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The stochastic resonance in paced time-delayed scale-free FitzHugh–Nagumo (FHN) neuronal networks is investi-

gated. We show that an intermediate intensity of additive noise is able to optimally assist the pacemaker in imposing its

rhythm on the whole ensemble. Furthermore, we reveal that appropriately tuned delays can induce stochastic multires-

onances, appearing at every integer multiple of the pacemaker’s oscillation period. We conclude that fine-tuned delay

lengths and locally acting pacemakers are vital for ensuring optimal conditions for stochastic resonance on complex

neuronal networks.
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1. Introduction

The FitzHugh–Nagumo (FHN) equations are a

simplified version of the Hodgkin–Huxley model of

neuronal dynamics, capturing succinctly the activa-

tion and deactivation dynamics of a spiking neuron.[1]

Due to its numerical efficiency, the FHN model has

been used frequently for investigating the effects of

noise on excitable neuronal-like dynamical systems.

For example, the phenomenon of stochastic resonance

and its enhancement due to coloured noise have been

reported in Refs. [2] and [3]. Coherence resonance,

where the spikes of the FHN neuron have maximal

regularity in the presence of noise even without an

external periodic signal, was presented in Refs. [4]–

[6]. Moreover, coupled FHN neurons have been stud-

ied in Ref. [7], where it was shown that chemical

synaptic coupling is more efficient than the well-known

gap junctional coupling for local signal input detec-

tion. Slightly more exotic phenomena, like the doubly

diversity-induced resonance,[8] array-enhanced coher-

ence resonance,[9,10] and vibrational resonance[11,12]

have also been studied in detail.

Since a single neuron in the vertebrate cortex can

have links to as many as 10000 postsynaptic neu-

rons, and since neurons are known to be noisy ana-

log units, understanding the effects of noise on net-

worked excitable systems is of vital importance.[13,14]

Related to this, the phenomena of stochastic and co-

herence resonance on complex neuronal networks be-

came a vibrant topic as well. The stochastic reso-

nance on excitable small-world networks was stud-

ied by means of the discrete Rulkov map[15] and

the Hodgkin–Huxley model of neuronal dynamics.[16]

Coherence resonance on Watts–Strogatz small-world

Hodgkin–Huxley neuronal networks was also investi-

gated, and it was found that increasing the random-

ness of the network topology leads to an enhancement

of temporal coherence.[17] Moreover, Kwon et al.
[18]

showed that the coherence resonance can be consider-

ably improved just by a small fraction of long-range

connections for an intermediate coupling strength in

a Watts–Strogatz small world neuronal network with

spatially correlated noise. More recently, a new coher-

ent excitation phenomenon has been reported in a het-

erogeneous network of coupled FHN neurons, where

it has been shown that dynamical network rewiring

may induce coherence resonance,[19] whereas from the

experimental viewpoint, it has been shown that the
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spike-field-coherence in monkey prefrontal cortex is

modulated by behaviour patterns.[20]

Using functional magnetic resonance imaging

(fMRI), power-law distributions were obtained by

linking correlated fMRI voxels,[21] and the robust-

ness against simulated lesions of anatomic cortical net-

works has also been found relying mostly on the scale-

free structure.[22] Recently, the dynamics of an ex-

citable Greenberg–Hastings cellular automaton model

on scale-free networks was studied.[23,24] In addition,

information transmission delays are inherent to the

nervous system because of the finite speed at which ac-

tion potentials propagate across neuron axons, as well

as due to time lapses occurring by both dendritic and

synaptic processing.[25] Notably, it has been suggested

that time delays can facilitate neural synchronisation

and lead to many interesting and even unexpected dy-

namical phenomena, as described in Refs. [26]–[28].

Notably, it has been shown that dynamical relaying

can yield zero time lag neuronal synchrony, thus over-

ruling potentially hampering effects of long conduc-

tion delays.[29]

In the present paper, we aim to extend the scope

of stochastic resonance on complex neuronal net-

works, particularly by considering scale-free interac-

tion networks,[30] pacemakers, and time-delayed cou-

pling. We elaborate the pacemaker-driven stochastic

resonance in scale-free neuronal networks when the

delay length is varied. We show that stochastic reso-

nance via locally acting pacemakers is possible in the

FHN neuronal network. In fact, the effects of the

delay on stochastic resonance have been reported.[31]

But more importantly, we present non-trivial effects

induced by finite delays, which may induce stochastic

multiresonances provided that the delay length is ad-

equately adjusted. This is primarily attributed to the

emergence of locking between the delay length and the

global resonant oscillation frequency[32] of individual

FHN neurons constituting the scale-free network as

well as the frequency of the pacemaker.

The remainder of this paper is organised as fol-

lows. In the next section we describe the FHNmodel[1]

on the scale-free network,[30] as well as the time-

delayed coupling scheme and the measure for stochas-

tic resonance. Subsequently, the main results are pre-

sented and summarised.

2. Mathematical model and setup

In order to simulate the stochastic neuronal dy-

namics on the scale-free network effectively, we employ

the FHN equations.[1] The spatiotemporal evolution of

the neuronal network to be studied, along with addi-

tive Gaussian noise ξi(t) and delay τ , is governed by

the following equations

ρẋi = xi − x3
i /3− yi + σξi(t)

+D
∑

j

εi,j [xj(t− τ)− xi(t)] , (1)

ẏi = xi + a, (i = 1, . . . , L),

where x and y represent the fast activation variable

and the slow recovery variable, respectively; ρ (we fix

ρ = 0.01 unless stated otherwise) determines the in-

herent time scale of the local dynamics. Parameter

a determines the behaviour of the system. In the

absence of noise, for a > 1.0 the FHN model is ex-

citable, and for a < 1.0 it shows oscillatory behaviour.

At the bifurcation a = 1.0, the stability of the only

fixed point is lost.[4] Presently, we set a = 1.005 and

initiate each neuron from steady state initial condi-

tions, so that the additive spatiotemporal Gaussian

noise ξi(t), having mean ⟨ξi(t)⟩ = 0 and autocor-

relation ⟨ξi(t)ξj(t
′)⟩ = δijδ(t − t′), acts as the only

source of large-amplitude excitations. D is the cou-

pling strength, the parameter σ determines the noise

intensity, and τ is the afore-mentioned delay length.

The latter two parameters will be the focus of atten-

tion within this work.

It remains of interest to mathematically introduce

the pacemaker, which takes the form of a periodic

force defined by

π(r) = A cos(ωt), (2)

where the superscript r denotes a chosen excitable

neuron among all the N = 200 neurons constituting

the excitable array, to which the pacemaker is intro-

duced as an additive term to the variable ẏi. Fur-

thermore, A is the amplitude of the periodic sub-

threshold pacemaker, presently set to A = 0.01, and

ω (ω = 2π/T ; T being the oscillation period) is its

angular frequency. The appropriate value of T de-

pends on the global resonant oscillation frequency[32]

of each individual FHN model; notably the two should

be comparable for optimal results, which under the

above-stated parameter values leads to T = 3.6. We

will use this value of T unless stated otherwise.
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As the interaction base between the FHN neurons

we use the scale-free network generated via growth

and preferential attachment as proposed by Barabási

and Albert,[30] consisting of L = 200 vertices. Each

vertex corresponds to one neuron, whose dynamics is

governed by the noise-driven FHN model. In Eq. (1)

εi,j = 1 if neuron i is coupled to neuron j and

εi,j = 0 otherwise. Following Ref. [30], the prefer-

ential attachment is introduced via the probability

Π, which states that a new vertex will be connected

to vertex i depending on its degree ki according to

Π(ki) = ki/
∑

j kj . This growth and preferential at-

tachment scheme yields a network with an average

degree kav = (1/L)
∑

i ki, and a power-law degree dis-

tribution with the slope of the line equal to −2.9 on

a double-logarithmic graph. Notably, analytical esti-

mations predict that the slope of the line equals −3.

We will use networks having kav = 4 throughout this

work.

To quantitatively characterise the collective re-

sponse of the neuronal network, we introduce the av-

erage membrane potential X(t) = 1
L

∑L

i=1 xi(t) as the

main output to be examined further. The correla-

tion of the average membrane potential X(t) with fre-

quency of the pacemaker ω = 2π/T is computed via

the Fourier coefficients

Qsin =
2

NT

∫ NT

0

X(t) sin(ωt)dt, (3)

Qcos =
2

NT

∫ NT

0

X(t) cos(ωt)dt, (4)

where N = 200 is the number of periods of the pace-

maker used for calculation presented below. In this

paper, we use Q =
√

Q2
sin +Q2

cos as a numerically

effective measure for stochastic resonance, capturing

succinctly the collective spatiotemporal behaviour of

the neuronal network considered and its correlation

with the pacemaker rhythm. In general, Q can ex-

hibit a bell-shaped profile as a key parameter (for ex-

ample σ) is varied, thereby indicating the occurrence

of stochastic resonance. Importantly, since the gener-

ation of scale-free networks has inherent random in-

gredients, which can be additionally amplified by indi-

vidual vertex (neuron) pacing, the final results shown

below were averaged over 30 independent runs for each

set of applicable parameter values to warrant appro-

priate accuracy.

3. Results

We start by setting τ = 0 and introducing the

pacemaker to the neuron with the lowest degree kmin

within the network, thus r = i(kmin). Space-time plots

for different σ are presented in Fig. 1. It is shown

that smaller σ fails to evoke continuous excitations

[see Fig. 1(a)]. As σ increases, regular spatiotemporal

patterns can appear [see Figs. 1(b)–1(d)]. Further in-

vestigation shows that the excitatory fronts follow the

pacemaker rhythm (oscillation period is T = 3.6) only

by an intermediate value of σ [see Fig. 1(c)]. From

Fig. 1(b), the regular wave period is 3.73, which is

greater than T = 3.6; while in Fig. 1(d) the regu-

lar wave period is 3.55, and is smaller than T = 3.6.

Larger noises exceeding the optimal value, however,

have the ability of initiating excitations on their own

(even when the pacemaker is not firing), thus again

failing to conform to the weakly imposed rhythm or

further still, completely overruling the deterministic

dynamics [see Fig. 1(e)]. The presented results there-

fore indicate a classical stochastic resonance scenario,

where an intermediate noise intensity warrants the

best response of the system to a weak external deter-

ministic forcing. Notably, qualitatively identical re-

sults are obtained if the pacemaker is introduced to

the neuron with the largest degree r = i(kmax) within

the scale-free network. It is next of interest to assess

these observations quantitatively.

Fig. 1. Space-time plots obtained at τ = 0 and D = 0.01

for different σ: (a) 0.008, (b) 0.05, (c) 0.15, (d) 0.5 and (e)

1. In all panels the colour profile is linear, black depicting

xi(t) = −2.0 and white xi(t) = 2.0, with eight shades of

grey in between.

To establish the described pacemaker-driven

stochastic resonance more precisely, we consider the

dependence of Q on σ in Fig. 2(a) for different op-

tions with respect to the places of the pacemaker. It

can be observed that, irrespective of whether the pace-

maker is introduced to the neuron with the minimal
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r = i(kmin) or the maximal degree r = i(kmax), there

exists an intermediate optimal noise intensity σ for

which Q is maximal, thus exhibiting a bell-shaped de-

pendence characteristic for stochastic resonance.

Before turning to the impact of finite informa-

tion transmission delays τ , we investigate in Fig. 2(b)

stochastic resonance in the transition to the strong

coupling region (high values of D). Results are pre-

sented for r = i(kmin) but are qualitatively identi-

cal also for r = i(kmax) (not shown). Evidently,

the stochastic resonance phenomenon prevails irre-

spective of D, only that the optimal value of σ shifts

to slightly higher values upon its increase. Thus, it

can be concluded that the pacemaker driven stochas-

tic resonance on scale-free neuronal networks is a ro-

bust phenomenon, occurring largely independently of

the particular places of the pacemaker or the strength

of the coupling. In what follows we will therefore fo-

cus on the individually paced noise-driven scale-free

neuronal networks, wherein one of the neurons having

the lowest degree will be chosen as the input for the

deterministic forcing.

Fig. 2. (a) Dependence of Q on σ at τ = 0 and D = 0.01 for different places of the pacemaker within the

scale-free network (see also main text for further details). (b) Dependence of Q on σ and D at τ = 0 when the

pacemaker is introduced to one of the neurons having the lowest degree [r = i(kmin)].

Next, we present in Fig. 3 the space-time plots

obtained for different τ while keeping the coupling

strength D = 0.01 and the noise intensity σ = 0.15

fixed. The results shown in the five panels of

Fig. 3 illustrate the spatiotemporal dynamics of neu-

rons on the studied scale-free neuronal network for

r = i(kmin). Upon careful visual inspection, an

intermittent pattern of regularity and disorder can

be inferred upon increasing τ . In particular, while

for τ = 3.6 [panel (b)] and τ = 7.2 [panel (d)] the

excitatory fronts are synchronous and largely obey-

ing the pacemaker rhythm, for τ = 1.5 [panel (a)],

τ = 5.0 [panel (c)] and τ = 8.0 [panel (e)] the reg-

ularity is either completely lost or at least the ex-

citatory fronts become ragged and lose synchrony

with the imposed frequency. Indeed, the information-

transmission-delay-induced transitions to ordered spa-

tiotemporal dynamics on scale-free neuronal networks

appear intermittently at roughly integer multiples of

the period of the pacemaker, T = 3.6 throughout this

work unless stated otherwise. Importantly, T = 3.6

corresponds rather accurately to the global resonant

oscillation period[32] of the FHN neuron for the cur-

rently used parameter values ρ = 0.01. By setting

Fig. 3. Space-time plots obtained at D = 0.01 and

σ = 0.15 for different τ : (a) 1.5, (b) 3.6, (c) 5, (d) 7.2

and (e) 8.0. In all panels the colour profile is linear, black

depicting xi(t) = −2.0 and white xi(t) = 2.0, with eight

shades of grey in between.

T largely different from the global resonant oscilla-

tion period of individual neurons, however, the inter-
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mittent outline presented in Fig. 3 can no longer be

observed. Visual investigations of Fig. 3 thus reveal

that regular and irregular front propagation appears

intermittently as the delay is increased, hence indicat-

ing that finite information transmission delays might

play a central role by the generation of spatiotempo-

ral order of neuronal activity on scale-free networks

in accordance with a weak localised deterministic in-

put, provided that the latter is so adjusted as to ap-

proximately agree with the global resonant oscillation

frequency of constitutive neurons.

To account for the above visual interpretations

quantitatively, we adjust the local dynamics of each

neuron (thus far we have not varied this) by varying

ρ, in turn affecting the speed of the temporal evolu-

tion of xi(t) and consequently also the global resonant

frequency. At the same time, we adjust the oscillation

period of the pacemaker T correspondingly. In partic-

ular, we consider two different cases, namely ρ = 0.02

and ρ = 0.01, and change the oscillation period of

the pacemaker to T = 4.2 and T = 3.6, respectively.

These T are in good agreement with the global res-

onant frequency of an individual neuron for the cor-

responding values of ρ. Notably, the global resonant

frequency can be extracted from the FHN model by

calculating the Fourier transform of noise-driven oscil-

lations, as described in Ref. [32]. Results presented in

Fig. 4 show that, in accordance with the visual inspec-

tion of Fig. 3, multiple resonances in Q with the in-

crease of τ are obtained by setting σ and D. Following

the established terminology, these can be termed ap-

propriately as delay-aided stochastic multiresonances

on scale-free neuronal networks. Moreover, it is clear

that the particular locations of the maxima of Q shift

to different values of τ as ρ and T are varied. Cru-

cially however, it is always so when the locking be-

tween τ and integer multiples of T is preserved. Thus,

the resonances in dependence on τ appear at integer

multiples of T if only the latter is close to the global

resonant oscillation period of the individual neurons.

On the other hand, values of τ outside the regions of

multiple integers of T impair the stochastic resonance

significantly, as can be inferred from the rather sharp

descents of Q towards smaller values as soon as the op-

timal τ ’s are replaced by other values. We therefore

conclude that the delay-induced stochastic resonances

of neuronal activity are due to the locking between

the length of the delay τ and the predominant oscil-

lation period of individual neurons constituting the

scale-free network. This is valid independently of the

particular places of the pacemaker, and also for glob-

ally paced scale-free neuronal networks with different

coupling strengths.

Fig. 4. Dependence of σ on τ for different ρ (see also main

text for further details) when the pacemaker is introduced to

one of the neurons with the lowest degree [r = i(kmin)]. Where

applicable, other parameter values are the same as those in

Fig. 3.

Fig. 5. Contour plots of Q versus τ and σ when the pace-

maker is introduced to one of the neurons with the lowest

degree [r = i(kmin)] and D = 0.01. Further parameter

values are: ρ = 0.01, T = 3.6.

Finally, we present results where the above-

outlined dependences can be observed at a glance.

Figure 5 shows the dependence of Q on σ and τ for

ρ = 0.01. Stochastic multiresonances are clearly eligi-

ble as narrow white-shaded regions, appearing roughly

at integer multiples of τ = 3.6 across suitable spans

of σ. It is worthwhile emphasising that the very nar-

row region of optimal τ , especially if compared to the

rather broad span of σ that still ensures reasonably

high Q, suggests that fine-tuned delays might be cen-

tral for the efficient recognition of weak localised ex-

ternal signals. Also notably, some faintly expressed

regions of stochastic resonance can be observed for

small τ (≈ 0.4). However, these are mostly the con-

sequence of the fact that short delay lengths do not
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influence the neuronal dynamics strongly enough to

fully prohibit noise-induced correlations between the

pacemaker and the neuronal dynamics; and in turn

they occasionally yield results similar to the τ = 0

case, but only at substantially higher noise intensities

which are needed to compensate for the disturbing

impact of non-optimal information transmission de-

lays. Moreover, for other forcing frequencies of the

pacemaker we have performed similar investigation,

yet only when the pacemaker frequency is very close

to the global resonant frequency of individual neurons

forming the scale-free network can stochastic multires-

onances be observed at integer multiples of the forcing

period.

4. Summary and discussion

In summary, we have studied stochastic resonance

phenomena on paced scale-free FHN neuronal net-

works as the noise intensity and the delay length are

varied. We find that stochastic resonance occurs ir-

respective of the location of the pacemaker. Fur-

thermore, as we introduce time-delayed coupling with

finite τ , we can observe stochastic multiresonances

upon fine-tuning of the delay length, which appear

at every multiple of the forcing frequency if the lat-

ter is close enough to the global resonant oscillation

frequency of individual neurons. More precisely, the

stochastic multiresonances appear in an intermittent

fashion as the delay increases, whereby the intermit-

tency is a direct consequence of the on/off locking be-

tween the forcing frequency and the information trans-

mission delay length. Thus, we have shown that noise

and information transmission delays can play comple-

mentary roles in warranting optimal detection of weak

localised stimuli in neuronal scale-free networks via

stochastic resonance. We hope that our study will be

useful when striving towards further advances in un-

derstanding neuronal dynamics on complex networks.
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