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Delamination analysis of composites by new orthotropic bimaterial
extended finite element method
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SUMMARY

The extended finite element method (XFEM) is further improved for fracture analysis of composite
laminates containing interlaminar delaminations. New set of bimaterial orthotropic enrichment functions
are developed and utilized in XFEM analysis of linear-elastic fracture mechanics of layered composites.
Interlaminar crack-tip enrichment functions are derived from analytical asymptotic displacement fields
around a traction-free interfacial crack. Also, heaviside and weak discontinuity enrichment functions
are utilized in modeling discontinuous fields across interface cracks and bimaterial weak discontinuities,
respectively. In this procedure, elements containing a crack-tip or strong/weak discontinuities are not
required to conform to those geometries. In addition, the same mesh can be used to analyze different
interlaminar cracks or delamination propagation. The domain interaction integral approach is also adopted
in order to numerically evaluate the mixed-mode stress intensity factors. A number of benchmark tests are
simulated to assess the performance of the proposed approach and the results are compared with available
reference results. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Design of composite materials requires prediction of their structural performances in the presence

of any form of potential damage such as manufacturing flaws and inhomogeneities, fiber breakage,

matrix cracking, and delamination. Interface cracking, also known as interlaminar debonding or

delamination, is one of the most commonly encountered failure modes in composite laminates and

can cause severe performance and safety problems, such as stiffness and load bearing capacity

reduction and even structural disintegrity. Therefore, it is of paramount importance to study

delamination in laminated composites in order to accurately assess and/or predict the behavior

of laminates.

Delamination can be formed in different stages of the life of a laminar composite, such as

manufacture, transportation, setup, and service. Delaminations can b e originated from geometrical

effects such as curved sections, sudden changes of cross sections, and in free edges. In addition to

temperature and moisture effects, it can also be initiated during manufacturing stages as a result

of matrix shrinkage. Impact is another important source of delamination in composite structures

that causes internal damages in the interface of two adjacent plies.
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Many analytical investigations have been devoted to delamination analysis. Williams [1] discov-

ered the oscillatory near-tip behavior for a traction-free interface crack between two dissimilar

isotropic elastic materials. England [2], Erdogan [3], Rice and Sih [4], Malysev and Salganik [5],

Comninou [6], Comninou and Schmuser [7], Sun and Jih [8], Hutchinson et al. [9] and Rice

[10] obtained further results on this kind of problem, reporting similar oscillatory nature of the

near crack-tip (interlaminar) displacement fields. England [2] was the first who predicted inter-

penetration or overlapping of the crack surfaces, which was a violation of the basic ‘open-crack’

assumption; implying the existence of a contact zone near the crack-tip. Erdogan [3] and Rice and

Sih [4] adopted the Griffith–Irwin fracture theory to obtain expressions for the bimaterial stress

intensity factors (SIFs) K1 and K2, which were not associated, as in the homogeneous case, with

the opening and shearing modes of fracture, respectively.

Comninou [6] and Comninou and Schmuser [7] studied the stress singularities’ behavior near

the tip of an interfacial crack by assuming that the crack was not completely open and its surfaces

were in contact near the tip. Also, Sun and Jih [8] discussed the strain energy release rates for an

interfacial crack between isotropic solids, and found that the individual mode I (G1) and mode II

(G2) strain energy release rates did not exist due to their oscillatory natures, although the total

strain energy release rate was well-defined.

The interface crack between two anisotropic materials have been studied by Gotoh [11],

Clements [12], Willis [13], Wang and Choi [14, 15], Ting [16], Tewary [17], Bassani and Qu

[18], Sun and Manoharan [19], Wu [20], Gao et al. [21] and Hwu [22, 23], among the others.

Several basic crack problems were solved, with an emphasize on calculation of the oscilla-

tory index. Willis [13], for example, defined a stress concentration vector, which involved three

complex or six real quantities. Wang and Choi [14, 15] studied the interfacial crack behavior

in anisotropic composites under mixed-mode loadings using a partially closed interface crack

model. Ting [16] studied the dependence of this oscillatory phenomenon on the orientation

of the two materials. Bassani and Qu [18] made a breakthrough by considering bimaterials

with no pathological behavior at interface crack-tips. They proved a necessary and sufficient

non-oscillatory condition, under which they could define the three modes separately and found

that the Irwin-type energy release rate expression was simply the average of the corresponding

results for the two homogeneous materials. Sun and Manoharan [19] discussed the strain energy

release rates for an interfacial crack between two orthotropic solids subjected to tensile and shear

tractions.

Hwu [23], Suo [24], Qian and Sun [25], Hemanth et al. [26], Yang et al. [27], and Lee [28]

extended the results of previously available studies for an interface crack between two anisotropic

materials to an interfacial crack between two orthotropic materials.

From the computational point of view, there are many numerical methods for analyzing

orthotropic composites, including the boundary element method (BEM), the finite element method

(FEM), the finite difference method (FDM), and meshless methods such as the element-free

Galerkin method (EFG). Crack simulation in FEM has been performed by a number of methods

such as the continuous smeared crack model and several discontinuous approaches such as the

discrete inter-element crack model, the discrete crack model, and the discrete element-based model

[29]. Although the finite element method is capable of analysis of non-linear systems and can be

easily adapted to general boundary conditions and complex geometries, the elements associated

with cracks must conform to crack faces and remeshing techniques are then required to simulate

the crack propagation.

A natural extension, the extended finite element method (XFEM), is specifically designed to

enhance the conventional FEM in order to solve problems that exhibit strong and weak discontinu-

ities in material and geometric behavior, while preserving the finite element original advantages.

The basis of this method was originally proposed by Belytschko and Black [30], combining the

FEM with the concept of partition of unity to improve the FEM deficiencies in modeling disconti-

nuities. In XFEM, elements around a crack are enriched with a discontinuous function and near-tip

asymptotic displacement fields. The major advantage of this method is that the mesh is prepared

independent of the existence of any discontinuities. As a result, XFEM can substantially simplify
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the modeling of a cracked continuum and hence can be used to perform effective stress analyses

related to fracture mechanics.

This method was improved by Möes et al. [31] to its present form and further developed by

Sukumar et al. [32]: extending the method to three dimensional domain; Dolbow et al. [33]: solving

frictional contact problems; Mergheim et al. [34]: simulation of cohesive cracks; Belytschko et al.

[35] and Belytschko and Chen [36]: modeling dynamic crack propagation for isotropic materials;

Rozycki et al. [37]: introducing methods to alleviate mesh constraints on internal or external

boundaries; and Bechet et al. [38]: discussing on improved implementation and robustness study

of XFEM for stress analysis around cracks.

Asadpoure et al. [39, 40], Asadpoure and Mohammadi [41] and Mohammadi [29] have extended

the method to orthotropic media by deriving new set of orthotropic enrichment functions. They

developed three different sets of enrichment functions for various types of composites based

on available analytical solutions. Recently, Motamedi and Mohammadi [42, 43] further extended

the method to dynamic analysis of stationary and propagating cracks in orthotropic media and

proposed new time-independent moving orthotropic enrichment functions for dynamic analysis of

composites [44].

In earlier simulations of interlaminar cracks, continuum elasticity [45–47], interface elements

[48], and contact-based finite/discrete element methodology [49, 50] were used to analyze partially

delaminated layered composites. Later, Sukumar et al. [51] developed partition of unity-based

enrichment techniques for bimaterial interface cracks between two isotropic media, while Hettich

and Ramm [52] studied the Interface material failure and Remmers et al. [53] presented a partition

of unity finite element based on a solid-like shell element for simulation of delamination growth in

thin-layered structures. The delamination crack was incorporated in the element as a jump in the

displacement field, while no crack-tip enrichment was assumed. Also, Hettich et al. [54] reported

modeling of failure in composites by XFEM and level sets within a multiscale framework.

Recently, Nagashima and Suemasu [55, 56] applied XFEM to stress analyses of structures

containing interface cracks between dissimilar isotropic materials and also modeled interlaminar

delaminations of composite laminates by the near-tip functions for homogeneous isotropic cracks

in order to examine the behavior of orthotropic composite materials. They concluded that the near-

tip functions for isotropic cracks cannot represent the asymptotic displacement solution for a crack

in an orthotropic material and near-tip functions for orthotropic materials should be developed.

In this research, XFEM is adopted and further improved for modeling interfacial cracks between

two orthotropic media by a new set of bimaterial orthotropic enrichment functions, completing

the earlier research proposed by Esna Ashari and Mohammadi [57, 58]. The new interlaminar

crack-tip enrichment functions are derived from analytical asymptotic displacement fields around

a traction-free interfacial crack. Combined mode I and mode II loading conditions are studied and

mixed-mode SIFs are numerically evaluated to determine fracture properties of a problem using

the domain form of the contour interaction integral. In order to examine the performance of the

proposed approach, various numerical examples are simulated and the results are compared with

reference solutions. The new enrichments are expected to allow for full XFEM fracture analysis of

layered orthotropic composites including both layer crackings and interlaminar debondings, which

is the subject of future studies.

2. FRACTURE MECHANICS

2.1. Fracture mechanics for 2D orthotropic materials

The stress–strain law in an arbitrary 2D linear-elastic plane stress material can be written in the

following compact form [59]:

ε� =a���� (�,�=1,2,6) (1)
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Figure 1. Interface crack between two orthotropic materials.

with

ε1 = ε11, ε2=ε22, ε6=2ε12

�1 = �11, �2=�22, �6=�12
(2)

and

a11 = S1111, a12= S1122, a16=2S1112

a21 = S2211, a22= S2222, a26=2S2212

a61 = 2S1211, a62=2S1222, a66=4S1212

(3)

where εij and �kl are linear strain and stress tensors, respectively, and Si jkl is the compliance tensor

εij= Si jkl�kl (i, j,k, l=1,2).

For a plane strain state, parameters aij are replaced by bij

bij=aij−
ai3−a3i

a33
(i, j =1,2,6) (4)

2.2. Fracture mechanics for orthotropic bimaterial interfaces

A traction-free interface crack between two dissimilar orthotropic materials is considered. The

crack is located in (x, y) plane and (r,�) are the local polar coordinates defined on the crack-tip, as

shown in Figure 1. The elastic principal directions are assumed to be defined normal to or parallel

with the crack direction in both materials.

According to Lee et al. [60], the governing equilibrium, elastic constitutive law, and compatibility

equations can be combined into a partial differential equation with the following characteristic

equation in terms of a complex variable z= x+my,

m4+2B12m
2+K66=0 (5)

where

B12= 1

2

(2a12+a66)

a11
, K66= a22

a11
(6)

The characteristic roots of Equation (5) (ml and ms) are purely imaginary when
√
K66<B12;

K66>0 or complex when
√
K66>|B12|; K66>0, known as type 1 and type 2, respectively. Most

orthotropic materials are categorized as type 1 and their conjugated roots are:

ml = i p, ms = iq (7)
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where

p =
√

B12−
√

B2
12−K66 (8)

q =
√

B12+
√

B2
12−K66 (9)

The analytical solutions for two-dimensional asymptotic displacement and stress fields around a

traction-free interfacial crack-tip were previously obtained by Lee [28]. They are defined in detail

in Appendix A and can be expressed in the following general form:

ui =
8

∑

j=1

{KIA j F j (r,�)+KIIB j F j (r,�)}, i = x, y (10)

where KI and KII are the mode 1 and 2 SIFs, respectively, and A j , B j are spatially independent

functions of the roots p,q, coefficients aij and the oscillation index ε defined as

ε= 1

2�
ln

(

1−�

1+�

)

(11)

where � is the second Dundurs parameter [61] defined in Appendix A. All necessary parameters

are defined in Appendix A. Functions F j (r,�) exclusively define the nature of the displacement

fields [58]. They can be defined in the following compact form:

{F j (r,�)}8j=1=
{

e�ε�z S j

(

ε ln(rz)−�
�z

2

)√
rz

}8

j=1

S j ()=
{

cos(), j =1,3,5,7,

sin(), j =2,4,6,8,
z=

{

l j=1−4,

s j=5−8,
�=

{

1 j =3,4,7,8

−1 j =1,2,5,6
(12)

where rz,�z(z= l,s) are related to polar coordinate system (r,�) as

rz = r

√

cos2 �+Z2
z sin

2 �,

�z = tan−1(Zz tan�),

z= l,s,

{

Zl = p

Zs =q
(13)

Equation (12) will be used to derive the new XFEM enrichment functions for reproduction of the

singular orthotropic bimaterial interlaminar crack-tip stress fields.

3. EXTENDED FINITE ELEMENT METHOD

The XFEM is a way to facilitate modeling strong and weak discontinuities within finite elements by

enriching the classical finite element displacement approximation using the framework of partition

of unity. A literature review of related XFEM studies was given in Section 1.

3.1. Basic equations

A discontinuity in a domain, discretized by a number of finite elements with N nodes, is considered.

In the XFEM, the displacement field for a point x inside the domain is approximated by [30]:

uh(x)=
∑

I
n I ∈N

�I (x)uI +
∑

J
n
J

∈Ng

�J (x)	(x)aJ (14)
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where n I is the node I , �I is the finite element shape function associated with node I , uI is the

vector of regular degrees of nodal freedom in the FEM, aJ is the added set of degrees of freedom

to the standard finite element model, N g is the set of nodes that the discontinuity is in its influence

(support) domain, and 	(x) is the enrichment function.

3.2. Interface crack modeling

In order to model crack surfaces and crack-tips in the XFEM, the approximate displacement

function uh can be expressed as:

uh(x)=
∑

I
n I ∈N

�I (x)uI+
∑

J

n J ∈NH

aJ�J (x)H (x)+
∑

k

nk∈N F

�k(x)

(

∑

l

blkFl(x)

)

+
∑

r
nr=N


cr�r (x)
r (x) (15)

where NH is the set of nodes that have crack face (but not crack-tip) in their support domain, aJ
is the vector of additional degrees of nodal freedom and is applied in modeling crack faces (not

crack-tips), H (x) is the heaviside function, N F is the set of nodes associated with the crack-tip in

its influence domain, blk is the vector of additional degrees of nodal freedom for modeling crack-

tips, Fl (x) are crack-tip enrichment functions, N
 is the set of nodes that have weak discontinuity,

cr is the vector of additional degrees of nodal freedom for modeling weak discontinuity interfaces,

and 
r (x) is the enrichment function used for modeling weak discontinuities.

In Equation (15), the first term is the classical finite element approximation, the second term is

the enriched approximation related to crack surfaces, the third term is the enriched approximation

for modeling crack-tips, while the last part is the enriched approximation used for modeling weak

discontinuities. These three types of enriched nodes in a finite element modeling of an interface

crack are depicted in Figure 2. Other nodes and their associated classical finite element degrees

of freedom are not affected by the presence of the crack.

A simple shifting procedure on H and F in Equation (15) guarantees the interpolation [29]:

uh(x)=
∑

I
n I ∈N

�I (x)uI +
∑

J

n J ∈NH

aJ�J (x)(H (x)−H (x j ))+
∑

k

nk∈N F

�k(x)

(

∑

l

blk(Fl (x)−Fl (xk))

)

+
∑

r
nr=N


cr�r (x)
r (x) (16)

Figure 2. Node selection for enrichment; nodes enriched with crack-tip, heaviside, and weak discontinuity
functions are marked by triangles, circles, and squares, respectively [58].
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Figure 3. Normal and tangential unit vectors and definition of H (x).

3.2.1. Crack length modeling. In Equation (15), H (x) is the generalized heaviside function used

to represent the discontinuity of displacement across a crack and takes the value +1 if the point

x is above the crack and −1, otherwise [29].

H (x)=
{

+1 if (x−xI ).en>0

−1 otherwise
(17)

where en is the unit vector normal to the crack faces, es×en=ez, es is the unit tangential vector,

and xI is the crack-tip point (Figure 3).

3.2.2. Orthotropic interface enrichments. In order to enhance the accuracy of approximation

around an orthotropic bimaterial interface crack-tip, the following asymptotic crack-tip func-

tions are extracted from the general crack-tip displacement fields (already defined in a compact

form (12)):

{Fl(r,�)}8l=1 =
[

e−ε�l cos

(

ε ln(rl )+
�l

2

)√
rl , e−ε�l sin

(

ε ln(rl )+
�l

2

)√
rl ,

eε�l cos

(

ε ln(rl )−
�l

2

)√
rl , eε�l sin

(

ε ln(rl )−
�l

2

)√
rl,

e−ε�s cos

(

ε ln(rs )+
�s

2

)√
rs, e−ε�s sin

(

ε ln(rs )+
�s

2

)√
rs,

eε�s cos

(

ε ln(rs )−
�s

2

)√
rs , eε�s sin

(

ε ln(rs )−
�s

2

)√
rs

]

(18)

with

r j = r

√

cos2 �+Z2
j sin

2 �,

� j = tan−1(Z j tan�),

j = l,s,

{

Zl = p

Zs = q
(19)

where all parameters have been defined in Section 2.2 and Appendix A. These enrichment functions

span the analytical asymptotic displacement fields for a traction-free interfacial crack.

It is worth noting that these sets of functions (apparently eight sets) contain combined typical

terms of
√
r j cos(� j/2) or

√
r [cos2 � j +Z2 sin2 � j ]

1/4 cos(� j/2). These include all generalized

terms of sin� j , sin� j sin(� j/2), sin� j cos(� j/2), etc. and may generally span all various components

of orthotropic material and isotropic bi-material enrichment functions.
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Enrichment functions (18) can be considered as an orthotropic extension to existing isotropic

bimaterial enrichment functions, developed by Sukumar et al. [51],

[F
j
l (x)] j=1,2 =

{√
r cos(� logr )e−�� sin

�

2
,
√
r cos(� logr )e−�� cos

�

2
,

√
r cos(� logr )e�� sin

�

2
,
√
r cos(� logr )e�� cos

�

2
,

√
r sin(� logr )e−�� sin

�

2
,
√
r sin(� logr )e−�� cos

�

2
,

√
r sin(� logr )e�� sin

�

2
,
√
r sin(� logr )e�� cos

�

2
,

√
r cos(� logr )e�� sin

�

2
sin�,

√
r cos(� logr )e�� cos

�

2
sin�,

√
r sin(� logr )e�� sin

�

2
sin�,

√
r sin(� logr )e�� cos

�

2
sin�

}

(20)

It is worth noting that functions (20) cannot be used for orthotropic bimaterial problems, because

the oscillatory index � is computed from isotropic material properties, which are not known for

orthotropic bimaterials.

It is also important to note that the enrichment functions (18) correspond only to Type I of each

composite layer, as defined by the complex roots of the characteristic equation (5). This is similar

to the unidirectional orthotropic enrichment functions previously proposed by Asadpoure et al.

[39]:

{Fl(r,�)}4l=1 =
{√

r cos
�1

2

√

g1(�),
√
r cos

�2

2

√

g2(�),
√
r sin

�1

2

√

g1(�),
√
r sin

�2

2

√

g2(�)

}

(21)

gi (�)=
(

cos2 �+ sin2 �

p2j

)1/2

, j =1,2 (22)

� j = tg−1

(

y

p j x

)

= tg−1

(

tg�

p j

)

(23)

3.2.3. Modeling weak discontinuities. In the presence of weak discontinuity in an arbitrary finite

element, the enrichment part of the XFEM approximation (uenrweak) can be defined by replacing the

heaviside function H (x) with an appropriate enrichment function 
(x) [62]:

uenrweak(x)=
∑

r
nr=N


cr�r (x)
r (x) (24)

where 
(x) is the weak discontinuous enrichment function defined in terms of the signed distance

function as:


r (x)= |�(x)| (25)

�(x)=min‖x−x�‖ sign[en(x−x�)] (26)

where x, x�(x� ∈�), and en are defined in Figure 3.
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This enrichment is used where the displacement fields remain continuous whereas the strain

fields are discontinuous.

It should be noted that the weak discontinuity enrichment function is used only for the elements

that are cut by the interface, avoiding generation of excessive errors in surrounding elements.

Alternative functions are also available; e.g. Moës et al. [63] has proposed a ridge enrichment

function that is centered on the interface and has zero value on the elements not crossed by the

interface.

4. DISCRETIZATION AND INTEGRATION

The discrete system of linear equations using the XFEM procedure in global form can be written as:

Kd= f (27)

where d is the vector of nodal degrees of freedom for both classical and enriched ones, as defined

in Equation (28):

d={u a b c} (28)

K is the stiffness matrix and f is the vector of external force. The global stiffness matrix and

force vector are calculated by assembling element stiffness matrix and force vector. fi for each

element e is assembled from the following standard and enrichment components:

fui =
∫

�
e
t

�i t̄d�+
∫

�
e
�ibd� (29)

f ai =
∫

�
e
t

�iH t̄d�+
∫

�
e
�iHbd� (30)

f bi =
∫

�
e
t

�i F�t̄d�+
∫

�
e
�i F�bd� (�=1, . . . ,8) (31)

f ci =
∫

�
e
t

�i
t̄d�+
∫

�
e
�i
bd� (32)

where �
e is the volume or surface of element e and �

e
t is the traction boundary of element e,

t̄ is the traction, and b is the body force. Evaluation of (32) becomes important when a


-enriched element (weak discontinuity or material interface) is subjected to a traction boundary

condition.

Similarly, kij for the element e is assembled from the following standard and enrichment

components:

krsij =
∫

�
e
(Br

i )
TDBs

j d� (r,s=u,a,b,c) (33)

kacij = kcaij =0 (34)

B is the matrix of shape function derivatives defined as [29]:

Bu
i =

⎡

⎢

⎢

⎣

�i,x 0

0 �i,y

�i,y �i,x

⎤

⎥

⎥

⎦

(35)

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)

DOI: 10.1002/nme



S. ESNA ASHARI AND S. MOHAMMADI

Ba
i =

⎡

⎢

⎢

⎣

(�i [H (�)−H (�i )]),x 0

0 (�i [H (�)−H (�i )]),y

(�i [H (�)−H (�i )]),y (�i [H (�)−H (�i )]),x

⎤

⎥

⎥

⎦

(36)

Bb�
i =

⎡

⎢

⎢

⎣

(�i [F�−F�i ]),x 0

0 (�i [F�−F�i ]),y

(�i [F�−F�i ]),y (�i [F�−F�i ]),x

⎤

⎥

⎥

⎦

(�=1, . . . ,8) (37)

Bc
i =

⎡

⎢

⎢

⎣

(�i
),x 0

0 (�i
),y

(�i
),y (�i
),x

⎤

⎥

⎥

⎦

(38)

In elements cut by a crack or an interface, the ordinary Gaussian rules do not accurately calculate

the integration over the enriched elements. In order to overcome this numerical integration problem,

these elements are subdivided at both sides of the crack or interface into sub-triangles whose edges

are adapted to crack faces or the interface, as illustrated in Figure 4. In this partitioning method, if

values of S−/(S++S−) or S+/(S++S−), where S+ and S− are the area of the influence domain

of a node above and below the crack, respectively (see Figure 5), are smaller than an allowable

tolerance value, the node must not be enriched to avoid numerical problems. The tolerance value

proposed by Dolbow et al. [33] is 0.01%.

Figure 4. Cracked and bimaterial elements are subdivided into sub-triangles.

Figure 5. S+ and S− for the node J in its influence domain (shaded area).
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5. EVALUATION OF SIFS

In this study, the domain integral method, developed by Chow et al. [64], is utilized to evaluate

mixed-mode SIFs for an interfacial crack between two orthotropic materials [65]:

J =
∫

A

(�ijui,1−W1 j )q, j dA (39)

where W is the strain energy density, defined by W = (1/2)�ijεij for linear-elastic materials, A is

the area surrounding the crack-tip; the interior region of � (Figure 6), and q is a function smoothly

varying from q=1 at crack-tip to q=0 at exterior boundary, �.

In the interaction integral method, auxiliary fields are introduced and superimposed onto the

actual fields to satisfy the boundary value problem (equilibrium equation and traction-free boundary

condition on crack surfaces) to extract the mixed-mode SIFs [66]. One of the choices for the

auxiliary state is the displacement and stress fields in the vicinity of the interfacial crack-tip

(Appendix A).

The J S integral for the sum of the two states can be defined as:

J S = J+ J aux+M (40)

where J and J aux are associated with the actual and auxiliary states, respectively, and M is the

interaction integral, defined as

M=
∫

A

[�iju
aux
i,1 +�auxij ui,1−W (1,2)1 j ]q, j dA (41)

For linear-elastic condition, W (1,2) is defined as:

W (1,2)= 1
2
(�ijε

aux
ij +�auxij εij) (42)

where superscript aux stands for the auxiliary state. The M integral shares the same path-

independent property of J integral. As a result, it can be calculated away from the crack-tip where

the finite element solution is more accurate.

In order to determine the SIFs of the present orthotropic bimaterial problem from the M integral,

the method proposed by Chow et al. [64] is adopted. Consider two independent equilibrium states

of an elastically deformed bimaterial body (actual and auxiliary states) with the two independent

displacement fields being denoted by u and uaux. The SIFs are related to M by [64]

ki =2
2

∑

m=1

UimM{u,uaux(m)} (i =1,2) (43)

Figure 6. The contour � and its interior area, A [58].
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where uaux(1) and uaux(2) are the auxiliary states with K1=1, K2=0 and K1=0, K2=1, respec-

tively, and

U = [[(L−1
#1 +L−1

#2 )]
−1(I + �̂

2
)]−1 (44)

�̂ = (L−1
#1 +L−1

#2 )(S#1L
−1
#1 −S#2L

−1
#2 ) (45)

The subscripts #1 and #2 denote the upper and lower materials and S and L are 2×2 real

Barnett and Lothe tensors, respectively [67]. Explicit expressions of non-zero components of S

and L for an orthotropic material have been derived by Dongye and Ting [68] and Deng [69],

S21 =
[

C66

(√
C11C22−C12

)

C22

(

C12+2C66+
√
C11C22

)

]1/2

, S12=−
√

C22

C11

S21 (46)

L11 =
(

C12+
√

C11C22

)

S21, L22=
√

C22

C11

L11 (47)

where Cij is the contracted form of the fourth-order elastic constant tensor Ci jkl = S−1
i jk . Components

of S and L are computed for each individual layer.

6. NUMERICAL EXAMPLES

6.1. Tensile orthotropic plate with a central crack

In this example, a crack in an orthotropic medium is simulated by the use of proposed orthotropic

bimaterial enrichment functions. This is in fact a test to verify the proposed approach for modeling

two similar orthotropic layers and to compare the results with available data for a single orthotropic

layer. The crack is aligned along one of the axes of orthotropy in the center of the plate. Figure 7

illustrates the geometry and boundary conditions of the cracked plate. At edges parallel to the

crack, a constant tensile traction is applied by utilizing a uniform unit traction (�=1) and the

analysis is performed in the plane stress state. The plate is composed of a graphite-epoxy material

with the following orthotropic properties:

E1=114.8GPa, E2=11.7GPa, G12=9.66GPa, �12=0.21

In order to create the finite element model of the problem, the domain was discretized uniformly

into 2025 four-noded quadrilateral elements (2116 nodes); 45 rows of elements in x1 and x2
directions each.

Figure 7. The geometry and boundary conditions for a plate with a crack
parallel to material axes of orthotropy.
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Table I. Values of SIFs for a plate with a crack parallel to material axes of orthotropy.

Method KI KII Number of elements DOF

Kim and Paulino [70] 1.767 0 2001 11702
Asadpoure et al. [39] 1.804 0 2025 4278
Asadpoure and Mohammadi [41] 1.807 0 2025 4278
Present method 1.777 0 2025 4278

Figure 8. X and Y displacement contours.

The new orthotropic enrichment functions for a bimaterial interface crack are used for simulating

the crack-tip singular stress state, while the material properties of the two sides of the crack are

assumed to be the same. As a result, no weak discontinuity enrichment function is required in the

model.

SIFs are calculated by the J integral method presented in Section 5. The SIFs are compared

with the results reported by Kim and Paulino [70] and Asadpoure et al. [39] and Asadpoure and

Mohammadi [41] in Table I. Kim and Paulino [70] used a total of 2001 elements and 5851 nodes

while Asadpoure et al. [39] and Asadpoure and Mohammadi [41] utilized the XFEM with different

orthotropic enrichment functions for a crack in an orthotropic medium, using an adaptive mesh,

refined around the crack, with 2025 four-noded quadrilateral elements and 2116 nodes.

The SIF of the present method in mode I is different about 0.6% from Kim and Paulino’s report

[70]; however, they used almost three times the present degrees of freedom. Also, it is observed that

the mode I SIF is only different about 1.5% from Asadpoure et al. [39] and 1.7% from Asadpour

and Mohammadi [41]; although a uniform mesh was adopted in the present model.

The displacement and stress contours are illustrated in Figures 8 and 9.

6.2. Central crack in an infinite bimaterial plate

This example is dedicated to the analysis of a crack in a bimaterial plate, previously studied

by Chow et al. [64]. An interfacial crack at the center of a bimaterial block is considered. The

block consisted of two different materials with the plane strain condition. The dimensions of the

rectangular plate and the crack are:

a=1m, W =20a, h=20a

A remote unit tensile loading, �022=1Mpa, is applied to the block, as illustrated in Figure 10. Qian

and Sun [25] have demonstrated that in order to use a finite bimaterial model as a representation

of the infinite bimaterial plate, the following condition must be held in terms of the boundary

tractions �111 and �211 (Figure 10) and the components of the compliance tensor Sijkl:

S11111�
1
11−S21111�

2
11= (S211122−S11122)�

0
22 (48)

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)

DOI: 10.1002/nme



S. ESNA ASHARI AND S. MOHAMMADI

Figure 9. �xx, �yy, and �xy stress contours.

Figure 10. The geometry and boundary conditions of a bimaterial interface crack [64].

The following boundary tractions that satisfy Equation (48) can then be derived as: [64]

�111 = 0 (49)

�211 =
[

�12#2 +�13#2�32#2
1−�13#2�31#2

− �12#2 +�13#2�32#2
1−�13#2�31#2

(

E1#2

E1#1

)]

�◦
22 (50)
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Both layers are orthotropic materials and the fiber directions are along the x3 axis (out of plane

direction) in material 1 and along the x1 axis in material 2 with the following properties [64]:

Material 1

E3 = 142Gpa,
E1

E3
= E2

E3
=6.91×10−2

G12

E3

= 2.68×10−2,
G13

E3

= G23

E3

=4.23×10−2

�31 = �32=�12=0.3

Material 2

E1 = 142Gpa,
E2

E1

= E3

E1

=6.91×10−2

G23

E1

= 2.68×10−2,
G13

E1

= G12

E1

=4.23×10−2

�12 = �13=�23=0.3

The analytical SIFs for a crack between two anisotropic materials in the plate, which were derived

by Qu and Bassani [71], can be expressed as:

k∞ =
√

�aY[(1+2iε)(2a)−iε]t0 (51)

where

k∞ = {K∞
2 ,K∞

1 ,K∞
3 } (52)

t0 = {�012,�022,�023}T (53)

For the present problem �◦
12=�◦

23=0; hence, the analytical SIFs are calculated as:

K∞
1 =1.778, K∞

2 =0.146

Owing to symmetry along the x2 axis, only one half of the problem is modeled. A model similar to

Figure 11 with 241 four-noded quadrilateral elements and 260 nodes is used to simulate the problem

and the element that contains a crack-tip is modeled with the new orthotropic enrichment functions.

Figure 11. FEM discretization for a single edge crack in a bimaterial rectangular plate: (a) whole view of
FEM mesh and (b) details of descretization around the crack-tip.
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In this example, a 2×2 Gauss quadrature rule is applied to evaluate the stiffness matrix of regular

finite elements, whereas the quadrature partitioning approach (Section 4) is used for integration

over enriched elements. Any element enriched with heaviside or weak discontinuity functions

is numerically partitioned into four sub-triangles to accurately calculate the numerical integrals.

Elements enriched with tip-enrichments have far more complex shape functions than classical finite

element shape functions. As a result, they are partitioned into six sub-triangles and seven gauss

points are utilized for integrations in each sub-triangle. The initial value of the relative integration

domain size, rd (radius of the J integral domain), is assumed to be one-third of crack length in

the present XFEM analysis.

Evaluation of Equation (32) is important in this case, because the element placed on the material

interface (a weak discontinuity) and next to the right edge of the plate should correctly evaluate

Equation (32) in order to take into account the interactive contribution of traction and enriched

degrees of freedom. (Note that in this particular case, the computed value of traction �211=4.02Mpa

is about four times the value of applied tensile loading �◦
22=1Mpa).

Table II compares the differences between the exact solution by Qu and Bassani [71] with

the mixed-mode SIFs obtained by XFEM and the results reported by Chow et al. [64]. In Chow

et al. [64], the SIFs are calculated using a hybrid element method and the mutual integral. In

their models, conforming eight-noded isoparametric elements are the primary elements used to

mesh the bimaterial block and the interfacial crack-tip is modeled either with hybrid elements or

with standard quarter-point elements for both the mutual integral method and the extrapolation

technique.

The results show that with more or less similar number of nodes, XFEM more accurately

evaluates both SIFs. The method of hybrid elements may have used slightly less number of nodes,

but its accuracy in evaluation of mode I SIF is almost one-tenth of XFEM. In addition, the present

XFEM method is capable of solving variable length cracks and propagation problems on a fixed

mesh, which is a major advantage on other available techniques such as hybrid elements.

In order to assess the level of accuracy provided by the new enrichment functions, XFEM

analyses are now performed in three cases; with and without the new crack-tip enrichment functions,

and with the original isotropic crack-tip functions in a single material. Heaviside enrichments are

adopted in all three cases. Table III compares the computed SIFs and the relative errors for these

three cases. Clearly, inclusion of the new enrichments has substantially improved the results.

Table II. Values of SIFs relative errors (%) for a bimaterial plate with an edge crack.

Method Number of elements Number of nodes Error (KI) Error (KII)

Chow et al. [64] Hybrid element 56 205 0.79 1.37
Mutual integral 216 679 0.67 0.68
Mutual integral 72 237 0.56 7.53
Extrapolation 72 237 7.09 21.92
Extrapolation 216 679 8.27 10.27

Present method XFEM 241 260 0.011 1.164

Table III. Comparison of SIFs with and without crack-tip enrichment functions.

H (x)+F(x) Only H (x)∗ H (x)+F ′(x)† H (x)+F ′(x)‡

KI 1.7778 1.5758 1.5516 0.6423
KII 0.1477 0.1631 0.1877 0.1021
Error (KI) 0.011 11.372 12.73 63.87
Error (KII) 1.164 11.712 28.56 169.93

∗To avoid extensive error, the mesh is locally adapted to place the crack-tip near the element edge.
†Isotropic enrichments with orthotropic auxiliary fields.
‡Isotropic enrichments with isotropic auxiliary fields based on average material properties.
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Figure 12. Comparison of stress fields around the crack-tip: (a) with crack-tip enrichments
and (b) without crack-tip enrichments. The crack-tip is located at (−0.8,0) in the local

curvilinear coordinates of the tip element.

Figure 13. Adaptively structured finite element mesh for investigating the
effect of relative J integral domain size.

Additionally, the effect of new tip-enrichments is investigated by comparing the variations of

stress components on the crack-tip element, as depicted in Figure 12. Clearly, inclusion of new

enrichments has resembled the singular nature of stress field near the crack-tip, whereas, without

the tip-enrichments, far lower levels of finite values of stress components are obtained.

The effect of different sizes of the relative J integral domain (rd ) on the values of SIFs is

illustrated in Figure 14 based on the adaptively structured mesh, shown in Figure 13. The results are

calculated for the range of relative J integral domain size (rd ) of about 0.04–0.25 of crack length,

which correspond to 2–10 elements far from the crack-tip, respectively. According to Figures 17

and 18, as the domain size rd reaches to about 0.15a, the results become domain independent.

Also, a number of unstructured and structured mesh models (Figures 13 and 15) are used with

different sizes of elements in order to assess the effect of mesh refinement around the crack.

According to Table IV, refining the mesh around the crack has significantly more effect in reducing

the error of evaluation of mode II SIF than evaluation of KI. Nevertheless, the overall error remains

well within the acceptable range, indicating the mesh independency of the results.
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Figure 14. Variations of the mode I and II stress intensity factors with
respect to rd/a: (a) mode I and (b) mode II.

Figure 15. FEM discretization when the mesh is refined around the crack: (a) whole view of FEM
discretization model and (b) discretization around the crack-tip.

Table IV. Mixed-mode stress intensity factors for different meshes.

Number of elements Error (KI) Error (KII)

along the crack length Mesh type
rd
a KI KII (%) (%)

20 Structured 0.33 1.7920 0.1477 0.787 1.164
36 Structured 0.33 1.79 0.1467 0.675 0.479
47 Structured 0.33 1.79 0.1466 0.675 0.411
57 Structured 0.2 1.79 0.1465 0.675 0.342

9 Unstructured 0.2 1.7595 0.1464 −1.040 0.274
14 Unstructured 0.2 1.7646 0.147 −0.754 0.685
12 Unstructured 0.3333 1.7778 0.1477 −0.011 1.164

Finally, a crack propagation problem is idealized in this problem to illustrate the efficiency of

the present XFEM for simulation of several crack lengths on a fixed finite element mesh. Here, the

interlaminar crack is bound to extend only along the material interface. As a result, no particular
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Figure 16. A fixed unstructured finite element mesh for investigating the crack propagation
process by analyzing three different crack lengths.

Table V. Mixed-mode stress intensity factors for different crack lengths on
a fixed mesh of 514 elements and 540 nodes.

Exact (Equation (51)) XFEM Error %

Crack length KI KII rd KI KII KI KII

0.6 1.3743 0.1574 0.33 1.3757 0.1554 0.102 1.271
1 1.7781 0.146 a/3 1.7755 0.1475 0.146 1.027
1.4 2.1062 0.128 a/3 2.1251 0.1293 0.897 1.016

propagation criterion is necessary in examining this characteristic of present XFEM, and instead,

only three different crack lengths: 0.6, 1.0, and 1.4 are assumed to be generated through the

propagation process and they are analyzed with a fixed finite element mesh, partially shown in

Figure 16. According to Table V, very good quality results are obtained for all three cases.

6.3. Central crack in an infinite bimaterial orthotropic plate

In this example, the stability of a crack in the interface of two orthotropic materials, as depicted in

Figure 17, is studied. The infinite plate is subjected to a remote unit tensile loading �022, with the

plane strain condition. The material properties of the T300-5208 graphite epoxy are defined as:

ET = EZ =10.8GPa, EL =137GPa

GZL = GTL=5.65GPa, GZT =3.36GPa

�ZL = �TL=0.238, �TZ =3.36

where L , T , Z are longitudinal, transverse, and through the thickness directions, respectively. The

present example is for a [90◦/0◦] bimaterial block. The fiber direction in the 90◦ lamina is along

the x1 axis whereas for the 0◦ lamina, the fiber direction lies along the x3 axis (out of plane

direction). The dimensions of the plate are:

W

a
= h

a
, a=1m

Only one-half of the problem is modeled due to symmetry along the x2 axis. A finite element

model with 250 elements and 268 nodes is employed (Figure 18(a)) and the crack-tip is modeled

with new orthotropic enrichment functions. A Gauss quadrature rule, similar to the previous
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Figure 17. An interfacial crack between two orthotropic materials.

Figure 18. FEM discretizations: (a) unstructured FEM model (type 1) and
(b) uniform FEM discretization (type 2).

example, is used and the relative J integral domain size, rd , is set to one-third of the crack

length.

To determine the accuracy of the approach, comparisons are made with the exact solution of an

infinite anisotropic bimaterial block provided by Qu and Bassani [71], and another investigation

by Chow and Atluri [72], based on the standard eight-noded quarter-point elements and using both

the mutual integral method and the extrapolation technique.

Table VI depicts the results of SIFs obtained by different methods and the extent of error with

respect to the analytical solution. Clearly, very accurate results are obtained by the new XFEM

formulation.

It is also observed that using more gauss points in the tip element does not necessarily lead

to more accurate results. The reason may be attributed to the fact that the Gauss quadrature rule

is basically designed to accurately determine the position and weighting factors for integration

of polynomial integrands, and for non-polynomial integrands (as in the present case) there is

an optimal value for the number of Gauss points, beyond that the accuracy may even decrease.
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Table VI. Stress intensity factors obtained by different methods compared with
the analytical solution by Qu and Bassani [71].

Number of Number of
Method elements nodes Error (KI) Error (KII)

Chow and Atluri [72] Mutual integral 216 679 0.6 0.1
Mutual integral 72 237 0.7 13.6
Extrapolation 72 237 9.5 6.9
Extrapolation 216 679 13.1 2.3

Present method XFEM with 78 Gauss points
in tip element

250 268 0.051 0.824

XFEM with 42 Gauss points
in tip element

250 268 0.068 0.353

Table VII. Comparison of stress intensity factors with/without
crack-tip enrichment functions.

H (x)+F(x) Only H (x)

KI 1.7757 1.778
KII 0.0847 0.0749
Error (KI) 0.068 0.197
Error (KII) 0.353 11.882

Table VIII. Comparison of stress intensity factors with different number of
Gauss points in the crack-tip element.

Number of Gauss points

6 18 42 78

KI 1.7779 1.7769 1.7757 1.7754
KII 0.088 0.0838 0.0847 0.0843
Error (KI) 0.192 0.135 0.068 0.051
Error (KII) 3.529 1.412 0.353 0.824

Similarly, Sukumar et al. [32] have demonstrated that a simple increase in the order and number

of Gauss points for a Heaviside-enriched element does not provide accurate solution. This is also

observed in many meshless-based weak-form solutions.

The effect of employing the crack-tip enrichment function is illustrated in Table VII. The results

are compared with the special case where only the heaviside function is used along the whole

crack length, while the crack-tip is located just off the edge of tip element.

It is clearly seen that the effect of crack-tip enrichments are higher for evaluation of KII. Also,

different values may be obtained for different meshes and J integral domain sizes. Far lower level

of accuracies are expected for the H -only analysis if the crack-tip is positioned well inside the tip

element.

The effect of using different number of gauss points in the crack-tip element is illustrated in

Table VIII. The quadrature partitioning approach (Section 4) is used for integration in tip element

and the tip element is partitioned into six sub-triangles. The value of the relative integration domain

size, rd , is assumed to be one-third of crack length.

The effect of larger tip-enrichment zone is illustrated in Table IX. Figure 19 shows two different

enrichment zones. Squares are the nodes that are enriched by tip-enrichment functions (larger

zone), while * indicates the smaller zone (just one tip element).

It is observed that the larger tip-enrichment zone does not result in better evaluation of SIFs

in this example. The reason for this small increased inaccuracy may be attributed to the fact that
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Table IX. Stress intensity factors with different tip-enrichment zones.

One enriched tip element Nine enriched tip elements
(One layer of tip enrichment) (Two layers of tip enrichment)

KI 1.7757 1.7765
KII 0.0847 0.0859
Error (KI) 0.068 0.113
Error (KII) 0.353 1.059

Figure 19. Different tip-enrichment zones.

the analytical stress and displacement solutions are based on the simplifications that are only valid

in the vicinity of crack-tip. As a result, a reduction in accuracy may be observed if a large area

around the crack-tip is enriched. For the present case, this reduction is very small and negligible

and may vary for different sizes of crack-tip elements.

The effect of mesh refinement around the crack is also investigated by utilizing three types of

structured and unstructured (Figures 15 and 18) meshes with different sizes of elements (indicated

by the number of elements along the crack length). Table X compares the results of XFEM

simulations using the different types of discretization and relative J integral domain sizes (rd ). It

can be concluded that accurate evaluation of mode II SIF is more sensitive and requires a refined

mesh around the crack with a relative J integral domain size of about 0.2a. Again, evaluation of

KI remains less sensitive to these variations.

Displacement and stress contours of the present example are plotted in Figures 20 and 21. The

results are based on an adaptively structured mesh with 28 elements along the crack length.

6.4. Isotropic–orthotropic bimaterial crack

In this example, an interface crack between isotropic and orthotropic layers of a tensile bimaterial

specimen is investigated. The analysis is performed for the bimaterial plate in a plane stress state,

subjected to a remote tensile loading and for a range of crack lengths. Figure 22 shows the geometry

and the nominal dimensions of the problem.

The layer above the interface is an isotropic PSM-1 material and the material below the interface

is composed of orthotropic Scotch ply 1002 (a unidirectional glass fiber-reinforced composite in

epoxy matrix). Table XI defines the necessary material properties.

In Table XI, L is the direction of fibers and T denotes the direction transverse to fibers. Two

fiber orientations are considered for material 2, fibers parallel to the interface (�=0◦) and fibers

perpendicular to the interface (�=90◦).
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Table X. Mixed-mode stress intensity factors using a refined mesh within the crack length.

Number of
elements along the

Mesh type crack length
rd
a KI KII Error (KI) (%) Error (KII) (%)

Uniformly structured 6 0.369 1.7835 0.0976 0.507 14.824
8 0.262 1.7864 0.093 0.671 9.412

10 0.229 1.7858 0.0905 0.637 6.471
12 0.2 1.7861 0.0896 0.654 5.412
13 0.2 1.786 0.0883 0.648 3.882
15 0.2 1.788 0.0891 0.761 4.824
15 0.2 1.7881 0.0881 0.766 3.647

Adaptively structured 26 0.2 1.7886 0.0877 0.795 3.176
28 0.2 1.7872 0.0861 0.716 1.294
28 0.167 1.7867 0.0857 0.688 0.824
31 0.167 1.7889 0.0861 0.811 1.294
32 0.167 1.7869 0.0859 0.699 1.059
38 0.143 1.7872 0.0858 0.716 0.941
38 0.2 1.7872 0.0855 0.716 0.588
38 0.25 1.7872 0.0855 0.716 0.588
48 0.2 1.7872 0.0853 0.716 0.353
48 0.167 1.7873 0.0854 0.721 0.471

Unstructured 8 0.33 1.7281 0.0881 2.615 3.647
12 0.33 1.766 0.0894 0.479 5.176
17 0.2 1.752 0.0907 1.268 6.706
18 0.33 1.7754 0.0843 0.051 0.824
19 0.33 1.7609 0.0874 0.766 2.824
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Figure 20. X and Y displacement contours.

Since the loading, material, and geometry are symmetric, only one-half of the plate is considered

in the analysis. In Figure 22, traction Ty is applied on the upper and lower boundaries; �xy=0 on

AB , Ty =� on BC , �xy=0, ux =0 on CD, and Ty =� on DA.

Adaptive structured finite element models with different numbers of quadrilateral four-noded

elements for different crack lengths (2a/w=0.2–0.6) are used in this example. Element sizes are

substantially smaller in the vicinity of the crack. Figure 23 illustrates the typical mesh utilized for

2a/w=0.5.

The same Gauss quadrature rules of Section 4 are used and the relative J integral domain size

(rd ) is assumed to be 0.2a.
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Figure 21. �xx , �yy , and �xy contours.

Figure 22. Geometry of a bimaterial plate consisted of isotropic and orthotropic materials.

Table XI. Material properties of the bimaterial constituents.

PSM-1 E=2.5Gpa, �=0.91Gpa
Scotch ply 1002 EL =39.3Gpa, ET =9.7Gpa,

GLT =3.1Gpa, �LT =0.25

For each crack length and fiber direction in material 2 (�=0◦ or �=90◦), the complex stress

intensity factors (CSIF) are determined and the normalized amplitude of CSIF is calculated as

|K |/(�√
�a), where |K |=

√

K 2
1 +K 2

2 and � is the applied far-field stress. Table XII compares the

results of XFEM simulations for different crack lengths based on the new orthotropic enrichment

functions. Figure 24 illustrates the normalized CSIFs with respect to the normalized crack lengths

for two 0◦ and 90◦ fiber orientations.

Shukla et al. [73] also performed a study on this problem and evaluated the normalized CSIFs

from experiments and boundary collocation method, as depicted in Figure 25. For experimental

results, a statistical analysis was performed to obtain the average value and the 95% confidence
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Figure 23. The finite element mesh used for 2a/w=0.5.

Table XII. Values of normalized amplitude of CSIF for different crack lengths (|K |/�√
�a).

2a/w

0.2 0.3 0.4 0.5 0.6

�=0◦ 0.9927 1.0251 1.0734 1.1435 1.2467
�=90◦ 1.0056 1.043 1.0964 1.1701 1.2757

Figure 24. Normalized complex stress intensity factors as a function of normalized crack length.

level. It can be observed that the XFEM numerical estimates of |K |/(�√
�a) are in close agreement

with those reported by Shukla et al. [73].

Figures 24 and 25 indicate that normalized CSIFs increase as the crack length increases for a

given load. Also, for the same crack length, the CSIF values are higher when the fibers are aligned

perpendicular to the interface (�=90◦).
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Figure 25. Reference normalized complex stress intensity factors [73].

Figure 26. A bilayer orthotropic DCB specimen.

6.5. Orthotropic double cantilever beam

In this example, XFEM is employed to determine the SIFs and the strain energy release rates

for interface cracks in a double cantilever beam (DCB) test with orthotropic materials. A bilayer

specimen composed of two homogeneous elastic layers, both of thickness H , with a crack length

a is considered, as shown in Figure 26. The results of the present simulation are compared with

the results reported by Ang et al. [74].

In the lower layer, the fiber directions are along the horizontal direction and perpendicular to

the applied load P , with E1 and E2 as Young’s moduli in the first and second principal material

axes; G12 as the in-plane shear modulus and �12 is the Poisson ratio. The fiber direction is along

the out of plane direction in the top layer and it is treated as isotropic inplane with E2 and �12
as Young’s modulus and the Poisson ratio, respectively. The mechanical properties of the bottom

layer are defined in terms of two parameters �1 and �2, which are related to the purely imaginary

roots of the characteristic equation of the orthotropic material as: [74]

�1�2=
(

E1

E2

)
1
2

, �1+�2=

√

√

√

√2

[

(

E1

E2

)
1
2

+ E1

2G12

−�12

]

(54)

In numerical models, the relative crack sizes are a/H =2,4,6 and these cases of material

properties combinations are examined:

Case 1: �1=0.8,�2=2;
Case 2: �1=1,�2=2;
Case 3: �1=0.8,�2=3.
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Figure 27. FEM discretization of orthotropic DCB problem.

Table XIII. Comparison of the values of normalized strain energy release rates for different crack lengths,
obtained from XFEM and the boundary element method (cases 1 and 2).

a
H

rd
a

G
G0

(XFEM) G
G0

(BEM) [74]

�1=0.8 �2=2 2 0.33 3.2996 3.35
4 0.17 2.4768 2.5
6 0.125 2.2313 2.2

�1=1 �2=2 2 0.33 4.5160 4.6
4 0.17 3.4189 3.3
6 0.125 3.0931 3.0

The strain energy release rates are computed for each numerical model using the SIFs [26]:

G= 1

4cosh2(�ε)
[D22K

2
1 +D11K

2
2 +2D12K

2
1K

2
2 ] (55)

K1 and K2 are the mode I and II SIFs and

D= L−1
#1 +L−1

#2 (56)

where L is the Barnett and Lothe tensor, defined in (47).

The reference results for strain energy release rates were normalized using G0:

G0= 12P2a2

E1H3
(57)

Adaptive structured finite element models, depicted in Figure 27, with 663 elements and 720

nodes, are employed for different crack lengths. The same Gauss quadrature rules as in Section 4

are used with different relative J integral domain sizes (rd ).

Tables XIII and XIV compare the results of normalized strain energy release rates obtained by

the present XFEM models and the values reported by Ang et al. [74], which were based on the

BEM. Similar results, obtained by Ang et al. [74], are illustrated in Figures 28 and 29, where

the results of present XFEM simulations are marked by large circles. Very close agreements are

observed between the XFEM and reference results.

In order to determine the effect of ratio of crack length in a tip element to the element length

(a1/l1 in Figure 27), several analyses have been performed on the case 3 model (�1=0.8,�2=3),

with rd/a=0.33. Table XV shows the results of normalized strain energy release rates for XFEM

models and the results reported by Ang et al. [74]. The results clearly indicate that the ratio of
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Table XIV. Comparison of the values of normalized strain energy release rates for different crack lengths,
obtained from XFEM and the boundary element method (case 3: �1=0.8 and �2=3).

a
H

rd
a

G
G0

(XFEM) G
G0

(BEM) [74]

2 0.33 6.1678 6.35
4 0.17 4.6465 4.7
6 0.125 4.1986 4.15

Figure 28. Variations of G/G0 with a/H for the DCB specimen (�2=2) using boundary element method
[74], compared with XFEM results (large circles).

Figure 29. Variation of G/G0 with a/H for the DCB specimen (�2=3) using the boundary element
method [74], compared with the XFEM results (large circles).
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Table XV. Values of normalized strain energy release rates, using different ratios of crack
length in tip element to the length of tip element (case 3: �1=0.8 and �2=3).

Crack length in tip element/tip

element length (a1/l1)
G
G0

(XFEM) G
G0

(BEM) [74]

0.052 6.1791 6.35
0.28 6.1486 6.35
0.5 6.1678 6.35
0.556 6.1901 6.35
0.811 6.1321 6.35

Figure 30. Stress contours of DCB.

crack length in the tip element to the size of tip element does not have a major effect on the

results.

Figure 30 illustrates the stress contours of the beam, which clearly indicates the singularity of

stress field around the interlaminar crack tip.

7. CONCLUSIONS

The problem of cracks that lie at the interface of two elastically homogeneous orthotropic materials

has been studied. The XFEM has been adopted for modeling the interface crack and analyzing

the domain numerically. New bimaterial orthotropic crack-tip enrichment functions are extracted

from the analytical solution in the vicinity of interfacial crack-tips. The heaviside function, the

new near-tip enrichment functions, and the weak discontinuity enrichment functions have been

implemented in the XFEM to simulate the interface crack between two orthotropic composite

layers. Mixed-mode SIFs and energy release rates for bimaterial interfacial cracks have been

numerically evaluated using the domain form of the interaction integral. The obtained results have

been compared with the available reference solutions and exhibited close agreement. In addition to

the simulation of several crack lengths (as a representation of crack propagation) on a fixed finite

element mesh, different types and sizes of mesh and different relative J integral domain sizes have

been utilized in order to investigate the robustness of the present method. The proposed bimaterial

orthotropic enrichment functions can be degenerated into bimaterial isotropic cases as well as a

crack in an isotropic/orthotropic medium, for which simple enrichments are already available.
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The combined set of inplane and interlaminar enrichments is expected to allow for a full fracture

analysis of layered orthotropic composites by XFEM in future studies.

APPENDIX A

The general crack-tip stress fields under the mixed mode loading in the upper layer of a cracked

bi-material specimen have been obtained by Lee [28]:

�x = KI

2
√
2�D cosh (ε�)

[

−p2
{
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(
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and the associated displacement fields are:

ux = KI√
2�
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1+4ε2
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[

sin

(

ε ln(rl )+
�l

2

)

−2ε cos

(

ε ln(rl )+
�l

2

)]

×(rl )
1
2 −e−ε(�−�l )ql A

[

sin

(

ε ln(rl )−
�l

2

)

−2ε cos

(

ε ln(rl )−
�l

2

)]

(rl )
1
2

]

−eε(�−�s )qs B̄

[

sin

(

ε ln(rs )+
�s

2

)

−2ε cos

(

ε ln(rs )+
�s

2

)]

(rs )
1
2

+ e−ε(�−�s )qsB

[

sin

(

ε ln(rs )−
�s

2

)

−2ε cos

(

ε ln(rs )−
�s

2

)]

(rs )
1
2

]}

+ KII√
2�

(

1+4ε2
)

D cosh (ε�)

{

eε(�−�l )ql Ā
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(A5)

where KI and KII are the mode 1 and 2 SIFs, respectively, and ε is the index of oscillation

defined as

ε= 1

2�
ln

(

1−�

1+�

)

(A6)

where � is the second Dundurs parameter [61] given by:

� = h11√
h12h21

(A7)

h11 = (l11)1−(l11)2

h21 = (l21)1+(l21)2 (A8)

h12 = = (l12)1+(l12)2
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and

(l11)k =
{

ps p− plq

q− p

}

k

=
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k

,
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k

,
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}

k

,

k=1,2 (A9)

Subscripts k=1,2 denote the upper and lower materials, respectively. Also,

pl = −p2a11+a12, ps =−q2a11+a12 (A10)

ql =
−p2a12+a22

p
, qs =

−q2a12+a22

q
(A11)

A = q+�, Ā=q−�, B= p+�, B̄= p−�, D= [q− p]k (A12)

� =
(

h21

h12

)
1
2

(A13)

Variables r j , � j ( j = l,s)are related to polar coordinate system (r,�) as:

r j = r

√

cos2 �+Z2
j sin

2 �,

� j = tan−1(Z j tan�),
j = l,s,

{

Zl = p

Zs =q
(A14)

In order to obtain the displacement and stress fields in the material below the interface, parameters

ε� and −ε� are changed to −ε� and ε�, respectively.

These analytical solutions are examined and further discussed in Appendix B for typical bima-

terial problems, especially in the limiting cases of crack in dissimilar isotropic layers and similar

orthotropic layers (one equivalent orthotropic layer). The main numerical simulations are discussed

in Section 6.

APPENDIX B

In this section, analytical solutions are used to discuss the distribution of various stress compo-

nents in different bimaterial problems. In the limiting case of similar layers, available orthotropic

enrichments [41] can be used to verify the new orthotropic bimaterial enrichments.

B.1. Edge crack between two dissimilar orthotropic materials

First, the two layers are assumed to be dissimilar orthotropic materials. In order to illustrate the

mixed mode stress fields, the SIFs KI and KII are assumed to be

KI=10, KII=10

Materials axes of orthotropy are assumed to be 90◦ with respect to the x-axis in material 1 and

parallel to x-axis in material 2. The crack length is 5 cm, from (−5,0) to (0,0) and the crack-tip

is located at (0,0) and the plane stress state is presumed. The following material properties are

used: (Norway spruce; Piceaabies) [41]:

E1=11.84GPa, E2=0.81GPa, G12=0.63GPa, �12=0.38
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Figure B1. Analytical stress fields for an edge crack between two dissimilar orthotropic materials.

where the 1 and 2 subscripts denote the local material coordinates. The stress fields �xx, �yy
and �xy based on Equations (A1)–(A3) for an orthotropic bimaterial interface crack have been

plotted in Figure 8. The closest data point to the crack-tip for drawing the contours was at

0.025 cm.

It is clearly observed from Figure B1 that �yy and �xy remain zero along the crack length, which

identifies a traction-free interfacial crack. Also, �yy and �xy are continuous across the interface

of two materials that was one of the imposed boundary conditions in obtaining the analytical

solutions. �xx is not continuous along the crack length or across the bimaterial interface.

B.2. Edge crack between two dissimilar isotropic materials

If the two half planes are assumed isotropic, the analytical stress fields can be plotted using the

same equations and using isotropic material properties:

Material 1:

E1= E2=11.84GPa, �12=0.38

Material 2:

E1= E2=15.84GPa, �12=0.45
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Figure B2. Stress contours and their associated errors with respect to the analytical stress equations in
Deng’s report [69] for an edge crack between two dissimilar isotropic materials.

The present �xx, �yy, and �xy stress contours (Figure B2) can be verified by comparing them with

the analytical stress equations in Deng’s report [69], for an isotropic bimaterial interface crack

and using the same material properties. Both results are virtually the same, with errors of order

10−7, which proves that the proposed analytical equations for a crack between two orthotropic

materials can converge to the already developed analytical solutions for a crack between two

isotropic materials.
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It should be noted that if the material properties are chosen to be the same, the analytical

equations ((A1)–(A5)) are degenerated into the analytical solutions for a crack in an orthotropic

medium, as developed by Asadpoure and Mohammadi [41].
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