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Abstract We present a Delaunay refinement algorithm for meshing a piecewise

smooth complex in three dimensions. The algorithm protects edges with weighted

points to avoid the difficulty posed by small angles between adjacent input elements.

These weights are chosen to mimic the local feature size and to satisfy a Lipschitz-

like property. A Delaunay refinement algorithm using the weighted Voronoi diagram

is shown to terminate with the recovery of the topology of the input. Guaranteed

bounds on the aspect ratios, normal variation, and dihedral angles are also provided.

To this end, we present new concepts and results including a new definition of local

feature size and a proof for a generalized topological ball property.

Keywords Delaunay refinement · Mesh generation · Piecewise smooth complex ·
Topology

1 Introduction

Delaunay refinement for meshing domains has been around for more than a decade

now [15, 16, 31, 32]. However, an algorithm that handles input as general as piece-
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wise smooth complexes (PSC) is still lacking. There is a need in solid modeling to

represent objects that are dimensionally or materially inhomogeneous [29]. For ex-

ample, in a part consisting of different materials, the internal boundaries may meet to

form a non-manifold. A boundary representation is essentially a graph in which the

nodes represent the vertices, edges, and faces in the object, and the links represent

the incidence relation [23]. Such a representation is a PSC when the curved segments

called edges and the smooth surface patches called faces meet properly. The bound-

ary of any solid with smooth faces and sharp junctions is a special case where the

PSC is a 2-manifold.

As opposed to the polyhedral domains, topology recovery becomes a nontrivial

issue for domains with curved elements since the output cannot conform to the input

exactly. Some recent works address this issue by developing a Delaunay refinement

strategy whose design and analysis are driven by topological property violations [7,

14, 20]. These algorithms work on the assumption that the input is a smooth surface

or a surface that approximates a smooth surface.

To handle PSC one has to deal with non-smoothness. On top of it, possible small

angles between the curved elements add further difficulty. The menace of small an-

gles in Delaunay meshing is well known [17, 26, 33]. Although solutions for polyhe-

dral domains have been obtained recently [11, 12, 28], the case for curved domains

remains mostly open except for a recent work by Boissonnat and Oudot [8]. They

showed that a class of surfaces called Lipschitz surfaces can be meshed with a De-

launay refinement strategy as long as the input angles are sufficiently large. Unfor-

tunately, the derived angle bound allows only a very restricted class of non-smooth

surfaces and the case of PSC which includes non-manifolds remains open. Recently,

Rineau and Yvinec [30] proposed a method to mesh volumes bounded by piecewise

smooth surfaces under the constraint that the tangents to the surface subtend large

input angles at non-smooth regions.

In this paper we present an algorithm to mesh PSC with Delaunay refinement

without any constraint on input angles. One notable aspect of our algorithm is that,

unlike previous approaches [8, 20], it respects the input “non-smooth features“ as it

meshes the input curves and vertices with 1-complexes.

One difficulty in meshing PSC stems from the fact that the usual local feature size

definitions fail to provide an upper bound on the number of repeated insertions trig-

gered by topological ball property violations. We overcome this problem by a new

definition of local feature size which does not vanish on the domain. It is reminiscent

of the effort in [10] where a non-vanishing local feature size is defined for compact

sets in the context of surface reconstruction. Here we combine the two classical de-

finitions, one based on the medial axis [2] and the other based on the adjacency of

elements [11, 31]. The non-smooth regions are then protected by balls whose sizes

and placements are guided by a simulation of a Lipschitz property. The Delaunay

refinement is run on the weighted Voronoi diagram where the protecting balls are

treated as weighted points. The protected curves in PSC always appear as a union

of edges of the restricted weighted Delaunay triangulation. This helps the triangu-

lations, restricted to the individual smooth surface patches, match seamlessly. It also

preserves non-smooth features in the output, a concern that is important in various ap-

plications. An extended topological ball property [21] for general topological spaces
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is proved to claim homeomorphism between the input and output. It is noteworthy

that our weighted point approach never inserts a point inside the protecting balls.

This eliminates the check for point insertions inside the protecting balls as well as the

exception handler for such events.

1.1 Notation and Domain

Throughout this paper, we assume a generic intersection property that a k-manifold

σ ⊂ R
3, 0 � k � 3, and a j -manifold σ ′ ⊂ R

3, 0 � j � 3, intersect (if at all) in a (k +
j − 3)-manifold if σ �⊂ σ ′ and σ ′ �⊂ σ . We will use both geometric and topological

versions of closed balls. A geometric closed ball centered at point x ∈ R
3 with radius

r > 0 is denoted as B(x, r). We use int X and bd X to denote the interior and boundary

of a topological space X, respectively. Given a complex A, we use |A| to denote its

underlying space.

The domain D is a PSC where each element is a compact subset of a C3-smooth

k-manifold, 0 � k � 2. Each element is closed and hence contains its boundaries. We

use Dk to denote the subset of all k-dimensional elements. D0 is a set of vertices;

D1 is a set of curves called 1-faces; D2 is a set of surface patches called 2-faces.

For 1 � k � 2, we use D� k to denote
⋃k

j=0 Dj . Two elements are adjacent if their

intersection is nonempty. Two elements σ and τ are incident if τ ⊆ bdσ .

The domain D satisfies the usual requirements for being a complex: (i) interiors

of the elements are pairwise disjoint; (ii) for any σ ∈ D, bdσ is a union of elements

in D; (iii) for any σ, τ ∈ D, either σ ∩ τ = ∅ or σ ∩ τ is a union of elements in D.

For each 2-face σ , we assume that σ is part of a smooth compact surface Σ with-

out boundary whose equation is given and that σ is represented using the equation

of Σ and some additional inequalities so that one can test whether a given point lies

on σ . We also assume that bdσ consists of disjoint simple closed curves (no bound-

ary points). For each 1-face σ , we assume that σ is an open curve (has boundary

points) contained in the intersection of two surfaces Σ1 and Σ2 whose equations are

also given and that σ is represented using the equations of Σ1 and Σ2 as well as

some additional inequalities so that one can test whether a given point lies on σ . We

introduce the notation mani(σ ): if σ is a 1-face, mani(σ ) denotes Σ1 ∩ Σ2; if σ is a

2-face, mani(σ ) denotes Σ .

For any 2-face σ and for any point x ∈ mani(σ ), we use nσ (x) to denote the unit

outward normal to mani(σ ) at x. For any 1-face σ and for any point x ∈ mani(σ ),

nσ (x) denotes the plane orthogonal to mani(σ ) at x.

Given two nonzero vectors 	d1 and 	d2, let ∠ 	d1, 	d2 denote the angle between them

(which lies in the range [0,π]). Given a 1- or 2-dimensional linear subset L in an

Euclidean space and the vector 	d , let ∠ 	d,L denote the non-obtuse angle between 	d
and the support line/plane of L. Similarly, given L1 and L2 where Li is a 1- or 2-

dimensional linear subset of an Euclidean space, let ∠L1,L2 denote the non-obtuse

angle between the support line/plane of L1 and the support line/plane of L2.

Notice that our definition of PSC disallows certain kinds of surfaces such as cones

or non-orientable surfaces, since they cannot be extended to a smooth surface without

boundary. Although we have not included three-dimensional faces in the PSC defini-

tion, our algorithm can be extended to handle such a PSC using an approach similar

to [27, 30]. We avoid them for saving further technicalities and analysis.
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Various data structures have been proposed in the computer-aided design litera-

ture in order to capture the combinatorial structure of non-manifold solid models; for

example, see [9, 18, 23]. Any of these data structures can be used to represent our

input PSC with each element tagged with the corresponding equations. It is popu-

lar for surfaces to be represented parametrically by rational functions in computer

aided design (e.g., NURBS). Given such a representation, we can first implicitize the

surfaces using the algorithm by Manocha and Canny [24] and then run our meshing

algorithm.

1.2 Overview

Our strategy is to run Delaunay refinement as long as the topology of the domain

is not recovered. Such a strategy was used to mesh smooth surfaces [14] where each

insertion was triggered by a violation of topological ball property [21] (TBP). First of

all, we cannot use the TBP for manifolds here since we are dealing with PSC. It turns

out that the extended topological ball property which can ensure topology recovery

for PSC [21] requires TBP for each element in D. One may drive the refinement with

the violation of the extended TBP, but the possible presence of small angles in the

input causes difficulty. As a remedy, we protect the vertices and 1-faces with some

geometric balls so that no point is inserted in these protecting balls. Such a protection

strategy made the Delaunay refinement possible for polyhedral domains with small

angles [11, 12, 28]. However, placing the protecting balls of appropriate size seems

to be far more difficult in the case of PSC. Once the balls are computed, we treat

them as weighted points which bring the weighted Voronoi and weighted Delaunay

diagrams into picture.

For a weighted point set S ⊂ R
3, let VorS and DelS denote the weighted Voronoi

diagram and the weighted Delaunay triangulation of S, respectively. VorS and DelS

are cell complexes, where each k-face in VorS is a k-polytope and each k-face in

DelS is a k-simplex. Each k-face in VorS is dual to a (3 − k)-face in DelS and

vice versa. We say that S has the TBP for an element in Di if this element intersects

any k-face in VorS in either an empty set or a closed topological ball of dimension

(i + k − 3).

If an element in the domain does not satisfy the TBP, our algorithm detects it and

computes a point far away from all other existing points. At termination, which is

guaranteed by a standard packing argument, S has the TBP for each element in D.

The entire analysis and the crucial step of ball protection needs a feature size

definition which is 1-Lipschitz and nonzero everywhere. We achieve it by a nontrivial

combination of the local feature sizes defined for polyhedral domains and smooth

surfaces.

1.3 Background Results

We state a few technical results whose proofs are deferred to Appendix A.

Lemma 1.1 Let E be the set of elements in D containing a point x. Let B(x, r) be a

ball such that for any σ ∈ E, B(x, r)∩mani(σ ) is a closed ball of dimension dim(σ ).

Then, for any σ ∈ E,
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(i) if σ is a 1-face, B(x, r) ∩ σ is an open curve (topological interval);

(ii) if σ is a 2-face and every 1-face of σ intersecting B(x, r) contains x, then

B(x, r) ∩ σ is a topological disk.

Lemma 1.2 Let σ be a 2-face. Let B(x, r) be a ball for some point x ∈ mani(σ ) such

that for any point z ∈ B(x, r) ∩ mani(σ ), ∠nσ (x), nσ (z) < θ for some θ � π/8. Let

B ⊂ B(x, r) be a ball centered at a point y ∈ B(x, r) ∩ mani(σ ). For any plane H

containing y such that ∠nσ (x),H < θ , H ∩ B ∩ mani(σ ) is an open curve.

Lemma 1.3 Let σ be a 1- or 2-face. Let B(x, r) be a ball for some point x ∈ mani(σ )

such that for any point z ∈ B(x, r)∩mani(σ ), ∠nσ (x), nσ (z) < θ for some θ < π/2.

(i) If σ is a 1-face and B(x, r) ∩ mani(σ ) is connected, then for any points y, z ∈
B(x, r) ∩ mani(σ ), ∠nσ (x), yz > π/2 − θ .

(ii) If σ is a 2-face, θ � π/8, and B(x, 1
3
r) ∩ mani(σ ) is connected, then for any

points y, z ∈ B(x, 1
3
r) ∩ mani(σ ), ∠nσ (x), yz > π/2 − θ .

2 Feature Size

We propose a definition of local feature size for PSC and establish several geometri-

cal and topological properties. The local feature size and the properties will be useful

in analyzing our meshing algorithm. As in the case of meshing smooth closed sur-

faces, it is hard to compute the local feature size at points in a PSC. Therefore, we

propose a computable alternative for points on 1-faces. Our algorithm uses this com-

putable alternative to construct balls to protect the vertices and 1-faces before running

Delaunay refinement.

2.1 Local Feature Size

For any point x on an element σ ∈ D, define mσ (x) to be the distance between x and

the medial axis of mani(σ ). Take mσ (x) = ∞ if σ is a vertex. It is well known that

mσ is 1-Lipschitz, i.e., for any points x, y ∈ σ , mσ (x) � mσ (y) + ‖x − y‖. Define

m(x) = min{mσ (x) : x ∈ σ }. Notice that m may not be continuous. For example, for

a 2-face σ , only the medial axis of mani(σ ) contributes to m(x) when x ∈ intσ , but

more than one medial axis may contribute to m(x) when x ∈ bdσ . We also employ

the local gap size g(x) used in [11] to deal with small input angles: for any point

x ∈ |D|, g(x) is the minimum r > 0 such that B(x, r) intersects two elements of

D�2, one of which does not contain x.

Definition 2.1 For any point x ∈ |D|, define f (x) = min{m(x), g(x)}.

Lemma 2.1 For any 1- or 2-face σ , the following properties hold.

(i) For any point x ∈ σ ,

(a) if B is a ball tangent to mani(σ ) at x and radius(B) < f (x), then σ ∩ intB =
∅;
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(b) if r < f (x), then B(x, r) ∩ mani(σ ) and B(x, r) ∩ σ are closed balls of

dimension dim(σ ).

(ii) For any points x, y ∈ mani(σ ), if ‖x − y‖ � μf (x) for some μ � 1/3, then

∠nσ (x), nσ (y) � μ/(1 − μ).

Proof Because f (x) � mσ (x), (i)(a) follows from standard results in the theory of

ε-sampling [2, 4, 19]. Since r < f (x) � m(x), it is known that B(x, r) ∩ mani(τ )

is a closed ball of dimension dim(τ ) for all faces τ containing x [19]. Coupled with

the fact that r < f (x) � g(x), Lemma 1.1 can be invoked to imply (i)(b). Since

f (x) � mσ (x), (ii) follows from the standard normal variation result; see [3]. �

The function f is not continuous because m and g may not be continuous. The

value of m(x) may change discontinuously when a point x moves from a 2-face to

an adjacent 1-face because the distance to the medial axis of the 1-face suddenly

enters into the minimization in the definition of m(x). If a point x moves from a 1- or

2-face to an adjacent face of lower dimension, the value of g(x) approaches zero by

definition. This makes g discontinuous because g(x) is strictly positive at the 0-faces.

Still, f , g and m are 1-Lipschitz in a restricted sense.

Lemma 2.2 For any σ ∈ D, the functions f , g, and m are 1-Lipschitz over intσ .

Proof The lemma is trivial for the vertices of D. Let σ be a 1- or 2-face. Take any

two points x, y ∈ intσ . Since x, y ∈ intσ , they belong to the same set of elements

of D, which we denote as E. So m(y) + ‖x − y‖ = minτ∈E{mτ (y) + ‖x − y‖} �

minτ∈E mτ (x) = m(x), proving that m is 1-Lipschitz over intσ . By definition,

B(y,g(y)) intersects another element τ not containing y. Since B(y,g(y)) is con-

tained inside B(x, r), where r = ‖x − y‖ + g(y), B(x, r) intersects both σ and τ .

As x ∈ intσ , x �∈ τ . It follows that g(x) � r = g(y) + ‖x − y‖, proving that g

is 1-Lipschitz over intσ . Finally, f (y) + ‖x − y‖ = min{m(y) + ‖x − y‖, g(y) +
‖x − y‖} � min{m(x), g(x)} = f (x). So f is 1-Lipschitz over intσ . �

The function f is close to being a local feature size function for D. It blends the

definition of local feature sizes of closed surfaces, which are used in meshing smooth

surfaces [7, 14], and the definition of local gap sizes of polyhedral domains, which

are used in polyhedral meshing [11, 17] in the presence of small angles. The blending

enables us to take care of both types of geometries in D: smooth surfaces meeting

sharply at vertices and curves. The problem is that f is only 1-Lipschitz within the

interior of an element in D. As a remedy, we propagate the value of f from bd |Di |
to int |Di | in order to define our local feature size function. We introduce a parameter

δ ∈ (0,1) to control the extent of the propagation. The local feature size function

lfsδ : |D| → R is defined as follows.

Definition 2.2 For any δ ∈ (0,1] and for any point x ∈ |D|,

lfsδ(x) =

⎧

⎪

⎨

⎪

⎩

δf (x) if x ∈ |D0|,
max{δf (x),maxy∈bdσ {δf (y) − ‖x − y‖}}

if x ∈ intσ for some σ ∈ D1 ∪ D2.



Discrete Comput Geom (2010) 43: 121–166 127

Roughly speaking, we design lfsδ(x) so that if x lies on a face σ and is sufficiently

far away from bdσ , lfsδ(x) is equal to δf (x). Indeed, if ‖x − y‖ < δf (y) for some

point y ∈ bdσ , then δf (y) − ‖x − y‖ > 0, and so it is possible for lfsδ(x) to be

equal to maxy∈bdσ {δf (y) − ‖x − y‖}. On the other hand, if ‖x − y‖ � δf (y) for any

point y ∈ bdσ , maxy∈bdσ {δf (y) − ‖x − y‖} is nonpositive, and so lfsδ(x) = δf (x).

The maximization maxy∈bdσ {δf (y)−‖x −y‖}} is employed in the definition to help

making lfsδ 1-Lipschitz. Similar maximizations and minimizations have been used

before in obtaining Lipschitz functions [1, 22, 35]. The next result shows that lfsδ is

indeed 1-Lipschitz.

Lemma 2.3 lfsδ is 1-Lipschitz.

Proof Take any points x, y ∈ |D|. Let σx and σy be the elements of D such that

x ∈ intσx and y ∈ intσy . (When x is a vertex, x = σx . The same is true for y.)

Suppose that y ∈ σx . So σy = σx or σy ⊂ bdσx . We claim that lfsδ(x) � δf (y) −
‖x −y‖: if y ∈ bdσx , lfsδ(x) � δf (y)−‖x −y‖ by definition; if y ∈ intσx , lfsδ(x) �

δf (x) > δf (y) − ‖x − y‖ by Lemma 2.2. By our claim, if lfsδ(y) = δf (y), we have

lfsδ(x) � lfsδ(y) − ‖x − y‖. Otherwise, lfsδ(y) = δf (z) − ‖y − z‖ for some point

z ∈ bdσy ⊆ bdσx . By definition, lfsδ(x) � δf (z) − ‖x − z‖ � δf (z) − ‖y − z‖ −
‖x − y‖ = lfsδ(y) − ‖x − y‖.

Suppose that y �∈ σx . By definition, lfsδ(y) = δf (z) − ‖y − z‖ for some point z ∈
σy . If z �∈ σx , ‖x − z‖ � g(z) and so lfsδ(y) � g(z)−‖y − z‖ � ‖x − z‖−‖y − z‖ �

‖x − y‖ < lfsδ(x) + ‖x − y‖. If z ∈ σx , we have proved in the previous paragraph

that lfsδ(x) � lfsδ(z) − ‖x − z‖. So lfsδ(y) = δf (z) − ‖y − z‖ � lfsδ(z) − ‖y − z‖ �

lfsδ(x) + ‖x − z‖ − ‖y − z‖ � lfsδ(x) + ‖x − y‖. �

The next result shows that the properties in Lemma 2.1 hold for lfsδ as well.

Lemma 2.4 Lemma 2.1 holds with f replaced by lfsδ .

Proof Take a point x on a 1- or 2-face σ . By definition, lfsδ(x) = δf (y) − ‖x − y‖
for some y ∈ σ . So lfsδ(x) � δmσ (y) − ‖x − y‖ � mσ (x). Then, standard results in

ε-sampling imply that Lemma 2.1 (i)(a) and (ii) hold for lfsδ . Take any r < lfsδ(x).

Since lfsδ(x) � mσ (x), B(x, r) ∩ mani(σ ) is a closed ball of dimension dim(σ ) [6,

19]. It remains to show that B(x, r) ∩ σ is also a closed ball of dimension dim(σ ).

If σ is a 1-face, the endpoints of σ split B(x, r) ∩ mani(σ ) into at most three

subcurves, one of which is B(x, r) ∩ σ .

Suppose that σ is a 2-face. If intB(x, r) avoids bdσ , B(x, r) ∩ σ = B(x, r) ∩
mani(σ ), and we are done. Suppose that intB(x, r) intersects bdσ . Then, lfsδ(x) =
δf (y) − ‖x − y‖ for some point y ∈ bdσ because if x ∈ intσ and lfsδ(x) = δf (x),

B(x, r) would avoid bdσ as f (x) � g(x). So B(x, r) ⊂ B(y, δf (y)). Let E be the

set of 1-faces in bdσ containing y. We have |E| = 1 when y is in the interior of a

1-face and |E| = 2 when y is the common endpoint of two 1-faces in bdσ . Since

f (y) � g(y) and f (y) � m(y), we know that:

(1) B(y, δf (y)) avoids any 1-face in bdσ that does not belong to E; so does B(x, r).

(2) B(y, δf (y)) avoids the medial axis of mani(τ ) for each τ ∈ E; so does B(x, r).
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By (2), it is known that B(x, r) ∩ mani(τ ) is an open curve for each τ ∈ E.

If E contains only one 1-face τ , then y ∈ int τ . Since f (y) � g(y), B(y, δf (y))

avoids the endpoints of τ . So does B(x, r). Thus, B(x, r) ∩ τ = B(x, r) ∩ mani(τ ),

i.e., an open curve, and it splits B(x, r) ∩ mani(σ ) into two topological disks, one of

which is B(x, r) ∩ σ .

If E contains two 1-faces τ1 and τ2, y is a common endpoint of τ1 and τ2. Again,

both B(y, δf (y)) and B(x, r) avoid the other endpoints of τ1 and τ2. If y ∈ B(x, r),

B(x, r) ∩ τ1 concatenates with B(x, r) ∩ τ2 to form an open curve. This open curve

splits B(x, r) ∩ mani(σ ) into two topological disks, one of which is B(x, r) ∩ σ . If

y �∈ B(x, r), B(x, r) ∩ τi = B(x, r) ∩ mani(τi) for i ∈ {1,2}. These two open curves

are disjoint, and they split B(x, r) ∩ mani(σ ) into three topological disks, one of

which is B(x, r) ∩ σ . �

Notice that lfsδ is actually δ-Lipschitz at points that are away from the element

boundaries in D. However, when a point x is close to some element boundary, lfsδ(x)

becomes 1-Lipschitz by construction. The parameterized propagation of the value of

f from boundaries matches well with our algorithmic strategy to protect the vertices

and 1-faces with balls. We will see that δ is related to the radii of these protecting

balls.

2.2 A Computable Alternative

It would be ideal if we can compute lfsδ(x) for any point x ∈ |D|. Doing so requires

computing m(x), which in turn requires computing the medial axis of smooth sur-

faces and curves. This is a challenging problem by itself. We face a greater problem

because of the maximization over bd |Di | used in defining lfsδ .

We propose to compute a function fω : |D�1| → R for a parameter ω ∈ (0,1). The

value fω(x) enjoys several nice features of lfsδ(x), and it is good enough for our pur-

pose. For example, we will see that if δ � ω, lfsδ(x) � fω(x) for the points x ∈ |D�1|
that we are interested in. This makes fω appropriate for defining the radii of protect-

ing balls covering |D�1|, i.e., points outside the protecting balls are at distances at

least local feature sizes away from |D�1|.
Let x be a point in some 1-face. First, for any 1- or 2-face σ containing x, define

σx,ω = {y ∈ mani(σ ) : cos(∠nσ (x), nσ (y)) = cosω}. The distance between x and

σx,ω is the ω-deviation radius of x with respect to σ . We define dω(x) to be the

minimum of the ω-deviation radii of x over all faces containing x. Second, we define

b(x) to be the largest value such that for any r < b(x), B(x, r) ∩ mani(σ ) is a closed

ball for any 1- or 2-face σ containing x.

Definition 2.3 For any point x ∈ |D�1|, define fω(x) = min{dω(x), g(x), b(x)}.

The function fω satisfies the following properties.

Lemma 2.5 Let ω ∈ (0, π
8
).

(i) For any point x ∈ |D1|, fω(x) ∈ [ω
2
f (x), g(x)].

(ii) For any 1- or 2-face σ ,
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(a) for any points x, y ∈ mani(σ ) such that ‖x − y‖ < fω(x), ∠nσ (x), nσ (y) <

ω;

(b) for any point x ∈ σ and for any r < fω(x), B(x, r)∩ mani(σ ) and B(x, r)∩
σ are closed balls of dimension dim(σ ).

(iii) For any 1-face σ and for any points x, y, z ∈ mani(σ ) such that y, z ∈ B(x, r)

for some r < fω(x), one has ∠nσ (x), yz > π/2 − ω.

(iv) For any 2-face σ and for any points x, y, z ∈ mani(σ ) such that y, z ∈ B(x, r)

for some r < 1
3

fω(x), one has ∠nσ (x), yz > π
2

− ω.

Proof By the standard normal variation result, for any 1- or 2-face σ and for any

points x, y ∈ mani(σ ), if ‖x − y‖ � ω
2
mσ (x), ∠nσ (x), nσ (y) �

ω/2
1−ω/2

. By the def-

inition of dω(x), ∠nτ (x), nτ (z) = ω for some face τ containing x and some point

z ∈ mani(τ ) such that ‖x − z‖ = dω(x). Because ω < 1,
ω/2

1−ω/2
< ω, which im-

plies that dω(x) > ω
2
mτ (x). Therefore, dω(x) > ω

2
m(x) � ω

2
f (x). By definition,

g(x) � f (x). It follows from Lemma 2.1(i)(b) that b(x) � f (x). Thus, g(x) �

min{dω(x), g(x), b(x)} = fω(x) � ω
2
f (x). This proves (i). Since fω(x) � dω(x),

(ii)(a) is enforced by construction. Since r < fω(x) � b(x), for any 1- or 2-face

σ containing x, B(x, r) ∩ mani(σ ) is enforced to be a closed ball. Then, since

r < fω(x) � ωg(x), B(x, r) ∩ σ is also a closed ball by Lemma 1.1. This proves

(ii)(b). Since ω < π/8 by assumption, the correctness of (iii) and (iv) follows from

(ii) and Lemma 1.3. �

By Definition 2.3, fω(x) is obtained by computing dω(x), g(x), and b(x). The

computations of g(x) and b(x) are easily translated into solving systems of equations.

So is the computation of dω(x), provided that for any 2-face σ containing x, the

set σx,ω = {y ∈ mani(σ ) : cos(∠nσ (x), nσ (y)) = cosω} is a collection of disjoint

smooth closed curves. When σx,ω is not a collection of disjoint smooth closed curves,

cosω is a critical value of the function y �→ cos(∠nσ (x), nσ (y)) by well-known

results in Morse theory [25]. We call ω critical if cosω is a critical value. We first

detect whether ω is critical by testing the solvability of a system of equations. If ω

is critical, we perturb ω to a non-critical value ω̄ < ω and compute fω̄(x) instead.

Moreover, ω̄ can be made as close to ω as one wishes. We call ω̄ a non-critical value

for x. The details of the perturbation of ω and the computations of dω(x), g(x), and

b(x) are given in Appendix B.

3 Protecting Vertices and Curves

Our algorithm starts with constructing protecting balls centered at judiciously chosen

locations in |D�1|. The radii of the protecting balls are controlled by fω (We may

need to perturb ω if it happens to be critical). The value of fω may fluctuate greatly as

it is not 1-Lipschitz. So we enforce a Lipschitz-like property on the fly as we construct

the balls. In the end each protecting ball is turned into an equivalent weighted point.

We choose λ � 0.01 and ω � 0.01. First, we put a protecting ball Bu centered at

each vertex u ∈ D0 with radius(Bu) = λfωu(u), where ωu is a noncritical value for

u in the range [0.99ω,ω]. Clearly, fωu(u) � fω(u). Let σ be a 1-face. Let u and v
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Fig. 1 The balls

B(xk−1, 6
5
rk−1) and B(x0, r0k)

are drawn with dashed circles.

The bold circle denotes Bxk

be the endpoints of σ . We will incrementally put a certain number of points in intσ

from u to v. For notational convenience, we denote this number by m although m is

unknown at the beginning.

Define x1 = u and r1 = λfω1
(u), where ω1 = ωu. We compute the intersection

points x2 = σ ∩ bdBu and x0 = σ ∩ bdBv . Define r2 = λfω2
(x2) and r0 = λfω0

(x0),

where ω0 and ω2 are some noncritical values for x0 and x2, respectively, in the range

[0.99ω,ω]. The protecting ball at x2 is Bx2
= B(x2, r2). The protecting ball at x0 will

be constructed last. We march from Bx2
toward x0 to construct more protecting balls.

For k � 3, we compute the two intersection points between σ and the boundary of

B(xk−1,
6
5
rk−1). Among these two points let xk be the point such that ∠xk−2xk−1xk >

π/2. One can show that xk is well defined and xk lies between xk−1 and v along σ .

Define

rk = max

{

1

2
‖xk−1 − xk‖, min

0�j�k

{

λfωj
(xj ) + λ‖xj − xk‖

}

}

,

where ωj is some noncritical value for xj in the range [0.99ω,ω] and

r0k = min
0�j�k

{

rj + λ‖xj − x0‖
}

.

If B(xk, rk) ∩ B(x0, r0k) = ∅, the protecting ball at xk is

Bxk
= B(xk, rk).

(Although we do not perform such a test for B(x2, r2), we can define r02 =
min0�j�2{ rj + λ‖xj − x0‖ } and prove that B(x2, r2) ∩ B(x0, r02) = ∅.)

Figure 1 shows an example of the construction of Bxk
. We force rk � 1

2
‖xk−1 −xk‖

so that Bxk
overlaps significantly with Bxk−1

.

We continue to march toward x0 and construct protecting balls until the candidate

ball B(xm, rm) that we want to put down overlaps with B(x0, r0m). In this case, we

reject xm and B(xm, rm). We set the protecting ball at x0 to be Bx0
= B(x0,

4
5
r0m−1).

We use 4
5
r0m−1 as the radius of Bx0

so as to keep some distance between Bxm−1

and Bx0
This will be useful in showing that nonconsecutive protecting balls are “far

apart.” On the other hand, radius(Bx0
) cannot be too small so as to keep some distance

between Bv and the protecting ball to be placed to cover the gap between Bxm−1
and

Bx0
.

To cover the gap between Bxm−1
and Bx0

, a convenient choice is a ball orthogonal

to Bxm−1
and Bx0

. The details are as follows. Compute the bisector plane of Bxm−1

and Bx0
with respect to the weighted distance [5] and then intersect it with σ . Select

the intersection point ym that is within a distance of 4r0 from x0. We can show that

ym is uniquely defined and ym lies between xm−1 and x0 along σ . The protecting

ball Bym is the ball centered at ym orthogonal to Bxm−1
and Bx0

, i.e., radius(Bym)2 =
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‖xi − ym‖2 − radius(Bxi
)2 for i ∈ {0,m − 1}. Notice that radius(Bx0

) may not be r0,

ym may not be xm, and radius(Bym) may not be rm. Also, ym lies outside Bxm−1
and

Bx0
; xm−1 and x0 lie outside Bym .

We turn each protecting ball Bp into a weighted point p with weight wp =
radius(Bp)2. Although our algorithm uses only the weighted vertices, we will re-

fer to both (p,wp) and the protecting ball Bp in the analysis. Two protecting balls

are consecutive if their centers are adjacent along σ . Lemma 3.1 below summarizes

the properties of the protecting balls. The proof involves some detailed calculations

and are left in Appendix C.

Lemma 3.1 Let σ be a 1-face. The construction of protecting balls for σ terminates,

and the following properties hold:

(i) Two consecutive protecting balls overlap.

(ii) For each weighted point p on σ , radius(Bp) ∈ (λω
21

f (p),5λg(p)).

(iii) Let τ be σ or any 2-face incident to σ . Let p be a weighted point on σ . For any

r � 20 · radius(Bp),

(a) for any point z ∈ B(p, r) ∩ mani(τ ), ∠nτ (p),nτ (z) < 2ω;

(b) B(p, r) ∩ mani(τ ) and B(p, r) ∩ τ are closed balls of dimension dim(τ ).

(iv) For any two consecutive protecting balls Bp and Bq ,

(a) q �∈ intBp ,

(b) for any point b on the circle bdBp ∩ bdBq , ∠pbq < 170◦,

(c) Bp ∪ Bq contains the subcurve σ(p,q) of σ between p and q , and

(d) for any point z ∈ σ(p,q), Bp ∪ Bq contains the ball centered at z with

radius λω
2500

f (z).

(v) For any nonconsecutive protecting balls Bp and Bq , the minimum distance be-

tween Bp and Bq is at least 0.06 · min{radius(Bp), radius(Bq)}. The points p

and q are allowed to lie on different 1-faces.

4 Meshing a PSC

Our algorithm grows an admissible point set S throughout the meshing process. We

call a point set admissible if:

• The set contains all weighted points placed in |D�1| during the protection phase.

• Other points in the set are unweighted, and they lie outside the protecting balls.

The point set S is initialized to contain the weighted points on the 1-faces. Then,

we incrementally insert unweighted vertices in regions not covered by the protecting

balls using the Delaunay refinement paradigm. In Sect. 4.1 we describe the subrou-

tines used by our meshing algorithm. We present the meshing algorithm in Sect. 4.2.

The following notation will be needed.

For each simplex η ∈ DelS, Vη denotes the Voronoi cell in VorS dual to η. For any

1- or 2-face σ and for any simplex η ∈ DelS, Vη|σ denotes Vη ∩ σ . We use DelS|σ
to denote the Delaunay subcomplex restricted to σ , i.e., the set of simplices η ∈ DelS

such that Vη|σ �= ∅. We extend the above definition to Di for 0 � i � 2 and D:
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Fig. 2 It is dangerous to allow

an edge between nonadjacent

weighted points. If pq belongs

to DelS|τ and DelS|σ , DelS|D

is pinched at pq

DelS|Di
=

⋃

σ∈Di

DelS|σ , DelS|D =
⋃

σ∈D

DelS|σ .

For any triangle t ∈ DelS|σ , define size(t, σ ) to be the maximum weighted dis-

tance between the vertices of t and points in Vt |σ . For each point p ∈ S ∩ σ , we

use star(p,σ ) to denote the set of edges and triangles in DelS|σ incident to p.

4.1 Subroutines

We describe the subroutines used by our algorithm. Two of them, Infringed and

SurfaceNormal, require some preconditions, and we show later that the preconditions

are satisfied throughout the algorithm.

Multiple Intersection Let p be a point in S ∩σ for some 2-face σ . If Vt intersects σ

only once for any triangle t ∈ star(p,σ ), MultiIntersection(p,σ ) returns null; other-

wise, MultiIntersection(p,σ ) chooses a triangle t ∈ star(p,σ ) such that Vt intersects

σ more than once and returns the point x ∈ Vt |σ that achieves size(t, σ ).

Infringement Let p be a point in S ∩ σ for some 2-face σ . We say that (p,σ ) is

infringed if:

• pq ∈ DelS|σ for some point q �∈ σ , or

• p ∈ bdσ and pq ∈ DelS|σ for some point q ∈ bdσ not adjacent to p. (See Fig. 2.)

We say that pq certifies that (p,σ ) is infringed. Given (p,σ ), the subroutine

Infringed(p,σ ) requires a precondition that Vpq ∩ bdσ = ∅ for any edge pq that cer-

tifies that (p,σ ) is infringed. Assuming this precondition, if (p,σ ) is not infringed,

Infringed(p,σ ) returns null; otherwise, it returns a point in Vpq ∩ σ for some certify-

ing edge pq . The implementation is given below.

Let pq be any edge that certifies that (p,σ ) is infringed. Vpq ∩ mani(σ ) is a

collection of smooth curves (open or closed). By the precondition, each curve in

Vpq ∩ mani(σ ) is either contained in Vpq ∩ σ or disjoint from Vpq ∩ σ . Notice

that Vpq ∩ σ �= ∅ because pq ∈ DelS|σ . We first solve for the intersections between

bdVpq and mani(σ ). If any intersection obtained belongs to σ , return it, and we are

done. Otherwise, we need to check the closed curves in Vpq ∩mani(σ ). Let E(x) = 0

be the equation of mani(σ ). Choose two unit vectors 	d1 and 	d2 orthogonal and par-

allel to the plane of Vpq , respectively. Let us denote the standard inner product be-

tween two vectors 	u and 	v by 〈	u, 	v〉. We solve the following system for x: E(x) = 0,

〈∇E(x)× 	d1, 	d2〉 = 0. The solutions are the critical points of curves in Vpq ∩mani(σ )

in direction 	d2. Return any critical point that belongs to σ .



Discrete Comput Geom (2010) 43: 121–166 133

Surface Normal Variation Let p be a point in S ∩ σ for some 2-face σ . Let φs be a

constant chosen from (4ω, π
16

). Recall that σp,φs = {x ∈ mani(σ ) : ∠nσ (p),nσ (x) =
φs}. The subroutine SurfaceNormal(p,σ,φs) requires a precondition that σp,φs ∩
Vp ∩ bdσ = ∅.

Given p, σ , and φs that satisfy the precondition, if ∠nσ (p),nσ (z) < φs for

any point z ∈ Vp|σ , SurfaceNormal(p,σ,φs) returns null; otherwise, it returns a

point z ∈ Vp|σ such that ∠nσ (p),nσ (z) = φs . We describe the implementation of

SurfaceNormal(p,σ,φs) below, which is reminiscent of the computation of dω(x) in

setting fω(x).

First, we can assume that φs is not a critical value for p, i.e., σp,φs is a col-

lection of disjoint smooth closed curves. This can be enforced by perturbing φs

as described in Appendix B. Let E(x) = 0 be the equation of mani(σ ). Define

G(x) = 〈∇E(p),∇E(x)〉 − ‖∇E(p)‖ · ‖∇E(x)‖ · cosφs . The set σp,φs is described

by the system E(x) = 0, G(x) = 0. We solve for the set of intersections between

σp,φs and the support planes of Vp . If any intersection obtained belongs to Vp|σ ,

return it. If no intersection in Vp|σ is obtained, the open curves in σp,φs ∩ Vp are

disjoint from Vp|σ by the precondition. We still need to check the closed curves in

σp,φs inside Vp . By the precondition, any closed curve in σp,φs inside Vp is either

contained in Vp|σ or disjoint from Vp|σ . We solve the system E(x) = 0, G(x) = 0,

〈∇G(x) × ∇E(x), (p − x)〉 = 0. The solutions are the tangential contact points with

σp,φs and balls centered at p. If any tangential contact point belongs to Vp|σ , return

it. If no contact point is found in Vp|σ , σp,φs avoids Vp|σ , and we return null.

Curve Normal Variation Let p be a point in S ∩ σ for some 2-face σ . Let φc

be a constant chosen from (φs + 8ω, π
16

+ 8ω). CurveNormal(p,σ,φc) returns a

point y ∈ Ve|σ for some edge e ∈ star(p,σ ) such that ∠ 	d1, 	d2 = φc , where 	d1

and 	d2 are the projections of nσ (p) and nσ (y) onto the plane of Ve, respectively.

CurveNormal(p,σ,φc) returns null if such a point does not exist.

The implementation works as follows. Let E(x) = 0 be the equation of mani(σ ).

For each edge e ∈ star(p,σ ), let qe denote a point on the support plane of Ve; let ne

denote a unit vector orthogonal to the support plane of Ve; and define the function

Ge(x) = ∇E(x) − 〈∇E(x),ne〉 · ne. Notice that Ge(x) is the projection of the vector

∇E(x) onto a plane orthogonal to ne. We solve the system E(x) = 0, 〈(x −qe), ne〉 =
0, 〈Ge(x),Ge(p)〉 = ‖Ge(x)‖ · ‖Ge(p)‖ · cosφc . If any solution obtained belongs to

Ve|σ , return it. Return null if no solution can be returned for any edge in star(p,σ ).

Disk Neighborhood Let p be a point in S ∩ σ for some 2-face σ . NoDisk(p,σ )

returns null if the union of triangles in star(p,σ ) is a topological disk. Otherwise,

NoDisk(p,σ ) chooses the triangle t ∈ star(p,σ ) with maximum size(t, σ ) and re-

turns the point x ∈ Vt |σ that achieves size(t, σ ). Notice that when p ∈ bdσ , p be-

longs to the boundary of the union of triangles in star(p,σ ).

4.2 Algorithm

The following pseudocodes summarize our algorithm. The procedure FindViolation

is responsible for the incremental point insertion. The meshing of the input PSC D
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is initiated by calling MeshPSC(D). The parameters λ and ω used in protecting the

input vertices and 1-faces are picked from (0,0.01]. The angle parameters φs and φc

are picked from (4ω, π
16

) and (φs + 4ω, π
16

+ 4ω), respectively. A noteworthy feature

of our algorithm is that FindViolation never inserts a point inside the protecting balls.

This eliminates the check for point insertions inside the protecting balls as well as the

exception handler for such events.

FindViolation(p,σ )

1. Call MultiIntersection(p,σ ), Infringed(p,σ ), SurfaceNormal(p,σ,φs),

CurveNormal(p,σ,φc) and NoDisk(p,σ ) in this order. If a point x is re-

turned in some call, stop and return x.

2. Return null.

MeshPSC(D)

1. Protect the vertices and 1-faces in D with weighted points. Insert a point in

each 2-face in D outside the protecting balls. Let S be the resulting admis-

sible point set.

2. For every (p,σ ) where σ is a 2-face and p ∈ S ∩ σ ,

(a) Compute v := FindViolation(p,σ ).

(b) If v is non-null, insert v into S and update DelS and VorS.

3. If S has grown in the last execution of Step 2, repeat Step 2.

4. Return DelS|D .

Step 1 of MeshPSC requires further explanation because a point has to be inserted

in each 2-face outside the protecting balls. Let σ be a 2-face. We arbitrarily pick two

consecutive protecting balls Bp and Bq , where p and q belong to bdσ . Lemma 5.3

in Sect. 5.1 implies the following:

• Bp and Bq induce a Voronoi facet Vpq in VorS.

• Vpq intersects the subcurve σ(p,q) of bdσ between p and q exactly once and

does not intersect bdσ elsewhere.

It follows that we can trace a curve in Vpq ∩σ starting from the intersection point be-

tween Vpq and σ(p,q). The tracing of this intersection curve either ends at a Voronoi

edge in the boundary of Vpq or at a tangential contact point between σ and the interior

of Vpq . We claim that any intersection point between the boundary of Vpq and σ and

any tangential contact point between Vpq and σ is a point in σ outside all protecting

balls.

By our claim, a point in σ outside all protecting balls can be computed as fol-

lows. First, compute the intersection points between the edges of Vpq and σ . If an

intersection point is found, return it, and we are done. Otherwise, let H(x) = 0 be

the equation of the support plane of Vpq , and we compute the tangential contact

points between this plane and mani(σ ) by solving the system E(x) = 0, H(x) = 0,

∇H(x)×∇E(x) = 0. Among the contact points obtained, return one that lies on Vpq

and σ .

We prove the correctness of our claim. Let x be an intersection point between

some edge of Vpq and σ . The Voronoi edge containing x is induced by Bp , Bq

and a third protecting ball Bs . Observe that Bp and Bs are nonconsecutive or Bq
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and Bs are nonconsecutive. So Lemma 3.1(v) implies that the weighted distance

from x to Bp , Bq , and Bs is positive. Notice that Bp , Bq , and Bs are the pro-

tecting balls with minimum weighted distance to x. Hence, x lies outside all pro-

tecting balls. Let x be a tangential contact point between Vpq and σ . Without

loss of generality, assume that radius(Bp) � radius(Bq). Because Bp and Bq over-

lap, Bq ⊆ B(p, 1
3
r) where r = 9 radius(Bp). It follows from Lemma 3.1(iii) and

Lemma 1.3(ii) that ∠nσ (p),pq > π/2 − 2ω. Since x is a tangential contact point be-

tween Vpq and σ , nσ (x) is parallel to pq (i.e., orthogonal to Vpq ), which implies that

∠nσ (p),nσ (x) > π/2 − 2ω. Therefore, by Lemma 3.1(iii)(a), x lies outside B(p, r),

which contains both Bp and Bq . Hence, the weighted distance from x to Bp and Bq

is positive. Notice that Bp and Bq are the protecting balls with minimum weighted

distance to x. This implies that x is outside all protecting balls.

5 Analysis of the Meshing Algorithm

We will establish several facts about MeshPSC:

• The algorithm conforms to the 1-faces.

• The preconditions of Infringed and SurfaceNormal are always satisfied.

• The algorithm maintains the admissibility of the point set S.

• The algorithm terminates.

• The extended TBP holds for D at the termination of the algorithm.

The conformity, preconditions of Infringed and SurfaceNormal, and the maintenance

of admissibility is proved in Sect. 5.1. The termination of MeshPSC is proved in

Sects. 5.2 and 5.3. The extended TBP is shown to hold in Sect. 5.4.

Throughout this section, ε denotes a number picked from (0, λω/2500), and lfs∗
ε

denotes min{lfsε(x) : x ∈ |D|}. For each point p in an admissible point set, define

the range of p as range(p) = radius(Bp) if p is weighted and range(p) = lfsε(p)

otherwise. The orthoradius of a triangle t ∈ DelS is the radius of the smallest ball that

has zero weighted distance to the vertices (possibly weighted) of t . We use ortho(t)

to denote the orthoradius of t . Note that if all vertices of t are unweighted, ortho(t)

is just the circumradius of t .

The next lemma shows that lfsε(p) = εf (p) for any point p in an admissible point

set. Moreover, our choice of ε makes the protecting ball radii bounded from below

by the local feature sizes at the ball centers.

Lemma 5.1 For any point p in an admissible point set, lfsε(p) = εf (p) and if p is

weighted, range(p) = radius(Bp) > lfsε(p).

Proof If p ∈ D0, lfsε(p) = εf (p) by definition and radius(Bp) = λfωp (p) �
λωp

2
f (p) by Lemma 2.5(i). As ωp � 0.99ω by our choice, we get radius(Bp) �

99
200

λωf (p) > εf (p) = lfsε(p). Suppose that p ∈ intσ for some 1-face σ . For any

endpoint q of σ , q ∈ D0, and we have just shown that radius(Bq) > lfsε(q) = εf (q).

By Lemma 3.1(iv)(a) and (v), p �∈ intBq and so εf (q) − ‖p − q‖ < radius(Bq) −
‖p − q‖ � 0. Then, it follows from the definition of lfsε that lfsε(p) = εf (p). By
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Lemma 3.1(ii), radius(Bp) > λω
21

f (p) > εf (p). Suppose that p ∈ intσ for some

2-face σ . Then, p is unweighted. By Lemma 3.1(iv)(d), for any point q ∈ bdσ ,

B(q, εf (q)) is contained in the union of protecting balls whose centers belong to

bdσ . Thus, εf (q) − ‖p − q‖ � 0 because p lies outside the protecting balls. Thus,

the definition of lfsε implies that lfsε(p) = εf (p). �

The next lemma gives some topological and geometric properties of the neighbor-

hood of a point p in S.

Lemma 5.2 Let p be a point in S ∩ σ for some admissible point set S and for some

1- or 2-face σ .

(i) For any point y ∈ B(p,20 range(p)) ∩ mani(σ ), ∠nσ (p),nσ (y) < 2ω.

(ii) For any r � 20 range(p), B(p, r) ∩ mani(σ ) and B(p, r) ∩ σ are topological

balls of dimension dim(σ ).

(iii) For any two points y, z ∈ B(p,6 range(p))∩mani(σ ), ∠nσ (p), yz > π/2−2ω.

Proof If p is weighted, (i) follows from Lemma 3.1(iii)(a), (ii) follows from

Lemma 3.1(iii)(b), and (iii) follows from Lemma 3.1(iii) and Lemma 1.3. Suppose

that p is unweighted. By Lemma 5.1, range(p) = lfsε(p) = εf (p). Then, (i) and (ii)

follow from Lemma 2.1, and (iii) is obtained by applying Lemma 1.3. �

5.1 Conformity, Preconditions, and Admissibility

Lemma 5.3 below states that the edges between adjacent weighted points are always

restricted weighted Delaunay.

Lemma 5.3 Let S be an admissible point set. Let p and q be two adjacent weighted

points on some 1-face σ . Let σ(p,q) denote the subcurve between p and q . Vpq is

the only Voronoi facet in VorS that intersects σ(p,q) and Vpq intersects σ(p,q)

exactly once.

Proof Let Hpq be the bisector of Bp and Bq with respect to the weighted distance.

By Lemma 3.1(iv)(a), p �∈ intBq and q �∈ intBp . So Hpq lies between p and q , which

means that Vpq can potentially intersect σ(p,q). We prove that this definitely hap-

pens by showing that no other Voronoi facet can intersect σ(p,q). Pick an arbitrary

point z ∈ σ(p,q). Since σ(p,q) ⊂ Bp ∪ Bq by Lemma 3.1(iv)(c), the weighted dis-

tance of z from Bp or Bq is negative.

For any unweighted point s ∈ S, since s �∈ Bp ∪Bq , ‖s − z‖ > 0. This implies that

z does not belong to any Voronoi facet partly defined by s. Take any weighted point

s ∈ S other than p and q . Assume without loss of generality that z ∈ Bp . If s is not

adjacent to p, Bp ∩ Bs = ∅ by Lemma 3.1(v), implying that z �∈ Bs . Suppose that

s is adjacent to p. Since Bs ∩ σ is an open curve by Lemma 3.1(iii)(b), z �∈ intBs ;

otherwise, p would also belong to intBs , which is forbidden by Lemma 3.1(iv)(a).

We conclude that the weighted distance of z from Bs is nonnegative. Thus, z does not

lie in any Voronoi facet partly defined by s.
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Hence, Vpq is the only Voronoi facet in VorS that intersects σ(p,q). Without

loss of generality, assume that radius(Bp) � radius(Bq). So q ∈ B(p,2 range(p)).

We apply Lemma 5.2(iii) to B(p,2 range(p)) ∩ σ . We conclude that ∠nσ (p),pq >

π/2 − 2ω and for any points y, z ∈ B(p,2 range(p)) ∩ σ , ∠nσ (p), yz > π/2 − 2ω.

This implies that ∠pq,yz < 4ω. By Lemma 5.2(ii), B(p,2 range(p)) ∩ σ is an open

curve, implying that σ(p,q) ⊂ B(p,2 range(p))∩σ . If σ(p,q) intersects Vpq at two

points y and z, then ∠pq,yz = π/2, an impossibility. �

The next lemma shows that the preconditions of Infringed and SurfaceNormal are

always satisfied.

Lemma 5.4 The preconditions of Infringed and SurfaceNormal are satisfied when S

is an admissible point set.

Proof Consider the call Infringed(p,σ ). Let pq be any edge that certifies that (p,σ )

is infringed. By Lemma 5.3, Vpq ∩ bdσ = ∅ because either q �∈ σ or p ∈ bdσ but q

is not an adjacent weighted point in bdσ .

Consider the call SurfaceNormal(p,σ,φs). If p ∈ intσ , by Lemma 5.3, Vp ∩ bdσ

is empty. So is σp,φs ∩ Vp ∩ bdσ . Suppose that p ∈ bdσ , i.e., p is weighted.

Let q be a weighted point in bdσ adjacent to p. Let B(a, range(a)) denote

the larger ball among Bp and Bq . It follows that p,q ∈ B(a,2 range(a)). By

Lemma 5.2(ii), B(a,2 range(a)) ∩ bdσ contains the subcurve ξ in bdσ between p

and q . By Lemma 5.2(i), for any point y ∈ ξ , ∠nσ (p),nσ (y) � ∠nσ (p),nσ (a) +
∠nσ (y), nσ (a) < 4ω. Let s be the other weighted point in bdσ adjacent to p.

Let ξ ′ be the subcurve in bdσ between p and s. We can similarly show that

∠nσ (p),nσ (z) < 4ω for any point z ∈ ξ ′. By Lemma 5.3, Vp ∩ bdσ contains only

portions of ξ and ξ ′. This implies that σp,φs ∩ Vp ∩ bdσ = ∅ as φs > 4ω. �

The next result shows that MeshPSC maintains the admissibility of S throughout

its execution. The proof depends on the usage of weighted Delaunay triangulation.

Lemma 5.5 MeshPSC never attempts to insert a point in any protecting ball. Hence,

the point set S is admissible throughout the execution of MeshPSC.

Proof Each point inserted by MultiIntersection and NoDisk lies in the intersec-

tion of some Voronoi edge and |D|. Since no three protecting balls intersect by

Lemma 3.1(v), all points on a Voronoi edge have positive distance from all vertices,

weighted or not. This means that no Voronoi edge intersects a protecting ball. There-

fore, the points inserted by MultiIntersection and NoDisk must lie outside all protecting

balls.

Assume to the contrary that some call SurfaceNormal(p,σ,φs) returns a point

x that lies inside some protecting ball. So the weighted distance between x and

some weighted point is negative. The weighted distance between x and p must

also be negative because x ∈ Vp|σ . It follows that p is weighted and x ∈ Bp .

Then, by Lemma 5.2(i), ∠nσ (p),nσ (x) < 2ω < φs . This is a contradiction because

∠nσ (p),nσ (x) = φs for x to be returned by SurfaceNormal(p,σ,φs).
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Consider a call Infringed(p,σ ) that returns a point x ∈ Vpq ∩ σ for some edge

pq ∈ star(p,σ ). Assume to the contrary that x lies inside some protecting ball. It

follows as in the previous paragraph that p and q are weighted and x ∈ Bp ∩ Bq . In

order to trigger Infringed to return a point, Bp and Bq must be nonconsecutive, but

then Bp ∩ Bq = ∅ by Lemma 3.1(v), contradicting the fact that x ∈ Bp ∩ Bq .

Consider a call CurveNormal(p,σ,φc) that returns a point x ∈ Vpq ∩ σ for some

edge pq ∈ star(p,σ ). Assume to the contrary that x lies inside some protecting ball.

It follows as before that p and q must be weighted and consecutive and x ∈ Bp ∩Bq .

Since x ∈ Bp , by Lemma 5.2(i), ∠nσ (p),nσ (x) < 2ω. Let B(a, range(a)) denote

the larger of Bp and Bq . So p,q ∈ B(a,2 range(a)). Then, Lemma 5.2(i) and (iii)

imply that ∠nσ (p),pq � ∠nσ (a),pq − ∠nσ (a), nσ (p) > π/2 − 4ω. It follows that

∠nσ (p),Vpq < 4ω. Let 	d1 and 	d2 denote the projections of nσ (p) and nσ (x) onto the

plane of Vpq . We have ∠ 	d1, 	d2 � ∠nσ (p),nσ (x) + ∠nσ (p),Vpq + ∠nσ (x),Vpq �

2 · ∠nσ (p),Vpq + 2 · ∠nσ (p),nσ (x) < 12ω. However, in order that CurveNormal

returns x, we have ∠ 	d1, 	d2 = φc > φs + 8ω > 12ω, a contradiction. �

5.2 Distance Lower Bounds

MeshPSC grows the point set S incrementally, while maintaining its admissibility by

Lemma 5.5. Recall that ε is a number picked from (0, λω/2500) and lfs∗
ε denotes

min{lfsε(x) : x ∈ |D|}. We show that MeshPSC maintains inductively a lower bound

of 0.03 lfs∗
ε on the distances among the points in S. This will allow us to apply the

standard packing argument to claim that MeshPSC terminates.

5.2.1 Technical Results

We first prove several technical results. The next result states that if the distances

among the points in S are Ω(lfs∗
ε) and the orthoradius of a triangle t is small with

respect to lfs∗
ε , the largest angle of t is bounded.

Lemma 5.6 Let S be an admissible point set. Assume that ‖a − b‖ � 0.03 lfs∗
ε for

any a, b ∈ S. Let t be a triangle in DelS|σ for some 2-face σ . If ortho(t) � 0.03 lfs∗
ε ,

the largest angle of t is less than 170◦.

Proof Let p, q , and s denote the vertices of t . Since ortho(t) � 0.03 lfs∗
ε , by

Lemma 3.1(v), t has at most two weighted vertices, and they must be adjacent along

some 1-face. Let ∠psq be the largest angle in t . Assume that ∠psq > π/2; other-

wise, we are done.

Suppose that s is weighted. So p or q is unweighted, say p. Let Hps be the

bisector plane of p and Bs . Since p lies outside Bs , Hps lies between p and

s and Hps is further from s than p. This implies that the distance between p

and the orthocenter of t is at least 1
2
‖p − s‖ tan(∠psq − π/2). Thus, 0.03 lfs∗

ε �

ortho(t) � 1
2
‖p − s‖ tan(∠psq −π/2) � 0.015 lfs∗

ε tan(∠psq −π/2), which implies

that ∠psq � π/2 + arctan(2) < 170◦.

Suppose that s is unweighted. If both p and q are weighted (i.e., p and q

are adjacent), ∠psq is maximized when s lies on the circle bdBq ∩ bdBq . By
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Lemma 3.1(iv)(b), ∠psq < 170◦ in this case. If p or q is unweighted, say p, we

can repeat the argument in the previous paragraph to show that ∠psq < 170◦. �

Under conditions similar to those in Lemma 5.6, the next result states that Vt

makes an O(ω) angle with the surface normals at the vertices of t .

Lemma 5.7 Let S be an admissible point set. Assume that ‖a − b‖ � 0.03 lfs∗
ε for

any a, b ∈ S. Let t be a triangle in DelS|σ for some 2-face σ . If ortho(t) � 0.03 lfs∗
ε ,

∠nσ (x),Vt < 26ω for any vertex x of t .

Proof Let p, q , and s be the vertices of t . Let ∠psq be the largest angle of t .

Lemma 5.6 implies that 60◦ � ∠psq < 170◦. Let C be the double cone whose axis

is the support line of nσ (s) and whose angular aperture is π − 4ω.

We use α to denote ∠nσ (s),Vt . We first show that α < 24ω. Assume that α > 2ω;

otherwise, we are done. Let H denote the support plane of pqs. Since α > 2ω, H ∩C

is a double wedge. Because range(s) � lfs∗
ε by Lemma 5.1 and ortho(t) � 0.03 lfs∗

ε ,

we have t ⊂ B(s, r), where r = range(s)+0.06 lfs∗
ε < 2 range(s). By Lemma 5.2(iii),

B(s, r) ∩ σ intersects the double cone C only at s. It follows that p and q do not

belong to H ∩ C. By elementary trigonometry, the angular aperture θ of H ∩ C

satisfies the equation:

tan
θ

2
=

√
sin(α − 2ω) sin(α + 2ω)

sin(2ω)
.

If α � 24ω, the above equation yields θ > 170◦. So the angular aperture of the open

double wedge H \ C is less than 10◦. Since ∠psq � 60◦, p and q do not lie in the

same wedge of H \ C. It follows that ∠psq is greater than the angular aperture of

H ∩ C (i.e., > 170◦). But this is impossible as ∠psq < 170◦. Hence, α < 24ω.

Since t ⊂ B(s, r), by Lemma 5.2(i), for any vertex x of t , ∠nσ (x),Vt �

∠nσ (s),Vt + ∠nσ (s), nσ (x) < α + 2ω < 26ω. �

Lemma 5.8 Let S be an admissible point set. Let x be a point in Vp|σ for some 2-

face σ . Let D be the minimum distance between x and the points in S. Let W be the

minimum weighted distance between x and the points in S. If D or W is less than

lfs∗
ε , then ‖p − x‖ <

√
2 range(p).

Proof We have W < lfs∗
ε if D or W is less than lfs∗

ε . If p is unweighted, ‖p − x‖ <

lfs∗
ε � lfsε(p) = range(p). If p is weighted, we have ‖p − x‖2 − radius(Bp)2 <

(lfs∗
ε)

2 because x ∈ Vp . Then, Lemma 5.1 implies that ‖p − x‖ < ( radius(Bp)2 +
(lfs∗

ε)
2 )1/2 <

√
2 radius(Bp) =

√
2 range(p). �

Lemma 5.9 Let S be an admissible point set. Let σ be a 2-face. Let pq be an edge

in star(p,σ ) for some point p ∈ S ∩ σ . If there is a point x ∈ Vpq |σ such that the

minimum distance between x and the points in S is less than lfs∗
ε , then ∠nσ (p),Vpq <

4ω.



140 Discrete Comput Geom (2010) 43: 121–166

Proof By Lemma 5.8, ‖p − x‖ <
√

2 range(p) and ‖q − x‖ <
√

2 range(q). So

‖p−q‖ < 2
√

2 ·max{range(p), range(q)}. Then, we can apply Lemma 5.2(i) and (iii)

to p or q whichever has a larger range and conclude that ∠nσ (p),pq > π/2 − 4ω. It

follows that ∠nσ (p),Vpq < 4ω. �

5.2.2 Lower Bounds

In this section we give the proofs that MeshPSC maintains inductively a lower bound

of 0.03 lfs∗
ε on the distances among the points in S. The next lemma shows that the

lower bound holds after step 1 of MeshPSC, i.e., protecting the vertices and 1-faces

and inserting a point in each 2-face outside the protecting balls.

Lemma 5.10 Let S be the admissible point set obtained at the end of Step 1 of

MeshPSC. For any p,q ∈ S, ‖p − q‖ � lfs∗
ε .

Proof If p and q belong to different 2-faces, ‖p − q‖ � max{g(p), g(q)} �

max{f (p),f (q)} which is greater than lfs∗
ε by Lemma 5.1. Suppose that p and q

belong to the same 2-face. So p or q is weighted. By Lemma 5.1, the radii of pro-

tecting balls are greater than lfs∗
ε . If p or q is unweighted, say q , then q lies outside

Bp and so ‖p − q‖ � radius(Bp) > lfs∗
ε . If both are weighted and p and q are non-

adjacent, Lemma 3.1(v) implies that ‖p − q‖ > lfs∗
ε . If p and q are weighted and

adjacent, by Lemma 3.1(iv)(a), q �∈ intBp and so ‖p − q‖ � radius(Bp) > lfs∗
ε . �

Next, we show that any of the procedure calls within FindViolation(p,σ ) preserves

the lower bound of 0.03 lfs∗
ε . MultiIntersection and NoDisk do so only when the lower

bound has been preserved so far. Infringed, SurfaceNormal, and CurveNormal pre-

serve the lower bound without requiring it as a precondition.

Lemma 5.11 Let S be the current admissible point set. If ‖a −b‖ � 0.03 lfs∗
ε for any

a, b ∈ S and MultiIntersection(p,σ ) returns a point x, the distance between x and

any point in S is at least 0.03 lfs∗
ε .

Proof The point x belongs to Vt |σ for some triangle t ∈ star(p,σ ) such that Vt in-

tersects σ more than once. Let ϕ be the function that returns the weighted distance

between p and points on Vt . By the working of MultiIntersection(p,σ ), ϕ(x) is the

largest among all points in Vt |σ . Assume to the contrary that the minimum distance

between x and the points in S is less than 0.03 lfs∗
ε . So ϕ(x) < 0.03 lfs∗

ε too. Let y

be any point in Vt |σ other than x. Because ϕ(y) � ϕ(x) < 0.03 lfs∗
ε , Lemma 5.8 im-

plies that max{‖p − x‖,‖p − y‖} <
√

2 range(p). Then Lemma 5.2(iii) implies that

∠nσ (p), xy > π/2−2ω. However, since ortho(t) � ϕ(x) < 0.03 lfs∗
ε , by Lemma 5.7,

∠nσ (p), xy = ∠nσ (p),Vt < 26ω < π/2 − 2ω, a contradiction. �

Lemma 5.12 Let S be the current admissible point set. If Infringed(p,σ ) returns a

point x, the distance between x and any point in S is at least 0.03 lfs∗
ε .

Proof The point x belongs to Vpq for some edge pq ∈ star(p,σ ) that certifies that

(p,σ ) is infringed. In other words, there is a ball B centered at x orthogonal to p
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and q , and the weighted distances of B from all weighted and unweighted vertices is

nonnegative. In particular, this means that B does not contain any point in S, weighted

or unweighted. Therefore, it suffices to show that radius(B) � 0.03 lfs∗
ε .

If q ∈ σ , p and q must be nonadjacent weighted points in bdσ . Then, by

Lemma 3.1(v) and Lemma 5.1, the distance between Bp and Bq is at least

0.06 lfs∗
ε . So radius(B) � 0.03 lfs∗

ε . The other case is that q �∈ σ and so ‖p − q‖ �

max{g(p), g(q)}. If p is weighted, by Lemma 3.1(ii), radius(Bp) < 5λg(p) <

g(p)/4 � ‖p − q‖/4. Similarly, if q is weighted, radius(Bq) < ‖p − q‖/4. There-

fore, irrespective of whether any of p and q is weighted, B must fill a gap of width

at least ‖p − q‖/2 � g(p)/2. It follows that radius(B) � g(p)/4 � f (p)/4, which

is greater than lfs∗
ε by Lemma 5.1. �

Lemma 5.13 Let S be the current admissible point set. If SurfaceNormal(p,σ,φs)

returns a point x, the distance between x and any point in S is at least lfs∗
ε .

Proof By definition, x ∈ Vp|σ and ∠nσ (p),nσ (x) = φs > 4ω. If the minimum dis-

tance between x and the points in S is less than lfs∗
ε , then ‖p − x‖ <

√
2 range(p) by

Lemma 5.8. But then Lemma 5.2(i) implies that ∠nσ (p),nσ (x) < 2ω, a contradic-

tion. �

Lemma 5.14 Let S be the current admissible point set. If Infringed(p,σ ) and

SurfaceNormal(p,σ,φs) return null and CurveNormal(p,σ,φc) returns a point x,

the distance between x and any point in S is at least lfs∗
ε .

Proof By definition, x ∈ Vpq |σ for some edge pq ∈ star(p,σ ). As Infringed(p,σ )

returns null, q ∈ σ . Assume to the contrary that the minimum distance between x

and the points in S is less than lfs∗
ε . By Lemma 5.9, ∠nσ (p), 	d < 4ω, where 	d is

the projection of nσ (p) onto the plane of Vpq . Since SurfaceNormal(p,σ,φs) returns

null, ∠nσ (p),nσ (x) < φs , which implies that ∠nσ (x), 	d < φs + 4ω. However, as

CurveNormal(p,σ,φc) returns x, ∠nσ (x), 	d � φc > φs + 4ω, a contradiction. �

The case for NoDisk(p,σ ) is more complicated. Let p be a point on a 2-face

σ . We first show that bd (Vp ∩ σ) is a closed curve under certain conditions. We

proved a similar result earlier [14] in the context of meshing a smooth closed surface.

That proof can be carried over after some modifications. The details can be found in

Appendix D.

Lemma 5.15 Let S be the current admissible point set. Assume that ‖a − b‖ �

0.03 lfs∗
ε for any a, b ∈ S. Let p be a point in S ∩ σ for some 2-face σ . Suppose

that Infringed(p,σ ) and CurveNormal(p,σ,φc) return null and size(t, σ ) < 0.03 lfs∗
ε

for any triangle t ∈ star(p,σ ). Then, bd (Vp ∩ σ) is a closed curve.

We can then show that any point returned by NoDisk(p,σ ) is far from existing

vertices.

Lemma 5.16 Let S be the current admissible point set. Assume that ‖a − b‖ �

0.03 lfs∗
ε for any a, b ∈ S. Let p be a point in S ∩ σ for some 2-face σ . Suppose
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that MultiIntersection(p,σ ), Infringed(p,σ ), and CurveNormal(p,σ,φc) return null.

If NoDisk(p,σ ) returns a point x, the distance between x and any point in S is at

least 0.03 lfs∗
ε .

Proof If the lemma is false, the minimum distance between x and the points in S is

less than 0.03 lfs∗
ε . So is the minimum weighted distance. It follows from the work-

ing of NoDisk(p,σ ) that size(t, σ ) < 0.03 lfs∗
ε for any triangle t ∈ star(p,σ ). Then,

Lemma 5.15 implies that bdVp|σ is a closed curve. Furthermore, bdVp|σ is not con-

tained in a single facet of Vp because CurveNormal(p,σ,φc) returns null. Then, be-

cause MultiIntersection(p,σ ) returns null, the triangles in star(p,σ ) form a topologi-

cal disk by the duality between bdVp|σ and star(p,σ ). But then NoDisk(p,σ ) should

have returned null, a contradiction. �

5.3 Termination

We use the distance lower bounds proved in the last section to show the termination

of MeshPSC. Furthermore, we establish some topological properties of the resulting

restricted Voronoi diagram.

Theorem 5.1 (MeshPSC terminates) The following properties hold for each point p

in the final admissible point set.

(i) For any 1- or 2-face σ , Vp intersects σ only if p ∈ σ .

(ii) For any 2-face σ and for any triangle t ∈ star(p,σ ), Vt |σ is a single point.

(iii) For any 1- or 2-face σ and for any edge e ∈ star(p,σ ), Ve|σ is a topological

ball of dimension dim(σ ) − 1;

(iv) For any 1- or 2-face σ containing p, Vp|σ is a topological ball of dimension

dim(σ ).

Proof By Lemma 5.10, any two mesh vertices are at distance 0.03 lfs∗
ε or more

at the end of step 1 of MeshPSC. Afterwards, whenever MeshPSC inserts a new

point, its distance from any existing mesh vertex is at least 0.03 lfs∗
ε by Lemma 5.11,

Lemma 5.12, Lemma 5.13, Lemma 5.14, and Lemma 5.16. Recall that PSC is com-

pact by definition. So a standard packing argument can be used to claim termination.

By Lemma 5.3, Vp intersects a 1-face only if p lies on it. Suppose that Vp inter-

sects a 2-face σ that does not contain p. Recall that MeshPSC inserts an unweighted

point in intσ during initialization. Walking from Vp to the Voronoi cell of this un-

weighted point, we must encounter two vertices q �∈ σ and s ∈ σ such that the com-

mon facet Vqs intersects σ . But then Infringed(s, σ ) should return a point, contradict-

ing the termination of MeshPSC. This proves (i).

The correctness of (ii) follows from the fact that MultiIntersection is not applicable.

Let τ be a 1-face. We have just shown that star(p, τ ) is nonempty only if p ∈ τ . By

Lemma 5.3, a facet of Vp intersects τ only if the facet is between p and an adjacent

weighted point on τ . Such a facet is Ve for some edge e ∈ star(p, τ ). Lemma 5.3

further implies that Ve intersects τ in one point. Let σ be a 2-face. By (i) again,

star(p,σ ) is nonempty only if p ∈ σ . For any edge e ∈ star(p,σ ), Ve|σ is a collection

of curve(s). There is no closed curve in Ve|σ because CurveNormal(p,σ,φc) returns
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null. If there are two open curves in Ve|σ , at least three of their endpoints belong to

bdVe . Since MultiIntersection returns null, these curve endpoints belong to distinct

boundary edges of Ve . Each such curve endpoint gives rise to a triangle in star(p,σ )

incident to e, implying that there are at least three triangles in star(p,σ ) incident to

e. This is a contradiction because NoDisk(p,σ ) returns null. Hence, Ve|σ is an open

curve. This proves (iii).

Let τ be a 1-face containing p. Lemma 5.3 implies that bdVp intersects τ ex-

actly twice if p ∈ int τ , and bdVp intersects τ exactly once if p is an endpoint

of τ . Therefore, Vp ∩ τ is an open curve. Let σ be a 2-face containing p. Because

NoDisk(p,σ ) returns null, the union of the triangles in star(p,σ ) is a topological

disk. Since MultiIntersection and CurveNormal return null, no two curves in bdVp|σ
intersect the same edge of Vp , and no curve in bdVp|σ lies within a facet of Vp .

Then, the duality between star(p,σ ) and bdVp|σ implies that bdVp|σ is a closed

curve. There is a direction 	d such that for any point z ∈ Vp|σ , ∠ 	d,nσ (z) < π/2. For

example, since SurfaceNormal(p,σ,φs) returns null, we can choose 	d = nσ (p). It

has been proved in [14] that for such a 2-manifold Vp|σ , its projection to a plane

orthogonal to 	d is an injective map. Since the projected image is a planar bounded

region with a closed boundary curve, it must be a topological disk. The injectivity

of the projection makes it a homeomorphism between the projected image and Vp|σ .

Hence, Vp|σ is a topological disk. This proves (iv). �

5.4 Topology Preservation

A CW-complex R is a collection of closed (topological) balls whose interiors are

pairwise disjoint and whose boundaries are union of other closed balls in R. A finite

set S ⊂ |D| has the extended topological ball properties (extended TBP) for D if

there is a CW-complex R with |R| = |D| that satisfies the following conditions for

each Voronoi face F ∈ VorS intersecting |D|:
(C1) The restricted Voronoi face F ∩ |D| is the underlying space of a CW-complex

RF ⊆ R.

(C2) The (closed) balls in RF that intersect intF are incident to a unique (closed)

ball bF ∈ RF .

(C3) bF ∩ bdF is a sphere of dimension dim(bF ) − 1.

(C4) For each ℓ-ball b ∈ RF \ {bF } that intersects intF , b ∩ bdF is an (ℓ − 1)-ball.

Figure 3 shows two examples of a Voronoi facet F that satisfy the above condi-

tions.

The result of Edelsbrunner and Shah [21] says that if S has the extended TBP

for D, the underlying space of DelS|D is homeomorphic to |D|. Of course, to apply

this result we would require a CW-complex with underlying space |D|. We will see

that VorS restricted to D provides such a CW-complex when our algorithm termi-

nates.

We first show that the Voronoi faces of VorS satisfy three properties P1, P2, and

P3 listed below at the termination of the algorithm. Let F be a k-face of VorS where

F = Vp1
∩ · · · ∩ Vp(4−k)

.
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Fig. 3 F is a Voronoi facet. In

(a), F intersects a 2-face in a

closed topological interval

(1-ball) which is bF . Here bF

intersects bdF at two points, a

0-sphere. In (b), F intersects the

1-face in a single point which is

bF , and for 1 � i � 3, F ∩ σi

are closed topological 1-balls

incident to bF . Here

bF ∩ bdF = ∅, a −1-sphere

(P1) If F intersects an element σ ∈ Dj , the intersection is a closed (k + j − 3)-ball.

(P2) There is a unique element σF ∈ D such that the elements intersected by F are

σF and those that contain σF in their boundaries.

(P3) σF contains the vertices p1, . . . , p(4−k).

Property P1 follows from the fact that our algorithm enforces TBP for each 1-face

and 2-face (Theorem 5.1). Properties P2 and P3 follow from the following result.

Lemma 5.17 Let F = Vp1
∩ · · · ∩ Vp(4−k)

be a k-face in VorS when MeshPSC ter-

minates. Let EF be the set of elements in D that intersect F .

(i) For any σ ∈ EF , σ contains pi for 1 � i � 4 − k.

(ii) Let σF be an element in EF of lowest dimension. For any σ ∈ EF \ {σF }, σF ⊂
bdσ .

Proof For any σ ∈ EF , since σ intersects F , σ intersects Vpi
for 1 � i � 4 − k. So

Theorem 5.1(i) implies that σ contains pi for 1 � i � 4 − k. This proves (i). We

conduct a case analysis depending on the dimension of F to prove (ii).

Case 1: F is a Voronoi cell Vp . Take any element σ ∈ EF \{σF }. By (i), p ∈ σF ∩σ

which implies that σF ∩ σ contains an element σ ′ in EF . If σF �⊂ bdσ , dim(σ ′) �

dim(σF ) − 1. But this contradicts the definition of σF .

Case 2: F is a Voronoi facet Vpq . Since p,q ∈ σF by (i), dim(σF ) � 1. If p or

q lies in the interior of a 2-face, σF is this 2-face and EF is the singleton set {σF }.
So (ii) is trivially true. Suppose that p,q ∈ |D�1|. We claim that σF is a 1-face.

Assume to the contrary that σF is a 2-face. So p,q ∈ bdσF as p,q ∈ |D�1|. The

edge pq belongs to DelS|σF
as Vpq ∩ σF = F ∩ σF �= ∅. The points p and q must be

adjacent along bdσF ; otherwise, pq would trigger Infringed(p,σF ) to insert a point,

contradicting the termination of MeshPSC. As p and q are adjacent, by Lemma 5.3,

F = Vpq intersects the subcurve of bdσF between p and q . Thus, some 1-face in

bdσF belongs to EF . But this contradicts the definition of σF . This proves our claim.

The vertices p and q are adjacent along the 1-face σF . If not, for some 2-face σ ′

containing σF in its boundary, pq would trigger Infringed(p,σ ′) to insert a point.

This contradicts the termination of MeshPSC.

Since p and q are adjacent along σF , by our protecting ball placement strategy,

σF is the only 1-face that contains p and q . Moreover, σF belongs to the boundary of

any 2-face containing p and q . For any σ ∈ EF \ {σF }, σ is a 1- or 2-face containing
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p,q by (i). Consequently, since σ �= σF , σ must be a 2-face that contains σF in its

boundary.

Case 3: F is a Voronoi edge Vpqs . As in case 2, if p, q , or s lies in the interior of a

2-face, σF is this 2-face, and EF is the singleton set {σF }. So (ii) is trivially true. We

derive a contradiction for the case that p,q, s ∈ |D�1|. In this case we can show as in

case 2 that σF must be a 1-face. By (i), p,q, s ∈ σF . Since any three vertices on any

1-face cannot be mutually adjacent, two vertices in {p,q, s} are nonadjacent along

σF , say p and q . But then the edge pq would trigger Infringed(p,σ ′) to insert a point

for some 2-face σ ′ whose boundary contains σF . This contradicts the termination of

MeshPSC. �

We show that conditions C1–C4 follow from P1 and P2. The proof depends on our

assumption of the generic intersection property (GIP): every Voronoi face in VorS

intersects an element of D transversally, if at all, at the termination of MeshPSC. The

assumption of the GIP can be removed by employing a more elaborate analysis and

symbolic perturbation in the algorithm; see [14] for details.

Theorem 5.2 The output of MeshPSC is homeomorphic to |D|.

Proof We prove that S has the extended TBP for D when MeshPSC terminates.

Then, the result of Edelsbrunner and Shah implies the theorem. To apply the extended

TBP we need a CW-complex whose underlying space is |D|. Upon the termination

of MeshPSC, we take R to be the complex formed by the intersection of the Voronoi

faces in VorS with the elements of D. So R is a CW-complex according to P1. It

immediately follows that a k-face F of VorS intersects the CW-complex R in a CW-

complex RF ⊆ R satisfying C1.

Define σF as in the statement of Lemma 5.17. We identify bF as σF ∩ F . By the

assumption of GIP, σF intersects intF , and so bF intersects intF . Condition C2 then

follows from P2.

If bdbF intersects intF , bdσF intersects F too. But this would contradict P2

which states that any element other than bF that intersects F contains σF in its bound-

ary. Therefore, bdbF must be contained in bdF . The assumption of GIP allows us to

conclude that bF ∩ bdF = bdbF . Thus, b ∩ bdF = bdbF is a sphere of dimension

dim(bF ) − 1. This establishes condition C3.

Take any ball b ∈ RF \ {bF } that intersects intF . Let σ be the element in D

such that b = σ ∩ F . We claim that bdσ ∩ intF is an open (ℓ − 1)-ball, where ℓ =
dim(F ) + dim(σ ) − 3. The proof involves a case analysis depending on dim(σF ).

• If σF is a 2-face, σ does not exist by P2 because D does not contain any element

with dimension higher than two. So there is nothing to prove.

• If σF is a 1-face, P2 implies that σ is a 2-face, F does not contain any vertex of σ ,

and F does not intersect any 1-face other than σF . It follows that bdσ ∩ intF =
σF ∩ intF which by P1 is an open (ℓ − 1)-ball as dim(σF ) = dim(σ ) − 1.

• If σF is a vertex in D0, F must be the Voronoi cell owned by σF . So F does

not contain any vertex of σ other than σF . By P2, any 1-face intersected by F is

incident to σF . If σ is a 1-face, bdσ ∩ intF = σF , which is an open (ℓ− 1)-ball as

ℓ = 1 in this case. If σ is a 2-face, bdσ ∩ intF is equal to (σ1 ∪ σ2) ∩ intF , where
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σ1 and σ2 are the two 1-faces in bdσ incident to σF . Since the other endpoints

of σ1 and σ2 are outside F , (σ1 ∪ σ2) ∩ intF is an open curve which is an open

(ℓ − 1)-ball as ℓ = 2 in this case.

By P1, b = σ ∩ F is a closed ℓ-ball, where ℓ = dim(F ) + dim(σ ) − 3. So bdb is

an (ℓ − 1)-sphere. Observe that bdb = (bdb ∩ intF) ∪ (bdb ∩ bdF). Furthermore,

bdb = (bdb ∩ intF) and bdb ∩ bdF are disjoint, bdb ∩ bdF = b ∩ bdF , and bdb ∩
intF = bdσ ∩ intF . We have shown in the above that bdσ ∩ intF is an open (ℓ−1)-

ball. Hence, b ∩ bdF must be a closed (ℓ − 1)-ball in order to merge with the open

(ℓ−1)-ball bdσ ∩ intF to form the (ℓ−1)-sphere bdb. This proves condition C4. �

Non-smooth Features Following the proof of Edelsbrunner and Shah [21] one can

construct a homeomorphism h between the underlying spaces of D and DelS|D such

that h respects each stratum. That is, the restriction of h to |Di | is a homeomorphism

to the underlying space of DelS|Di
. Property P3 ensures that DelS|Di

has all vertices

in Di . This property ensures the preservation of non-smooth features. For example,

a 1-face in D is meshed with a set of Delaunay edges connecting consecutive points

sampled on it thereby preserving the “non-smoothness” of the 1-face in the output.

6 Mesh Quality Improvements

We introduce two subroutines that enhance MeshPSC to offer bounds on the aspect

ratios, normal variation, and dihedral angles in the output mesh. For a triangle t , the

radius-edge ratio is defined to be the ratio of the circumradius to the shortest edge

length of t . It is known that the radius-edge ratio of a triangle is bounded if and only

if the aspect ratio is bounded. For a point p on a 2-face σ , the first subroutine Shape

eliminates triangles in star(p,σ ) with unweighted vertices and radius-edge ratios at

least 1; the second subroutine TriangleNormal eliminates triangles in star(p,σ ) whose

normal deviates from nσ (p) by 26ω or more. Notice that we do not offer any guaran-

tee on the shape of triangles incident to weighted vertices. The pseudocodes of Shape

and TriangleNormal are given below.

Shape(p,σ )

1. If there is a triangle t ∈ star(p,σ ) whose vertices are unweighted and radius-

edge ratio is greater than or equal to 1, return Vt |σ .

2. Otherwise, return null.

TriangleNormal(p,σ )

1. If there is a triangle t ∈ star(p,σ ) such that ∠nσ (p),Vt � 26ω, return Vt |σ .

2. Otherwise, return null.

We modify FindViolation(p,σ ) to call the subroutines MultiIntersection(p,σ ),

Infringed(p,σ ), SurfaceNormal(p,σ,φs), CurveNormal(p,σ,φc), Shape(p,σ ), and

TriangleNormal(p,σ ) in this order. If any call returns a point, stop and return that

point. Otherwise, return null. The enhanced algorithm works like MeshPSC by call-

ing the enhanced FindViolation until the admissible point set stops growing. We call

this enhanced algorithm QualMeshPSC.
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By Theorem 5.1, when FindViolation(p,σ ) calls Shape(p,σ ) or

TriangleNormal(p,σ ), Vt |σ is a point for any triangle t ∈ star(p,σ ). Thus, the sub-

routines Shape and TriangleNormal are well-defined. The next two lemmas show that

termination is still guaranteed.

Lemma 6.1 Let S be the current admissible point set. Assume that ‖a − b‖ �

0.03 lfs∗
ε for any a, b ∈ S. If FindViolation(p,σ ) calls Shape(p,σ ) and Shape(p,σ )

returns a point x, the distance between x and any point in S is at least 0.03 lfs∗
ε .

Proof The point x returned is Vt |σ for some triangle t ∈ star(p,σ ). Since the radius-

edge ratio of t is at least 1, the distance from x to the vertices of t is at least the shortest

edge length of t . The invocations of MultiIntersection, Infringed, SurfaceNormal, and

CurveNormal have kept a distance lower bound of 0.03 lfs∗
ε among the vertices. So

the distances from x to the vertices of t is at least 0.03 lfs∗
ε . Because the vertices of

t are unweighted, 0.03 lfs∗
ε is also a lower bound on the minimum weighted distance

between x and the points in S. In turn, this implies that the distance between x and

any point in S is at least 0.03 lfs∗
ε . �

Lemma 6.2 Let S be the current admissible point set. Assume that ‖a − b‖ �

0.03 lfs∗
ε for any a, b ∈ S. If FindViolation(p,σ ) calls TriangleNormal(p,σ ) and

TriangleNormal(p,σ ) returns a point x, the distance between x and any point in S is

greater than 0.03 lfs∗
ε .

Proof Let t be the triangle in star(p,σ ) such that Vt |σ = x. The contrapositive of

Lemma 5.7 implies that ortho(t) > 0.03 lfs∗
ε . So the weighted distance between x and

any point in S is greater than 0.03 lfs∗
ε . So is the distance between x and any point

in S. �

Because a distance lower bound is maintained by Shape and TriangleNormal,

QualMeshPSC terminates. The guarantees in Theorem 5.1 and Theorem 5.2 are

preserved as MultiIntersection, Infringed, SurfaceNormal, and CurveNormal are in-

applicable at the termination of QualMeshPSC.

The inapplicability of Shape implies that all output triangles with unweighted

vertices have radius-edge ratio less than 1. The angles of such triangles lie in the

range (π
6
, 2π

3
). There is no shape guarantee for output triangles incident on weighted

vertices.

TriangleNormal ensures that the normal of any triangle deviates from the surface

normals at its vertices by less than 26ω. Furthermore, we prove below that for any

2-face σ , the dihedral angle between any pair of triangles in DelS|σ sharing an edge

is greater than π − 52ω. Notice that for any edge in DelS|σ with both endpoints

weighted, the edge is incident to only one triangle in DelS|σ ; and for any edge in

DelS|σ with an unweighted endpoint, the edge is incident to two triangles in DelS|σ .

Let t1 and t2 be two triangles in DelS|σ that share an edge pq . For i ∈ {1,2}, let zi

denote Vti |σ , and let 	di be a unit vector parallel to Vti and making an acute angle with

nσ (zi). TriangleNormal ensures that ∠Vt1 ,Vt2 � ∠nσ (p),Vt1 + ∠nσ (p),Vt2 < 52ω.

Consequently, the dihedral angle between t1 and t2 is either less than 52ω or greater



148 Discrete Comput Geom (2010) 43: 121–166

than π − 52ω. To complete the argument, it suffices to show that both t1 and t2 can

be oriented in the clockwise order as seen from infinity in 	d1 such that pq is assigned

opposite orientations.

Since SurfaceNormal(p,σ,φs) returns null, ∠nσ (p),nσ (zi) < φs < π/16. So

∠nσ (zi), 	di = ∠nσ (zi),Vti

� ∠nσ (p),Vti + ∠nσ (p),nσ (zi)

< 26ω + φs

< π/2. (1)

Denote by Oi the clockwise ordering of the three restricted Voronoi cells locally

around zi if we view from infinity in 	di . As nσ (zi), 	di < π/2, Oi is identical to

the clockwise ordering of the restricted Voronoi cells locally around zi as seen from

infinity in nσ (zi).

If we view from infinity in 	di , the clockwise ordering of ti is consistent with the

clockwise ordering of the three Voronoi cells incident to Vti . As nσ (zi), 	di < π/2, this

ordering is consistent with the clockwise ordering of the three restricted Voronoi cells

locally around zi as seen from infinity in nσ (zi). We conclude that Oi is consistent

with the clockwise ordering of ti as seen from infinity in 	di .

By Theorem 5.1, Vpq |σ is an open curve with endpoints z1 and z2. Therefore, the

ordering of the two restricted Voronoi cells incident to Vpq |σ in O1 is the reverse of

that in O2. This implies that pq is assigned opposite orientations when we orient ti in

the clockwise order as viewed from 	di for i ∈ {1,2}. Since SurfaceNormal(p,σ,φs)

returns null,

∠ 	d1, 	d2 � ∠nσ (z1), 	d1 + ∠nσ (z2), 	d2 + ∠nσ (p),nσ (z1) + ∠nσ (p),nσ (z2)

< ∠nσ (z1), 	d1 + ∠nσ (z2), 	d2 + 2φs

(1)
< 52ω + 4φs

< π/2.

So the clockwise ordering of t2 remains the same if we change the viewpoint to

infinity in 	d1. In all, if we orient t1 and t2 in the clockwise order as seen from 	d1, pq

is assigned two opposite orientations.

We summarize with the following theorem.

Theorem 6.1 Let ω ∈ (0,0.01]. QualMeshPSC terminates with the following guar-

antees.

• The output mesh is homeomorphic to |D|.
• Each mesh triangle with unweighted vertices has radius-edge ratio less than 1.

• Let S be the output vertex set. For each element σ ∈ D, the vertices of DelS|σ
belong to σ , and DelS|σ is homeomorphic to σ .

• For each mesh triangle, the angle between its normal and the surface normal at

any of its vertex is less than 26ω.
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• For each mesh edge with an unweighted endpoint, the two mesh triangles incident

to it make a dihedral angle greater than π − 52ω.

7 Conclusions

We have presented a Delaunay refinement algorithm to mesh PSC which pre-

serves topology as well as non-smooth features. We did not handle explicitly three-

dimensional elements in PSC. Our algorithm can be extended to handle these inputs.

This will require further analysis along the line of [27, 30]. Our bound of 0.01 for

λ and ω is very small. So is the lower bound of 0.03 lfs∗
ε on the distances among

the points inserted during Delaunay refinement, where ε = λω/2500. We believe that

these pessimistic bounds are not the tightest possible and that the algorithm performs

better in practice. A main question is how to make this algorithm practical. The main

bottlenecks in practice are the surface normal and curve normal variation tests. Can

these be eliminated or replaced with some other easier computations? Some answer

to this question has been provided in [13] recently. We propose to handle paramet-

ric surfaces by first implicitizing them [24]. It is an interesting question whether our

algorithm can be adapted to work directly with parametric surfaces. Our analysis

guarantees homeomorphism between the input and the output. A stronger and more

desirable condition would be to ensure an isotopy between the two. Does it require a

different approach? Or, is it true that topological ball property indeed guarantees an

isotopy at least for surfaces in three dimensions? We leave these questions as open.
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Appendix A: Background Results

Proof of Lemma 1.1 If σ is a 1-face, B(x, r) ∩ mani(σ ) may be split by the end-

points of σ into at most three subcurves, one of which is B(x, r) ∩ σ . Suppose that

σ is a 2-face. If x ∈ intσ , since B(x, r) avoids 1-faces in this case by assumption,

B(x, r) ∩ σ = B(x, r) ∩ mani(σ ), and we are done. Suppose that x ∈ bdσ . We claim

that B(x, r) ∩ bdσ is an open curve.

By assumption, B(x, r) avoids any 1-face that does not contain x. If x is incident

to only one 1-face σ1 (i.e., x ∈ intσ1), B(x, r)∩bdσ = B(x, r)∩σ1, and we have just

shown that B(x, r) ∩ σ1 is an open curve. If x is a common endpoint of two 1-faces

σ1 and σ2 in bdσ , B(x, r) does not contain any vertex of σi other than x as B(x, r)

avoids other 1-faces by assumption. We know that B(x, r) ∩ σ1 and B(x, r) ∩ σ2 are

open curves, and so they concatenate to form one open curve. This proves our claim.

Since B(x, r) ∩ bdσ is an open curve, it splits B(x, r) ∩ mani(σ ) into two topo-

logical disks, one of which is B(x, r) ∩ σ .

Proof of Lemma 1.2 We use C to denote H ∩ B ∩ mani(σ ). No curve in C is closed.

Otherwise, the tangent to some point z ∈ C would be parallel to the projection 	d of

nσ (x) on H , implying that ∠nσ (x), nσ (z) � ∠nσ (z), 	d − ∠nσ (x), 	d � π/2 − θ . But



150 Discrete Comput Geom (2010) 43: 121–166

this is a contradiction because ∠nσ (x), nσ (z) < θ . Notice that the endpoints of each

curve in C lie on the boundary of B .

Notice that y is the center of H ∩B and some curve in C passes through y. Assume

to the contrary that C consists of at least two open curves. Then, there exists a concen-

tric disk D inside the disk H ∩B such that D is tangent to some curve in C at a point z.

Let ℓ be the support line of yz. Since ℓ intersects B ∩mani(σ ) at y and z, we can find

a point z′ ∈ ℓ ∩ B ∩ mani(σ ) such that z and z′ are consecutive intersections points

in ℓ ∩ B ∩ mani(σ ). As B is convex, z and z′ are also consecutive intersection points

in ℓ ∩ mani(σ ). We have ∠nσ (z), ℓ = ∠nσ (z),H � ∠nσ (x),H + ∠nσ (x), nσ (z) <

2θ by assumption. Also, ∠nσ (z′), ℓ � ∠nσ (z), ℓ + ∠nσ (z), nσ (z′) � ∠nσ (z), ℓ +
∠nσ (x), nσ (z)+∠nσ (x), nσ (z′) < 4θ . If we walk along ℓ, we enter mani(σ ) at z and

exit mani(σ ) at z′ or vice versa. We conclude that ∠nσ (z), nσ (z′) > π − 6θ because

nσ (z) and nσ (z′) are outward surface normals. But this is a contradiction because

∠nσ (z), nσ (z′) � ∠nσ (x), nσ (z) + ∠nσ (x), nσ (z′) < 2θ � π − 6θ as θ � π/8.

Proof of Lemma 1.3 Consider (i). We claim that z lies strictly inside the double

cone with apex y, angular aperture 2θ , and axis through y parallel to the tangent to

mani(σ ) at x. This claim immediately implies that ∠nσ (x), yz > π/2 − θ . Assume

to the contrary that the claim is false. Since ∠nσ (x), nσ (y) < θ by assumption, the

tangent to mani(σ ) at y lies strictly inside the double cone. This implies that if we

walk along the subcurve of B(x, r) ∩ mani(σ ) from y to z, we stay inside the double

cone initially. We must reach the double cone boundary for the first time at some

point z1 after leaving y. Let H be the plane tangent to the double cone at z1. We

translate H to a plane that is tangent to the subcurve between y and z1 at a point

z2. So ∠nσ (x), nσ (z2) � θ . Because z2 lies on the subcurve between y and z1, z2 ∈
B(x, r) ∩ mani(σ ). So by assumption, ∠nσ (x), nσ (z2) < θ , a contradiction.

Consider (ii). We are done if ∠nσ (x), yz > π/2 − θ for any point z ∈ B(x, 1
3
r) ∩

mani(σ ). Otherwise, because B(x, 1
3
r) ∩ mani(σ ) is connected, by continuity, there

exists a point z1 ∈ B(x, 1
3
r) ∩ mani(σ ) such that ∠nσ (x), yz1 = π/2 − θ . Let H

be the plane containing yz1 and parallel to nσ (x). Notice that B(y,‖y − z1‖) ⊂
B(y, 2

3
r) ⊂ B(x, r). By Lemma 1.2, H ∩ B(y, 2

3
r) ∩ mani(σ ) is an open curve, and

let ξ be its subcurve between y and z1. The tangent to ξ at some point z2 is par-

allel to yz1 and thus it makes an angle π/2 − θ with the support line of nσ (x). So

∠nσ (x), nσ (z2) � θ . But this is a contradiction because ∠nσ (x), nσ (z2) < θ by as-

sumption.

Appendix B: The Computation of dω(x), g(x), and b(x)

Let x be a point on a 1-face. We discuss the details of computing dω(x), g(x), and

b(x).

Computing dω(x) for a Noncritical ω For any 1- or 2-face σ containing x, we

compute the ω-deviation radius of x with respect to σ as follows.

Suppose that σ is a 1-face. Let E1(z) = 0 and E2(z) = 0 be the equations of

the two given surfaces whose intersection contains σ . For any point z ∈ mani(σ ),
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∠nσ (x), nσ (z) = ω if and only if the angle between the tangents at x and z is ω.

Define G(z) = ∇E1(z) × ∇E2(z). We solve the following system for z: E1(z) = 0,

E2(z) = 0, 〈G(x),G(z)〉 = ‖G(x)‖ · ‖G(z)‖ · cosω. Then, we return the distance

between x and the closest solution.

Suppose that σ is a 2-face. Let Eσ (z) = 0 be the equation of mani(σ ). Define

Gσ (z) = 〈∇Eσ (x),∇Eσ (z)〉/(‖∇Eσ (x)‖ · ‖∇Eσ (z)‖). Then, σx,ω = {z ∈ mani(σ ) :
cos(∠nσ (x), nσ (z)) = cosω} is described by the system Eσ (z) = 0, Gσ (z) = cosω.

If ∇Gσ (z) is not parallel to ∇Eσ (z) for any point z ∈ σx,ω, σx,ω is a collection of

disjoint smooth closed curves by the implicit function theorem. If ∇Gσ (z) is par-

allel to ∇Eσ (z) for some point z ∈ σx,ω , cosω is a critical value for the function

Gσ (z) restricted to mani(σ ). We can decide whether cosω and hence ω is critical

by testing the solvability of the following system of equations: Eσ (z) = 0,Gσ (z) =
cosω,∇Gσ (z) × ∇Eσ (z) = 0. If the system is solvable, ω is critical; otherwise, ω is

not critical.

Suppose that ω is not critical. For each smooth closed curve in σx,ω , its closest

point to x is a tangential contact point with B(x, r) for some r > 0. Each contact

point z is characterized by the fact that xz is orthogonal to the tangent to σx,ω at z.

Thus, it suffices to find all the tangential contact points and pick the one closest to x.

The tangent at a point z ∈ σx,ω is parallel to ∇Gσ (z) × ∇Eσ (z). Thus, we solve the

system Eσ (z) = 0, Gσ (z) = cosω, 〈∇Gσ (z) × ∇Eσ (z), (x − z)〉 = 0 and return the

distance between x and the closest solution.

The minimum distance returned over all faces containing x is dω(x).

Perturbation The previous computation of dω(x) cannot be performed if ω is found

critical with respect to some 2-face σ containing x. We can get around this problem

by exploiting the strong version of the Sard’s theorem [34].

Since mani(σ ) is assumed to be C3-smooth, the function Gσ (z) = 〈∇Eσ (x),

∇Eσ (z)〉/(‖∇Eσ (x)‖ · ‖∇Eσ (z)‖) is C2-smooth. Under these conditions, the strong

version of Sard’s theorem states that the critical values of the restriction of Gσ (z) to

mani(σ ) are isolated [34]. This allows us to perturb ω to a noncritical value slightly

less than ω. The details are as follows.

We set α to be a positive constant as small as we wish. We check as before whether

ω−α is critical for any 2-face containing x. That is, for any 2-face σ containing x, we

check whether the system Eσ (z) = 0,Gσ (z) = cos(ω − α),∇Gσ (z) × ∇Eσ (z) = 0

is solvable. If ω − α is not critical for any 2-face containing x, we set ω̄ = ω − α

and compute dω̄(x). If ω − α is critical for some 2-face containing x, we halve α and

test the criticality of ω − α again. By the strong version of the Sard’s theorem, we

must eventually find a small enough α such that ω − α is not critical for any 2-face

containing x.

Computing g(x) The minimum distance between x and other faces not containing

x is g(x). The distances from x to other vertices can easily be computed in linear

time. For any 1- or 2-face σ not containing x, we compute the distance between x

and intσ as follows.

Suppose that σ is a 1-face. Let E1(z) = 0 and E2(z) = 0 be the equations of the

two given surfaces Σ1 and Σ2 whose intersection contains σ . Any ball centered at
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x is tangent to a curve in Σ1 ∩ Σ2 at a point z if and only if xz is orthogonal to

the tangent to Σ1 ∩ Σ2 at z. We find all such contact points z by solving the system

E1(z) = 0, E2(z) = 0, 〈∇E1(z)×∇E2(z), (x − z)〉 = 0. Then, we return the distance

between x and the closest contact point on σ .

Suppose that σ is a 2-face. Let E(z) = 0 be the equation of mani(σ ). Any ball

centered at x is tangent to mani(σ ) at a point z if and only if xz is normal to mani(σ ).

We find all such tangential contact points z by solving the system E(z) = 0, ∇E(z)×
(x − z) = 0. Then, we return the distance between x and the closest contact point

on σ .

Computing b(x) For any 1- or 2-face σ containing x, we determine the largest

value bσ (x) > 0 such that for any r < bσ (x), B(x, r) ∩ mani(σ ) is a closed ball of

dimension dim(σ ). This computation is similar to the computation of g(x). The only

difference is that we now return the distance between x and the closest contact point

instead of the closest contact point on σ . Afterwards, b(x) = minx∈σ bσ (x).

Appendix C: Proof of Lemma 3.1

In Sect. C.1 we first prove some properties of the protecting balls constructed. Then,

we use these properties to show in Sect. C.2 that the protecting ball construction pro-

cedure terminates correctly. Lemma 3.1(i) is obvious by construction. Lemma 3.1(ii)–

(v) are proved in Sects. C.3–C.6.

Throughout this section we use σ to denote the 1-face that we are processing. We

use u = x1 and v to denote the endpoints of σ , and (x2, . . . , xm−1, ym, x0) to denote

the protecting ball centers in intσ . The quantities rk and r0k are defined as in Sect. 3.

Although the value m is used in Sect. C.1, the results in Sect. C.1 hold independent of

whether the protecting ball construction procedure terminates or not. If the procedure

were not to terminate, m would be equal to ∞.

We define the host of xk as follows. For 1 � k � m, if rk = λfωj
(xj )+λ‖xj − xk‖

for some 0 � j � k, define host(xk) = xk ; otherwise, define host(xk) = xb , where

b = max{i : i < k and host(xi) = xi}. Notice that host(x1) = x1, host(x2) = x2, and

if host(xk) �= xk , rk = ‖xk−1 − xk‖/2.

C.1 Technical Lemmas

We know that if host(xk) �= xk , rk = ‖xk−1 − xk‖/2. The case of host(xk) = xk is

discussed below.

Lemma C.1 ∀ 2 � k � m, if host(xk) = xk , rk = min0�j�k{λfωj
(xj )+λ‖xj −xk‖}.

Proof The lemma is true by construction for k � 3. It suffices to show that

‖xi − x2‖ � fω2
(x2) for i ∈ {0,1} so that λfω2

(x2) < min0�i�1{λfωi
(xi) +

λ‖xi − x2‖}. It follows from definition that ‖x1 − x2‖ = ‖u − x2‖ � fω2
(x2). Ob-

serve that λ‖u−v‖ � max{λg(u),λg(v)} � max{λfωu(u), λfωv (v)} = max{‖u−x2‖,
‖v − x0‖}. So ‖x0 − x2‖ � ‖u − v‖ − ‖u − x2‖ − ‖v − x0‖ � (1 − 2λ)‖u − v‖ �
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(1−2λ)fωu(u). Since fω2
(x2) � ‖u−x2‖ = λfωu(u), ‖x0 −x2‖ � (1−2λ)fω2

(x2)/λ >

fω2
(x2) as λ � 0.01. �

We relate radius(Bxk
) to radius(Bhost(xk)) and prove a bound on ‖xk − host(xk)‖.

Lemma C.2 ∀ 1 � k � m, if host(xk) = xb, rk = ( 3
5
)k−brb and ‖xb − xk‖ � 3rb .

Proof The lemma is trivial if xb = xk . Assume that xb �= xk and so k � 3. For b <

i � k, ri = 1
2
‖xi−1 − xi‖ as host(xi) �= xi . Because rb+1 = 1

2
‖xb − xb+1‖ = 3

5
rb ,

a simple induction shows that ri = ( 3
5
)i−brb for b < i � k. We have ‖xb − xk‖ �

∑k
i=b+1 ‖xi−1 − xi‖ � 2rb

∑∞
j=1(

3
5
)j = 3rb . �

We show that the radii of protecting balls vary gradually along intσ .

Lemma C.3

(i) ∀ 2 � k � m, ∀ 0 � j � k, rk � rj + λ‖xj − xk‖.

(ii) ∀ 2 � k < m, rk = 5
6
‖xk − xk+1‖ and rk+1 � 5+6λ

6
‖xk − xk+1‖ = 5+6λ

5
rk .

(iii) ∀ 2 � k � m, r0k � rk − λ‖xk − x0‖.

Proof Consider (i). For 0 � j � k, by definition, rj � λfωij
(xij ) + λ‖xj − xij ‖

for some ij � j . If host(xk) = xk , by Lemma C.1, rk � λfωij
(xij )+λ‖xk − xij ‖�

λfωij
(xij ) + λ‖xj − xij ‖ + λ‖xj − xk‖ � rj + λ‖xj − xk‖. Suppose that host(xk) =

xb for some b < k. For b � j < k, since host(xj ) = xb, Lemma C.2 implies

that rk = ( 3
5
)k−brb < ( 3

5
)j−brb = rj . For 0 � j < b, rj + λ‖xj − xk‖ � rj +

λ‖xj −xb‖−λ‖xb −xk‖. We have shown that rb � rj +λ‖xj −xb‖ as host(xb) = xb.

Also, ‖xb − xk‖ � 3rb by Lemma C.2. Thus, rj + λ‖xj − xk‖ � (1 − 3λ)rb =
(1 − 3λ)5k−brk/3k−b � rk as λ � 0.01. This proves (i). For 2 � k < m, rk =
5
6
‖xk − xk+1‖ by construction, and by (i), rk+1 � rk + λ‖xk − xk+1‖

= 5+6λ
6

‖xk − xk+1‖ = 5+6λ
5

rk . This proves (ii). By definition, there exists 0 � j � k

such that r0k = rj + λ‖xj − x0‖, so by (i), r0k � rk − λ‖xj − xk‖ + λ‖xj − x0‖ �

rk − λ‖xk − x0‖. This proves (iii). �

C.2 Proof of Termination

The next lemma shows the correctness of our strategy of defining xk for 3 � k � m.

Lemma C.4 For 3 � k � m, B(xk−1,
6
5
rk−1) ∩ σ is an open curve, and xk is its

only endpoint that satisfies ∠xk−2xk−1xk > π/2. Also, xk lies between xk−1 and v

along σ .

Proof Let xb = host(xk−2). Choose any number r from the range (7λfωb
(xb), fωb

(xb)).

By Lemma 2.5(ii)(b), B(xb, r) ∩ σ is an open curve. Moreover, since k � 3, we have

xb ∈ intσ . Then, as fωb
(xb) � g(xb) by definition, the endpoints of B(xb, r) ∩ σ lie

on the boundary of B(xb, r).

We first show that B(xk−1,
6
5
rk−1) ⊂ B(xb, r). If k = 3, xb = x1 and ‖x1 − x2‖ +

6
5
r2 � r1 + 6

5
r1 < 3r1 = 3λfω1

(x1) < r . If k > 3, Lemma C.2 and Lemma C.3(ii)
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imply that ‖xb − xk−2‖ + 6
5
rk−2 + 6

5
rk−1 < 7rb � 7λfωb

(xb) < r . We conclude that

‖xb − xk−1‖ + 6
5
rk−1 < r , which implies that B(xk−1,

6
5
rk−1) ⊂ B(xb, r).

Next, we show that B(xk−1,
6
5
rk−1) ∩ σ is an open curve. Suppose not. Then, we

can walk from xk−1 along B(xb, r) ∩ σ so that we leave B(xk−1,
6
5
rk−1) at a point y

and reenter B(xk−1,
6
5
rk−1) later. Thus, after leaving B(xk−1,

6
5
rk−1) at y, we must

return to another point y′ on the plane H tangent to B(xk−1,
6
5
rk−1) at y. We can

translate H to a plane that is tangent to the subcurve between y and y′ at a point z.

Notice that xk−1y ⊥ H which implies that xk−1y is parallel to nσ (z). But this is a

contradiction because, by applying Lemma 2.5(ii)(a) and (iii) to B(xb, r)∩ σ , we get

∠nσ (z), xk−1y � ∠nσ (xb), xk−1y − ∠nσ (xb), nσ (z) > π/2 − 2ω.

Since B(xk−1,
6
5
rk−1) ∩ σ is an open curve, it has one endpoint xk between

xk−1 and v and one endpoint z′ between u and xk−1. We have ∠xk−2xk−1xk �

∠nσ (xk−1), xk−1xk−2 + ∠nσ (xk−1), xk−1xk � ∠nσ (xb), xk−1xk−2 + ∠nσ (xb),

xk−1xk − 2 · ∠nσ (xb), nσ (xk−1). Thus, by Lemma 2.5(ii)(a) and (iii), we con-

clude that ∠xk−1xk−1xk > π − 4ω, which is greater than π/2. On the other hand,

∠xk−2xk−1z
′ � π − ∠nσ (xk−1), xk−1xk−2 − ∠nσ (xk−1), xk−1z

′ � π − ∠nσ (xb),

xk−1xk−2 −∠nσ (xb), xk−1z
′+2 ·∠nσ (xb), nσ (xk−1) < 4ω, which is less than π/2. �

We prove in Lemma C.5 below that the protecting ball construction procedure

terminates correctly. Properties (i)–(iii) will be needed in some subsequent proofs.

Lemma C.5

(i) 2
1+λ

rm−1 < ‖xm−1 − x0‖ < 5rm−1.

(ii) max{‖xm−1 − ym‖,‖ym − x0‖} < min{4r0m−1,5rm−1}.
(iii) 0.09rm−1 � 0.1r0m−1 � radius(Bym) < min{5λg(ym),4r0m−1,5rm−1}.
(iv) The protecting ball construction procedure terminates correctly.

Proof We claim that Bx2
∩ B(x0, r0) = ∅. By Lemma 2.5(i), r0 = λfω0

(x0) �

λg(x0) � λ‖v−x0‖. Similarly, r2 � λ‖u−x2‖ and λ‖u−v‖ � max{λg(u),λg(v)} �

max{λfωu(u), λfωv (v)} = max{‖u − x2‖,‖v − x0‖}. Thus, ‖u − x2‖ + r2 + r0 +
‖v − x0‖ � 2λ(1 + λ)‖u − v‖ < ‖u − v‖. This implies our claim.

Since r02 � r0, by our claim, the protecting ball construction starts with the right

condition that Bx2
∩ B(x0, r02) = ∅. By Lemma C.4, our procedure correctly defines

xk for 3 � k � m. For 2 � k < m, since Bxk
∩B(x0, r0k) = ∅, ‖xk − x0‖ > rk + r0k �

2rk − λ‖xk − x0‖ by Lemma C.3(iii). Thus, ‖xk − x0‖ > 2
1+λ

rk > 6
5
rk . It follows

that the protecting ball construction procedure never advances beyond x0. This also

proves the first inequality in (i) by substituting k = m − 1. For k � 3, both the dis-

tance advanced along σ by Bxk
and r0k are bounded away from zero. Thus, we must

eventually place the ball B(xm, rm) that overlaps with B(x0, r0m).

We claim that

‖xm−1 − x0‖ < 4r0m−1 � 4r0. (2)

By Lemma C.3(iii), rm−1 � r0m−1 + λ‖xm−1 − x0‖. Then, by Lemma C.3(i) and

(ii), rm � rm−1 + λ‖xm−1 − xm‖ = 5+6λ
5

rm−1 � 5+6λ
5

r0m−1 + 5λ+6λ2

5
‖xm−1 − x0‖.

Substituting these inequalities into ‖xm−1 − x0‖ � 6
5
rm−1 + rm + r0m (recall that
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B(xm, rm) overlaps with B(x0, r0m)), we get ‖xm−1 − x0‖ � 11+6λ
5

r0m−1 + r0m +
11λ+6λ2

5
‖xm−1 − x0‖. Since r0m � r0m−1, we get ‖xm−1 − x0‖ � 16+6λ

5
r0m−1 +

11λ+6λ2

5
‖xm−1 − x0‖ ⇒ ‖xm−1 − x0‖ � 16+6λ

5−11λ−6λ2 r0m−1 < 4r0m−1 � 4r0. This

proves (2).

By (2) and the definition of r0m−1, ‖xm−1 − x0‖ < 4r0m−1 � 4rm−1 +
4λ‖xm−1 − x0‖ ⇒ ‖xm−1 − x0‖ < 4

1−4λ
rm−1 < 5rm−1. This proves the second in-

equality in (i).

Since 4r0 = 4λfω0
(x0) < fω0

(x0), by Lemma 2.5(ii), B(x0,4r0) ∩ σ is an open

curve, and for any point y ∈ B(x0,4r0)∩σ , ∠nσ (x0), nσ (y) < ω. By Lemma 2.5(iii),

∠nσ (x0), x0xm−1 > π/2 − ω, which implies that nσ (x0) makes an angle less than ω

with the bisector plane of Bx0
and Bxm−1

. It follows that B(x0,4r0) ∩ σ contains the

subcurve between xm−1 and x0, which intersects the bisector plane of Bxm−1
and Bx0

exactly once. This intersection point is ym and ‖ym − x0‖ � 4r0. This proves that the

procedure terminates correctly, i.e., (iv) is true.

Since B(x0,4r0) ∩ σ contains the subcurve between xm−1 and x0, by Lem-

ma 2.5(ii)(a) and (iii), ∠xm−1ymx0 � ∠nσ (ym), ymxm−1 + ∠nσ (ym), ymx0 >

∠nσ (x0), ymxm−1 + ∠nσ (x0), ymx0 − 2 · ∠nσ (x0), nσ (ym) > π − 4ω > π/2. Thus,

max{‖xm−1 − ym‖,‖ym − x0‖} < ‖xm−1 − x0‖. Then (ii) follows from (i) and (2).

Since Bxm−1
∩B(x0, r0m−1) = ∅ and radius(Bx0

) = 4
5
r0m−1, the distance between

Bxm−1
and Bx0

is at least 1
5
r0m−1. Because Bym covers the gap between Bxm−1

and

Bx0
, we get radius(Bym) � 0.1r0m−1. By (i) and Lemma C.3(iii), r0m−1 � rm−1 −

λ‖xm−1 − x0‖ � rm−1 − 5λrm−1 � 0.9rm−1. Thus, radius(Bym) � 0.1r0m−1 �

0.09rm−1. This proves the first two inequalities in (iii).

Since x0 lies outside Bym , by (ii), radius(Bym) < ‖ym−x0‖ < min{4r0m−1,5rm−1}.
This proves part of the third inequality in (iii). Starting with ‖ym − x0‖ < 4r0m−1 �

4r0, we get ‖ym−x0‖ < 4r0 = 4λfω0
(x0) � 4λg(x0). Since g is 1-Lipschitz over intσ

by Lemma 2.2, ‖ym −x0‖ < 4λg(ym)+4λ‖ym −x0‖ ⇒ radius(Bym) < ‖ym −x0‖ <
4λ

1−4λ
g(ym) < 5λg(ym). �

C.3 Lemma 3.1(ii)

The next result implies that u = x1 does not influence the setting of rk for 3 � k < m

and r0m−1.

Lemma C.6 ∀ 3 � k < m, λfω1
(x1) + λ‖x1 − xk‖ > λfω2

(x2) + λ‖x2 − xk‖ and

r1 + λ‖x1 − x0‖ > r2 + λ‖x2 − x0‖.

Proof Because λ � 0.01 and fω2
(x2) � ‖x1 − x2‖, fω1

(x1) = 1
λ
‖x1 − x2‖ >

fω2
(x2)+‖x1 −x2‖. It follows immediately that λfω1

(x1)+λ‖x1 −xk‖ > λfω2
(x2)+

λ‖x2 −xk‖ and r1 +λ‖x1 −x0‖ = λfω1
(x1)+λ‖x1 −x0‖ > λfω2

(x2)+λ‖x1 −x2‖+
λ‖x1 − x0‖ � r2 + λ‖x2 − x0‖. �

We are ready to prove Lemma 3.1(ii).
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Proof of Lemma 3.1(ii) For any p ∈ {u,x2, v}, since radius(Bp) = λfω̄(p), where

ω̄ = ωu, ω2 or ωv depending on the identity of p, by Lemma 2.5(i), radius(()Bp) ∈
[ 1

2
λω̄f (p) , λg(p) ] ⊆ [ 99

200
λωf (p) , λg(p) ] because ω̄ ∈ [0.99ω,ω].

Consider Bxk
for any 3 � k < m. By definition, there exists 0 � j � k such

that rk � λfωj
(xj ) + λ‖xj − xk‖, which is at least 1

2
λωjf (xj ) + λ‖xj − xk‖ �

99
200

λωf (xj ) + λ‖xj − xk‖ by Lemma 2.5(i) and the fact that ωj � 0.99ω. We can

choose j > 1 by Lemma C.6 and so xj , xk ∈ intσ . Because f is 1-Lipschitz over

intσ by Lemma 2.2, rk � 99
200

λωf (xj ) + λ‖xj − xk‖ > 99
200

λωf (xk). This proves

the lower bound. Let xb = host(xk). Since k � 3, b � 2 and so xb, xk ∈ intσ . By

Lemma C.2 and Lemma 2.5(i), rk = ( 3
5
)k−brb � ( 3

5
)k−bλfωb

(xb) � ( 3
5
)k−bλg(xb).

Since g is 1-Lipschitz over intσ by Lemma 2.2, rk � ( 3
5
)k−bλg(xk) + ( 3

5
)k−b ×

λ‖xb − xk‖. By Lemma C.2, ( 3
5
)k−bλ‖xb − xk‖ � ( 3

5
)k−b3λrb = 3λrk . This yields

rk � ( 3
5
)k−b λ

1−3λ
g(xk) < 2λg(xk) as λ � 0.01.

Consider Bx0
. We have radius(Bx0

) = 0.8r0m−1 � 0.8r0 = 0.8λfω0
(x0) �

0.8λg(x0). By definition and Lemma C.6, r0m−1 = rj + λ‖xj − x0‖ for some

j � m − 1 and xj ∈ intσ . We already know that rj � 99
200

λωf (xj ). So 0.8r0m−1 �

0.8 · ( 99
200

λωf (xj ) + λ‖xj − x0‖) > 0.8 · 99
200

λωf (x0) = 99
250

λωf (x0) because f is

1-Lipschitz over intσ .

Consider Bym . By Lemma C.5(iii), radius(Bym) < 5λg(ym). By Lemma C.5(ii),

f (ym) � f (x0) + ‖ym − x0‖ < f (x0) + 4r0m−1. We have shown in the previous

paragraph* that 0.8r0m−1 > 0.8 · 99
200

λωf (x0). So f (ym) < 200
99λω

r0m−1 + 4r0m−1 =
200+396λω

99λω
r0m−1. Then, Lemma C.5(iii) implies that radius(Bym) � 0.1r0m−1 >

99λω
10(200+396λω)

f (ym) > λω
21

f (ym) as λ � 0.01 and ω � 0.01.

C.4 Lemma 3.1(iii)

The next lemma shows that a ball B(p, r) satisfies Lemma 3.1(iii) assuming that

certain conditions are satisfied.

Lemma C.7 Let p and p′ be two points point on the 1-face σ . Let r ′ < fω(p′). Let

E be the set consisting of σ and the 2-faces incident to σ . For any r < g(p) such that

B(p, r) ⊂ B(p′, 1
3
r ′), the following results hold.

(i) For any τ ∈ E and for any point z ∈ B(p, r) ∩ mani(τ ), ∠nτ (p),nτ (z) < 2ω.

(ii) For any τ ∈ E, B(p, r) ∩ mani(τ ) and B(p, r) ∩ τ are closed balls of dimension

dim(τ ).

Proof Since r ′ < fω(p′) and B(p, r) ⊂ B(p′, 1
3
r ′), for any point z ∈ B(p, r) ∩

mani(τ ), ∠nτ (p),nτ (z) � ∠nτ (p
′), nτ (p) + ∠nτ (p

′), nτ (z) < 2ω by Lem-

ma 2.5(ii)(a). This proves (i).

Take any τ ∈ E. Assume to the contrary that B(p, r) ∩ mani(τ ) is not a closed

ball of dimension dim(τ ). Then, there exists a concentric ball B ⊂ B(p, r) such

that B is tangent to B(p, r) ∩ mani(τ ) at a point q . We have ∠nτ (p),pq �

∠nτ (p),nτ (q) < 2ω by (i). (Note that ∠nτ (p),pq = ∠nτ (p),nτ (q) if τ is a 2-

face and ∠nσ (p),pq � ∠nσ (p),nσ (q).) However, as p,q ∈ B(p′, 1
3
r ′) ∩ mani(τ )
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and r ′ < fω(p′), by Lemma 2.5(ii)(a), (iii), and (iv), ∠nτ (p),pq � ∠nτ (p
′),pq −

∠nτ (p
′), nτ (p) > π/2 − 2ω, a contradiction.

Because B(p, r)∩mani(τ ) is a closed ball and r < g(p) by assumption, we can in-

voke Lemma 1.1 to conclude that B(p, r)∩ τ is a closed ball of dimension dim(τ ). �

The next two lemmas show that the conditions of Lemma C.7 can be satisfied for

ym and xk for 3 � k < m.

Lemma C.8 Let r � 20 · radius(Bym). Let r ′ = 0.9fωv (v). Then r < g(ym) and

B(ym, r) ⊂ B(v, 1
3
r ′). Hence, B(ym, r) and B(v, r ′) satisfy the conditions of

Lemma C.7.

Proof It follows from Lemma C.5(iii) that r < g(ym): r � 20 radius(Bym) <

100λg(ym) � g(ym) as λ � 0.01. We have

r0m−1 � r0 = λfω0
(x0) � λ‖x0 − v‖ = λ2fωv (v). (3)

By Lemma C.5(iii) and (3), r � 20 radius(Bym) < 80r0m−1 � 80λ2fωv (v). We have

‖ym − v‖ � ‖x0 − v‖ + ‖ym − x0‖ = λfωv (v) + ‖ym − x0‖, which is less than (λ +
4λ2)fωv (v) by Lemma C.5(ii) and (3). Therefore, ‖ym −v‖+ r < (λ+84λ2)fωv (v) <

0.3fωv (v) = r ′/3 as λ � 0.01. So B(ym, r) ⊂ B(v, 1
3
r ′). �

Lemma C.9 Let 3 � k < m. Let xb = host(xk). Let r � 20 · radius(Bxk
). Let r ′ =

0.9fωb
(xb). Then r < g(xk) and B(xk, r) ⊂ B(xb,

1
3
r ′). Hence, B(xk, r) and B(xb, r

′)
satisfy the conditions of Lemma C.7.

Proof Recall that rk = radius(Bxk
) for 3 � k < m. By Lemma 3.1(ii), r � 20rk <

100λg(xk) � g(xk) as λ � 0.01. We have ‖xb − xk‖ + r � ‖xb − xk‖ + 20rk , which

is at most 3rb + 20rb = 23rb by Lemma C.2. Since 23rb � 23λfωb
(xb) < 0.3fωb

(xb)

as λ � 0.01, we conclude that B(xk, r) ⊂ B(xb,0.3fωb
(xb)) = B(xb,

1
3
r ′). �

We are ready to prove Lemma 3.1(iii).

Proof of Lemma 3.1(iii) Take any p ∈ {u,x0, x2, v}. For any c � 20, since c ·
radius(Bp) � cλfω(p) < fω(p), Lemma 2.5(ii) implies that Lemma 3.1(iii) holds

for p. By Lemma C.8 and Lemma C.7, Lemma 3.1(iii) holds for ym. Similarly, by

Lemma C.9 and Lemma C.7, Lemma 3.1(iii) holds for xk for 3 � k < m.

C.5 Lemma 3.1(iv)

C.5.1 Proof of Lemma 3.1(iv)(a)

By construction, x0 and x2 lie on the boundaries of Bv and Bu, respectively. Since

radius(Bx0
) � r0 = λfω0

(x0) < g(x0) � ‖x0 − v‖, v lies outside Bx0
. Similarly, u lies

outside Bx2
.
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For 3 � k < m, xk lies on the boundary of B(xk−1,
6
5
rk−1) and hence outside

Bxk−1
. By Lemma C.3(ii), for 3 � k < m, ‖xk−1 − xk‖ � 6

5+6λ
rk > rk as λ � 0.01.

So xk−1 lies outside Bxk
.

Since Bxm−1
∩ Bx0

= ∅, they do not intersect their bisector plane. It follows that

ym lies outside Bxm−1
and Bx0

. Since Bym is orthogonal to Bxm−1
and Bx0

, xm−1 and

x0 lie outside Bym .

C.5.2 Proof of Lemma 3.1(iv)(b) and Lemma 3.1(iv)(c)

We first show two lemmas.

Lemma C.10 Let B(a, r) and B(a′, r ′) be two protecting balls such that a, a′ ∈ σ

and B(a′, r ′) ⊂ B(a,4r). Let σ(a, a′) denote the subcurve between a and a′. For any

point z ∈ σ(a, a′), ∠zaa′ < 4ω and ∠za′a < 8ω.

Proof Note that B(a,4r)∩σ is an open curve by Lemma 3.1(iii)(b). As a′ ∈ B(a,4r)

by assumption, it follows that σ(a, a′) ⊂ B(a,4r) ∩ σ . We apply Lemma 3.1(iii) and

then Lemma 1.3(i) to B(a,4r) ∩ σ . This allows us to conclude that:

∠nσ (a), aa′ > π/2 − 2ω, (4)

∀ z ∈ σ(a, a′), ∠nσ (a), az > π/2 − 2ω, (5)

∠nσ (a′), aa′ � ∠nσ (a), aa′ − ∠nσ (a), nσ (a′) > π/2 − 4ω, (6)

∀ z ∈ σ(a, a′), ∠nσ (a′), a′z � ∠nσ (a), a′z − ∠nσ (a), nσ (a′) > π/2 − 4ω. (7)

For any point z ∈ σ(a, a′), (4) and (5) imply that ∠zaa′ < 4ω; (6) and (7) imply that

∠za′a < 8ω. �

Lemma C.11 Let B(a, r) and B(a′, r ′) be two consecutive protecting balls such

that a, a′ ∈ intσ and r � r ′. For any point b on the circle bdB(a, r) ∩ bdB(a′, r ′),
∠baa′ � arctan(0.09) > 8ω.

Proof Consider the pairs of adjacent weighted points {(xk, xk+1) : 2 � k � m − 2}.
We have ‖a − a′‖ = ‖xk − xk+1‖ = 6

5
rk . By construction, rk+1 � 1

2
‖xk − xk+1‖ =

3
5
rk . By Lemma C.3(ii), rk+1 � 5+6λ

5
rk < 6

5
rk = ‖a − a′‖. This implies that

r ′ � 3r/5, (8)

‖a − a′‖ � 6r/5. (9)

Drop a perpendicular from b to the point b′ on aa′. If ∠ba′a � π/4, by (8),

‖b − b′‖ = r ′ sin∠ba′a � 3r/(5
√

2), which implies that ∠baa′ =
arcsin(‖b − b′‖/r) � arcsin(3/(5

√
2)) > arctan(0.09). If ∠ba′a < π/4, ‖a − b′‖ =

‖a − a′‖ − r ′ cos∠ba′a. So by (8) and (9), ‖a − b′‖ � 6r/5 − 3r/(5
√

2) < 0.8r .

Thus, ∠baa′ = arccos(‖a − b′‖/r) > arccos(0.8) > arctan(0.09).
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Consider the pair (xm−1, ym). By construction, radius(Bxm−1
) = rm−1. By Lem-

ma C.5(iii), 0.09rm−1 � radius(Bym) < 5rm−1. This implies that r ′ � 0.09r . Since

Bxm−1
and Bym are orthogonal, ∠aba′ = π/2. So ∠baa′ = break arctan(r ′/r) �

arctan(0.09).

Consider the pair (ym, x0). By construction, radius(Bx0
) = 0.8r0m−1. By Lem-

ma C.5(iii), 0.1r0m−1 � radius(Bym) < 4r0m−1. This implies that r ′ � 0.125r .

Since Bym and Bx0
are orthogonal, ∠aba′ = π/2. So ∠baa′ = arctan(r ′/r) �

arctan(0.125). �

Proof of Lemma 3.1(iv)(b) Let Bp and Bq be two consecutive protecting balls. As-

sume that radius(Bp) � radius(Bq). Take any point b on the circle bdBp ∩ bdBq .

We have ∠bqp � ∠bpq as radius(Bp) � radius(Bq). If p,q ∈ intσ , ∠bpq �

arctan(0.09) by Lemma C.11 and so ∠pbq � π − 2 arctan(0.09) < 170◦. The re-

maining case is that p is an endpoint of σ as radius(Bp) � radius(Bq) by assumption.

That is, p = u and q = x2, or p = v and q = x0. In this case, since q ∈ bdBp and

radius(Bq) � radius(Bp), ∠pbq < π/2.

Proof of Lemma 3.1(iv)(c) Let Bp and Bq be two consecutive protecting balls. Let

σ(p,q) denote the subcurve of σ between p and q . We show that σ(p,q) ⊂ Bp ∪Bq

by examining the possibilities for p and q .

Consider the pairs {(u, x2), (x0, v)}. Because x2 ∈ bdBu and Bu ∩ σ is an open

curve by Lemma 3.1(iii)(b), Bu ∩ σ is exactly the subcurve between u and x2. Simi-

larly, Bv ∩ σ is exactly the subcurve between x0 and v.

The remaining possible pairs are adjacent weighted points in intσ . Let B(a, r)

denote the larger of Bp and Bq . Let B(a′, r ′) denote the smaller one. Notice that

both Bp and Bq are contained in B(a,3r). By Lemma C.10, σ(p,q) stays inside

the cone with apex a, axis aa′, and angular aperture 8ω. Thus, Lemma C.11 implies

that σ(p,q) enters B(a′, r ′) before leaving B(a, r). After σ(p,q) enters B(a′, r ′),
σ(p,q) cannot leave B(a′, r ′) and reenter B(a′, r ′) later because B(a′, r ′) ∩ σ is an

open curve by Lemma 3.1(iii)(b). Hence, σ(p,q) ⊂ Bp ∪ Bq .

C.5.3 Proof of Lemma 3.1(iv)(d)

Let z be a point on the subcurve σ(p,q). If z = p or q , by Lemma 3.1(ii), the ball

centered at z with radius λω
2500

f (z) lies within Bz, and we are done. Assume that

z ∈ intσ(p,q) in the following.

Let B(a, r) denote the larger of Bp and Bq . Let B(a′, r ′) denote the smaller one.

Let H be the plane containing the circle bdBp ∩ bdBq . Let C be the circle in H

concentric to bdBp ∩ bdBq such that the angular aperture of the cone K formed by

connecting a to C is 16ω. Since r � r ′, the angular aperture of the cone K ′ formed

by connecting a′ to C is at least 16ω. Refer to Fig. 4.

Notice that both Bp and Bq are contained in B(a,3r). By Lemma C.10, σ(p,q)

resides in K ∪ K ′, which means that the minimum distance between σ(p,q) and

bd (Bp ∪ Bq) is at least the minimum distance between K ∪ K ′ and bd (Bp ∪ Bq).

Denote the latter distance by D. Observe that D is equal to the distance between C

and bdBp ∩ bdBq . So by Lemma C.11,

D � r sin
(

arctan(0.09)
)

− r sin(8ω) > 0.009r. (10)
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Fig. 4 Proof of

Lemma 3.1(iv)(d)

By Lemma 3.1(iv)(c), σ(p,q) ⊂ Bp ∪Bq , which is contained in B(a,3r). Therefore,

for any point z ∈ σ(p,q),

‖a − z‖ � 3r, (11)

‖a′ − z‖ � ‖a − a′‖ + ‖a − z‖ � 5r. (12)

Suppose that a ∈ intσ . As f is 1-Lipschitz over intσ , f (z) � f (a) + ‖a − z‖ �

f (a) + 3r by (11). By Lemma 3.1(ii), r � λω
21

f (a) ⇒ f (z) � 21+3λω
λω

r < 22
λω

r as

λ � 0.01 and ω � 0.01. Substituting this lower bound of r into (10) yields D >

0.009r > λω
2500

f (z).

If a is an endpoint of σ , then a′ ∈ intσ and a′ lies on the boundary of B(a, r).

So f (a′) � r . We have f (z) � f (a′) + ‖a′ − z‖ � r + ‖a′ − z‖, which is at

most 6r by (12). Substituting this lower bound of r into (10) yields D > 0.009r �

0.0015f (z).

C.6 Lemma 3.1(v)

We first show that the distance between two protecting balls Bp and Bq is at least

0.06 · min{radius(Bp), radius(Bq)} under certain conditions.

Lemma C.12 Let (p, s, q) be three weighted points in this order on the 1-face σ (not

necessarily consecutive). If ‖p − s‖ � (1 + μ) · radius(Bp) for some μ � 0.02, the

distance between Bp and Bq is at least 0.06 · min{radius(Bp), radius(Bq)}.

Proof Let d(Bp,Bq) denote the distance between Bp and Bq . We derive a contradic-

tion below assuming that d(Bp,Bq) < 0.06 · min{radius(Bp), radius(Bq)}.
By Lemma 3.1(iv)(a), for any protecting ball Bz where z ∈ σ , Bz does not strictly

contain any weighted point adjacent to z. By Lemma 3.1(iii)(b), Bp ∩ σ and Bq ∩ σ

are open curves. Therefore, Bp cannot strictly contain s; otherwise, Bp would have

to contain a weighted point adjacent to p. Similarly, Bq cannot strictly contain s.

Refer to Fig. 5. Let θ1 = ∠spq and θ2 = ∠sqp. By the assumption that

d(Bp,Bq) < 0.06 · min{radius(Bp), radius(Bq)}, both Bp and Bq are contained in

B(a,4r), where B(a,4r) denotes the larger of Bp and Bq . Then, Lemma C.10 im-

plies that θ1 < 8ω, θ2 < 8ω and ∠psq > π/2.

Let ℓ be the line through s perpendicular to qs. Let ℓ′ be the line between p and s,

perpendicular to ps, and at distance μ ·radius(Bp) from s. We have length(ℓ∩pqs) �



Discrete Comput Geom (2010) 43: 121–166 161

Fig. 5 Proof of Lemma C.12

‖p − s‖ sin θ1 � (1 + μ) sin θ1 · radius(Bp). Thus, d � (1 + μ) sin θ1 cos(θ1 + θ2) ·
radius(Bp) and so d/d ′ � (1 + μ) cos θ1 cos(θ1 + θ2). In Fig. 5, d(Bp,Bq) � d ′′ and

d ′′ = radius(Bp) · ( d
d ′ cos θ1

− 1). Therefore,

d(Bp,Bq) � radius(Bp) ·
(

(1 + μ) cos(θ1 + θ2) − 1
)

. (13)

As ω � 0.01 and max{θ1, θ2} < 8ω, cos(θ1 + θ2) � cos(16ω) � 0.987. By this

lower bound of cos(θ1 + θ2) and the assumption that μ � 0.02, inequality (13) yields

d(Bp,Bq) � radius(Bp) · (0.987 + 0.987μ − 1) > 0.06 radius(Bp). This contradicts

our assumption that d(Bp,Bq) < 0.06 · min{radius(Bp), radius(Bq)}. �

Proof of Lemma 3.1(v) Let Bp and Bq be two nonconsecutive protecting balls. We

use d(Bp,Bq) to denote the distance between Bp and Bq .

If p and q belong to different 1-faces, then ‖p − q‖ � max{g(p), g(q)}. For any

x ∈ {p,q}, Lemma 3.1(ii) implies that radius(Bx) < 5λg(x) < g(x)/4. Therefore,

d(Bp,Bq) � ‖p − q‖ − g(p)/4 − g(q)/4 > 0.5 · max{g(p), g(q)}.
Suppose that p and q belong to the same 1-face σ . We prove Lemma 3.1(v)

in this case by verifying that the conditions of Lemma C.12 are satisfied for

all pairs of nonadjacent weighted points on σ . We use Rpq to denote 0.06 ·
min{radius(Bp), radius(Bq)}.

Consider the pairs of weighted points {(xj , xk) : 1 � j � k − 2 < m − 2}. By

Lemma C.3(ii), ‖xk−1 −xk‖ � 6
5+6λ

rk = (1+ 1−6λ
5+6λ

)rk . Since λ � 0.01, 1−6λ
5+6λ

> 0.02.

So we can apply Lemma C.12 to (p, s, q) = (xk, xk−1, xj ) to obtain d(Bp,Bq) �

Rpq .

Consider the pairs of weighted points {(u, ym), (u, x0), (u, v)}. We have x0 ∈
B(v,λfωv (v)) ⊂ B(v,0.3fωv (v)). By Lemma C.8, ym ∈ B(v,0.3fωv (v)). Since

‖u−v‖ � max{g(u), g(v)} � max{fωu(u), fωv (v)}, for any q ∈ {ym, x0, v}, d(Bu,Bq)

� (1 − λ − 0.3)‖u − v‖ � 1−λ−0.3
λ

radius(Bu) > 20 radius(Bu).

Consider the pairs of weighted points {(xk, q) : 2 � k � m−2 and q ∈ {ym, x0, v}}.
By Lemma C.3(ii), ‖xk −xk+1‖ = 6rk/5. So we can apply Lemma C.12 to (p, s, q) =
(xk, xk+1, q) to obtain d(Bp,Bq) � Rpq .

The remaining set of weighted points to be considered is {(xm−1, x0), (xm−1, v),

(ym, v)}. Since Bxm−1
∩ B(x0, r0m−1) = ∅ and radius(Bx0

) = 4
5
r0m−1, d(Bxm−1

,Bx0
)

> 1
5
radius(Bx0

). By Lemma C.5(i), ‖xm−1 − x0‖ > 2
1+λ

rm−1 > 1.9rm−1 as λ � 0.01.

So we can apply Lemma C.12 to (p, s, q) = (xm−1, x0, v) to obtain d(Bp,Bq) �

Rpq . To bound d(Bym ,Bv), we first relate radius(Bym) and ‖ym −x0‖. Since Bym and
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Bx0
are orthogonal, radius(Bym) =

√

‖ym − x0‖2 − ( 4
5
r0m−1)2. By Lemma C.5(ii),

‖ym − x0‖ � 4r0m−1. Thus, radius(Bym) �
√

24/25‖ym − x0‖ ⇒ ‖ym − x0‖ >

1.02 radius(Bym). So we can apply Lemma C.12 to (p, s, q) = (ym, x0, v) to obtain

d(Bp,Bq) � Rpq .

Appendix D: Lemma 5.15

We first prove four topological results in the next section. Afterwards, we use them

to prove Lemma 5.15.

D.1 Technical Lemmas

The next lemma states that for any edge e ∈ star(p,σ ) where p is a point on a 2-face

σ , Ve|σ is an open curve under certain conditions. So each facet of Vp contributes at

most one curve to bd (Vp ∩ σ).

Lemma D.1 Let S be the current admissible point set. Assume that ‖a − b‖ �

0.03 lfs∗
ε for any a, b ∈ S. Let p be a point in S ∩ σ for some 2-face σ . Suppose that

Infringed(p,σ ) and CurveNormal(p,σ,φc) return null and size(t, σ ) < 0.03 lfs∗
ε for

any triangle t ∈ star(p,σ ). Then, Ve|σ is an open curve for any edge e ∈ star(p,σ ).

Proof Take an edge pq ∈ star(p,σ ). As Infringed(p,σ ) returns null, q ∈ σ . No curve

in Vpq |σ is closed; otherwise, CurveNormal(p,σ,φc) would return a point. So Vpq |σ
is a collection of open curve(s). Take any open curve ξ in Vpq |σ . If Vpq avoids bdσ ,

both endpoints of ξ belong to bdVpq . Otherwise, Vpq intersects bdσ exactly once by

Lemma 5.3, and so at least one endpoint of ξ belongs to bdVpq .

Assume that Vpq |σ consists of two or more open curves. We derive a contradiction

below. There are at least three distinct curve endpoints x1, x2, and x3 in bdVpq . By as-

sumption, the weighted distance between p and xi is less than 0.03 lfs∗
ε for 1 � i � 3.

Then, xi ∈ B(p,
√

2 range(p)) for 1 � i � 3 by Lemma 5.8 and ∠nσ (p),Vpq < 4ω

by Lemma 5.9. Also, by Lemma 5.7, nσ (p) makes an angle less than 26ω radians

with the Voronoi edges containing x1, x2 and x3.

If any two points in {x1, x2, x3} lie on the same edge of Vpq , say x1 and x2, then

x1x2 is parallel to that edge and so ∠nσ (p), x1x2 < 26ω. This is a contradiction

because ∠nσ (p), x1x2 > π/2 − 2ω by Lemma 5.2(iii).

Suppose that x1, x2, and x3 lie on three distinct Voronoi edges. The support lines

of these three edges bound a convex polygon Q containing Vpq . (Q is possibly un-

bounded.) Refer to Fig. 6. Let 	d be the projection of nσ (p) onto the plane of Vpq .

We have ∠nσ (p), 	d = ∠nσ (p),Vpq < 4ω. So each side of Q makes an angle less

than 4ω + 26ω = 30ω radians with 	d . Thus, the angle at some vertex of Q is ob-

tuse, say the vertex between x1 and x2. It follows that ∠ 	d, x1x2 < 30ω. However,

Lemma 5.2(iii) implies that ∠ 	d, x1x2 � ∠nσ (p), x1x2 − ∠nσ (p), 	d > π/2 − 6ω, a

contradiction. �

The next result shows that bd (Vp ∩ σ) is not far from p under certain conditions.
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Fig. 6 The convex polygon

denotes Vpq

Lemma D.2 Let S be the current admissible point set. Assume that ‖a − b‖ �

0.03 lfs∗
ε for any a, b ∈ S. Let p be a point in S ∩ σ for some 2-face σ . Suppose

that Infringed(p,σ ) and CurveNormal(p,σ,φc) return null and size(t, σ ) < 0.03 lfs∗
ε

for any triangle t ∈ star(p,σ ). Then, bd (Vp ∩ σ) ⊂ B(p,6 range(p)).

Proof If p is unweighted, Vp avoids bdσ by Lemma 5.3. So bd (Vp ∩ σ) contains

the curves in {Vpq |σ : edge pq ∈ star(p,σ )}. If p is weighted, bd (Vp ∩ σ) contains

the above curves as well as Vp ∩ bdσ .

When p is weighted, by Lemma 5.3, bdVp intersects bdσ exactly twice. So Vp ∩
bdσ is an open curve. Then, it follows from Lemma 3.1(iv)(c) that Vp ∩bdσ ⊂ Bp ⊂
B(p,6 range(p)).

Take an edge pq ∈ star(p,σ ). By Lemma D.1, Vpq |σ is an open curve. Let x1 and

x2 be its endpoints. If xi ∈ bdVpq , by assumption, the weighted distance between

p and xi is less than lfs∗
ε . Then, ‖p − xi‖ <

√
2 range(p) by Lemma 5.8. If xi ∈

intVpq , p must be weighted and xi ∈ Vp ∩ bdσ ⊂ Bp . Hence, max1�i�2 ‖p − xi‖ <√
2 range(p) and ‖x1 − x2‖ � ‖p − x1‖ + ‖p − x2‖ < 2

√
2 range(p).

For any point z ∈ intVpq |σ , since CurveNormal(p,σ,φc) returns null, ∠x1zx2 >

π − 4φc > π − π/4 − 16ω > π/2. Therefore, max1�i�2 ‖xi − z‖ � ‖x1 − x2‖ <

2
√

2 range(p). Hence, ‖p − z‖ � ‖p − x1‖ + ‖x1 − z‖ < 6 range(p). �

Lemma D.2 motivates us to examine B(p,6range(p))∩σ which contains bd (Vp ∩
σ). The next results shows that Vp contains a topological disk in B(p,6 range(p))∩σ

under certain conditions.

Lemma D.3 Let S be the current admissible point set. Assume that ‖a − b‖ �

0.03 lfs∗
ε for any a, b ∈ S. Let p be a point in S ∩ σ for some 2-face σ . Suppose that

size(t, σ ) < 0.03 lfs∗
ε for any triangle t ∈ star(p,σ ). Let D ⊂ B(p,6 range(p)) ∩ σ

be a topological disk such that bdD ⊂ bdVp , bdD intersects some edge of Vp , and

intD ∩ bdVp = ∅. Then D ⊂ Vp .

Proof By assumption, bdD intersects an edge of Vp . So bdD intersects Vt for

some triangle t ∈ star(p,σ ). By assumption, ortho(t) � size(t, σ ) < 0.03 lfs∗
ε . So

∠nσ (p),Vt < 26ω by Lemma 5.7. Assume to the contrary that D �⊂ Vp . As intD ∩
bdVp = ∅, we conclude that intD is outside Vp . The closed curve bdD splits bdVp

into two topological disks, and let U be one of them. So D ∪ U is a topological

sphere.
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Fig. 7 Proof of Lemma D.3

Refer to Fig. 7. Let ℓ be a line outside Vp , parallel to Vt , and arbitrarily close to

Vt . Since intD is outside Vp , ℓ must intersect intD at a point y. As D ∪U is a closed

surface, ℓ must intersect D ∪ U at another point z. Moreover, as ℓ is outside Vp , z

must belong to D. Since yz is parallel to ℓ, ∠nσ (p), yz = ∠nσ (p),Vt < 26ω. How-

ever, since y, z ∈ B(p,6 range(p)) ∩ σ , Lemma 5.2(iii) implies that ∠nσ (p), yz >

π/2 − 2ω, a contradiction. �

The possibility that Vp may intersect bdσ complicates the analysis because

bd (Vp ∩ σ) needs not be a subset of bdVp . Nonetheless, the next result shows that if

bd (Vp ∩ σ) contains two or more curves, we can always find a “most nested curve”

in bd (Vp ∩ σ) that lies on bdVp .

Lemma D.4 Let S be the current admissible point set. Let p be a point in S ∩ σ for

some 2-face σ . Let M = B(p,6 range(p))∩ mani(σ ). Suppose that bd (Vp ∩σ) ⊂ M

and bd (Vp ∩ σ) contains two or more closed curves. There exists a closed curve ζ

in bd (Vp ∩ σ) such that ζ ⊂ bdVp and the topological disk bounded by ζ in M does

not contain other curves in bd (Vp ∩ σ).

Proof By Lemma 5.2(ii), M is a topological disk. So each closed curve ξ in bd (Vp ∩
σ) bounds a topological disk in M , which we denote by Dξ . Pick a most nested curve

ξ in bd (Vp ∩ σ), i.e., Dξ does not contain other curves in bd (Vp ∩ σ). If ξ does not

contain p, ξ lies on the boundary of bdVp , and we are done.

Suppose that ξ contains p. So p is weighted. By Lemma 5.3, bdVp intersects

bdσ exactly twice. Thus, Vp ∩ bdσ is an open curve contained in ξ , and any curve

in bd (Vp ∩ σ) other than ξ must avoid bdσ . It follows from Lemma 3.1(iii)(b) that

B(p,6 range(p)) ∩ bdσ is an open curve, which cuts across M . We have just shown

that for any curve η in bd (Vp ∩ σ) other than ξ , η cannot cross B(p,6 range(p)) ∩
bdσ . This implies that Dη cannot contain ξ . Hence, either η or the “most nested

curve” in bd (Vp ∩ σ) inside Dη satisfies the lemma. �

D.2 Proof of Lemma 5.15

Assume that bd (Vp ∩ σ) consists of two or more closed curves. We derive a contra-

diction in the following.

Let M = B(p,6 range(p)) ∩ mani(σ ). By Lemma D.2, bd (Vp ∩ σ) ⊂ M . By

Lemma 5.2(ii), M is a topological disk. Lemma D.4 implies that there is a closed
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Fig. 8 The line ℓ in the plane of

Ve is normal to Ve ∩ σ at x. So

nσ (x) projects onto ℓ

curve ζ in bd (Vp ∩ σ) such that ζ ⊂ bdVp and ζ bounds a topological disk Dζ in M

that lies inside Vp .

Consider the support planes of the facets of Vp intersected by ζ . Each such plane

bounds a halfspace containing Vp . Let Q denote the polytope at the common inter-

section of all these halfspaces. So Vp ⊆ Q.

Since M \Dζ is connected, we can find a path γ in M that connects Dζ to another

curve in bd (Vp ∩ σ) such that the interior of γ avoids Dζ . Since Dζ ⊂ Vp , γ must

leave Vp and Q when it leaves Dζ . So γ must return to Vp later in order to reach

bd (Vp ∩ σ) again. This implies that γ must return to bdQ at some point y. By

construction, the boundary facet of Q containing y must have the same support plane

as some facet Ve of Vp that ζ intersects. Let He denote the support plane of Ve. Let

x be the point in Ve ∩ ζ closest to y. By Lemma D.1, Ve ∩ ζ = Ve ∩ σ , and it is an

open curve. We consider the two cases of x lying in the interior of Ve ∩σ and x being

an endpoint of Vp ∩ σ . We derive a contradiction in each case, thus completing the

proof.

Suppose that x lies in the interior of Ve ∩σ . Any endpoint of Ve ∩σ lies on an edge

of Vp . So the weighted distances between p and the endpoints of Ve ∩σ are less than

lfs∗
ε by the assumption of the lemma. Then, Lemma 5.9 implies that ∠nσ (p),He <

4ω. Since x ∈ int (Ve ∩ σ), xy is normal to Ve ∩ σ . So ∠nσ (x),He = ∠nσ (x), xy.

By Lemma 5.2(i) and (iii), we get ∠nσ (p),He � ∠nσ (x), xy − ∠nσ (p),nσ (x) �

∠nσ (p), xy − 2∠nσ (p),nσ (x) > π/2 − 6ω, a contradiction.

Suppose that x is an endpoint of Ve ∩σ . Refer to Fig. 8. So x lies on some edge of

Vp . Let this edge be Vt for some triangle t ∈ star(p,σ ). Since x is the closest point

to y, xy must lie inside a sharp wedge bounded by Vt and the line in He normal to

Ve ∩ σ at x. Observe that ∠nσ (x), xy � ∠nσ (x),Vt in this case. By Lemma 5.2(i)

and (iii), we have ∠nσ (x), xy � ∠nσ (p), xy − ∠nσ (p),nσ (x) > π/2 − 4ω. On the

other hand, by Lemma 5.7, ∠nσ (x),Vt � ∠nσ (p),Vt + ∠nσ (p),nσ (x) < 28ω, a

contradiction.
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