Delaunay graphs of point sets in the plane with respect to axis-parallel rectangles

Xiaomin Chen, János Pach, Mario Szegedy ${ }^{\ddagger}$, and Gábor Tardos ${ }^{\S}$

Abstract

Given a point set P in the plane, the Delaunay graph with respect to axis-parallel rectangles is a graph defined on the vertex set P, whose two points $p, q \in P$ are connected by an edge if and only if there is a rectangle parallel to the coordinate axes that contains p and q, but no other elements of P. The following question of Even et al. [ELRS03] was motivated by a frequency assignment problem in cellular telephone networks. Does there exist a constant $c>0$ such that the Delaunay graph of any set of n points in general position in the plane contains an independent set of size at least $c n$? We answer this question in the negative, by proving that the largest independent set in a randomly and uniformly selected point set in the unit square is $O\left(n \log ^{2} \log n / \log n\right)$, with probability tending to 1 . We also show that our bound is not far from optimal, as the Delaunay graph of a uniform random set of n points almost surely has an independent set of size at least $c n / \log n$.

We give two further applications of our methods. 1 . We construct 2 -dimensional n-element partially ordered sets such that the size of the largest independent sets of vertices in their Hasse diagrams is $o(n)$. This answers a question of Matoušek and Přívětivý [MaP06] and improves a result of Kříž and Nešetřil [KrN91]. 2. For any positive integers c and d, we prove the existence of a planar point set with the property that no matter how we color its elements by c colors, we find an axis-parallel rectangle containing at least d points, all of which have the same color. This solves an old problem from [BrMP05].

1 Delaunay graphs and conflict-free colorings

The Delaunay graph associated with a set of points P in the plane is a graph $D^{\prime}(P)$ whose vertex set is P and whose edge set consists of those pairs $\{p, q\} \subset P$ for which there exists a closed disk that contains p and q, but does not contain any other element of P. The Delaunay graph of P is a planar graph and its dual is the Dirichlet-Voronoi diagram of P (see, e.g., [BKOS00]). As any other planar graph, $D^{\prime}(P)$ contains an independent set of size at least $|P| / 4$. It was discovered by Even, Lotker, Ron, and Smorodinsky [ELRS03] that this fact easily implies that any set P of n points in the plane has a conflict-free coloring with respect to disks, which uses at most $O(\log n)$ colors, that is, a coloring with the property that any closed disk C with $C \cap P \neq \emptyset$ has an element whose color is not assigned to any other element of $C \cap P$. Here, the logarithmic bound is tight for every point set [PaT03].

[^0]The question was motivated by a frequency assignment problem in cellular telephone networks. The points correspond to base stations interconnected by a fixed backbone network. Each client continuously scans frequencies in search of a base station within its (circular) range with good reception. Once such a base station is found, the client establishes a radio link with it, using a frequency not shared by any other station within its range. Therefore, a conflict-free coloring of the points corresponds to an assignment of frequencies to the base stations, which enables every client to connect to a base station without interfering with the others. For many results on conflict-free colorings, consult [AlS06], [FiLM05], [HaS05].

The same scheme can be used to construct conflict-free colorings of point sets with respect to various other families of geometric figures. In general, let P be a set of points in \mathbf{R}^{d}, and let \mathcal{C} be a family of d-dimensional convex bodies. Define the Delaunay graph $D_{\mathcal{C}}(P)$ of P with respect to \mathcal{C} on the vertex set P by connecting two elements $p, q \in P$ with an edge if and only if there is a member of \mathcal{C} that contains p and q, but no other element of P. The existence of large independent sets in such graphs implies that P has a conflict-free coloring with respect to \mathcal{C}, which uses a small number of colors. That is, a coloring with the property that any member $C \in \mathcal{C}$ with $C \cap P \neq \emptyset$ has an element whose color is not assigned to any other element of $C \cap P$.

In this paper, we consider this problem in the special case when \mathcal{C} is the family of axis-parallel rectangles in the plane. The Delaunay graph $D(P)$ of a point set P with respect to axis-parallel rectangles is also called the rectangular visibility graph of P. Computing all rectangularly visible pairs of an n-element point set, that is, all edges of $D(P)$, is a classical problem, solved in $O(n \log n+|D(P)|)$ time by Güting, Nurmi, and Ottman [GuNO85], in a paper presented at the First ACM Symposium on Computational Geometry in 1985. See also [GuNO89], [OvW88], [DeH91], [JaT92].

The maximum size of an independent set of vertices in a graph G is called the independence number of G, and is usually denoted by $\alpha(G)$ in the literature. Smorodinsky et al. [ELRS03], [HaS05] asked whether the Delaunay graph of every set of n points in the plane with respect to axis-parallel rectangles has independence number at least $c n$, for an absolute constant $c>0$. In Section 3, we give a negative answer to this question. More precisely, we establish

Theorem 1. There are n-element point sets in the plane such that the independence numbers of their Delaunay graphs with respect to axis-parallel rectangles are at most $O\left(n \frac{\log ^{2} \log n}{\log n}\right)$.

In fact, a randomly and uniformly selected set of n points in the unit square will meet the requirements with probability tending to 1 .

For randomly selected point sets, this result is not far from being best possible. In Section 2, we prove
Theorem 2. The independence number of a randomly and uniformly selected n-element point set in the unit square is almost surely $\Omega\left(\frac{n}{\log n}\right)$.

For arbitrary point sets, Ajwani, Elbassioni, Govindarajan, and Ray [AjEG07] proved that the independence number of the Delaunay graph of any set of n points in the plane with respect to axis-parallel rectangles is at least $\Omega\left(n^{617}\right)$. This implies that any set of n points in the plane admits a conflict-free coloring using $O\left(n^{383}\right)$, with respect to the family of all axis-parallel rectangles. For weaker results, consult [PaT03],[MaP06], [ElM06].

Matoušek and Přívětivý raised another closely related problem. Given a finite partially ordered set $(X,<)$, we say that $p \in X$ is an immediate predecessor of $q \in X$ if $p<q$ and there is no $r \in X$ with $p<r<q$. The Hasse diagram $H(X,<)$ of $(X,<)$ is an undirected graph on the vertex set X, in which two vertices are connected if and only if one is an immediate predecessor of the other. The (Dushnik-Miller) dimension of a partial ordering $<$ is the smallest number of linear (that is, total) orderings whose intersection
is <. Matoušek and Přívětivý [MaP06] asked whether the Hasse diagram of every two-dimensional partially ordered set of n elements contains an independent set whose size is linear in n. The next theorem provides a negative answer to this question.

Theorem 3. There are two-dimensional partially ordered sets with n elements such that the independence numbers of their Hasse diagrams are at most $O\left(n \frac{\log ^{2} \log n}{\log n}\right)$.

Given a finite point set P in the plane and a fixed (x, y) coordinate system, we can define a partial ordering on P by letting $p \leq q$ if the x-coordinate of p does not exceed the x-coordinate of q and the y coordinate of p does not exceed the y-coordinate of q. This ordering is called the domination order of P with respect to the coordinate system. Reversing the direction of the x-axis (that is, replacing x by $-x$), we obtain another domination order of P. Denoting the Hasse diagrams of these two domination orders by $H(P)$ and $H^{\prime}(P)$, we have that their union $H(P) \cup H^{\prime}(P)$ is equal to $D(P)$, the Delaunay graph $D(P)$ with respect to axis-parallel rectangles. Therefore, the independence number of $H(P)$ satisfies $\alpha(H(P)) \geq \alpha(D(P))$. Theorem 3 can be established by a slight modification of the proof of Theorem 1 ; the details are left to the reader. The argument also gives that if $<$ is the intersection of two randomly and uniformly selected linear orderings of an n-element set X, then $\alpha(H(X,<))=O\left(n \frac{\log ^{2} \log n}{\log n}\right)$, with probability tending to 1 .

Kříz and Nešetril [KrN91] gave an explicit construction proving that the chromatic numbers of the Hasse diagrams of planar point sets are not bounded. A little calculation based on their construction shows that there exist n-element point sets P such that the chromatic numbers of their Hasse diagrams grow as fast as $\log ^{*} n$, the iterated logarithm of n. Theorem 3 implies a better bound.

Corollary 4. There are two-dimensional partially ordered sets with n elements such that the chromatic numbers of their Hasse diagrams are at least $\Omega\left(\frac{\log n}{\log ^{2} \log n}\right)$.

Note that the construction of Křiž and Nešetrill contains linear sized independent sets.
In geometric discrepancy theory [BeCh87], [Ch00], [Ma99], there are plenty of results that indicate some unavoidable irregularities in geometric configurations. In Section 4, we generalize Theorem 1. As a corollary of our results, we obtain a solution to Problem 5, Chapter 2.1 in [BrMP05].

Theorem 5. For any positive integers c and d, there is a finite point set in the plane with the property that no matter how we color its elements with c colors, there always exists an axis-parallel rectangle containing at least d points, all of which have the same color.

Pach and Tardos proved the "dual" statement: For any positive integers c and d, there is a d-fold covering of the unit square $[0,1]^{2}$ with finitely many axis-parallel rectangles such that no matter how we color them with c colors, there always exists a point in $[0,1]^{2}$ with the property that all rectangles containing it are of the same color. (A collection of sets is said to form a d-fold covering of the unit square if every point of $[0,1]^{2}$ is contained in at least d of its members.) It was shown in [Pa86] that no such d-fold covering exists with translates of a fixed rectangle if $c>1$ and d is large enough. See also [PaTT07].

2 The size of Delaunay graphs of random point sets: The proof of Theorem 2

The aim of this section is to prove Theorem 2. First, we estimate the average number of edges of a Delaunay graph, and then the standard deviation of the number of edges from its expected value.

Let $P=\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ be a point set in the unit square, whose no two elements share the same x-coordinate or y-coordinate. Clearly, the Delaunay graph $D(P)$ with respect to axis-parallel rectangles depends only on the relative position of the points in P and not on their actual coordinates. That is, there exists a permutation $\pi:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ such that for the set $P^{\prime}=\{(i, \pi(i)): 1 \leq i \leq n\}$ we have $D(P) \approx D\left(P^{\prime}\right)$. Moreover, for a random set of points in the square, the corresponding permutation π is uniformly random. With a slight abuse of notation, we write $D(\pi)$ for the Delaunay graph $D\left(P^{\prime}\right)$. In our arguments about Delaunay graphs of randomly selected point sets in the square, it will be convenient to consider the graph $D(\pi)$ for a random permutation π. The number of edges of $D(\pi)$ will be denoted by $|D(\pi)|$.

Lemma 6. Let $\pi:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ be a random permutation. The expected value of the number of edges of the Delaunay graph $D(\pi)$ satisfies

$$
\mathrm{E}[|D(\pi)|]=2 n \log n-O(n)
$$

Proof. Two points $p_{i}=(i, \pi(i))$ and $p_{j}=(j, \pi(j))$ with $i<j$ are connected by an edge in $D(P)$ if and only if $\pi(i)$ and $\pi(j)$ are consecutive elements in the natural ordering of the set $S=\{\pi(k) \mid i \leq k \leq j\}$. Among all $\binom{j-i+1}{2}$ pairs of elements in this set, precisely $j-i$ consist of consecutive elements. Clearly, after fixing $\pi(k)$ for $k<i$ or $k>j$, the pair $\{\pi(i), \pi(j)\}$ is equally likely to be any one of the pairs in S. Therefore, the probability that p_{i} and p_{j} are connected is equal to

$$
\frac{j-i}{\binom{j-i+1}{2}}=\frac{2}{j-i+1} .
$$

Thus, the expected number of edges in $D(P)$ is

$$
\sum_{l=1}^{n-1} \frac{2(n-l)}{l+1}=(2 n+2) \sum_{l=1}^{n} \frac{1}{l}-4 n=2 n \log n-O(n)
$$

Lemma 6 easily implies that

$$
\mathrm{E}[\alpha(D(\pi))]=\Omega\left(\frac{n}{\log n}\right)
$$

To complete the proof of Theorem 2, it is sufficient to show that the number of edges of $D(\pi)$, for a random permutation π, is concentrated around its expected value.

Lemma 7. Let $\pi:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ be a random permutation, and let $\sigma(|D(\pi)|)=$ $\sqrt{\operatorname{var}|D(\pi)|}$ denote the standard deviation of the number of edges of the Delaunay graph $D(\pi)$. We have

$$
\sigma(|D(\pi)|)=O(\sqrt{n} \log n)
$$

Proof. Let p_{i} denote the same as in the proof of Lemma 6, and let $\xi_{i j}$ be the characteristic function of the event that p_{i} and p_{j} form an edge in $D(\pi)$. Clearly, we have $|D(\pi)|=\sum_{i, j} \xi_{i j}$.

We have to estimate the variance

$$
\begin{equation*}
\operatorname{var}\left[\sum_{i, j} \xi_{i j}\right]=\sum_{i, j} \operatorname{var}\left[\xi_{i j}\right]+2 \sum_{\{i, j\} \neq\left\{i^{\prime}, j^{\prime}\right\}} \operatorname{cov}\left[\xi_{i j}, \xi_{i^{\prime} j^{\prime}}\right] \tag{1}
\end{equation*}
$$

In the proof of Lemma 6, we have shown that $E\left(\xi_{i j}\right)=\frac{2}{j-i+1}$, for any $j>i$. Using the fact that $\xi_{i j}$ is a $0-1$ valued function, we obtain that

$$
\operatorname{var}\left[\xi_{i j}\right]=\mathrm{E}\left[\xi_{i j}\right]\left(1-\mathrm{E}\left[\xi_{i j}\right]\right)<\frac{2}{j-i+1}
$$

Therefore, we have $\sum_{i, j} \operatorname{var}\left[\xi_{i j}\right]=O(n \log n)$, and in (1) it remains to estimate the pairwise covariances of the random variables $\xi_{i j}$.

Let $\xi_{i j}$ and $\xi_{i^{\prime} j^{\prime}}$ be two characteristic functions, as above. We distinguish two cases and several subcases.
Case 1: The indices $i, j, i^{\prime}, j^{\prime}$ are all distinct.
Subcase la: The intervals $[i, j]$ and $\left[i^{\prime} j^{\prime}\right]$ are disjoint. In this case, obviously, the random variables $\xi_{i j}$ and $\xi_{i^{\prime} j^{\prime}}$ are independent, so that we have $\operatorname{cov}\left[\xi_{i j}, \xi_{i^{\prime} j^{\prime}}\right]=0$.
Subcase $1 b$: One of the intervals $[i, j]$ and $\left[i^{\prime} j^{\prime}\right]$ contains the other. In this case, we can still argue that $\xi_{i j}$ and $\xi_{i^{\prime} j^{\prime}}$ are independent. Indeed, assume without loss of generality assume that $[i, j]$ contains $\left[i^{\prime} j^{\prime}\right]$. Generate the permutation π by first fixing its values outside the interval $\left[i^{\prime}, j^{\prime}\right]$, and then, at the second stage, by fixing the values of the elements in $\left[i^{\prime}, j^{\prime}\right]$. Observe that after the first stage we know whether $p_{i} p_{j}$ is an edge of $D(\pi)$. It is decided at the second stage whether $p_{i^{\prime}} p_{j^{\prime}}$ is an edge, but the probability of this event is exactly $\frac{2}{j^{\prime}-i^{\prime}+1}$, independently of the outcome at the first stage. Thus, again we have $\operatorname{cov}\left[\xi_{i j}, \xi_{i^{\prime} j^{\prime}}\right]=0$.
Subcase 1c: The intervals $[i, j]$ and $\left[i^{\prime} j^{\prime}\right]$ are intertwined. We may assume without loss of generality that $i<i^{\prime}<j<j^{\prime}$. Generate π by the following process. First we fix the values of π outside of the interval $\left[i, j^{\prime}\right]$. Next we determine the values of π for i and j^{\prime}. In the third step, we temporarily fix π for the remaining elements in the open interval $\left(i, j^{\prime}\right)$. Finally, in the fourth step we swap the image, $\pi(x)$, of a random element $x \in\left[i^{\prime}, j^{\prime}\right) \backslash\{j\}$ with $\pi\left(i^{\prime}\right)$. Clearly, this way we obtain a random permutation. We need the fourth step for technical reasons. The probability that after the third step the rectangle induced by p_{i} and p_{j} is either empty or contains the point $p_{i^{\prime}}$ (but no other point) is exactly $\frac{2}{j-i}$. Let us denote this event by W. If after the last step $p_{i} p_{j}$ is an edge, then W holds. Compute the probability, conditioned on W, that $p_{i^{\prime}} p_{j^{\prime}}$ is an edge after the fourth step. Let $x_{m}=\min _{k \in\left[i^{\prime}, j^{\prime}\right] \backslash\{j\}} \pi(k)$ and $x_{M}=\max _{k \in\left[i^{\prime}, j^{\prime}\right] \backslash\{j\}} \pi(k)$. If $\pi\left(j^{\prime}\right) \notin\left\{x_{m}, x_{M}\right\}$, then before the final (fourth) step exactly two elements of $\left[i^{\prime}, j^{\prime}\right) \backslash\{j\}$ have the property that swapping their π values with $\pi\left(i^{\prime}\right)$, the rectangle induced by $p_{i^{\prime}}$ and $p_{j^{\prime}}$ becomes empty or it only contains p_{j}. (We think of p_{j} as invisible.) If $\pi\left(j^{\prime}\right) \in\left\{x_{m}, x_{M}\right\}$, there is exactly one such element. Hence, the probability that $p_{i^{\prime}} p_{j^{\prime}}$ becomes an edge after the fourth step is at most $\frac{2}{j^{\prime}-i^{\prime}}$, regardless of how π is fixed on $[i, j] \backslash\left\{i^{\prime}\right\}$. Therefore, we have

$$
\begin{aligned}
\operatorname{cov}\left[\xi, \xi^{\prime}\right]=\mathrm{E}\left[\xi \xi^{\prime}\right]-\mathrm{E}[\xi] \mathrm{E}\left[\xi^{\prime}\right] & \leq \frac{2}{j-i} \frac{2}{j^{\prime}-i^{\prime}}-\frac{2}{j-i+1} \frac{2}{j^{\prime}-i^{\prime}+1} \\
& <\frac{8}{(j-i)\left(j^{\prime}-i^{\prime}\right) \min \left\{(j-i),\left(j^{\prime}-i^{\prime}\right)\right\}}
\end{aligned}
$$

Remark. It is easy to see that if $j-i=j^{\prime}-i^{\prime}=2$, and the intervals $[i, j]$ and $\left[i^{\prime}, j^{\prime}\right]$ are intertwined, then the covariance is $5 / 12-4 / 9=-1 / 36$. If $i=1, i^{\prime}=2, j=3, j^{\prime}=5$, the covariance is $38 / 120-1 / 3=-1 / 60$.

Case 2: The indices $i, j, i^{\prime}, j^{\prime}$ are not all distinct.

Subcase 2a: $i=i^{\prime}<j^{\prime}<j$. We obtain by direct computation that

$$
\begin{aligned}
\operatorname{cov}\left[\xi, \xi^{\prime}\right] & =\mathrm{E}\left[\xi \xi^{\prime}\right]-\mathrm{E}[\xi] \mathrm{E}\left[\xi^{\prime}\right] \\
& =\frac{4(j-i-1)}{(j-i+1)(j-i)\left(j^{\prime}-i^{\prime}\right)}-\frac{4}{(j-i+1)\left(j^{\prime}-i^{\prime}+1\right)} \\
& =O\left(\frac{1}{(j-i)\left(j^{\prime}-i^{\prime}\right)^{2}}\right)
\end{aligned}
$$

Subcase 2b: $i^{\prime}<j^{\prime}=i<j$. An argument similar to the one applied in Subcase 1c yields that if $j-i \geq$ $j^{\prime}-i^{\prime}$, then $\operatorname{cov}\left(\xi, \xi^{\prime}\right)=O\left(\frac{1}{(j-i)\left(j^{\prime}-i^{\prime}\right)^{2}}\right)$, and if $j-i \leq j^{\prime}-i^{\prime}$, then $\operatorname{cov}\left(\xi, \xi^{\prime}\right)=O\left(\frac{1}{\left(j^{\prime}-i^{\prime}\right)(j-i)^{2}}\right)$.

Summarizing: the last term of (1), and therefore the variance of $|D(\pi)|=\sum_{i, j} \xi_{i j}$, can be estimated by

$$
\sum_{\{i, j\} \neq\left\{i^{\prime}, j^{\prime}\right\}} \operatorname{cov}\left[\xi_{i, j}, \xi_{i^{\prime}, j^{\prime}}\right]=O\left(n \log ^{2} n\right)
$$

completing the proof of Lemma 7.
Proof of Theorem 2. By Lemma 6, the expected number of edges in the Delaunay graph of a random permutation π on n elements satisfies

$$
\mathrm{E}[|D(\pi)|]=\Theta(n \log n)
$$

By Chebyshev's Inequality, as long as

$$
\sigma(|D(\pi)|)=\sqrt{\operatorname{var}|D(\pi)|}=o(\mathrm{E}[|D(\pi)|])
$$

holds, the number of edges is almost surely within a factor of $1+\varepsilon$ of its expectation, for any $\varepsilon>0$. Lemma 7 shows that this is the case, therefore almost surely we have $|D(\pi)|=\Theta(n \log n)$.

According to Turán's theorem, any graph with n vertices, e edges, and average degree $d=\frac{2 e}{n}$ has an independent set of size at least $\frac{n}{d+1}=\frac{n^{2}}{2 e+n}$. In particular, we have

$$
\alpha(D(\pi)) \geq \frac{n^{2}}{2|D(\pi)|+1}
$$

so that almost surely $\alpha(D(\pi))=\Omega(n / \log n)$, as required.

3 The independence number of Delaunay graphs of random point sets: The proof of Theorem 1

We reformulate and prove Theorem 1 in a more precise form.
Theorem 8. Let P be a set of n randomly and uniformly selected points in the square $[0,1]^{2}$. Then there exists a constant c such that

$$
\operatorname{Prob}_{n \rightarrow \infty}\left(\alpha(D(P))<c \frac{n \log ^{2} \log n}{\log n}\right) \rightarrow 1
$$

Proof. The points $p_{i} \in P$ will be defined in two steps. First we select the x-coordinates from the interval $[0,1]$ uniformly at random. With probability 1 , all the x coordinates are distinct. Let us relabel the points so that

$$
0 \leq x_{1}<x_{2}<\cdots<x_{n} \leq 1
$$

In the second step, we select the y-coordinates of $p_{i}=\left(x_{i}, y_{i}\right)$ uniformly and independently from $[0,1]$. Note that, after the x_{i} 's have been fixed, the edge set of the Delaunay graph $D(P)$ depends only on the relative order of the y_{i} 's.

The coordinates y_{i} are generated as follows. Fix an integer $L \geq 2$ to be specified later. We write the numbers $y_{i} \in[0,1]$ in base L :

$$
y_{i}=\left(0 \cdot d_{i}^{(1)} d_{i}^{(2)} \ldots\right)_{L}
$$

The digits $d_{i}^{(t)}$ of y_{i} are chosen independently and uniformly from the set $\{0, \ldots, L-1\}$. For $t \geq 1$, denote by $y_{i}^{(t)}$ the truncated L-ary fraction of y_{i}, consisting of $t-1$ digits after 0 :

$$
y_{i}^{(t)}=\left(0 . d_{i}^{(1)} \ldots d_{i}^{(t-1)}\right)_{L}
$$

The digits of y_{i} will be chosen one by one. At stage t, we determine $d_{i}^{(t)}$ (and, hence, $y_{i}^{(t+1)}$), for all i. Note that before stage t, the truncated fractions $y_{i}^{(t)}$ have already been fixed. As soon as we complete stage t, we know the y-coordinates of the points p_{i} up to an error of at most L^{-t}. If $y_{i}^{(t+1)}=y_{j}^{(t+1)}$, then the relative order of y_{i} and y_{j} has not yet been decided. Otherwise, if we have $y_{i}^{(t+1)}<y_{j}^{(t+1)}$, say, then $y_{i}<y_{j}$ holds in the final configuration.

Let $1 \leq i<j \leq n$ be fixed. Suppose that for some t, the following two conditions are satisfied:

1. $y_{i}^{(t+1)}=y_{j}^{(t+1)}$,
2. $y_{k}^{(t+1)} \neq y_{i}^{(t+1)}$ holds for all k satisfying $i<k<j$.

Then the rectangle $\left[x_{i}, x_{j}\right] \times\left[y_{i}^{(t+1)}, y_{i}^{(t+1)}+L^{-t}\right)$ contains p_{i} and p_{j}, but no other element of P. Thus, in this case, p_{i} and p_{j} are connected in $D(P)$, and we say that this edge is forced at stage t. Although $D(P)$ may contain many edges that are not forced at any stage, we are going to use only forced edges in proving our upper bound on the independence number of $D(P)$.

Let us fix a subset $I \subset\{1, \ldots, n\}$, and let $Q=Q(I)=\left\{p_{i}: i \in I\right\}$. We want to estimate from above the probability that Q is an independent set in $D(P)$.

Let $t \geq 1$, and consider stage t of our selection process. Before this stage, $y_{i}^{(t)}$ has been fixed for every i. For any L-ary fraction y of the form $y=\left(0 . d^{(1)} d^{(2)} \ldots d^{(t-1)}\right)_{L}$, define a subset $H_{y} \subseteq\{1, \ldots, n\}$ by

$$
H_{y}=\left\{1 \leq i \leq n: y_{i}^{(t)}=y\right\}
$$

Obviously, these sets partition $\{1, \ldots, n\}$, and hence I, into at most L^{t-1} nonempty parts. If two indices $i, j \in I$ are consecutive elements of the same part $H_{y} \cap I$, then we call them neighbors. That is, $i<j$ are neighbors if

1. $y_{i}^{(t)}=y_{j}^{(t)}=y$ holds for some y, and
2. $H_{y} \cap\{k \in I: i<k<j\}=\emptyset$.

For any two neighbors $i, j \in H_{y}(i<j)$, define

$$
S_{i, j}=\left\{k \in H_{y}: i<k<j\right\} .
$$

Two neighbors $i, j \in I(i<j)$ are called close neighbors if $\left|S_{i, j}\right| \leq L$.
If there are two close neighbors $i, j \in I$ such that the $\left\{p_{i}, p_{j}\right\}$ is an edge of $D(P)$ forced at stage t, then Q is not an independent set in $D(P)$ and we say that Q fails at stage t. Otherwise, Q is said to survive stage t, and we indicate this fact by writing $Q \curvearrowright t$.

Let $i<j$ be a pair of close neighbors. Note that $\left\{p_{i}, p_{j}\right\}$ is an edge of $D(P)$ forced in stage t if and only if $d_{i}^{(t)}=d_{j}^{(t)}$, but $d_{i}^{(t)} \neq d_{k}^{(t)}$ holds for all $k \in S_{i, j}$. The probability of this event is

$$
\operatorname{Prob}\left(\left\{p_{i}, p_{j}\right\} \text { is forced at stage } t\right)=\frac{1}{L}\left(1-\frac{1}{L}\right)^{\left|S_{i, j}\right|}
$$

Taking into account that $\left|S_{i, j}\right| \leq L$, we obtain

$$
\operatorname{Prob}\left(\left\{p_{i}, p_{j}\right\} \text { is forced at stage } t\right) \geq \frac{1}{4 L}
$$

Notice that, assuming a fix outcome of previous stages (i.e., $p_{k}^{(t)}$ is fixed for all k), the presence of edges $\left\{p_{i}, p_{j}\right\}$ forced at stage t are independent for all neighbors. Thus,

$$
\operatorname{Prob}\left(Q \curvearrowright t \mid \text { outcome of stages } t^{\prime}<t\right) \leq\left(1-\frac{1}{4 L}\right)^{m} \leq e^{-\frac{m}{4 L}}
$$

where m stands for the number of pairs $i, j \in I$ that are close neighbors before stage t.
Obviously, every $i \in I$, except the last element in each set H_{y}, has exactly one neighbor $j>i$. As the sets $S_{i, j}$ are pairwise disjoint for different pairs of neighbors $i<j$, there are fewer than $\frac{n}{L}$ pairs that are neighbors but not close neighbors. Thus, we have

$$
m>|I|-\frac{n}{L}-L^{t-1}
$$

If $t \leq \log n / \log L$ and $|I| \geq 3 n / L$, we have $m \geq n / L$, and thus

$$
\operatorname{Prob}\left(Q \curvearrowright t \mid \text { outcome of stages } t^{\prime}<t\right) \leq e^{-\frac{n}{4 L^{2}}} .
$$

As the above bound applies assuming any set of choices made at previous stages, so in particular, it applies to the conditional probability that Q survives stage t, given that it has survived all previous stages:

$$
\operatorname{Prob}\left(Q \curvearrowright t \mid Q \curvearrowright t^{\prime} \text { for all } t^{\prime}<t\right) \leq\left(1-\frac{1}{4 L}\right)^{m} \leq e^{-\frac{n}{4 L^{2}}}
$$

Taking the product of these estimates for all $t \leq \log n / \log L$, we obtain

$$
\operatorname{Prob}(Q \text { survives the first }\lfloor\log n / \log L\rfloor \text { stages }) \leq \exp \left(-\frac{n}{4 L^{2}}\left(\frac{\log n}{\log L}-1\right)\right)
$$

The last bound is valid for any set $Q=Q(I) \subseteq P$, where $I \subset\{1, \ldots, n\}$ satisfies $|I| \geq 3 n / L$. Letting

$$
L=\left\lfloor\frac{\log n}{100 \log ^{2} \log n}\right\rfloor \quad \text { and } \quad a=\left\lceil\frac{3 n}{L}\right\rceil
$$

we can conclude that

$$
\begin{aligned}
\operatorname{Prob}(\alpha(D(P)) \geq a) & \leq \sum_{Q \subset P,|Q|=a} \operatorname{Prob}(Q \text { survives all stages }) \\
& \leq\binom{ n}{a} \exp \left(-\frac{n}{4 L^{2}}\left(\frac{\log n}{\log L}-1\right)\right) \\
& \rightarrow 0
\end{aligned}
$$

as required.

4 Discrepancy in colored random point sets

In this section, we strengthen Theorem 1.
Definition. Given an integer $d>1$ and a finite point set P in the plane, a subset $Q \subseteq P$ is called d independent if there is no axis-parallel rectangle R such that $|R \cap P|=d$ and $R \cap P \subseteq Q$. Let $\alpha_{d}(P)$ denote the size of the largest d-independent subset of P.

According to this definition, a subset of P is 2 -independent if and only if it is an independent set in the Delaunay graph $D(P)$ associated with P. In particular, we have $\alpha_{2}(P)=\alpha(D(P))$.

Obviously, if a set is d-independent for some $d>1$, then it is also d^{\prime}-independent for any $d^{\prime}>d$. Therefore, $\alpha_{d}(P)$ is increasing in d.

Theorem 5 is a direct corollary to
Theorem 9. A randomly and uniformly selected set P of n points in the unit square almost surely satisfies

$$
\alpha_{d}(P)=O\left(\frac{d n \log ^{2} \log n}{\log ^{1 /(d-1)} n}\right) .
$$

Proof. We modify the proof of Theorem 1. Pick the random points $p_{i}=\left(x_{i}, y_{i}\right) \in P$ according to the same multi-stage model as in the previous section, and define the truncated fractions $y_{i}^{(t)}$ that approximate y_{i} in exactly the same way as before.

Fix a subset $I \subseteq\{1, \ldots, n\}$, and let $Q=Q(I)=\left\{p_{i}: i \in I\right\}$. Just like in the proof of Theorem 1, analyze a fixed stage t of the selection process, by introducing the sets H_{i}.

Instead of using the notion of neighbors, we need a new definition. For any two elements $i, j \in I(i<j)$ such that $y_{i}^{(t)}=y_{j}^{(t)}=y$ for some y, introduce the sets

$$
T_{i, j}=\left\{k \in H_{y} \cap I: i \leq k \leq j\right\} \quad \text { and } \quad S_{i, j}=\left\{k \in H_{y} \backslash I: i<k<j\right\} .
$$

The numbers i and j are called d-neighbors if $\left|T_{i, j}\right|=d$. The pair $\{i, j\}$ of d-neighbors is called a pair of close d-neighbors if $\left|S_{i, j}\right| \leq L$.

We say that the pair of close d-neighbors $\left\{p_{i}, p_{j}\right\}$ fails at stage t if at this stage the y-coordinates of all points p_{k} with $k \in T_{i, j}$ receive the same new digit $d_{k}^{(t)}=\delta$, but the y-coordinate of no point p_{ℓ} with $\ell \in S_{i, j}$ receives this digit. The probability of this event is exactly

$$
L^{1-d}\left(1-\frac{1}{L}\right)^{\left|S_{J}\right|} \geq L^{1-d}\left(1-\frac{1}{L}\right)^{L} \geq \frac{1}{4 L^{d-1}}
$$

Obviously, if any pair $\left\{p_{i}, p_{j}\right\}$ fails at stage t, then Q cannot be d-independent. In this case, we say that Q fails at stage t. Otherwise, Q is said to have survived stage t, and we write $Q \curvearrowright t$.

The failures of certain pairs at a given stage are not independent events. However, they are independent for any collection of close d-neighbor pairs (i, j) with the property that the corresponding sets $T_{i, j}$ are pairwise disjoint. To find such a collection consisting of many pairs, select at least $\frac{\left|H_{y} \cap I\right|}{d-1}-1$ pairs of d neighbors from each H_{y} with pairwise disjoint sets $T_{i, j}$, and thus a total of at least $\frac{|I|}{d-1}-L^{t-1}$ pairs. Since the corresponding sets $S_{i, j}$ are pairwise disjoint, all but at most n / L of them are close d-neighbors. Thus, as long as $|I| \geq 3(d-1) n / L$ and $t \leq \log n / \log L$, we obtain collection of

$$
m \geq \frac{|I|}{d-1}-L^{t-1}-\frac{n}{L} \geq \frac{n}{L}
$$

close d-neighbors with the required property.
If any pair of this collection fails at stage t, then Q fails at this stage. As in the proof of Theorem 1 , we have

$$
\operatorname{Prob}\left(Q \curvearrowright t \mid Q \curvearrowright t^{\prime} \text { for all } t^{\prime}<t\right) \leq e^{-\frac{n}{4 L^{d}}}
$$

and

$$
\operatorname{Prob}(Q \text { survives all stages }) \leq \exp \left(-\frac{n}{4 L^{d}}\left(\frac{\log n}{\log L}-1\right)\right)
$$

Letting

$$
L=\left\lfloor\frac{\log ^{1 /(d-1)} n}{100 \log ^{2} \log n}\right\rfloor \quad \text { and } \quad a=\left\lceil\frac{3(d-1) n}{L}\right\rceil,
$$

we obtain

$$
\operatorname{Prob}(\alpha(D(P)) \geq a)<\binom{n}{a} \exp \left(-\frac{n}{4 L^{d}}\left(\frac{\log n}{\log L}-1\right)\right) \rightarrow 0
$$

5 Concluding remarks, open problems

The notion of Delaunay graphs for axis-parallel boxes naturally generalizes to higher dimensions. An easy extension of the proof of Theorem 2 proves that for any fixed d, the Delaunay graph of randomly and uniformly selected points in the d-dimensional unit cube has expected average degree $O\left((\log n)^{d}\right)$. This implies that random Delaunay graphs have independent sets of size $n^{1-o(1)}$ in higher dimensions, too. All upper bounds on the independence number that apply to dimension d also apply to every larger dimension. This can easily be seen by projecting a d-dimensional point sets to a coordinate hyperplane. Delaunay graphs can only lose edges under this operation.

In general, by repeated application of the Erdős-Szekeres lemma it is easy to show that the independence number of the Delaunay graph of any set of n points in d-dimensions, with respect to axis-parallel boxes, is at least $\Omega\left(n^{1 / 2^{d-1}}\right)$. As far as we know, no significant improvement on this bound is known, although the truth may well be $\Omega\left(n^{1-o(1)}\right)$, for any fixed d.

Returning to the plane, it is not hard show that the expected number of d-tuples T in a randomly and uniformly selected set P of n points in the plane, for which there exists an axis-parallel rectangle whose intersection with P is T, is $\Theta\left(d^{2} n \log n\right)$. By a result of Spencer [Sp72], any d-uniform hypergraph with
n vertices and $\Theta(n k)$ edges has an independent set of size $\Omega\left(n / k^{1 /(d-1)}\right)$. Therefore, P contains a d independent subset of size $\Omega\left(n / \log ^{1 /(d-1)} n\right)$. This is within $O\left(\log ^{2} \log n\right)$ of our upper bound.
Acknowledgement. Lemma 6 has been proved independently by Sariel Har-Peled (personal communication). We are indebted to him and to Shakhar Smorodinsky for many interesting discussions on the subject.

References

[AjEG07] D. Ajwani, K. Elbassioni, S. Govindarajan, and S. Ray: Conflict-free coloring for rectangle ranges using $\tilde{O}\left(n^{.382}+\varepsilon\right)$ colors, in: em Proc. 19th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA 07), 181-187.
[A1S06] N. Alon and S. Smorodinsky: Conflict-free colorings of shallow discs, in: Proc. 22nd Ann. ACM Symp. on Computational Geometry (SoCG 2006), 41-43.
[BeCh87] J. Beck and W. Chen: Irregularities of Distribution. Cambridge Tracts in Mathematics 89, Cambridge University Press, Cambridge, 1987.
[BKOS00] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf: Computational Geometry. Algorithms and Applications. 2nd ed., Springer-Verlag, Berlin, 2000.
[BrMP05] P. Brass, W. Moser, and J. Pach: Research Problems in Discrete Geometry, Springer-Verlag, New York, 2005.
[Ch00] B. Chazelle: The Discrepancy Method. Randomness and Complexity, Cambridge University Press, Cambridge, 2000.
[ClS89] K.L. Clarkson and P. W. Shor: Applications of random sampling in computational geometry. II, Discrete Comput. Geom. 4 (1989), 387-421.
[DeH91] F. Dehne, A.-L. Hassenklover, J.-R. Sack, and N. Santoro: Computational Geometry algorithms for the systolic screen, Algorithmica $\mathbf{6}$ (1991), 734-761.
[EIM06] K. Elbassioni and N. H. Mustafa: Conflict-free colorings of rectangles ranges, in 23 rd Internat. Symp. on Theoretical Aspects of Comp. Science (STACS 2006), 254-263.
[ELRS03] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks, SIAM J. Comput. 33 (2003), 94-136.
[FiLM05] A. Fiat, M. Levy, J. Matoušek, E. Mossel, J. Pach, M. Sharir, S. Smorodinsky, U. Wagner, and E. Welzl: Online conflict-free coloring for intervals, in: Proc. 16th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA 2005), 545-554.
[GuNO85] R.H. Güting, O. Nurmi, and T. Ottmann: The direct dominance problem, in: Proc. First ACM Symp. on Computational Geometry, Baltimore, 1985, 81-88.
[GuNO89] R.H. Güting, O. Nurmi, and T. Ottmann: Fast algorithms for direct enclosures and direct dominances, J. of Algorithms $\mathbf{1 0}$ (1989), 170-186.
[HaS05] S. Har-Peled and S. Smorodinsky: Conflict-free coloring of points and simple regions in the plane, Discrete \& Computational Geometry 34 (2005), 47-70.
[JaT92] J.W. Jaromczyk and G.T. Toussaint: Relative neighborhood graphs and their relatives, Proc. IEEE 80 (1992), 1502-1517.
[KeL86] K. Kedem, R. Livne, J. Pach, and M. Sharir: On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles, Discrete Comput. Geom. 1 (1986), 59-71.
[KrN91] I. Kříž and J. Nešetriil: Chromatic number of Hasse diagrams, eyebrows and dimension, Order $\mathbf{8}$ (1991), 41-48.
[Ma99] J. Matoušek: Geometric Discrepancy. An Illustrated Guide. Algorithms and Combinatorics 18, Springer-Verlag, Berlin, 1999.
[MaP06] J. Matoušek and A. Přívětivý: The minimum independence number of a Hasse diagram, Combinatorics, Probability and Computing 15 (2006), 473-475.
[OvW88] M. Overmars and D. Woods: On rectangular visibility, J. Algorithms 9 (1988), 372-390.
[Pa86] J. Pach: Covering the plane with convex polygons, Discrete Comput. Geom. 1 (1986), 73-81.
[PaTT07] J. Pach, G. Tardos, and G. Tóth: Indecomposable coverings, in: Discrete Geometry, Combinatorics and Graph Theory, The China-Japan Joint Conference (CJCDGCGT 2005), Lecture Notes in Computer Science 4381, Springer, 2007, 135-148.
[PaT03] J. Pach and G. Tóth: Conflict-free colorings, in: Discrete and Computational Geometry, Algorithms Combin., Vol. 25, Springer, Berlin, 2003, 665-671.
[Sm06] S. Smorodinsky: On the chromatic number of some geometric hypergraphs, in: Proc. 16th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA 2006), 316-323.
[Sp72] J. Spencer: Turán's theorem for k-graphs, Discrete Math. 2 (1972), 183-186.

[^0]: *Google, 76 Ninth Avenue, New York, NY, 10011.
 ${ }^{\dagger}$ City College, CUNY and Courant Institute, NYU, 251 Mercer Street, New York, NY 10012. Supported by NSF grant CCF-05-14079 and grants from NSA, PSC-CUNY, Hungarian Research Foundation, and BSF.
 ${ }^{\ddagger}$ Rutgers University, 110 Frelinghuysen Road Piscataway, NJ 08854-8019. Supported by NSF grant 0105692.
 ${ }^{\text {§ Simon Fraser University, } 8888 \text { University Drive, Burnaby, B.C., Canada V5A 1S6 and Rényi Institute, H-1055 Budapest, }}$ Reáltanoda utca 13-15, Hungary. Supported by NSERC grant 329527.

