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ABSTRACT 
For a sufficiently dense set of points in any closed Rieman- 
nian manifold, we prove that a unique Delannay triangula- 
tion exists. This triangulation has the same properties as in 
Euclidean space. Algorithms for constructing these triangu- 
lations will also be described. 

1. INTRODUCTION 
Given a set of points in Euclidean space, Delannay trian- 
gulations give a canonical triangulation whose vertices are 
these points. These triangulations have many nice combina- 
torial and geometric properties that make them extremely 
useful. These triangulations can also be constructed in Rie- 
mannian manifolds. However, they do not exist for arbitrary 
set of points; there are certain density requirements to en- 
sure that the triangulation can accurately represent both 
the topology and geometry of the manifold. These triangu- 
lations are canonically determined by the set of points and 
have many of the properties that Delaunay triangulations 
have in the Euclidean space. 

A familiarity with Delanauy triangulations in Euclidean space 
will be assumed. There are several reasons that working in 
Riemannian geometry makes these problems more difficult. 
One of the the key properties of Delaunay triangulations is 
the empty circumscribing sphere condition. In R ~ there is 
a unique sphere with any given n + 1 points on its bound- 
ary. However, in Riemannian manifolds, there can be many 
spheres through n + 1 points and they are not necessarily 
embedded. Also, measuring distances can be more diffi- 
cult since there are no unique "lines" connecting any pair of 
points. These difficulties and others can be overcome if all 
work is done in sufficiently small neighborhoods where the 
differences from Euclidean space can be minimized. If we do 
not make these extra assumptions we can still obtain well 
defined structures on M; however, we cannot ensure that it 
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will be a triangulation and that it will be Delannay. 

First, we will discuss the necessary portions of Riemannian 
geometry that will be needed to prove the existence of De- 
launay triangulations. Then we will introduce the density 
requirements for Delannay triangulations to exist and be 
well defined. The next step will be to show that Voronoi 
diagrams will act as they do in Euclidean space with the 
same density conditions. We will also discuss how these 
theorems can be modified to deal with manifolds embedded 
in Euclidean space. The proofs of these theorems will be 
outlined. An algorithm for constructed these triangulations 
will also be described. Finally, directions for further work 
will be discussed. 

2. SOME RIEMANNIAN GEOMETRY 
A deep understand of Riemannian geometry will not be 
needed for the formulation of theorems in later sections. To 
learn more about Riemannian manifolds examine [3] or [6]. 
The essential features of a Riemannian manifold we will use 
are the abilities to measure angles and lengths of curves. 

The curves we will be most interested in are geodesics. Es- 
sentially, geodesics are curves that  locally minimize length. 
That is, they cannot be locally perturbed to reduce length. 
In particular, the shortest curve between two points is a 
geodesic. Distance in Riemannian manifolds is defined as 
the length of this shortest geodesic between two points. One 
difficulty is that there can be many geodesic between two 
points. See figure 1. In fact, there can be infinitely many 
shortest geodesics between two points. For example, ex- 
amine antipodal points on a sphere. However, if all of our 
calculations are done in small enough neighborhoods we can 
avoid these problems. The concept of injectivity radius al- 
lows us to specify how close two points need to be to ensure 
that there is a unique shortest geodesic connecting them. 

DEFINITION 2.1. The injectivity radius at a point x E M 
is the largest radius, r, .for which B(x ,  r) is an embedded ball. 
The injectivity radius of M is the infinum of the injeetivity 
radii at each point. 

An equivalent definition of the injectivity radius at x E M is 
half the length of the shortest closed geodesic going through 
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F i g u r e  1: T h r e e  o f  t h e  i n f i n i t e l y  m a n y  g e o d e s i c s  be-  
t w e e n  t w o  p o i n t s  in  a torus .  

x. If the manifold has any interesting topology then it hap- 
pens on a scale larger than the injectivity radius. To ensure 
there cannot be any non-trivial topology within a simplex 
of the triangulation, one of our density requirements will be 
that within each ball of some fixed radius smaller than the 
injectivity radius there is a point in the set. 

To get an accurate representation of the manifold, we need 
to consider more than just  the topology. We also need to 
represent the geometry accurately. In order to do this we 
need to be sure that areas of higher positive curvature have 
a higher density of points. The difficulty with large areas 
of positive curvature is that  it becomes possible to have 
many geodesics connecting two points for geometric instead 
of topological reasons. To ensure that this does not cause 
a problem we need to work inside strongly convex balls, for 
inside them there is a unique geodesic connecting any two 
points. 

DEFINITION 2.2. C C M is said to be convex i f  given any 
two points x, y E C there is a unique shortest geodesic in C 
connecting x and y. C C M is strongly convex i f  given any 
two points in C the unique shortest geodesic connecting them 
has its interior contained in C furthermore this is the only 
geodesic in C connecting the points. 

For convexity there must be a shortest geodesic in the set 
connecting two points, however, there could be a shorter 
geodesic connecting them that leaves the set. For strong 
convexity to hold, however, this shortest geodesic in the 
manifold cannot leave the set. In Euclidean space every con- 
vex set is also strongly convex. For an example of a small 
ball that is convex but not strongly convex see figure 2. In 
this rounded off cone the disk is convex because there is a 
unique geodesic inside the disk connecting any two points. 
However, for some pairs of points there is a shorter geodesic 
connecting them that goes the other way around the cone, 
so the disk is not strongly convex. 

To avoid problems with balls that are not embedded we 
work inside the injectivity radius. There are similar radii to 
ensure that  a small ball will be convex or strongly convex. 
The main reason we want to work in strongly convex neigh- 
borhoods is that  we know no shortest geodesic between two 
points ever leaves it. This allows us to ignore what happens 
in the manifold outside of the ball. 

DEFINITION 2.3. Given x E M .  Then the convexity ra- 
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F i g u r e  2: A c o n v e x  set  t h a t  is n o t  s t r o n g l y  c o n v e x .  

dius (respectively strong convexity radius) of M at x is the 
largest r > 0 for which B(x ,  r) is convex (strongly convex, 
respectively). The convexity or strong convexity radius of M 
is the infimum of the radii at all points in M .  

Working in small convex balls will eliminate many of our 
problems. However, we need to know that  they exist and 
their radii are strictly positive. In any compact Riemannian 
manifold we can construct a lower bound on these radii. 
This lemma is proved by comparing M to a sphere with 
strictly larger curvature. Many arguments in Riemannian 
geometry use a similar technique of comparing the manifold 
to one with constant curvature. Upper bounds on length are 
often obtained by comparing to a sphere with larger curva- 
ture and lower bounds are obtained by examining hyperbolic 
space with smaller curvature. 

LEMMA 2.4 ([3]). I f  n is a positive upper bound on the 
sectional curvature of M then 

1. the convexity radius of M is at least min{inj(M),  ~__z___}2v~ 

2. similarly, the strong convexity radius of  M is at least 
rain(in)(2M) , 2--~ }" 

These ideas of injectivity and convexity radii are the key 
concepts from Riemannian geometry that we will use to con- 
struct our triangulations. With them we can do all of our 
calculations within small balls. We will see that  inside these 
balls the geometry does not deviate enough from Euclidean 
to cause difficulties. 

3.  D E L A U N A Y  T R I A N G U L A T I O N S  
The definition of Delaunay triangulations is the same in Rie- 
mannian geometry as it is in R ~. They are defined as having 
the empty circumscribing sphere property: the minimal ra- 
dius circumscribing sphere for any simplex contains no ver- 
tices of the triangulation in its interior. However, there are 
several possible problems with this definition. How do we 
know the circumscribing sphere is unique and embedded? 
We need to deal with these issues to ensure that  the prop- 
erty is well defined. This is where we rely on having a good 
sampling of points to use to construct the triangulation. 
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The existence of Delaunay triangulations in two dimensions 
was proven by the first author in [8]. However, the tech- 
niques used relied heavily on the dimension. Different tech- 
niques need to be used in higher dimensions. First we deter- 
mine on how small of a scale we need to work to ensure that 
we can minimize complications due to the non-Euclidean 
geometry. The first requirement will be that all simplicies 
of our Delannay triangulation and their neighbors are con- 
tained inside strongly convex balls• Otherwise, we would 
run into problems with the triangulation being well defined• 

DEFINITION 3.1• For any x E M define the density ra- 
dius, rad(x), to be ~ the strong convexity radius of M at 
X .  

Figure 3: A Voronoi  d i a g r a m  w h e n  t he  d e n s i t y  of  
po in t s  is too low. 

The density radius tells use what scale we need to work 
on around any given point. However, problems can arise if 
the scale grows rapidly as locations change• So our density 
requirements includes a condition that the density radius 
changes in a controlled manner. 

DEFINITION 3.2• A finite set of points X C M is said to 
be sufficiently dense if for every y E M and z E B(y,  4 tad(y)) 
the ball of radius tad(y) centered at z contains a point of X 
in its interior. 

This definition enables us to ensure that the sampling of 
points is dense everywhere and that there are no major 
changes in the geometry as we move small distances in the 
manifold. While this density requirement is somewhat cum- 
bersome, it allows local control over the number of points 
needed to be sufficiently dense• If global control rather than 
local is desired there is a much simpler way to guarantee a 
fine enough distribution of points for the Delaunay triangu- 
lation to exist• 

LEMMA 3.3. If  t~ is a positive upper bound on the sec- 
tional curvature of M and r = min{inj~ M), ~___E___} then if l Ov~ 
every ball of radius r in M contains a point in X then the 
points are sufficiently dense. 

This stronger density condition will often be easier to use 
due to its simplicity. However, the local conditions will often 
be desirable as they require far fewer vertices in the trian- 
gulation. With either of these density conditions, we can 
guarantee that the Delaunay triangulation exists• 

A second condition is that the set of points is generic: if M 
is d dimensional then d + 2 of the points never lie on the 
boundary of a round ball. Without this condition, instead 
of obtaining a triangulation, we obtain a cell complex. 

THEOREM 3.4 ([9])• / f X  = { x t , . . . , x n }  C M is a 
generic, su~ciently dense set of points then there exists a 
unique Delaunay triangulation with vertices x l , . . .  ,xn.  

COROLLARY 3.5 ([9])• For a sufficiently dense set of 
points X C M d, any d + l  points, X l , . . .  , xd+l C B(z,  rad(z))fq 

X for any z E M,  determine a unique minimal radius cir- 
cumscribing sphere. 

Essentially this corollary says that d + 1 close enough points 
determine a unique d-sphere of small radius. This corollary 
ensures that the notion of being a Delannay triangulation is 
well-defined. 

The definition of the triangulation only deals with the com- 
binatorics of the triangulation. From a topological point 
of view this is enough, but  in some contexts we will want 
to know how the simplicies and their faces are structured 
geometrically. In Euclidean space the faces of the simpli- 
cies are planes. In Riemannian geometry the concept of a 
plane is not as simple to use. For our purposes we will de- 
fine a plane in a Riemannian manifold as follows• Given 
two points x, y E M and a constant c then a plane will be 
{z E M :  [d(x, z) 2] - [d(y, z)] 2 = c}. These planes are known 
as middle planes. Note that is Euclidean space this is equiv- 
alent to the usual definition of a plane. Inside small balls 
these planes have many of the same properties as planes in 
Euclidean space. The faces of simplicies of the triangulation 
will consists of these planes. See [9] for more details• 

4.  V O R O N O I  D I A G R A M S  
Voronoi diagrams in Riemannian manifolds are defined ex- 
actly the same as in Euclidean space. They also have most 
of the same properties. 

DEFINITION 4.1. I f  X = { x l , . . .  ,x,~} C M then the Voronoi 
diagram for X divides M into regions Vi for each xi defined 
as follows: 

Vi = {z E M :  d(xi ,z)  <_ d(x j , z )  Vj} 

If Euclidean space the Voronoi diagram is always a cell com- 
plex. However, this will not be the case in general, see figure 
4 to see how the Voronoi regions in a torus might not be disks 
• However, if the same density requirements are met as in 
the previous section then it will form a cell complex dual to 
the Delaunay triangulation. Observe that the faces of each 
of the regions of the Voronoi diagram are planes as defined 
in the previous section. 
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Figure 4: T h e  m e d i a l  axis  for a man i fo ld  in  R 2. 

THEOREM 4.2 ([9]). For a sul~ciently dense set of points 
then Voronoi diagram is a cell complex for M.  Furthermore, 
the Voronoi diagram is dual to the Delaunay triangulation. 

5. SUBMANIFOLDS OF EUCLIDEAN SPACE 
Any manifold embedded in Euclidean space inherits a Rie- 
mannian structure where the lengths of curves on the mani- 
fold are the Euclidean lengths of the curves. When working 
with submanifolds of R ~ the proofs to many of the theorems 
in the previous section become much easier. However, this 
does not put any restictions on the manifolds that can be 
considered. In 1956, Nash [11] proved that any Riemannian 
manifold can embedded in Euclidean space so that its metric 
is induced by the embedding. 

There is one futher requirement for a sample of points when 
working in Euclidean space. Depending on the embedding 
it is possible for two points to be much closer in Euclidean 
space then they axe in the manifold. This can be dealt with 
by knowing which points in Euclidean space have a unique 
closest point in the manifold. 

DEFINITION 5.1. The medial axis for a manifold M em- 
bedded in I:t '~ is the closure of the set of points with more 
than nearest neighbor in M.  

The additional requirements to ensure that the triangules 
can be replaced by flat ones are similar to those used in the 
surface reconstruction techniques used in [1]. 

DEFINITION 5.2. Given a submanfiold M of R '~ the local 
feature size at x E M ,  denoted LFS(x), is the distance from 
x to the medial axis for  M.  

THEOREM 5.3. I f  M C R '~ is a submanifold of any di- 
mension and X is a finite set of  points so that 

1. X is su~cient ly  dense 

2. for  every y e M,  the ball of radius ¼LFS(y) contains 
a point of  X in its interior 

then the Euclidean approximation of M from the Delaunay 
triangulation is ambiently isotopic to M .  Furthermore, this 
isotopy induces a homeomorphism between M and its ap- 
proximation. 

If M'  is the piecewise linear approximation of M then the 
homeomorphism takes x E M'  to the closest point to x in 
M. This map is well defined since the above assumptions 
ensure that the approximation is disjoint from the medial 
axis. The ambient isotopy between the two surfaces follow 
the segments connecting points in M'  to their images under 
the homeomorphism. 

6. SKETCH OF PROOFS 
The existence of Delannay triangulations will be established 
by first showing that for a sufficiently dense set of points the 
Voronoi diagram is a cell decomposition of the manifold. For 
a generic set of points we will show that  the Voronoi diagram 
is dual to a triangulation, in fact the Delaunay triangulation. 

Let X = { x l , . . .  ,x~} be a sufficiently dense set of points 
in M. Define f : M --~ R '~ by 

f (p)  = ( d ( x l , p ) , . . .  , d(xn, p)) 

We will use f to study the Voronoi diagram. 

LEMMA 6.1. f is an embedding. 

PROOF. First observe that no matter which direction you 
move in M, the density conditions ensure that  you must get 
further from some x~. Pick any p E M for which f (p)  = f (q)  
for some q E M and let di = d(p, xi).  Define a sets I(a)  as 
follows: 

n 

I(a) = N B(x , ,  di + a) 
i ~ l  

Notice that p E I(0). Also, since small balls axe strongly 
convex it can be shown that I(a)  is also strongly convex for 
sufficiently small a. If f is not an embedding, then I(0) con- 
tains more than one point. By strong convexity, a geodesic 
arc connecting any two points must have its interior con- 
tained in the interior of I(0). This implies for some a < 0 
that I(a) • $. So it is possible to move from p along a 
geodesic and enter I(a).  If this could happen, then the dis- 
tance to every xi would descrease. This is impossible since 
the distance to one of the points must increase, so f must 
have been an embedding. [] 

Note that f (M)  is contained in the positive orthant and 
that there is a natural  cell decomposotion of it into infinite 
simplicies 

c i  = { ( z l , . . . ,  z~) : 0 < zi < zj v j }  

Notice that  the Voronoi region 1~ are precisely f - l ( C i ) .  We 
will study these Voronoi regions by examining how f ( M )  
meets these simplicies in R ~. 

LEMMA 6.2. t~ is a ball. 
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PROOF. Notice that  Y~ C B(xi ,  ~conv(xi), where conv(p) 
is the strong convexity radius of M at p. If this were not the 
case then there would exist a point p E ~ with d(xi,p) > 
~conv(xi) which would contradicts the density conditions 
on the points. 

Let p E ~ .  Since p is inside the strong convexity radius 
there exists a unique geodesic 3' connecting p and xi. Pick 
any point, q, in the interior of % We claim that q is in the 
interior of ~ .  If not, d(xi,q) = d(xj,q) for some j ¢ i. The 
triangle inequality implies that  d(xj,  p) <_ d(xj, q) +d(q, p) = 
d(xi, q)+d(q,p) = d(xi,p). Hence d(xj ,p)  = d(xi,p) and the 
unique geodesics connecting p to xi and from p to xj coincide 
on an interval. This only happens if all of the points are on 
the same geodesic, hence xi = xj .  This shows that 1~ is star 
convex from xi. Since each ray from xi hits the boundary 
in at most one point and that xi is in the interior of r~, 1~ 
must be a ball. [] 

To show that the Voronoi diagram is a cell complex, we need 
to examine how these balls intersect. To understand this 
intersection we need to restrict how M' = f ( M )  intersects 
faces of the cell decomposition of R ~ and parallel copies of 
the faces. Let z l , . . .  , z~ be the coordinates in t t  ~. 

LEMMA 6.3 (TRANSVERSALITY). I f  p E M and we can 
reindex so that x l , . . .  ,x~ E X are the points of X in- 
side B(p, 3 rad(p)) then any non-zero vector in the span of 
z l , . . .  ,zk is not in Tf(p)M', the tangent plane to M' at 
I(P). 

PROOF. Notice that  if the lemma were false then it would 
be possible to travel in some direction from p and the dis- 
tance from x l , . . .  ,xk would change, but the distances to 
any other xl would remain fixed. But by our density as- 
sumptions, it can be shown that movement in any direction 
will cause the distance to some xi, i > k to decrease. [] 

To show that the Voronoi diagram is a cell complex we will 
show that  each cell is of a particularly nice type called nor- 
mal. These definitions are generalizations of the theory of 
normal surfaces in the 3-manifold topology. 

DEFINITION 6.4. A normal d-ball B in a convex Euclidean 
n-cell C is a ball such that B intersects a k dimensional face 
of C in a single unknotted ( k -  n + d)-ball or the intersection 
is empty. See figure 6. 

Normal balls have been studied in the generalizations of 
normal surface theory and various existence results proven, 
though not published. The following theorem allows us to 
prove that  each of the Voronoi cells is a normal ball. A proof 
of the theorem can be found in [9]. 

THEOREM 6.5. I f  C is a convex Euclidean n-cell and B E 
C is a d-manifold such that 

1. B intersects each k dimensional face of C in an (k - 
n + d)-manifold 

F i g u r e  5: N o r m a l  a r c s  a n d  d i s k s  i n  a t e t r a h e d r o n .  

2. I f  F is a face of C then F N B intersects every hyper- 
plane in F transversely. 

then B is a normal ball. 

LEMMA 6.6. r~ is a normal d-baU in the cell Ci. 

PROOF. Since the set of points was chosen to be generic 
the first requirement of the theorem above is satisfied. And 
the transversality lemma ensures that  every face M'  meets 
it in tranvsersely. So the theorem can be applied to show 
that M'  hits each of the C / i n  a union of normal balls. But 
we know V/is connected, so it is a single normal ball. [] 

The intersection of any two Voronoi cells occurs in a face 
of the cell decomposition of R '~. The above lemma says 
that these intersections are always a single ball or empty. 
This is the requirement for the Voronoi diagram to be a cell 
complex. 

If we perturb our points slightly we can ensure that  the 
Voronoi diagram is dual to a triangulation. The same ar- 
guments as used in Euclidean space can be applied to show 
that the triangulation dual to the Voronoi diagram is in fact 
the Delaunay triangulation. This method is useful in prov- 
ing that Delaunay triangulations exist, however working in 
such a large dimensional Euclidean space is completely im- 
practical. In the next section we will discuss other means for 
construction this triangualation now that we know it exists. 

7. ALGORITHMS 
We will discuss algorithms for constructing the Delaunay 
triangulation for a sufficiently dense set of points. We will 
assume the existence of two oracles that allow us to do the 
necessary calculations on the Riemannian manifold. The 
first will be for measuring the distance between any two 
points on the manifold. The second will find the center of the 
smallest radius sphere through a given set of points. Using 
these two oracles, the construction algorithm follows using 
an incremental algorithm to calculate the triangulation in 
the neighborhood of every point. 

The incremental algorithm proceeds by adding a point at 
a time to the triangulation. Initially the triangulation near 
the first point is arbitrary. But a sequence of Pachner moves 
or flips can be performed upon any simplicies that  do not 

345 



have empty circumscribing spheres. See figure 7 to see the 
moves in two and three dimensions. In Euclidean space it 
can be shown that this will always produce the Delaunay 
triangulation. 

ALGORITHM 7.1. Let x l , . . .  ,x,~ be a sufficiently dense 
set of points in M .  

1. For each i construct the Delaunay triagulation Ti for 
all simplicies meeting xi.  

(a) Start with a d-simplex made from xi and its d 
nearest neighbors. 

(b) Add each of the x j  incrementally. 

(c) I f  x j  is in the interior of an existing simplex sub- 
divide that simplex by adding the new vertex. Oth- 
erwise, add simplicies by coning the faces visible 
from xj  to the new vertex x j .  See figure 7a. 

(d) I f  any of the simplicies adjacent to xi do not have 
empty circumscribing spheres, perform flips until 
they do so. See figure 7b. 

(e) Repeat (b) - (d) until all points have been added. 
Let Ti be the triangulation of the star of xi.  

2. Piece together the triangulations, Ti, to obtain the De- 
launay triangulation. 

j 
While the incremental algorithm cannot be used to produce 
a Delaunay triangulation for the entire manifold, it does con- 
struct the correct triangulation for the simplicies adjacent 
to the initial point. In step 2, it can be shown that the Ti 
agree on their overlap. The proof of these two statements 
can be seen in [10]. 

The second algorithm we want to discuss involves construct- 
ing triangulations that  accurately approximate the Rieman- 
nian metric. Our Delaunay triangulation provides an ap- 
proximation of the manifolds geometry as follows. Recall 
the map f : M --+ R ~ in section 6. A piecewise flat mani- 
fold N can be obtained by using Euclidean simplicies in R n 
to construct the triangulation. There is a natural  homeo- 
morphism g : N --+ M. We will define a measure to evaluate 
how closely the Delannay triangulation represents the ge- 
ometry. The measure uses a bi-Lipschitz relation comparing 
the measurements of lengths of curves and angles. 

In Riemannian manifolds, length and angles are measure us- 
ing an inner product on the tangent space at any point. Us- 
ing the piecewise flat structure on our approximation, there 
is an inner product that allows us to also make these cal- 
culations on the approximation. The precise definition is 
technical and will be omitted, but  we will say that  the ap- 
proximation is e-close to the Riemannian manifold if evalu- 
ation of the two inner products never differ by more than a 
factor of epsilon. However, this notion of e-close has a nice 
interpretation in the measurements of lengths and angles. 
And for our purpose, we can use this as the definition of 
e-close. 

F i g u r e  6: T h e  P a e h n e r  m o v e s  in  two  a n d  t h r e e  di-  
m e n s i o n s .  

LEMMA 7.2. I f  N is e-close to M = g(N)  then 
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p, -  

we can add Steiner points until it is reached. This gives an 
algorithm to constructing arbitrari ly precise triangulations. 

ALGORITHM 7.5. Start with a 1-dense set of points in M. 

1. Construct the Delaunay triangulation. 

~. For each simplex of the triangulation, bound the sec- 
tional curvature by examining the tangent planes at 
each of the vertices. 

3. By comparing the curvature bounds to the lengths of the 
edges, it can be seen if the sample of points is dense 
enough locally. 

4. I f  there is too much deviation for the estimate to be 
e-close inside the tetrahedra then add a Steiener point 
at the center of the circumscribing sphere and retrian- 
gulate. 

5. Repeat steps 2-~ until the desired accuracy is reached. 

Figure  7: (a) A d d i n g  a n e w  ver tex  to  the  triangu- 
lat ion and  (b) do  flips so that  the  tr iangulat ion  is 
De launay .  

1. if 7 is any curve in N and 7' = g(7) then 

(1 - e)length(ff) < length(~/) < (1 + e)length(7) 

~. if O is the angle of intersection of two curves in N and 
O' is the angle of intersection of the same curves in M 
then ] cos 0 - cos 0'1 < e. 

The density requirements for the existence of Delaunay tri- 
angulations do not take into account regions of negative cur- 
vature. This does not affect getting a topologically accurate 
triangulation; however, they do affect how well the geome- 
t ry  is represented. To deal with this we will need a stronger 
sampling requirement. 

DEFINITION 7.3. A su~iciently dense set of points, X = 
{Xl , . . .  ,xn},  is J-sampled if for every point p E M, we 
have that B(p, 61o--~p ) contains one of the x~, where top is a 
bound on the absolute value of the sectional curvature at p. 

THEOREM 7.4. For every e > 0 there exists a value for 6 
such that the Delaunay triangulation of any manifold using 
any 6-sampled set of points will be e-close to the Riemannian 
metric. Furthermore, ~ only depends on e and the dimension 
of the manifold. 

This theorem ensures tha t  if you subdivide your triangula- 
tion enough you get can arbitrari ly accurate representations 
of the geometry of the manifold. However, the required den- 
sity of points might not be provided. For point samples that  
are 1-dense or better ,  we can measure the accuracy of the 
approximation. If we do not have the desired accuracy then 

This algorithm will terminate with a tr iangulation of M 
that  represents the topology and geometry of the manifold 
accurately. The number of points added will be large if the 
manifold has large regions of negative curvature. 

8. AN EXAMPLE 
As an example for the results of these algorithms, we will 
examine a piece of the surface z = x 2 + y2. See figure 8a to 
see the density requirements to guarantee a certain quality 
of approximation. The ellipses in the plane are projections 
of round circles in the surface; each must have a vertex of 
the triangulation in its interior to meet the density require- 
ments. Where the surface has higher curvature a higher 
density of points is required, and in the direction of greatest 
change the density is highest. Figure 8b shows the resulting 
triangulation. The triangles vary in size and the vertices 
are positioned to ensure a high quality approximation. To 
achieve a similar quality triangulation using triangles of uni- 
form size requires approximately two and a half t imes the 
number of vertices. 

9. CONCLUSIONS AND FUTURE WORK 
In this paper we have introduced the concept of Delaunay 
triangulations to Riemannian geometry and found condi- 
tions to ensure their existence. The algorithms discussed al- 
low arbitrari ly accurate approximations of a manifold using 
a variety of quality measures. At this point these algorithms 
are still theoretical; however, with improved heuristics they 
could become practical. 

There are many possible applications to these theorems. 
One of them is surface reconstruction using tangent  plane 
information. Note that  the theorems work for any dimen- 
sion manifold embedded in any dimension Euclidean space. 
This opens up the possibilites for algorithms to reconstruct 
curves in R 3 and possible applications to manifold learning 
where the dimensions of spaces can be quite large. 

Another application is in anisotropic meshing for modelling 
solutions to complex differential equations. The solutions 
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Figu re  8: E x a m p l e  of  a De launay  t r i angu l a t i on  for a R i e m a n n i a n  mani fo ld  in R 3 
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to these equations can be thought of a submanifold of some 
Euclidean space and the algorithms discussed here can be 
used to approximate these manifolds accurately. 

A final application is to understand triangulations of 3- 
dimensional manifolds. In 3-dimensional topology the study 
of geometric structures on manifolds is an important area of 
research. The techniques in this paper can be used to con- 
struct triangulations for these manifolds that are compatible 
with their geometric structures. These triangulations have 
nice combinatorial properties and in many cases are conjec- 
tured to be minimal. This could lead to some interesting 
results in topology. 
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