
2 3 1 3 
2 3 2 2 
2 3 3 2 
3 1 1 1 
3 1 3 3 
3 2 3 3 
3 3 3 1 

)a( 

A0 A1 A2 O 
1 1 3 3 
1 2 1 3 
1 2 1 1 
1 2 3 3 
1 3 1 1 
1 3 3 2 
2 1 1 1 
2 1 2 2 
2 1 3 1 
2 2 1 1 
2 2 2 2 
2 2 3 3 
3 1 1 2 
3 1 3 1 
3 2 1 3 
3 2 2 3 
3 2 3 3 

)b( 

 
Table 2. a) FAM for Mutation Probability dynamic 

control. b) Population Size control for different 
generations 

Mutation

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289
Generation

R
at

e

Dejong Fuzzy F#1 non fuzzy Dejong Fuzzy F#2 Dejong Fuzzy F#3   
 

Figure 2. Variance in Mutation Probability 



Population

0

20

40

60

80

100

120

140

160

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289
Generation

Si
ze

Dejong Fuzzy F#1 non fuzzy
Dejong Fuzzy F#2 Dejong Fuzzy F#3   

 
Figure 3. Population size change due to fuzzy control 

 
The results obtained from the evaluation of Dejong 
functions using the fuzzy parallel algorithm are shown 
in figures 4 to 6 respectively where the first 100, 40, 50 
iterations in each diagram have been eliminated for 
visibility purposes. The results show an impressively 
quick convergence of the fuzzy parallel genetic 
algorithm. The algorithm will cause lower computation 
time because of its speed in reaching the global 
solution resulting in much lower resource 
(computational and communicational) consumption. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fuzzy 

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

1.60E+00

1.80E+00

Generation/10 Value

Dejong 1st Function

Fuzzy 
non fuzzy

 
Figure 4. First Dejong function results (Generations 

axis has been divided by 100) 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Fuzzy

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

Generation/10 Value

Dejong 2nd Function

Fuzzy
non fuzzy

 

Figure 5. Results for the second Dejong function 
(Generations axis has been divided by 100) 

 
Experiments show that in the first Dejong function, our 
proposed algorithm reaches the global solution in the 
100th generation while the other simple algorithms 
reach the global solution in the 150th generation, which 
shows a difference of 50 generations in reaching the 
global solution. The two other algorithms also with a 
difference of 40 and 20 generations show great 
performance, higher speed and a positive effect. The 
results obtained from the performed experiments on the 
proposed model show an optimized performance in the 
execution time (generation to reach the optimal 
solution). For genetic algorithm with a restricted 
generation, the proposed model by reaching the global 
solution quicker, can avoid premature convergence and 
prevent non optimal solutions due to insufficient 
generations. 
 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Fuzzy-3.00E+01

-2.50E+01

-2.00E+01

-1.50E+01

-1.00E+01

-5.00E+00

0.00E+00

Generation/10

Value

Dejong 3rd Function

Fuzzy

non fuzzy

 
Figure 6. Third Dejong function results based on the 
proposed model (Generations axis has been divided by 
100) 
 
5. Conclusion and Future Work 
 
The importance of the fuzzy parallel algorithm is well 
shown in the experiments by reaching the optimal 
solution and decreasing the amount of generations by 
lowering execution time. Significant decrease in 
execution time and generations to acquire the optimal 
solution promise a suitable reference model to solve 
complicated and time consuming problems using the 
fuzzy parallel genetic algorithms. 
For this reason applying dynamic control to crossover 
probability which hadn’t been studied in this 
experiment may have positive effects in reaching the 
optimal solution. On the other hand using fuzzy stop 
criteria can avoid useless algorithm execution, prevent 
useless system resource occupation and optimize 
processor usage. 
 



6. References 
 
[1] Buck T, 1994, Selective pressure in evolutionary 
algorithms: a characterization of selection mechanism, 
proceeding of the first IEEE international Conference on 
Evolutionary Computing. 
 
[2] Dejong K., 1975, an analysis of the behavior of a class of 
genetic adaptive systems. PhD thesis, University of 
Michigan. 
 
[3] Goldberg D. E., Deb K., Thierens D., 1993, Toward a 
better understanding of mixing in genetic algorithms. Journal 
of the Society of Instrument and Control Engineers, vol. 32. 
 
[4] Goldberg D. E., 1994.  Genetic and evolutionary 
algorithms come of age. Communications of the ACM, vol. 
37. 
 
[5] Grosso P. B., 1985, Computer simulations of genetic 
adaptation: Parallel subcomponent interaction in a multilocus 
model. Doctoral dissertation, The University of Michigan 
 
[6] Harik G., Cantu-paz E., Goldberg D. E., Miller B. L., 
1997, the gambler’s ruin problem, genetic algorithms, and 
the sizing of populations. In Proceedings of 1997 IEEE 
International Conference on Evolutionary Computation. 
 
[7] Jaja J., 1992.An Introduction to parallel Algorithms, 
Addison-Wesley 
 
[8] Herrera M., Lozano J., Verdagay L., 1995, Tuning fuzzy 
logic controllers by genetic algorithms. International Journal 
of Approximate reasoning. 
 
[9] Lin S. C., Punch W., Goodman E., 1994, Coarse-Grain 
Parallel Genetic Algorithms: Categorization and New 
Approach. In Sixth IEEE Symposium on Parallel and 
Distributed Processing. 
 
[10] Pwttey C. B., Leuze M. R., Grefenstette J., 1987, a 
parallel genetic algorithm. In Grefenstette J. J., Ed., 
Proceedings of the Second International Conference on 
Genetic Algorithms. 
 
[11] Lotfi A. Zadeh, Fuzzy algorithms, 1968, Information 
and Control, 12(2):94-102. 
 
[12] Sung-Kwun H., Pedrycz W., and Park B., Self-
organizing neurofuzzy networks based on evolutionary fuzzy 
granulation, 2003, IEEE Transactions on Systems, Man, and 
Cybernetics, Part a 33(2): 271-277. 
  
[13] Rutkowski L., Siekmann H., Tadeusiewicz R., Lotfi A. 
Zadeh, Artificial Intelligence and Soft Computing, 2004, 
ICAISC 2004, 7th International Conference, Zakopane, 
Poland, June 7-11, Proceedings Springer. 
 

[14] Lin T., Lotfi A. Zadeh, Special issue on granular 
computing and data mining, 2004, Int. J. Intell. Syst. 19(7): 
565-566. 
 
[15] Perfilieva I., Fuzzy function as an approximate solution 
to a system of fuzzy relation equations, 2004, Fuzzy Sets and 
Systems 147(3): 363-383. 
 
[16] Randy L., Haupt S., Practical Genetic Algorithms, 2003, 
Wiley-IEEE Publication. 
 
[17] Herrera F., and Lozano M., Fuzzy genetic algorithms: 
issues and models, , 1999, Dept. of Science and A. I., 
University of Granada, Technical Report No. 18071, 
Granada, Spain. 
 
. 
 


