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Abstract

Given a point set P in the plane, the Delaunay graph with respect to axis-parallel rectangles is a
graph defined on the vertex set P , whose two points p, q ∈ P are connected by an edge if and only if
there is a rectangle parallel to the coordinate axes that contains p and q, but no other elements of P .
The following question of Even et al. [ELRS03] was motivated by a frequency assignment problem in
cellular telephone networks. Does there exist a constant c > 0 such that the Delaunay graph of any set
of n points in general position in the plane contains an independent set of size at least cn? We answer
this question in the negative, by proving that the largest independent set in a randomly and uniformly
selected point set in the unit square is O(n log2 log n/ log n), with probability tending to 1. We also
show that our bound is not far from optimal, as the Delaunay graph of a uniform random set of n points
almost surely has an independent set of size at least cn/ log n.

We give two further applications of our methods. 1. We construct 2-dimensional n-element partially
ordered sets such that the size of the largest independent sets of vertices in their Hasse diagrams is
o(n). This answers a question of Matoušek and Přı́větivý [MaP06] and improves a result of Křı́ž and
Nešetřil [KrN91]. 2. For any positive integers c and d, we prove the existence of a planar point set
with the property that no matter how we color its elements by c colors, we find an axis-parallel rectangle
containing at least d points, all of which have the same color. This solves an old problem from [BrMP05].

1 Delaunay graphs and conflict-free colorings

The Delaunay graph associated with a set of points P in the plane is a graph D ′(P ) whose vertex set is P
and whose edge set consists of those pairs {p, q} ⊂ P for which there exists a closed disk that contains p
and q, but does not contain any other element of P . The Delaunay graph of P is a planar graph and its dual
is the Dirichlet–Voronoi diagram of P (see, e.g., [BKOS00]). As any other planar graph, D ′(P ) contains an
independent set of size at least |P |/4. It was discovered by Even, Lotker, Ron, and Smorodinsky [ELRS03]
that this fact easily implies that any set P of n points in the plane has a conflict-free coloring with respect to
disks, which uses at most O(log n) colors, that is, a coloring with the property that any closed disk C with
C ∩P #= ∅ has an element whose color is not assigned to any other element of C ∩P . Here, the logarithmic
bound is tight for every point set [PaT03].
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The question was motivated by a frequency assignment problem in cellular telephone networks. The
points correspond to base stations interconnected by a fixed backbone network. Each client continuously
scans frequencies in search of a base station within its (circular) range with good reception. Once such a
base station is found, the client establishes a radio link with it, using a frequency not shared by any other
station within its range. Therefore, a conflict-free coloring of the points corresponds to an assignment of
frequencies to the base stations, which enables every client to connect to a base station without interfering
with the others. For many results on conflict-free colorings, consult [AlS06], [FiLM05], [HaS05].

The same scheme can be used to construct conflict-free colorings of point sets with respect to various
other families of geometric figures. In general, let P be a set of points in R

d, and let C be a family of
d-dimensional convex bodies. Define the Delaunay graph DC(P ) of P with respect to C on the vertex set
P by connecting two elements p, q ∈ P with an edge if and only if there is a member of C that contains p
and q, but no other element of P . The existence of large independent sets in such graphs implies that P has
a conflict-free coloring with respect to C, which uses a small number of colors. That is, a coloring with the
property that any member C ∈ C with C ∩ P #= ∅ has an element whose color is not assigned to any other
element of C ∩ P .

In this paper, we consider this problem in the special case when C is the family of axis-parallel rectangles
in the plane. The Delaunay graph D(P ) of a point set P with respect to axis-parallel rectangles is also called
the rectangular visibility graph of P . Computing all rectangularly visible pairs of an n-element point set,
that is, all edges of D(P ), is a classical problem, solved in O(n log n + |D(P )|) time by Güting, Nurmi,
and Ottman [GuNO85], in a paper presented at the First ACM Symposium on Computational Geometry in
1985. See also [GuNO89], [OvW88], [DeH91], [JaT92].

The maximum size of an independent set of vertices in a graph G is called the independence number
of G, and is usually denoted by α(G) in the literature. Smorodinsky et al. [ELRS03], [HaS05] asked
whether the Delaunay graph of every set of n points in the plane with respect to axis-parallel rectangles has
independence number at least cn, for an absolute constant c > 0. In Section 3, we give a negative answer to
this question. More precisely, we establish

Theorem 1. There are n-element point sets in the plane such that the independence numbers of their De-
launay graphs with respect to axis-parallel rectangles are at most O

(

n log2 log n
log n

)

.
In fact, a randomly and uniformly selected set of n points in the unit square will meet the requirements

with probability tending to 1.

For randomly selected point sets, this result is not far from being best possible. In Section 2, we prove

Theorem 2. The independence number of a randomly and uniformly selected n-element point set in the unit
square is almost surely Ω

(

n
log n

)

.

For arbitrary point sets, Ajwani, Elbassioni, Govindarajan, and Ray [AjEG07] proved that the inde-
pendence number of the Delaunay graph of any set of n points in the plane with respect to axis-parallel
rectangles is at least Ω

(

n.617
)

. This implies that any set of n points in the plane admits a conflict-free
coloring using O

(

n.383
)

, with respect to the family of all axis-parallel rectangles. For weaker results, con-
sult [PaT03],[MaP06], [ElM06].

Matoušek and Přı́větivý raised another closely related problem. Given a finite partially ordered set
(X, <), we say that p ∈ X is an immediate predecessor of q ∈ X if p < q and there is no r ∈ X with
p < r < q. The Hasse diagram H(X, <) of (X, <) is an undirected graph on the vertex set X , in which
two vertices are connected if and only if one is an immediate predecessor of the other. The (Dushnik-Miller)
dimension of a partial ordering < is the smallest number of linear (that is, total) orderings whose intersection
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is <. Matoušek and Přı́větivý [MaP06] asked whether the Hasse diagram of every two-dimensional partially
ordered set of n elements contains an independent set whose size is linear in n. The next theorem provides
a negative answer to this question.

Theorem 3. There are two-dimensional partially ordered sets with n elements such that the independence
numbers of their Hasse diagrams are at most O

(

n log2 log n
log n

)

.

Given a finite point set P in the plane and a fixed (x, y) coordinate system, we can define a partial
ordering on P by letting p ≤ q if the x-coordinate of p does not exceed the x-coordinate of q and the y-
coordinate of p does not exceed the y-coordinate of q. This ordering is called the domination order of P with
respect to the coordinate system. Reversing the direction of the x-axis (that is, replacing x by −x), we obtain
another domination order of P . Denoting the Hasse diagrams of these two domination orders by H(P ) and
H ′(P ), we have that their union H(P ) ∪ H ′(P ) is equal to D(P ), the Delaunay graph D(P ) with respect
to axis-parallel rectangles. Therefore, the independence number of H(P ) satisfies α(H(P )) ≥ α(D(P )).
Theorem 3 can be established by a slight modification of the proof of Theorem 1; the details are left to the
reader. The argument also gives that if < is the intersection of two randomly and uniformly selected linear
orderings of an n-element set X , then α(H(X, <)) = O

(

n log2 log n
log n

)

, with probability tending to 1.
Křı́ž and Nešetřil [KrN91] gave an explicit construction proving that the chromatic numbers of the Hasse

diagrams of planar point sets are not bounded. A little calculation based on their construction shows that
there exist n-element point sets P such that the chromatic numbers of their Hasse diagrams grow as fast as
log∗ n, the iterated logarithm of n. Theorem 3 implies a better bound.

Corollary 4. There are two-dimensional partially ordered sets with n elements such that the chromatic
numbers of their Hasse diagrams are at least Ω

(

log n
log2 log n

)

.

Note that the construction of Křı́ž and Nešetřil contains linear sized independent sets.
In geometric discrepancy theory [BeCh87], [Ch00], [Ma99], there are plenty of results that indicate

some unavoidable irregularities in geometric configurations. In Section 4, we generalize Theorem 1. As a
corollary of our results, we obtain a solution to Problem 5, Chapter 2.1 in [BrMP05].

Theorem 5. For any positive integers c and d, there is a finite point set in the plane with the property that
no matter how we color its elements with c colors, there always exists an axis-parallel rectangle containing
at least d points, all of which have the same color.

Pach and Tardos proved the “dual” statement: For any positive integers c and d, there is a d-fold covering
of the unit square [0, 1]2 with finitely many axis-parallel rectangles such that no matter how we color them
with c colors, there always exists a point in [0, 1]2 with the property that all rectangles containing it are of
the same color. (A collection of sets is said to form a d-fold covering of the unit square if every point of
[0, 1]2 is contained in at least d of its members.) It was shown in [Pa86] that no such d-fold covering exists
with translates of a fixed rectangle if c > 1 and d is large enough. See also [PaTT07].

2 The size of Delaunay graphs of random point sets:
The proof of Theorem 2

The aim of this section is to prove Theorem 2. First, we estimate the average number of edges of a Delaunay
graph, and then the standard deviation of the number of edges from its expected value.
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Let P = {(xi, yi) : 1 ≤ i ≤ n} be a point set in the unit square, whose no two elements share the same
x-coordinate or y-coordinate. Clearly, the Delaunay graph D(P ) with respect to axis-parallel rectangles
depends only on the relative position of the points in P and not on their actual coordinates. That is, there
exists a permutation π : {1, 2, . . . , n} → {1, 2, . . . , n} such that for the set P ′ = {(i,π(i)) : 1 ≤ i ≤ n} we
have D(P ) ≈ D(P ′). Moreover, for a random set of points in the square, the corresponding permutation
π is uniformly random. With a slight abuse of notation, we write D(π) for the Delaunay graph D(P ′). In
our arguments about Delaunay graphs of randomly selected point sets in the square, it will be convenient
to consider the graph D(π) for a random permutation π. The number of edges of D(π) will be denoted by
|D(π)|.

Lemma 6. Let π : {1, 2, . . . , n} → {1, 2, . . . , n} be a random permutation. The expected value of the
number of edges of the Delaunay graph D(π) satisfies

E[|D(π)|] = 2n log n − O(n).

Proof. Two points pi = (i,π(i)) and pj = (j,π(j)) with i < j are connected by an edge in D(P ) if and
only if π(i) and π(j) are consecutive elements in the natural ordering of the set S = {π(k)|i ≤ k ≤ j}.
Among all

(j−i+1
2

)

pairs of elements in this set, precisely j − i consist of consecutive elements. Clearly,
after fixing π(k) for k < i or k > j, the pair {π(i),π(j)} is equally likely to be any one of the pairs in S.
Therefore, the probability that pi and pj are connected is equal to

j − i
(j−i+1

2

) =
2

j − i + 1
.

Thus, the expected number of edges in D(P ) is

n−1
∑

l=1

2(n − l)

l + 1
= (2n + 2)

n
∑

l=1

1

l
− 4n = 2n log n − O(n).

Lemma 6 easily implies that

E[α(D(π))] = Ω

(

n

log n

)

.

To complete the proof of Theorem 2, it is sufficient to show that the number of edges of D(π), for a random
permutation π, is concentrated around its expected value.

Lemma 7. Let π : {1, 2, . . . , n} → {1, 2, . . . , n} be a random permutation, and let σ(|D(π)|) =
√

var|D(π)| denote the standard deviation of the number of edges of the Delaunay graph D(π). We have

σ(|D(π)|) = O(
√

n log n).

Proof. Let pi denote the same as in the proof of Lemma 6, and let ξij be the characteristic function of the
event that pi and pj form an edge in D(π). Clearly, we have |D(π)| =

∑

i,j ξij .
We have to estimate the variance

var





∑

i,j

ξij



 =
∑

i,j

var[ξij ] + 2
∑

{i,j}$={i′,j′}

cov[ξij , ξi′j′ ]. (1)
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In the proof of Lemma 6, we have shown that E(ξij) = 2
j−i+1 , for any j > i. Using the fact that ξij is a 0-1

valued function, we obtain that

var[ξij ] = E[ξij ](1 − E[ξij ]) <
2

j − i + 1
.

Therefore, we have
∑

i,j var[ξij ] = O(n log n), and in (1) it remains to estimate the pairwise covariances of
the random variables ξij .

Let ξij and ξi′j′ be two characteristic functions, as above. We distinguish two cases and several subcases.

Case 1: The indices i, j, i′, j′ are all distinct.
Subcase 1a: The intervals [i, j] and [i′j′] are disjoint. In this case, obviously, the random variables ξij and
ξi′j′ are independent, so that we have cov[ξij , ξi′j′ ] = 0.
Subcase 1b: One of the intervals [i, j] and [i′j′] contains the other. In this case, we can still argue that ξij and
ξi′j′ are independent. Indeed, assume without loss of generality assume that [i, j] contains [i′j′]. Generate
the permutation π by first fixing its values outside the interval [i′, j′], and then, at the second stage, by fixing
the values of the elements in [i′, j′]. Observe that after the first stage we know whether pipj is an edge of
D(π). It is decided at the second stage whether pi′pj′ is an edge, but the probability of this event is exactly

2
j′−i′+1 , independently of the outcome at the first stage. Thus, again we have cov[ξij , ξi′j′ ] = 0.

Subcase 1c: The intervals [i, j] and [i′j′] are intertwined. We may assume without loss of generality that
i < i′ < j < j′. Generate π by the following process. First we fix the values of π outside of the interval
[i, j′]. Next we determine the values of π for i and j ′. In the third step, we temporarily fix π for the remaining
elements in the open interval (i, j ′). Finally, in the fourth step we swap the image, π(x), of a random element
x ∈ [i′, j′) \ {j} with π(i′). Clearly, this way we obtain a random permutation. We need the fourth step for
technical reasons. The probability that after the third step the rectangle induced by pi and pj is either empty
or contains the point pi′ (but no other point) is exactly 2

j−i . Let us denote this event by W . If after the last
step pipj is an edge, then W holds. Compute the probability, conditioned on W , that pi′pj′ is an edge after
the fourth step. Let xm = mink∈[i′,j′]\{j} π(k) and xM = maxk∈[i′,j′]\{j} π(k). If π(j′) #∈ {xm, xM}, then
before the final (fourth) step exactly two elements of [i′, j′) \ {j} have the property that swapping their π
values with π(i′), the rectangle induced by pi′ and pj′ becomes empty or it only contains pj . (We think of
pj as invisible.) If π(j ′) ∈ {xm, xM}, there is exactly one such element. Hence, the probability that pi′pj′

becomes an edge after the fourth step is at most 2
j′−i′ , regardless of how π is fixed on [i, j] \{i′}. Therefore,

we have

cov[ξ, ξ′] = E[ξξ′] − E[ξ]E[ξ′] ≤ 2

j − i

2

j′ − i′
− 2

j − i + 1

2

j′ − i′ + 1

<
8

(j − i)(j′ − i′)min{(j − i), (j′ − i′)} .

Remark. It is easy to see that if j−i = j ′−i′ = 2, and the intervals [i, j] and [i′, j′] are intertwined, then the
covariance is 5/12−4/9 = −1/36. If i = 1, i′ = 2, j = 3, j′ = 5, the covariance is 38/120−1/3 = −1/60.

Case 2: The indices i, j, i′, j′ are not all distinct.
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Subcase 2a: i = i′ < j′ < j. We obtain by direct computation that

cov[ξ, ξ′] = E[ξξ′] − E[ξ]E[ξ′]

=
4(j − i − 1)

(j − i + 1)(j − i)(j ′ − i′)
− 4

(j − i + 1)(j′ − i′ + 1)

= O

(

1

(j − i)(j′ − i′)2

)

.

Subcase 2b: i′ < j′ = i < j. An argument similar to the one applied in Subcase 1c yields that if j − i ≥
j′ − i′, then cov(ξ, ξ′) = O

(

1
(j−i)(j′−i′)2

)

, and if j − i ≤ j ′ − i′, then cov(ξ, ξ′) = O
(

1
(j′−i′)(j−i)2

)

.

Summarizing: the last term of (1), and therefore the variance of |D(π)| =
∑

i,j ξij , can be estimated by

∑

{i,j}$={i′,j′}

cov[ξi,j , ξi′,j′ ] = O(n log2 n),

completing the proof of Lemma 7.

Proof of Theorem 2. By Lemma 6, the expected number of edges in the Delaunay graph of a random
permutation π on n elements satisfies

E[|D(π)|] = Θ (n log n) .

By Chebyshev’s Inequality, as long as

σ(|D(π)|) =
√

var|D(π)| = o(E[|D(π)|])

holds, the number of edges is almost surely within a factor of 1 + ε of its expectation, for any ε > 0.
Lemma 7 shows that this is the case, therefore almost surely we have |D(π)| = Θ(n log n).

According to Turán’s theorem, any graph with n vertices, e edges, and average degree d = 2e
n has an

independent set of size at least n
d+1 = n2

2e+n . In particular, we have

α(D(π)) ≥ n2

2|D(π)| + 1
,

so that almost surely α(D(π)) = Ω(n/ log n), as required.

3 The independence number of Delaunay graphs of random point sets:
The proof of Theorem 1

We reformulate and prove Theorem 1 in a more precise form.

Theorem 8. Let P be a set of n randomly and uniformly selected points in the square [0, 1]2. Then there
exists a constant c such that

Probn→∞

(

α(D(P )) < c
n log2 log n

log n

)

→ 1.
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Proof. The points pi ∈ P will be defined in two steps. First we select the x-coordinates from the interval
[0, 1] uniformly at random. With probability 1, all the x coordinates are distinct. Let us relabel the points so
that

0 ≤ x1 < x2 < · · · < xn ≤ 1.

In the second step, we select the y-coordinates of pi = (xi, yi) uniformly and independently from [0, 1].
Note that, after the xi’s have been fixed, the edge set of the Delaunay graph D(P ) depends only on the
relative order of the yi’s.

The coordinates yi are generated as follows. Fix an integer L ≥ 2 to be specified later. We write the
numbers yi ∈ [0, 1] in base L:

yi = (0.d(1)
i d(2)

i . . . )L.

The digits d(t)
i of yi are chosen independently and uniformly from the set {0, . . . , L− 1}. For t ≥ 1, denote

by y(t)
i the truncated L-ary fraction of yi, consisting of t − 1 digits after 0:

y(t)
i = (0.d(1)

i . . . d(t−1)
i )L.

The digits of yi will be chosen one by one. At stage t, we determine d(t)
i (and, hence, y(t+1)

i ), for all
i. Note that before stage t, the truncated fractions y(t)

i have already been fixed. As soon as we complete
stage t, we know the y-coordinates of the points pi up to an error of at most L−t. If y(t+1)

i = y(t+1)
j , then

the relative order of yi and yj has not yet been decided. Otherwise, if we have y(t+1)
i < y(t+1)

j , say, then
yi < yj holds in the final configuration.

Let 1 ≤ i < j ≤ n be fixed. Suppose that for some t, the following two conditions are satisfied:

1. y(t+1)
i = y(t+1)

j ,

2. y(t+1)
k #= y(t+1)

i holds for all k satisfying i < k < j.

Then the rectangle [xi, xj ] × [y(t+1)
i , y(t+1)

i + L−t) contains pi and pj , but no other element of P . Thus, in
this case, pi and pj are connected in D(P ), and we say that this edge is forced at stage t. Although D(P )
may contain many edges that are not forced at any stage, we are going to use only forced edges in proving
our upper bound on the independence number of D(P ).

Let us fix a subset I ⊂ {1, . . . , n}, and let Q = Q(I) = {pi : i ∈ I}. We want to estimate from above
the probability that Q is an independent set in D(P ).

Let t ≥ 1, and consider stage t of our selection process. Before this stage, y(t)
i has been fixed for every

i. For any L-ary fraction y of the form y = (0.d(1)d(2) · · · d(t−1))L, define a subset Hy ⊆ {1, . . . , n} by

Hy = {1 ≤ i ≤ n : y(t)
i = y}.

Obviously, these sets partition {1, . . . , n}, and hence I , into at most Lt−1 nonempty parts. If two indices
i, j ∈ I are consecutive elements of the same part Hy ∩ I , then we call them neighbors. That is, i < j are
neighbors if

1. y(t)
i = y(t)

j = y holds for some y, and

2. Hy ∩ {k ∈ I : i < k < j} = ∅.
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For any two neighbors i, j ∈ Hy (i < j), define

Si,j = {k ∈ Hy : i < k < j}.

Two neighbors i, j ∈ I (i < j) are called close neighbors if |Si,j | ≤ L.
If there are two close neighbors i, j ∈ I such that the {pi, pj} is an edge of D(P ) forced at stage t, then

Q is not an independent set in D(P ) and we say that Q fails at stage t. Otherwise, Q is said to survive stage
t, and we indicate this fact by writing Q ! t.

Let i < j be a pair of close neighbors. Note that {pi, pj} is an edge of D(P ) forced in stage t if and
only if d(t)

i = d(t)
j , but d(t)

i #= d(t)
k holds for all k ∈ Si,j . The probability of this event is

Prob({pi, pj} is forced at stage t) =
1

L

(

1 − 1

L

)|Si,j |

.

Taking into account that |Si,j | ≤ L, we obtain

Prob({pi, pj} is forced at stage t) ≥ 1

4L
.

Notice that, assuming a fix outcome of previous stages (i.e., p(t)
k is fixed for all k), the presence of edges

{pi, pj} forced at stage t are independent for all neighbors. Thus,

Prob(Q ! t|outcome of stages t′ < t) ≤
(

1 − 1

4L

)m

≤ e−
m
4L ,

where m stands for the number of pairs i, j ∈ I that are close neighbors before stage t.
Obviously, every i ∈ I , except the last element in each set Hy, has exactly one neighbor j > i. As the

sets Si,j are pairwise disjoint for different pairs of neighbors i < j, there are fewer than n
L pairs that are

neighbors but not close neighbors. Thus, we have

m > |I|− n

L
− Lt−1.

If t ≤ log n/ log L and |I| ≥ 3n/L, we have m ≥ n/L, and thus

Prob(Q ! t|outcome of stages t′ < t) ≤ e−
n

4L2 .

As the above bound applies assuming any set of choices made at previous stages, so in particular, it
applies to the conditional probability that Q survives stage t, given that it has survived all previous stages:

Prob(Q ! t|Q ! t′ for all t′ < t) ≤
(

1 − 1

4L

)m

≤ e−
n

4L2 .

Taking the product of these estimates for all t ≤ log n/ log L, we obtain

Prob(Q survives the first /log n/ log L0 stages) ≤ exp

(

− n

4L2

(

log n

log L
− 1

))

.

The last bound is valid for any set Q = Q(I) ⊆ P , where I ⊂ {1, . . . , n} satisfies |I| ≥ 3n/L. Letting

L =

⌊

log n

100 log2 log n

⌋

and a =

⌈

3n

L

⌉

,
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we can conclude that

Prob (α(D(P )) ≥ a) ≤
∑

Q⊂P,|Q|=a

Prob (Q survives all stages)

≤
(

n

a

)

exp

(

− n

4L2

(

log n

log L
− 1

))

→ 0,

as required.

4 Discrepancy in colored random point sets

In this section, we strengthen Theorem 1.

Definition. Given an integer d > 1 and a finite point set P in the plane, a subset Q ⊆ P is called d-
independent if there is no axis-parallel rectangle R such that |R ∩ P | = d and R ∩ P ⊆ Q. Let αd(P )
denote the size of the largest d-independent subset of P .

According to this definition, a subset of P is 2-independent if and only if it is an independent set in the
Delaunay graph D(P ) associated with P . In particular, we have α2(P ) = α(D(P )).

Obviously, if a set is d-independent for some d > 1, then it is also d′-independent for any d′ > d.
Therefore, αd(P ) is increasing in d.

Theorem 5 is a direct corollary to

Theorem 9. A randomly and uniformly selected set P of n points in the unit square almost surely satisfies

αd(P ) = O

(

dn log2 log n

log1/(d−1) n

)

.

Proof. We modify the proof of Theorem 1. Pick the random points pi = (xi, yi) ∈ P according to the same
multi-stage model as in the previous section, and define the truncated fractions y(t)

i that approximate yi in
exactly the same way as before.

Fix a subset I ⊆ {1, . . . , n}, and let Q = Q(I) = {pi : i ∈ I}. Just like in the proof of Theorem 1,
analyze a fixed stage t of the selection process, by introducing the sets Hi.

Instead of using the notion of neighbors, we need a new definition. For any two elements i, j ∈ I (i < j)

such that y(t)
i = y(t)

j = y for some y, introduce the sets

Ti,j = {k ∈ Hy ∩ I : i ≤ k ≤ j} and Si,j = {k ∈ Hy \ I : i < k < j}.

The numbers i and j are called d-neighbors if |Ti,j | = d. The pair {i, j} of d-neighbors is called a pair of
close d-neighbors if |Si,j | ≤ L.

We say that the pair of close d-neighbors {pi, pj} fails at stage t if at this stage the y-coordinates of all
points pk with k ∈ Ti,j receive the same new digit d(t)

k = δ, but the y-coordinate of no point p! with ' ∈ Si,j

receives this digit. The probability of this event is exactly

L1−d

(

1 − 1

L

)|SJ |

≥ L1−d

(

1 − 1

L

)L

≥ 1

4Ld−1
.
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Obviously, if any pair {pi, pj} fails at stage t, then Q cannot be d-independent. In this case, we say that Q
fails at stage t. Otherwise, Q is said to have survived stage t, and we write Q ! t.

The failures of certain pairs at a given stage are not independent events. However, they are independent
for any collection of close d-neighbor pairs (i, j) with the property that the corresponding sets Ti,j are
pairwise disjoint. To find such a collection consisting of many pairs, select at least |Hy∩I|

d−1 − 1 pairs of d-
neighbors from each Hy with pairwise disjoint sets Ti,j , and thus a total of at least |I|

d−1 − Lt−1 pairs. Since
the corresponding sets Si,j are pairwise disjoint, all but at most n/L of them are close d-neighbors. Thus,
as long as |I| ≥ 3(d − 1)n/L and t ≤ log n/ log L, we obtain collection of

m ≥ |I|
d − 1

− Lt−1 − n

L
≥ n

L

close d-neighbors with the required property.
If any pair of this collection fails at stage t, then Q fails at this stage. As in the proof of Theorem 1, we

have
Prob(Q ! t|Q ! t′ for all t′ < t) ≤ e−

n

4Ld

and
Prob(Q survives all stages ) ≤ exp

(

− n

4Ld

(

log n

log L
− 1

))

.

Letting

L =

⌊

log1/(d−1) n

100 log2 log n

⌋

and a =

⌈

3(d − 1)n

L

⌉

,

we obtain
Prob (α(D(P )) ≥ a) <

(

n

a

)

exp

(

− n

4Ld

(

log n

log L
− 1

))

→ 0.

5 Concluding remarks, open problems

The notion of Delaunay graphs for axis-parallel boxes naturally generalizes to higher dimensions. An easy
extension of the proof of Theorem 2 proves that for any fixed d, the Delaunay graph of randomly and
uniformly selected points in the d-dimensional unit cube has expected average degree O((log n)d). This
implies that random Delaunay graphs have independent sets of size n1−o(1) in higher dimensions, too. All
upper bounds on the independence number that apply to dimension d also apply to every larger dimension.
This can easily be seen by projecting a d-dimensional point sets to a coordinate hyperplane. Delaunay
graphs can only lose edges under this operation.

In general, by repeated application of the Erdős-Szekeres lemma it is easy to show that the independence
number of the Delaunay graph of any set of n points in d-dimensions, with respect to axis-parallel boxes, is
at least Ω(n1/2d−1

). As far as we know, no significant improvement on this bound is known, although the
truth may well be Ω(n1−o(1)), for any fixed d.

Returning to the plane, it is not hard show that the expected number of d-tuples T in a randomly and
uniformly selected set P of n points in the plane, for which there exists an axis-parallel rectangle whose
intersection with P is T , is Θ(d2n log n). By a result of Spencer [Sp72], any d-uniform hypergraph with

10



n vertices and Θ(nk) edges has an independent set of size Ω(n/k1/(d−1)). Therefore, P contains a d-
independent subset of size Ω(n/ log1/(d−1) n). This is within O(log2 log n) of our upper bound.

Acknowledgement. Lemma 6 has been proved independently by Sariel Har-Peled (personal communica-
tion). We are indebted to him and to Shakhar Smorodinsky for many interesting discussions on the subject.
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[GuNO85] R.H. Güting, O. Nurmi, and T. Ottmann: The direct dominance problem, in: Proc. First ACM
Symp. on Computational Geometry, Baltimore, 1985, 81–88.
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