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Abstract

We consider switched queueing networks with a mix of heavy-tailed (i.e., arrival processes
with infinite variance) and exponential-type traffic and study the delay performance of the Max-
Weight policy, known for its throughput optimality and asymptotic delay optimality properties.
Our focus is on the impact of heavy-tailed traffic on exponential-type queues/flows, which may
manifest itself in the form of subtle rate-dependent phenomena. We introduce a novel class of
Lyapunov functions (piecewise linear and nonincreasing in the length of heavy-tailed queues)
whose drift analysis, combined with results in [31], can provide exponentially decaying upper
bounds to queue-length tail asymptotics despite the presence of heavy tails. To facilitate a
drift analysis we employ fluid approximations, proving that if a continuous and piecewise linear
function is also a “Lyapunov function” for the fluid model, then the same function is a “Lya-
punov function” for the original stochastic system. Furthermore, we use fluid approximations
and renewal theory in order to prove delay instability results, i.e., infinite expected delays in
steady state. We illustrate the benefits of the proposed approach in two ways: (i) analytically,
by studying the delay stability regions of single-hop switched queueing networks with disjoint
schedules, providing a precise characterization of these regions for certain queues and inner and
outer bounds for the rest. As a side result, we prove monotonicity properties for the service
rates of different schedules that, in turn, allow us to identify “critical configurations” towards
which the state of the system is driven, and which determine to a large extent delay stability; (ii)
computationally, through a Bottleneck Identification algorithm, which identifies (some) delay
unstable queues/flows in complex switched queueing networks by solving the fluid model from
certain initial conditions.

1 Introduction.

We study resource allocation problems arising in switched queueing networks, a class of stochas-
tic models that are often used to capture the dynamics and decisions in data communication
networks, e.g., cellular networks [49], Internet routers [48], and ad hoc networks [65], but also
in flexible manufacturing systems [27] and cloud computing clusters [44]. A switched queueing
network can be viewed as a collection of single-class, single-server, FCFS queues whose service is
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interdependent, e.g., due to wireless interference constraints, matching constraints in a switch,
or flow-scheduling constraints in a wireline network. Thus, only certain subsets of the set of
queues, the so-called schedules, can be served simultaneously, giving rise to a fundamental re-
source allocation problem: which schedule to serve and at which point in time? Clearly, the
overall performance of the network depends critically on the policy applied.

The focus of this paper is on a widely-studied queue length-based policy, the Max-Weight
policy. A remarkable property of the Max-Weight policy is its throughput optimality, i.e., the
ability to stabilize the network whenever this is possible, without explicit information on the
arriving traffic [62]. Thus, dynamic instability phenomena, such as the ones reported by Kumar
& Seidman [40] and Rybko & Stolyar [55], do not arise.1 Moreover, Max-Weight-type policies
achieve very good delay performance under light-tailed traffic, e.g., they achieve optimal or
order-optimal average delay for specific network topologies [28, 49], optimal large deviations
exponent [65], and can be asymptotically delay optimal in heavy traffic [60]. For these reasons,
Max-Weight has become the benchmark for switched queueing networks.

Empirical evidence of high variability phenomena in data communication networks [52],
manufacturing [24], and cloud computing [23] motivates us to study switched networks with a
mix of heavy-tailed and exponential-type traffic. For the purposes of this paper, heavy-tailed
traffic is defined in terms of arrival processes with infinite variance. Classical results in queueing
theory, e.g., the Pollaczek-Khinchin formula and Kingman’s bounds, imply that FCFS queues
receiving heavy-tailed traffic are delay unstable, i.e., they experience infinite expected delays
in steady state. Thus, our focus is on the impact of heavy-tailed traffic on queues that receive
exponential-type traffic, using delay instability as a proxy for large delays and exponentially
decaying upper bounds on queue-length tail asymptotics as a proxy for low delays. And while
there is sizeable literature on the stability properties of Max-Weight, as well as its delay perfor-
mance under light-tailed traffic, its delay performance in the presence of heavy-tailed traffic is
not equally well understood.

There is vast literature on the impact of heavy-tailed traffic in a variety of queueing systems,
most notably in single-class queueing systems, e.g., the G/G/1 queue under FCFS [6,18,51,66],
the M/G/1 queue under Processor Sharing [36, 50, 68], the multi-server G/G/s queue under
FCFS [25], and fluid queues [13,14,35,42,54,69]. More recently, several works have studied the
impact of heavy tails in multi-class queues, e.g., the multi-class M/G/1 queue under Generalized
Processor Sharing [7,34,39,41] and Discriminatory Processor Sharing [2,11,12,53]. Finally, there
have been some attempts to analyze the impact of heavy tails in network settings, e.g., networks
of Generalized Processor Sharing queues [64], networks of fluid queues [21], generalized Jackson
networks [4], and monotone separable networks [3] (a class of stochastic systems that includes
certain multi-server queues, Jackson networks, and polling systems as special cases). The above
works offer a wealth of insights regarding the effect of heavy tails in different queueing systems,
and also propose several methodological avenues for analysis. However, the distinctive charac-
teristic of switched queueing networks that the activity of different servers is interdependent,
as well as the complex dynamics imposed by the (queue length-based) Max-Weight policy are
absent from these prior works, making the model under study and the methodological approach
quite different.

Closer to our work come the papers by Borst et al. [9] and by Jagannathan et al. [33],
both of which consider a system with two “parallel” FCFS queues receiving heavy-tailed and
exponential-type traffic, while sharing a single server. The authors determine the queue-length
tail asymptotics of the Generalized Processor Sharing policy and of the Generalized Max-Weight
policy, respectively. Also related to our work is the paper by Boxma et al. [10], which analyzes

1We note that while in single-hop switched queueing networks (i.e., the main focus of the present paper) this is
always the case, in a multi-hop setting Max-Weight scheduling needs to be combined with Back-Pressure routing
for throughput optimality to be guaranteed; see [20, 62]. Otherwise, dynamic instability phenomena may, again,
arise [1, 16].
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a M/G/2 FCFS queue with a heavy-tailed and an exponential-type server, and studies the
dependence of the queue-length tail asymptotics on the arrival rate.

The present paper builds on our earlier work [46], which considers a single-hop switched
queueing network with a mix of heavy-tailed and light-tailed traffic, under the Max-Weight
policy; a brief discussion of the findings of [46] and a detailed account of the contributions of
the present work is given in the next two subsections. The companion paper [47] uses technical
results derived here (more specifically, Theorems 4 and 5 in Section 4) to study how the network
topology, the routing constraints, and the link capacities affect the delay performance of multi-
hop switched queueing networks with heavy-tailed traffic under Back-Pressure-type policies.

Finally, there is growing literature on fluid models of the Max-Weight and Back-Pressure
policies in a variety of settings, e.g., single-hop and multi-hop switched queueing networks, as
well as stochastic processing networks [17,20,37,38,43,57]. Although the present paper employs
very similar fluid models and in that sense builds on these prior works, our objective is quite
different: fluid approximations have been used in existing literature in order to prove stability
of the corresponding queueing networks or state-space collapse phenomena under critical loads,
while in the present paper to facilitate a delay analysis in the presence heavy-tailed traffic.
The work of Baccelli et al. [4] deserves a special mention as it uses fluid models of generalized
Jackson networks with subexponential service times to determine the precise tail asymptotics of
the steady-state maximal dater, i.e., the time to clear all customers present at time t, assuming
arrivals are stopped from that point on, in the limit as t goes to infinity. The tail asymptotics are
determined through a sample-path construction of the maximal dater, which preserves crucial
monotonicity properties of Jackson networks. In contrast, our approach is based on stochastic
Lyapunov theory and renewal theory, which on the one hand do not provide as refined results,
i.e., moment bounds instead of tail asymptotics, but on the other hand do not rely on any special
structure besides Markovianity. Therefore, we are able to obtain results for queueing systems
with more complex (non-monotonic) dynamics, and for more refined steady-state quantities such
as queue lengths and delays (cf. maximal dater).

1.1 Motivating Example.

We motivate the subsequent development by presenting the main findings of [46] through a
simple example. Consider the queueing system of Figure 1, which includes three queues, indexed
1, 2, and 3, and operates in discrete time. Queues 1 and 2 can be served simultaneously

(
so, in

the terminology of switched queueing networks, they constitute schedule {1, 2}
)

whereas queue
3 can only be served alone. Queues are served at unit rate whenever the respective schedules are
activated, and the service discipline within each queue is FCFS. Each queue buffers the traffic
of a dedicated batch arrival process. Arrivals are independent across queues, and independent,
identically distributed (IID) across time slots within each queue. We further assume that arrivals
to queue 1 are heavy-tailed, whereas arrivals to queues 2 and 3 are exponential-type. In this
setting, the Max-Weight policy compares the length of queue 3 to the sum of the lengths of
queues 1 and 2 and serves the “heavier” schedule at each time slot.

The delay stability of queue 1 does not depend on the specifics of the queueing system
at hand, or on the scheduling policy applied, but merely on the fact that it receives heavy-
tailed traffic. In the best case scenario, i.e., when it is served at every time slot, queue 1 is
equivalent to a M/G/1 queue with infinite second moment of service time. Classical results
in queueing theory, e.g., the Pollaczek-Khinchin formula, imply that its expected steady-state
delay is infinite. Therefore, queue 1 is delay unstable even in the best case. This observation can
be generalized (Theorem 1 in [46]): in a single-hop switched queueing network, a heavy-tailed
queue is delay unstable under any scheduling policy.2

2This statement depends critically on the assumption that the service discipline within each queue is FCFS. Under
different disciplines, e.g., Processor Sharing or LCFS that are known to be insensitive to the tails of the arriving
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Figure 1: Delay performance of the Max-Weight policy under heavy-tailed traffic through a simple
example. Queue 1 receives heavy-tailed traffic whereas queues 2 and 3 receive light-tailed traffic.
Queues 1 and 2 can be served simultaneously, whereas queue 3 can only be served alone. Max-
Weight compares the length of queue 3 to the sum of the lengths of queues 1 and 2, and serves
the “heavier” schedule. Queue 1 is delay unstable under any scheduling policy, while queue 3 is
delay unstable under the Max-Weight policy. Queue 2 may or may not be delay stable under the
Max-Weight policy, depending on the arrival rates.

Coming to queue 3, note that it cannot be served simultaneously with queue 1, so in some
sense “conflicts” with it. Thus, under the Max-Weight policy, queue 3 will not be served unless
its length is greater than or equal to the length of queue 1. However, queue 1 is, occasionally,
very long due to its heavy-tailed arrivals. On those occasions, queue 3 has to build up to a
comparable length, leading to delay instability. This observation can be generalized as well
(Theorem 2 in [46]): in a single-hop switched queueing network under the Max-Weight policy,
a queue that conflicts with a heavy-tailed queue is delay unstable.

The most interesting findings of [46], though, concern the delay stability of queue 2. One
would expect that this queue is delay stable as it is exponential-type itself and it is served
together with a heavy-tailed queue, which should result in more service opportunities under the
Max-Weight policy. Surprisingly, if its arrival rate is sufficiently high (but still in the stability
region of the system), then queue 2 is delay unstable. The key observation is that even though
queue 2 does not conflict with a heavy-tailed queue, it does conflict with queue 3, which is delay
unstable because it conflicts with queue 1. Conversely, queue 2 is delay stable if its arrival rate
is sufficiently low.

Proposition 1: (Rate-Dependent Delay Instability [46]) Consider the queueing sys-
tem of Figure 1 under the Max-Weight policy, with arrival rates in its stability region. If the
arrival rates satisfy λ2 >

(
1 + λ1 − λ3

)
/2, then queue 2 is delay unstable.

Proposition 2: (Rate-Dependent Delay Stability [46]) Consider the queueing system
of Figure 1 under the Max-Weight policy, with arrival rates in its stability region. If the arrival
rates satisfy λ2 <

(
1+λ1−λ3

)
/2, then queue 2 is delay stable and its steady-state queue length

is exponential-type.

Propositions 1 and 2 provide a sharp characterization of the delay stability region of queue

traffic, this may not be the case. However, FCFS is prevalent in the applications that motivate the study of switched
queueing networks.
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2, i.e., the set of arrival rates for which queue 2 is delay stable. Earlier proofs of these results
are based on purely stochastic arguments, and are somewhat long and tedious. We will show
that the use of fluid approximations simplifies considerably the delay analysis, allowing us to
extend the findings of [46].

1.2 Methodological Challenges and Main Contributions.

The problem of delay analysis of the Max-Weight policy in the presence of heavy-tailed traf-
fic poses a number of methodological challenges. Dynamic Programming or Markov Decision
Problem formulations of scheduling problems in queueing systems are analytically intractable
and have prohibitive computational requirements in most cases. Monte Carlo methods can be
very slow to converge, or may even fail to converge at all due to the very nature of heavy tails
(processes with infinite variance). Finally, the complex dynamics imposed by the dependence
of server activity on queue lengths hinder the application of “standard” approaches such as
stochastic comparisons, transform methods, or sample-path arguments; for an excellent survey
of different methods used in the analysis of queueing systems with heavy tails the reader is
referred to [8].

The main contribution of this paper is to show how fluid approximations can facilitate a delay
analysis of switched queueing networks with heavy-tailed traffic. We use fluid approximations
and renewal theory in order to prove delay instability results. Furthermore, we show how
fluid approximations can be combined with stochastic Lyapunov theory in order to prove delay
stability results. More importantly, we identify a novel class of Lyapunov functions, whose drift
analysis can provide exponential upper bounds on queue-length tail asymptotics for exponential-
type queues/flows, despite the presence of heavy tails at other queues.

More specifically, a standard way of showing that queues exhibit low delays (e.g., upper
bounds on queue-length/delay tail asymptotics, or on the corresponding expected values) in
queueing systems with complex dynamics is drift analysis of suitable Lyapunov functions, since
direct stochastic comparisons or coupling arguments are usually helpful only in simpler settings.
Unfortunately, popular candidates such as standard piecewise linear functions [5,22], quadratic
functions [62], and norms [56, 65] cannot be used under heavy-tailed traffic. This is because
they are increasing in all queue lengths, which implies that their steady-state expectation is
infinite in the presence of heavy-tailed traffic, rendering their drift analysis uninformative. Our
approach to this problem is as follows: we identify a novel class of Lyapunov functions that
are nonincreasing in the lengths of heavy-tailed queues, piecewise linear and, thus, akin to the
dynamics imposed by Max-Weight, and whose drift analysis helps obtain exponential upper
bounds on queue-length tail asymptotics; see Eq. (36). However, drift analysis of piecewise
linear functions can be a challenge on its own, due to the fact that the stochastic descent
property is often lost at locations where the function is nondifferentiable. We show how fluid
approximations can help overcome this difficulty. Critical to the latter is a connection between
fluid approximations and Lyapunov theory: for the class of models considered in this paper, we
show that if a function V (·) is continuous, piecewise linear, and a “Lyapunov function” for the
fluid model, then V (·) is also a “Lyapunov function” for the original stochastic system.3 This
connection allows us to carry out the drift analysis in the fluid domain, which is typically much
easier. Moreover, if V (·) has exponential-type “upward jumps” in the stochastic system, then
the results in [31] imply an exponential upper bound on its steady-state distribution.

On the other hand, showing that queues exhibit large delays (e.g., lower bounds on queue-
length/delay tail asymptotics, or on the corresponding expected values) often relies on sample-
path techniques. However, tracking the evolution of sample paths can be hard when the system

3This is to be contrasted to the more common use of fluid approximations for stability analysis, where a Lyapunov
function V (·) for the fluid model implies the existence of another Lyapunov function G(·) for the stochastic model;
see, e.g., [15].
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exhibits complex dynamics. This also hinders the use of transform methods, at least as a way
to obtain analytical results. The main idea behind our approach is as follows: even when we
are not able to analyze sample paths explicitly, we might still be able to do so approximately, in
terms of the solution to a fluid model from certain initial conditions of interest. Then, we can use
renewal theory to translate sample path analysis to lower bounds on steady-state queue-length
moments.

We illustrate the benefits of the proposed methodology in two ways:
(i) analytically, by studying the delay stability regions of single-hop switched queueing net-

works with disjoint schedules, providing a precise characterization of these regions for certain
queues together with inner and outer bounds for the rest (Theorem 3);

(ii) computationally, through a Bottleneck Identification algorithm, which identifies (some)
delay unstable queues by solving the fluid model from certain initial conditions. For all practical
purposes the solution to the fluid model can be obtained numerically, allowing the application
of the algorithm even to networks with quite complex topologies.

Finally, our analysis of networks with disjoint schedules sheds further light into the behavior
of Max-Weight, a widely studied policy that has become the benchmark in switched queueing
networks. We reveal monotonicity properties for the service rates of different schedules under
the Max-Weight policy which, in turn, allow us to identify “critical configurations” towards
which the state of the system is driven (see Lemmas 5-7 in Appendix 1), and which determine
to a large extent delay stability (see the proof of Theorem 3). These insights could be a starting
point towards a better understanding of the behavior of Max-Weight policies in more complex
networks.

1.3 Outline of the Paper.

The remainder of the paper is organized as follows. We begin with a detailed description
of a single-hop switched queueing network under the Max-Weight policy, together with its
natural fluid model and some useful definitions and notation, in Section 2. Sections 3.1 and
3.2 include the methodological contributions of the paper, i.e., how fluid approximations can
facilitate a delay analysis of single-hop switched queueing networks with heavy-tailed traffic
under the Max-Weight policy. Using these results, we study the delay stability regions of
networks with disjoint schedules in Section 3.3, introducing, along the way, a novel class of
Lyapunov functions that is suitable for the delay analysis of such systems. In Section 3.4 we
present the Bottleneck Identification algorithm, which identifies (some) delay unstable queues by
solving the fluid model of the network from specific initial conditions, accompanied by examples
showcasing its applicability. Section 4 illustrates how the methodology developed and the results
obtained in the context of single-hop networks can be extended to multi-hop switched queueing
networks under the Back-Pressure policy. Section 5 concludes the paper with a brief discussion
of our findings and directions for future research. Appendix 1 includes the statements and
proofs of certain monotonicity properties of the service rates in networks with disjoint schedules
under the Max-Weight policy, which facilitate the delay analysis in Section 3.3. Finally, we have
collected in Appendix 2 technical results that facilitate the delay analysis in Section 4.

2 A Single-Hop Switched Queueing Network under the
Max-Weight Policy.

In this section we provide a detailed presentation of the first of the two queueing models to be
considered in this paper, together with some necessary definitions and notation.

We denote by R+, Z+, and N the sets of nonnegative reals, nonnegative integers, and positive
integers, respectively. The Cartesian products of M copies of R+ and Z+ are denoted by RM+
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and ZM+ , respectively. With few exceptions, we follow the convention of using lower case letters
to denote real numbers or vectors, and upper case letters to denote random variables or events.
We use [x]+ for max{x, 0}, the nonnegative part of x ∈ R. Similarly, we use [x]− for min{x, 0},
the nonpositive part of x ∈ R.

The indicator variable of event E is represented by 1E . The notation P(·) and E[·] is used for
probabilities and expectations, respectively. We also employ the shorthand notation P(X;E | H)
for P(X · 1E | H), where X is a random variable, E is an event, and H is a σ-algebra on a given
probability space. We define E[X;E | H] similarly.

We consider a discrete time switched queueing network, where arrivals occur at the end of
each time slot. Let F = {1, . . . , F}, F ∈ N. Central to our model is the notion of a traffic
flow f ∈ F , which is a long-lived stream of traffic that arrives to the network according to
a discrete time stochastic batch arrival process

{
Af (t); t ∈ Z+

}
. We assume that all arrival

processes take values in Z+, and are IID over time. Furthermore, different arrival processes are
mutually independent. We denote by λf = E

[
Af (0)

]
> 0 the arrival rate of traffic flow f and

by λ =
(
λf ; f = 1, . . . , F

)
the vector of arrival rates of all traffic flows.

Definition 1: (Heavy/Light Tails) A nonnegative random variable X is heavy-tailed if
E
[
X2
]

is infinite, and is light-tailed otherwise. Moreover, X is exponential-type if there exists

θ > 0 such that E
[

exp
(
θX
)]
<∞.

We define similarly a heavy-tailed/light-tailed/exponential-type traffic flow. We note that
there are several definitions of heavy/light tails in the literature. In fact, a random variable
is often defined as light-tailed if it is of exponential type, and heavy-tailed otherwise. The
definition adopted in this paper has been used in the area of data communication networks,
e.g., see [52], due to its close connection to long-range dependence.

For technical reasons we assume throughout the paper the existence of some γ ∈ (0, 1) such
that

(1) E
[
A1+γ
f (0)

]
<∞, for all f ∈ F .

In the first part of the paper we consider a switched network with single-hop traffic flows,
i.e., the traffic of flow f is buffered in a dedicated single-server queue (queue f and server f ,
henceforth), eventually gets served, and then exits the system. Our modeling assumptions imply
that the set of traffic flows can be identified with the set of queues and the set of servers of the
network. The service discipline within each queue is assumed to be “First Come, First Served.”
The stochastic process

{
Qf (t); t ∈ Z+

}
captures the evolution of the length of queue f . Since

our main motivation comes from data communication networks, Af (t) will be interpreted as
the number of packets that queue f receives at the end of time slot t, and Qf (t) as the total
number of packets in queue f at the beginning of time slot t. The arrivals and the lengths of
the various queues at time slot t are captured by the vectors A(t) =

(
Af (t); f = 1, . . . , F

)
and

Q(t) =
(
Qf (t); f = 1, . . . , F

)
, respectively.

In the context of data communication networks, a batch of packets arriving to a queue at
any given time slot can be viewed as a single entity, e.g., as a file that needs to be transmitted.
We define the end-to-end delay of a file of flow f to be the number of time slots that the file
spends in the network, starting from the time slot right after it arrives at queue f , until the
time slot that its last packet gets served. For k ∈ N, we denote by Df (k) the end-to-end delay
of the kth file of flow f , and use the vector notation D(k) =

(
Df (k); f = 1, . . . , F

)
.

The salient feature of a switched queueing network is that not all servers can be simultane-
ously active, e.g., due to interference in wireless networks or matching constraints in a switch.
Consequently, not all traffic flows can be served simultaneously. A set of traffic flows that can
be served simultaneously is called a schedule. We denote by S the set of all schedules, which
is assumed to be an arbitrary subset of the powerset of F . For simplicity, we assume that all
packets have the same size, and that the service rate of all servers is equal to one packet per
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time slot. We denote by Sf (t) ∈ {0, 1} the number of packets that are scheduled for service
from queue f at time slot t. Note that this is not necessarily equal to the number of pack-
ets that are actually served, because the queue may be empty. We use the vector notation
S(t) =

(
Sf (t); f = 1, . . . , F

)
. For convenience, we also identify schedules with vectors in

{0, 1}F .
Using the notation above, the dynamics of queue f take the form:

Qf (t+ 1) = Qf (t) +Af (t)− Sf (t) · 1{Qf (t)>0}.

The vector of initial queue lengths Q(0) is assumed to be an arbitrary element of ZF+.
The service vector S(t) is determined by the scheduling policy applied to the network. We

focus on the Max-Weight policy, where the scheduling vector S(t) satisfies:

S(t) ∈ arg max
(Sf )∈S

{∑
f∈F

Qf (t) · Sf
}
,

at any given time slot. If the set on the right-hand side includes multiple schedules, then one of
them is chosen uniformly at random.

As alluded to in the Introduction, a very appealing property of the Max-Weight policy is
throughput optimality, namely the ability to stabilize (in the sense of the definition that follows)
a switched queueing network whenever this is possible.

Definition 2: (Stability) A switched queueing network, operated under a particular pol-
icy, is stable if the vector-valued sequences

{
Q(t); t ∈ Z+

}
and

{
D(k); k ∈ N

}
converge in

distribution, and their limiting distributions do not depend on the initial queue lengths Q(0).

Under a stabilizing scheduling policy, we denote by Q =
(
Qf ; f = 1, . . . , F

)
and D =(

Df ; f = 1, . . . , F
)

generic random vectors distributed according to the limiting distributions

of
{
Q(t); t ∈ Z+

}
and

{
D(k); k ∈ N

}
, respectively. We refer to Qf as the steady-state length of

queue f . Similarly, we refer to Df as the steady-state delay of a file of traffic flow f . To ease the
notation, we have suppressed the dependence of these limiting distributions on the scheduling
policy applied.

The ability to stabilize a switched queueing network depends on the arrival rates of the
various traffic flows relative to the service rates of the servers, and on the scheduling constraints.
This relation is captured by the stability region of the network.

Definition 3: (Stability Region of Single-Hop Network) The stability region of the
single-hop switched queueing network described earlier is the set of arrival rate vectors{

λ ∈ RF+
∣∣∣ ∃ ζs ∈ R+, s ∈ S : λ ≤

∑
s∈S

ζs · s,
∑
s∈S

ζs < 1
}
.

Lemma 1: (Throughput Optimality of Max-Weight) Consider the single-hop switched
queueing network described above under the Max-Weight policy. The network is stable for any
arrival rate vector in the stability region.

Proof. For the case of light-tailed traffic, this result follows from the findings in [62]; in the
presence of heavy-tailed traffic, it follows from Proposition 2 of [60]. For a formal proof the
reader is referred to Lemma 4.1 in [45].

Finally, we define the property that we use to evaluate the delay performance of Max-Weight.

Definition 4: (Delay Stability) Traffic flow f is delay stable if the switched queueing
network is stable and E[Df ] is finite; otherwise, f is delay unstable.
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2.1 Fluid Approximation of the Network.

In this section we give some background material on the natural fluid model of the single-hop
switched queueing network described above under the Max-Weight policy. The fluid model is a
deterministic dynamical system, which aims to capture the evolution of its stochastic counterpart
on longer time scales, by taking advantage of Laws of Large Numbers. Initially, we give a brief
description and some useful properties of the fluid model. Then, we introduce the notion of
fluid scaling, and establish a formal connection between the deterministic and a “fluid-scaled”
version of the stochastic system.

The Fluid Model (FM) of a single-hop switched queueing network under the Max-Weight
policy is defined by the set of ordinary differential equations and inequalities in Eqs. (2)-(7), for
every time t ≥ 0 for which the derivatives exist (such t is often called a regular time):

(2) q̇f (t) = λf −
∑
π∈S

ṡπ(t)πf + ẏf (t), ∀f ∈ F ;

(3) ṡπ(t) ≥ 0, ∀π ∈ S;

(4)
∑
π∈S

ṡπ(t) = 1;

(5) 0 ≤ ẏf (t) ≤
∑
π∈S

ṡπ(t)πf , ∀f ∈ F ;

(6) qf (t) > 0 =⇒ ẏf (t) = 0, ∀f ∈ F ;

(7)
∑
f∈F

qf (t)πf < max
σ∈S

{∑
f∈F

qf (t)σf

}
=⇒ ṡπ(t) = 0, ∀π ∈ S.

In the equations above, q(t) represents the vector of queue lengths at time t, y(t) represents
the vector of cumulative idling/wasted service up to time t, and sπ(t) represents the total amount
of time that schedule π has been activated up to time t. Eq. (4) states that a schedule is to be
picked at each time, and Eq. (6) that there can be no wasted service when queue lengths are
positive. Finally, Eq. (7) is the natural analogue of the Max-Weight policy in the fluid domain:
schedules that do not have maximum weight receive no service.

Fix some arbitrary T > 0. A Fluid Model Solution (FMS) from initial condition q(0) = q is
a Lipschitz continuous function x(·) =

(
q(·), y(·), s(·)

)
that satisfies: (i) x(0) = (q, 0, 0); and (ii)

Eqs. (2)-(7) over the subset of [0, T ] where q(·) is differentiable.
A FMS is differentiable almost everywhere

(
equivalently, almost every t ∈ [0, T ] is a regular

time
)
, since it is Lipschitz continuous by assumption.

Next, we define the notion of fluid scaling and establish the existence of a fluid limit and of
a FMS. Consider a sequence of initial queue lengths

{
Qb(0); b ∈ N

}
for the queueing system

described above, and the corresponding sequence of queue-length processes
{
Qb(·); b ∈ N

}
.

While the original processes Q(·) and Qb(·) are defined for integer times, we extend them to
piecewise constant functions of continuous time by setting Q(t) = Q(dte), and similarly for
Qb(·).

We define the “fluid-scaled” queue-length process as

(8) q̃b(t) =
Qb(bt)

b
, t ∈ [0, T ], b ∈ N.
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We assume the existence of a vector q ∈ RF+ and of a sequence of positive numbers
{
εb; b ∈

N
}

, converging to zero as b goes to infinity, that satisfy

(9) max
f∈F

∣∣q̃bf (0)− qf
∣∣ ≤ εb, ∀b ∈ N.

We recall our standing assumption that there exists γ ∈ (0, 1) so that all traffic flows have
(1 + γ) moments. Fix some γ′ ∈ (0, γ) and consider the sequence of sets of sample paths of the
arrival processes defined by

(10) Hb =
{
ω : max

f∈F
max

1≤t≤bT

1

bT

∣∣∣ t−1∑
τ=0

Af (τ)− λf t
∣∣∣ < (bT )−

γ′
1+γ

}
, b ∈ N.

Intuitively, Hb contains those sample paths of the arrival processes that stay close to their
average behavior over the time interval [0, bT ].

Lemma 2: (Existence of Fluid Limit and FMS) There exists a Lipschitz continuous
function z(t) =

(
z1(t), . . . , zF (t)

)
, t ∈ [0, T ], and for every ε > 0 some b0(ε), so that

P
(
Hb

)
≥ 1− ε, ∀b ≥ b0(ε),

and
sup
t∈[0,T ]

max
f∈F

∣∣q̃bf (t)− zf (t)
∣∣ ≤ ε, ∀ω ∈ Hb, ∀b ≥ b0(ε).

Additionally, there exist Lipschitz continuous functions v(·) and w(·), such that
(
z(·), v(·), w(·)

)
is a FMS from initial condition q(0) = q over the interval [0, T ].

Proof. Let us first establish the convergence of P
(
Hb

)
. The Marcinkiewicz-Zygmund Strong

Law of Large Numbers implies that∑t−1
τ=0Af (τ)− λf t

t
1

1+γ

L1−→ 0, ∀f ∈ F ;

see Theorem 10.3 of [30]. Consequently, for any fixed c > 0 there exists t0(c), such that

E
[∣∣∣ t−1∑
τ=0

Af (τ)− λf t
∣∣∣] ≤ ct 1

1+γ , t ≥ t0(c), ∀f ∈ F .

Notice that the sequence
{∑t−1

τ=0Af (τ) − λf t; t ∈ N
}

is a martingale, for every f ∈ F .

Thus, the sequence
{∑

f∈F

∣∣∣∑t−1
τ=0Af (τ)− λf t

∣∣∣; t ∈ N
}

is a nonnegative submartingale.

Let r = bT and δr = r−
γ′

1+γ . If b is sufficiently large, then r ≥ t0(c). Then, Doob’s
submartingale inequality (e.g., see Section 14.6 of [67]) and the Marcinkiewicz-Zygmund Strong
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Law imply that

1− P
(
Hb

)
= P

(
sup

1≤t≤r

1

r
max
f∈F

∣∣∣ t−1∑
τ=0

Af (τ)− λf t
∣∣∣ ≥ δr)

≤ P
(

sup
1≤t≤r

1

r

∑
f∈F

∣∣∣ t−1∑
τ=0

Af (τ)− λf t
∣∣∣ ≥ δr)

≤ 1

δrr

∑
f∈F

E
[∣∣∣ r−1∑
τ=0

Af (τ)− λfr
∣∣∣]

≤ cF · r
1

1+γ

r1− γ′
1+γ

= cF · r−
γ−γ′
1+γ .(11)

As b goes to infinity, r goes to infinity. Since γ′ < γ, it follows that P
(
Hb

)
converges to one.

The existence of a fluid limit and the fact that a fluid limit is a FMS follow directly from
Theorem 4.3 in [57] with the following correspondences. Our q0 corresponds to q0 in [57]. Our
FMS from initial condition q0 corresponds to FMS(q0) in [57]. Our b corresponds to both j and

z in [57]. In particular, εj in [57] is identified with our (bT )−
γ′

1+γ , ε′j in [57] is identified with
our εb, and our set Hb corresponds to the set Gj in [57]. Condition (25) in [57] is simply the
requirement that the arrival sample path belong to Hb.

Lemma 3: (Uniqueness and Continuity of FMS) For any given q ∈ RF+ there exists a
(unique) Lipschitz continuous function z(t) =

(
z1(t), . . . , zF (t)

)
, t ∈ [0, T ], such that the queue-

length part of every FMS from initial condition q is z(·). Moreover, z(·) depends continuously
on both the initial condition q and the arrival rate vector λ.

Proof. The existence of a FMS was established in Lemma 2. The uniqueness of the queue-length
part of the FMS was proved in [61], by first showing that the Max-Weight policy is a maximal
monotone map from the space of queue lengths to the space of scheduling vectors, and then
invoking known properties of such maps. A more direct proof of this result can be found in
Appendix 5.1 of [45].

We note that the above lemma does not guarantee the uniqueness of the FMS as a whole,
but only the uniqueness of the queue-length part. Namely, there may be multiple Lipschitz
continuous functions for the service and idleness parts of the solution that satisfy the FM
equations. In fact, one can construct simple examples where the FMS from zero initial condition
is not unique.

3 Delay Analysis via Fluid Approximations.

The current section includes the most important findings of the paper. Sections 3.1 and 3.2
present our methodological contributions, i.e., how fluid approximations can facilitate a delay
analysis of single-hop switched queueing networks with heavy-tailed traffic under the Max-
Weight policy. Using these results, we provide an in-depth analysis of the delay stability regions
of networks with disjoint schedules in Section 3.3. Finally, in Section 3.4 we introduce the
Bottleneck Identification algorithm, which identifies (some) delay unstable queues by solving the
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fluid model of the network from specific initial conditions, together with examples illustrating
its applicability.

3.1 Delay Instability via Fluid Approximations.

In this section we show how fluid approximations can be used for proving delay instability
results. Our contribution is summarized in the following theorem, which provides a sufficient
condition for the delay instability of queues/flows.

Theorem 1: Consider the single-hop switched queueing network of Section 2 under the
Max-Weight policy, and its natural FM, i.e., Eqs. (2)-(7). Let h ∈ F be a heavy-tailed traffic
flow, and q∗(·) be the (unique) queue-length part of a FMS from initial condition q∗h(0) = 1 and
q∗f (0) = 0, for all f 6= h. If there exists τ ∈ [0, T ] such that q∗j (τ) > 0, then traffic flow j is delay
unstable.

Proof. Let us first look at the evolution of the system when it starts from a large initial condition
for the heavy-tailed queue h. Specifically, consider a sequence of single-hop switched queueing
networks, indexed by b ∈ N, with initial queue lengths Qbh(0) = b and Qbf (0) = 0, for all f 6= h.

Let
{
Qb(·); b ∈ N

}
be the sequence of (unscaled) queue-length processes under the Max-Weight

policy. We define a corresponding sequence of scaled queue-length processes by letting

q̃b(t) =
Qb(bt)

b
.

Instead of studying directly the process Qb(·), we will exploit the fact that its scaled version
behaves as a simpler, deterministic fluid model for sufficiently large b.

The initial condition of the scaled processes, and of the corresponding fluid model, is one
for queue h and zero for all other queues. Lemma 3 implies that, for the given initial condition,
there exists a unique queue-length part for every FMS, which we denote by q∗(·).

Fix j ∈ F and suppose that there exist ε, τ > 0, such that

(12) qj(τ) > ε.

Lemma 2 implies that there exists some finite b0 such that for all b ≥ b0,

(13) P
(
Hb

)
≥ 1− ε,

and

(14)
∣∣q̃bj(τ)− qj(τ)

∣∣ ≤ ε

2
, ∀ω ∈ Hb.

(Strictly speaking b0 is a function of ε, but to make the notation simpler we suppress this
dependence.) Eqs. (12) and (14) imply that

(15) Qbj(bτ) ≥ εb

2
, ∀ω ∈ Hb, ∀b ≥ b0.

In the remainder of the proof we show that: (i) the particular initial condition can be reached
with positive probability; (ii) the fact that queue j builds up to order b with positive probability
implies the delay instability of traffic flow j. The main idea is that queue j will take order
Ω(b) time to be drained, so that the integral of its length over a busy period is of order Ω

(
b2
)
.

Averaging over all possible values of b, and using the assumption that b2 has infinite expectation,
renewal theory implies that the steady-state length of queue j has infinite expectation.

12



We note that under the Max-Weight policy, the sequence of time slots that initiate busy
periods of the system constitute a renewal process in which the interrenewal intervals have finite
expectation, because of positive recurrence of the original process. We define an instantaneous
reward on this renewal process:

RM (t) = min
{
Qj(t),M

}
, t ∈ Z+,

where M is a positive integer.
Let us focus on a particular busy period of the system, which, without loss of generality,

starts at time slot zero. Consider the set of sample paths

Ĥb =
{
Ah(0) = b

}
∩
{
Af (0) = 0, f 6= h

}
∩Hb.

Since
1− P

(
Af (0) = 0

)
= P

(
Af (0) > 0

)
≤ E

[
Af (0)

]
= λf ,

and λf < 1 from stability, we have that

P
(
Af (0) = 0

)
> 0, ∀f 6= h.

Let Bh ⊂ Z+ be the support of the distribution of Ah(0). Using the independence of the
arrival processes, and taking into account Eq. (13), we have that

(16) P
(
Ĥb

)
≥ (1− ε)P

(
Ah(0) = b

) ∏
f 6=h

P
(
Af (0) = 0

)
> 0, ∀b ∈

{
b ∈ Bh : b ≥ b0

}
.

Regarding the unique queue-length part of every FMS from the initial condition of interest,
once q∗(t) becomes zero it stays at zero. This fact together with Lemma 2 can be used to
conclude that for the sample paths in Ĥb and for b sufficiently large, queue h is nonempty
throughout the interval (0, bτ ]. Thus, time slot bτ belongs to the busy period that started at
time slot zero.

Since at most one packet departs from queue j at each time slot, Eq. (15) implies that the
length of queue j is at least εb/4 packets over a time period of duration εb/4 time slots. Thus,
the aggregate reward RMagg, i.e., the reward accumulated over a renewal period, satisfies the
lower bound:

RMagg · 1{b≥b0} · 1Ĥb ≥ min
{(εb

4

)2

· 1{b≥b0},M
}
· 1Ĥb .

Then, taking into account Eq. (16), the expected aggregate reward is bounded from below by

E
[
RMagg

]
≥ (1− ε)

∏
f 6=h

P
(
Af (0) = 0

) ∑
b∈Bh

min
{(εb

4

)2

· 1{b≥b0},M
}
P
(
Ah(0) = b

)
.

So, there exists a positive constant ε′ such that

E
[
RMagg

]
≥ ε′E

[
min

{(εAh(0)

4

)2

· 1{Ah(0)≥b0},M
}]
.

Then, the Monotone Convergence theorem (e.g., see Section 5.3 of [67]), together with a
renewal theorem, implies that E

[
Qj
]

is infinite. Finally, the BASTA property and Little’s Law
(see Theorems 2.1 and 2.2 of [45], respectively, for precise statements of these well-known results
in the context of switched queueing networks) imply the desired result, namely, that E

[
Dj

]
is

also infinite.

Remark: Theorem 1 holds for any choice of T > 0 (the horizon of the FMS). However, the
fact that a single-hop switched queueing network is stable under the Max-Weight policy (Lemma
1) implies the existence of some T ∗ > 0, proportional to the initial condition of the FMS, such
that q(t) = 0, for all t > T ∗. Consequently, the most effective application of Theorem 1 is when
T is chosen large enough so that the FMS “drains” within this horizon.
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3.2 Delay Stability via Fluid Approximations.

In this section we shift our attention to delay stability results in networks that receive a mix of
heavy-tailed and exponential-type traffic. Typically, proving that queues experience low delays
is either based on coupling arguments, if the underlying dynamics are relatively simple or,
more often, on drift analysis of suitable Lyapunov functions. We focus on the latter approach.
The presence of heavy-tailed traffic, though, introduces an additional complication: popular
candidate Lyapunov functions such as standard increasing piecewise linear functions [5, 22],
quadratic functions [62], and norms [56,65] cannot be used because the steady-state expectation
of these functions is infinite under heavy-tailed traffic, rendering drift analysis uninformative.

We introduce a class of piecewise linear Lyapunov functions that are nonincreasing in the
length of the heavy-tailed queues, and which can provide exponential upper bounds on queue-
length tail asymptotics despite the presence of heavy-tailed traffic. However, drift analysis of
piecewise linear functions is sometimes a challenge by itself, due to the fact that the stochastic
descent property is often lost at locations where the function is nondifferentiable. This difficulty
can be handled by either smoothing the Lyapunov function, e.g., as in [22], or by showing that
the stochastic descent property still holds if we look ahead a sufficiently large number of time
slots, e.g., as in [63]. We follow the second approach, and show how fluid approximations can
simplify significantly drift analysis of this class of functions.

Theorem 2: Consider the single-hop switched queueing network of Section 2 under the
Max-Weight policy, and its natural FM, i.e., Eqs. (2)-(7), under the standing assumption that

for some γ ∈ (0, 1), we have that E
[
A1+γ
f (0)

]
< ∞, for all f ∈ F (cf. Eq. (1)). Consider a

piecewise linear function V : RF+ → R+ of the form

V (x) = max
j∈J

{∑
f∈F

cjfxf

}
,

where J = {1, . . . , J} is the set of indices of the different pieces of the function, and where
cjf ∈ R, for all j ∈ J , f ∈ F . Suppose that there exists l > 0 such that, for every initial

condition q(0) and regular time t ≥ 0, the FMS satisfies V̇ (q(t)) ≤ −l, whenever V (q(t)) > 0.
Then, there exist α, ζ > 0 and b0 ∈ N such that

E
[
V
(
Q(t+ b)

)
− V

(
Q(t)

)
+ bζ; V

(
Q(t)

)
> αb

∣∣ Ft] ≤ 0, ∀b ≥ b0.

This implies that the sequence
{
V
(
Q(t)

)
; t ∈ Z+

}
converges in distribution to the random

variable V (Q), where Q was defined in Section 2 as having the limiting distribution of Q(t).

Moreover, if cjf > 0, for some j ∈ J only when f ∈ F is an exponential-type traffic flow,
then there exists θ > 0 such that E

[
exp

(
θV (Q)

)]
<∞.

Proof. Fix γ′ ∈ (0, γ). For any b ∈ N consider the following set of sample paths of the arrival
processes:

H̃b(t) =
{
ω : max

f∈F
max

1≤κ≤b

1

b

∣∣∣ t+κ−1∑
τ=t

(
Af (τ)− λf

)∣∣∣ < b−
γ′

1+γ

}
,
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and let H̃c
b (t) be its complement. For any b ∈ N and α > 0, we can write

1

b
E
[
V
(
Q(t+ b)

)
− V

(
Q(t)

)
; V
(
Q(t)

)
> αb

∣∣ Ft]
=

1

b
E
[
V
(
Q(t+ b)

)
− V

(
Q(t)

)
; V
(
Q(t)

)
> αb, H̃b(t)

∣∣ Ft]
+

1

b
E
[
V
(
Q(t+ b)

)
− V

(
Q(t)

)
; V
(
Q(t)

)
> αb, H̃c

b (t)
∣∣ Ft]

=E
[
V
(Q(t+ b)

b

)
− V

(Q(t)

b

)
; V
(Q(t)

b

)
> α, H̃b(t)

∣∣∣ Ft]
+

1

b
E
[
V
(
Q(t+ b)

)
− V

(
Q(t)

)
; V
(
Q(t)

)
> αb, H̃c

b (t)
∣∣ Ft],(17)

where the last equality follows from the fact that V (·) is homogeneous.
We begin by analyzing the first term on the right-hand side of Eq. (17). We can write

E
[
V
(Q(t+ b)

b

)
−V
(Q(t)

b

)
; V
(Q(t)

b

)
> α, H̃b(t)

∣∣∣ Ft]
= E

[
V
(Q(t+ b)

b

)
− V

(Q(t)

b

)
; V
(Q(t)

b

)
> α

∣∣∣ H̃b(t),Ft
]
· P(H̃b(t) | Ft)

= E
[
V
(Q(b)

b

)
− V

(Q(0)

b

)
; V
(Q(0)

b

)
> α

∣∣∣ Hb,F0

]
· P(Hb | F0),(18)

where

Hb = H̃b(0) =
{
ω : max

f∈F
max

1≤κ≤b

1

b

∣∣∣ κ−1∑
τ=0

(
Af (τ)− λf

)∣∣∣ < b−
γ′

1+γ

}
is the set introduced in Lemma 2. The last equality follows from the fact that the arrival
processes are mutually independent and IID over time slots, and the system is Markovian with
respect to the vector of queue lengths.

Lemma 2 implies the existence of constants ε, b0 > 0 such that

(19) P
(
Hb | F0

)
≥ 1− ε, ∀b ≥ b0.

Now consider the sequence of initial conditions
{
Q(0)b; b ∈ N

}
, based on which we can

construct a sequence of unscaled and scaled queue-length processes,
{
Qb(·); b ∈ N

}
and{

q̃b(·); b ∈ N
}

, respectively. Notice that q̃b(0) = Q(0), for all b ∈ N. So, let q(·) be the
queue-length part of the FMS from initial condition q(0) = Q(0). Lemma 3 implies that it is
unique, and Lemma 2 shows that, with high probability (for sample paths in Hb), the scaled
queue-length process will be arbitrarily close to this FMS as long as the scaling parameter b is
chosen sufficiently large. Combined with the fact that V (·) is continuous, it can be seen that
there exists a function g : N→ R+ that goes to zero as its argument goes to infinity, and which
satisfies:

(20) V
(Q(b)

b

)
− V

(Q(0)

b

)
≤ V

(
q(1)

)
− V

(
q(0)

)
+ g(b), ∀ω ∈ Hb, ∀b ≥ b0.

By assumption, there exists l > 0 such that, for every initial condition q(0) and every regular
time t, we have V̇

(
q(t)

)
≤ −l, whenever V

(
q(t)

)
> 0. Moreover, almost every t ∈ [0, 1] is a

regular time. Finally, if V
(
q(0)

)
is sufficiently large, then V

(
q(t)

)
> 0, for all t ∈ [0, 1]. These

imply that

(21) V
(
q(1)

)
− V

(
q(0)

)
≤ −l,

for large enough V
(
q(0)

)
.
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Eqs. (18)-(21) imply that there exist α > 0 (sufficiently large), δ > 0, b0 ∈ N, and function
g(·), such that

(22) E
[
V
(Q(t+ b)

b

)
− V

(Q(t)

b

)
+ lδ − g(b); V

(Q(t)

b

)
> α, H̃b(t)

∣∣∣ Ft] ≤ 0,

for all b ≥ b0, and with g(b)→ 0 as b→∞.

Let us now analyze the second term on the right-hand side of Eq. (17),

1

b
E
[
V
(
Q(t+ b)

)
− V

(
Q(t)

)
; V
(
Q(t)

)
> αb, H̃c

b (t)
∣∣ Ft].

Let j̄ ∈ J be a piece of V (·) that “dominates” at time slot t+ b, i.e.,

max
j∈J

{∑
f∈F

cjfQf (t+ b)
}

=
∑
f∈F

cj̄fQf (t+ b).

We have that

V
(
Q(t+ b)

)
− V

(
Q(t)

)
≤
∑
f∈F

cj̄f

t+b−1∑
τ=t

(
Af (τ)− Sf (τ) · 1{Qf (τ)>0}

)

≤
∑
f∈F

(
−
[
cj̄f
]−)

b+
∑
f∈F

[
cj̄f
]+( t+b−1∑

τ=t

Af (τ)
)
.

So, there exists c > 0 such that

E
[
V
(
Q(t+ b)

)
− V

(
Q(t)

)
; V
(
Q(t)

)
> αb, H̃c

b (t)
∣∣ Ft]

≤
∑
f∈F

(
−
[
cj̄f
]−)

b · P
(
H̃c
b (t)

∣∣ Ft)+
∑
f∈F

[
cj̄f
]+E[ t+b−1∑

τ=t

Af (τ); H̃c
b (t)

∣∣∣ Ft]

≤ c
∑
f∈F

(
−
[
cj̄f
]−)

b · b−
γ−γ′
1+γ +

∑
f∈F

[
cj̄f
]+E[ t+b−1∑

τ=t

Af (τ); H̃c
b (t)

∣∣∣ Ft]

= c
∑
f∈F

(
−
[
cj̄f
]−)

b
1+γ′
1+γ +

∑
f∈F

[
cj̄f
]+E[ t+b−1∑

τ=t

Af (τ); H̃c
b (t)

∣∣∣ Ft],(23)

where the last inequality follows from the proof of Lemma 2 whenever b is sufficiently large, c
is a constant that does not depend on b, and 0 < γ′ < γ.

Now, for notational convenience, let

Xk,b ≡ max
1≤κ≤b

1

b

∣∣∣ κ−1∑
τ=0

(
Ak(τ)− λk

)∣∣∣.
The fact that the arrival processes are mutually independent, and IID over time with finite
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(1 + γ) moments, implies that

E
[ t+b−1∑

τ=t

Af (τ); H̃c
b (t)

∣∣ Ft] = E
[ b−1∑
τ=0

Af (τ); max
k∈F
{Xk,b} ≥ b−

γ′
1+γ

]
≤
∑
k∈F

E
[ b−1∑
τ=0

Af (τ); Xk,b ≥ b−
γ′

1+γ

]

= E
[ b−1∑
τ=0

Af (τ); Xf,b ≥ b−
γ′

1+γ

]
+
∑
k 6=f

λkb · P
(
Xk,b ≥ b−

γ′
1+γ

)

= E
[ b−1∑
τ=0

(
Af (τ)− λf

)
; Xf,b ≥ b−

γ′
1+γ

]
+
∑
k∈F

λkb · P
(
Xk,b ≥ b−

γ′
1+γ

)

≤ E
[ b−1∑
τ=0

(
Af (τ)− λf

)]
+
∑
k∈F

λkb · P
(
Xk,b ≥ b−

γ′
1+γ

)
≤
∑
k∈F

λkb
(
cb−

γ−γ′
1+γ

)
,

= c
(∑
k∈F

λk

)
b

1+γ′
1+γ , ∀f ∈ F ,(24)

where the last inequality follows from the proof of Lemma 2 whenever b is sufficiently large.
Eqs. (23)-(24) imply the existence of b1, d > 0 such that

E
[
V
(
Q(t+ b)

)
− V

(
Q(t)

)
; V
(
Q(t)

)
> αb, H̃c

b (t)
∣∣ Ft] ≤ db 1+γ′

1+γ , ∀b ≥ b1,

which implies that

(25)
1

b
E
[
V
(
Q(t+ b)

)
− V

(
Q(t)

)
; V
(
Q(t)

)
> αb, H̃c

b (t)
∣∣ Ft] ≤ d

b
γ−γ′
1+γ

, ∀b ≥ b1.

Finally, Eqs. (17), (22), and (25) imply that there exist α, ζ > 0 such that, for every t ∈ Z+ and
for sufficiently large b ∈ N,

E
[
V
(
Q(t+ b)

)
− V

(
Q(t)

)
+ bζ; V

(
Q(t)

)
> αb

∣∣ Ft] ≤ 0.

Notice that under our assumption on the coefficients cjf , all queues that have a positive
coefficient in any piece of V (·) have exponential-type arrivals. In particular, upward jumps of
V (·) are also exponential-type. Thus, Foster’s criterion and Theorem 2.3 of [31] apply and imply
that the sequence

{
V
(
Q(t)

)
; t ∈ Z+

}
converges in distribution to the random variable V (Q),

and that V (Q) is exponential-type.

Remark: Theorem 2 provides a set of sufficient conditions for the existence of θ > 0, such
that E

[
exp

(
θV (Q)

)]
< ∞. Depending on the structure of the piecewise linear function V (·),

such a result may provide further information about the steady-state tail behavior of individual
queues/flows. An example can be found in the following section, where drift analysis of the
Lyapunov function in Eq. (36), combined with Theorem 2, is used in order to prove that the
steady-state queue lengths of certain flows in networks with disjoint schedules are exponential-
type.

17



3.3 Delay Stability Regions of a Single-Hop Network with Disjoint
Schedules.

In this section we consider a single-hop switched queueing network with disjoint schedules,
so that each traffic flow belongs to exactly one schedule. Equivalently, the set of queues is
partitioned into disjoint subsets, each subset being associated with one of the schedules. (Note
that the example introduced in Figure 1 is a special case.) For this class of networks, it turns out
that the connections between fluid approximations and delay stability/instability established in
Theorems 1 and 2 lead to a sharp characterization of the delay stability regions of certain queues
under the Max-Weight policy, in the presence of heavy-tailed traffic.

We now develop the model and introduce some notation. We consider a system with K + 1
schedules, which we denote by σ0, σ1, . . . , σK . Schedule σk, k = 0, . . . ,K, includes Fk queues
that we denote by (σk, f), f = 1, . . . , Fk. Schedule σ0 will play a special role, by being the one
that includes a heavy-tailed flow. Again, since the system only carries single-hop traffic, we use
the notions of queue and traffic flow interchangeably.

We denote the arrival rate to queue (σk, f) by λσkf , which we assume to be strictly positive.
We assume that within each schedule, the queues are indexed in descending order of arrival
rates. We will focus on the generic case where the ordering is strict, as the analysis is more
complicated otherwise. Thus, we assume throughout this section that

(26) λσkf+1 < λσkf , f = 1, . . . , Fk − 1, k = 0, . . . ,K.

At each time slot at most one schedule can be activated. Whenever a schedule is activated
then one packet is removed from all nonempty queues of that schedule.

We assume that the arriving traffic is in the stability region of the system, which is easily
seen to be equivalent to the condition:

(27)

K∑
k=0

λσk1 < 1.

We assume that traffic flow (σ0, f
∗), f∗ ∈ {1, . . . , F0} is heavy-tailed whereas every other

traffic flow is exponential-type. Theorem 2 of [46] implies that under the Max-Weight policy,
every traffic flow that does not belong to schedule σ0 is delay unstable, for any positive arrival
rate, because it conflicts with (σ0, f

∗). On the other hand, we expect traffic flows (σ0, f), f 6= f∗,
to have nontrivial delay stability regions, since they do not conflict with the heavy-tailed flow
(σ0, f

∗); this is, indeed, the case for the 3-queue system in Figure 1, where traffic flow 2 has a
nontrivial delay stability region.

It turns out that the delay stability of queue (σ0, f), f 6= f∗, is largely determined by the
rate at which schedule σ0 is served at a special configuration, where certain queues are empty
and the others are nonempty. To make this more precise, we introduce some terminology and
notation.

To every vector q of queues for the fluid model we associate a configuration x ∈ {0, 1}F ,
where F = F0 + · · ·+ FK is the total number of flows. A typical component xσkf is equal to 1 if
schedule σk has maximum weight and queue (σk, f) is nonempty. When necessary, we will also
use the notation x(q) to indicate the dependence of x on q.

We now define the special configurations of interest. We define xi, i ∈ {1, . . . , F0}, to be the
configuration for which:

(a) xσ0

f = 1, for f = 1, . . . , i;

(b) xσ0

f = 0, for f > i;

(c) xσk1 = 1, for k = 1, . . . ,K;
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(d) xσkf = 0, for k = 1, . . . ,K and f > 1.

That is, all schedules have maximum weight. For schedules σ1, . . . , σK , only the first queue is
nonempty; for schedule σ0, only queues (σ0, 1), . . . , (σ0, i) are nonempty.

For any configuration x, we define µσk(x) to be the service rate that schedule σk receives at
any regular time at which the configuration is x. It is not hard to see, from the structure of the
fluid model, that this rate only depends on the configuration and not on the exact value of the
vector q.

We are now in a position to state our main result, which provides a tight characterization
of the delay stability regions of those light-tailed flows (σ0, f) of schedule σ0 whose arrival rates
are smaller than the arrival rate of the heavy-tailed flow, i.e., for f > f∗. This generalizes
considerably the findings of Propositions 1 and 2 of [46]. Parts (a) and (b) provide the stability
conditions. Part (c) elaborates on the nature of these conditions. In particular, it shows that the
delay stability regions of light-tailed flows in schedule σ0 depend on the number of conflicting
schedules and their highest arrival rates, λσk1 , but not on how many flows are included in each
one of those schedules, or the lower arrival rates. The case of flows (σ0, f), with f < f∗, is more
complicated and will be discussed later.

Theorem 3: Consider the single-hop switched queueing network with disjoint schedules
described above under the Max-Weight policy, and arrival rates satisfying Eqs. (26) and (27).
Fix some j ∈ {f∗ + 1, . . . , F0}.

(a) If flow (σ0, j) is delay stable, then λσ0
i ≤ µσ0(xi), for all i ∈ {j, . . . , F0}, where

µσ0(xi) =
1

Ki+ 1

(
1 +K

i∑
f=1

λσ0

f −
K∑
k=1

λσk1

)
, i = 1, . . . , F0.

(b) If λσ0
i < µσ0(xi), for all i ∈ {j, . . . , F0}, then flow (σ0, j) is delay stable and the steady-state

length of the associated queue is exponential-type.

(c) If flow (σ0, j) is delay stable, then every flow (σ0, i) with i > j, is also delay stable and
the steady-state length of the associated queue is exponential-type.

Proof. We start by deriving the formula for µσ0(xi) in part (a) of the theorem. In fact, we will
proceed more generally since later in the proof we will also need some information on µσ0(x)
for other configurations x.

Consider a general configuration x where schedule σ0 has maximum weight, and let K(x) be
the set of indices k ≥ 1 for which schedule σk also has maximum weight. Clearly, if K(x) = ∅
then µσ0(x) = 1. Otherwise, at any regular time, the Max-Weight policy splits the total
available service rate, which is equal to one according to Eq. (4), between the maximum weight
schedules so that the weights of those schedules remain the same; this is a direct consequence
of Eq. (7). This means that for each schedule, the total inflow

∑
f λ

σk
f xσkf minus the total

outflow
∑
f µ

σk(x)xσkf into and out of, respectively, the nonempty queues must be the same for
all k ∈ K(x). For any configuration for which schedule σ0 has maximum weight, we have the
following system of equations:

F0∑
f=1

λσ0

f x
σ0

f − |x
σ0 |µσ0(x) =

Fk∑
f=1

λσkf xσkf − |x
σk |µσk(x), k ∈ K(x),(28)

∑
k∈K(x)∪{0}

µσk(x) = 1,(29)

µσk(x) = 0, k 6∈ K(x) ∪ {0},(30)
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where |xσk | =
∑Fk
f=1 x

σk
f , k = 0, . . . ,K. This is a system of K + 1 equations in the K + 1

unknowns µσk(x). It must necessarily have a unique solution, because otherwise we would have
a contradiction to the existence and uniqueness of solutions to the FM.

For the special case of configuration xi, we have K(xi) = {1, . . . ,K}. Furthermore, several
of the xσki are equal to zero. By summing both sides of Eq. (28) over all k ∈ K(xi), keeping
only the nonzero terms, and using Eq. (29) to simplify the right-hand side, we obtain

(31) K

i∑
f=1

λσ0

f −Kiµ
σ0(xi) =

K∑
k=1

λσk1 − (1− µσ0(xi)).

By collecting the terms involving µσ0(xi), we have that

(32)
(
Ki+ 1

)
µσ0(xi) =

(
1 +K

i∑
f=1

λσ0

f −
K∑
k=1

λσk1

)
,

which is equivalent to the expression in part (a) of the theorem.
We now continue with the remainder of the proof of part (a). We assume that flow (σ0, j),

with j ∈ {f∗+1, . . . , F0}, is delay stable. We look into the evolution of the (unique) queue-length
part q(·) of a FMS starting with the initial condition q(0,f∗) = 1 and q(σk,f) = 0 for all other
flows. According to Theorem 1, and since (σ0, j) is delay stable, we must have q(0,j)(t) = 0,
for all times. Furthermore, every flow (σ0, i) with i > j has a smaller arrival rate than flow
(σ0, j), whereas it gets served at the same rate (the rate at which schedule σ0 is served). This
implies that q(0,i)(t) is also zero for such flows. We conclude that the configurations satisfy

xσ0
i

(
q(t)

)
= 0, for all t ≥ 0 and i ≥ j.

Starting with the initial condition that we have specified, in the beginning, schedule σ0 is
the only one that gets served. The weight of that schedule decreases, whereas the weights of
the other schedules increase. At some point, the weight of some other schedule σk, with k 6= 0,
becomes equal to that of schedule σ0. Following that time, the weights of these two schedules
decrease at the same rate, while the weights of the remaining schedules increase. (The fact that
the weights of the maximum-weight schedules keep decreasing is a consequence of the assumption
that we are operating within the stability region.) By repeating the same argument, there will
be a time at which all schedules have the same weights. After that time, the overall processing
rate is shared between the different schedules so that their weights remain equal at all times,
and until they all simultaneously reach zero. However, note that all queues of a schedule σk
receive service at the same rate, but the arrival rates λσkf , for f > 1, are less than that the
arrival rate λσk1 of flow (σk, 1). For this reason, for k 6= 0 and f > 1, the queue (σk, f) will
empty before the queue (σk, 1) empties. The same reasoning holds for schedule σ0 as well, and
establishes that for i > f∗, queue (σ0, i) will empty before queue (σ0, f

∗). We conclude that at
some point we will reach a configuration x at which:

(i) xσk1 = 1, for k = 1, . . . ,K;

(ii) xσkf = 0, for k = 1, . . . ,K and f > 1;

(iii) xσ0
i = 0, for i ≥ j.

The latter property holds because we assumed that j > f∗.
As we argue above, the assumption that queue (σ0, j) is delay stable implies that the length

every queue (σ0, i), with i ≥ j, remains at zero. Therefore, none of these queues builds up when
configuration x is reached, which implies that the arrival rates to these queues are less than or
equal to the rate at which schedule σ0 is served, i.e.,

(33) λσ0
i ≤ µ

σ0(x), i = j, . . . , F0.
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The proof of part (a) is completed once we establish the following result.

Lemma 4: If a configuration x with the above properties (i)-(iii) satisfies Eq. (33), then

λσ0
i ≤ µ

σ0(xi), i = j, . . . , F0.

Proof. Fix arbitrary i ∈ {j, . . . , F0}. By repeating the derivation of Eq. (32) for such i, we have
that

(34) (K|xσ0 |+ 1)µσ0(x) =
(

1 +K

j−1∑
f=1

λσ0

f x
σ0

f −
K∑
k=1

λσk1

)
=
(

1 +K

i∑
f=1

λσ0

f x
σ0

f −
K∑
k=1

λσk1

)
,

where in the last equality, we used property (iii) above. By Eq. (33), λσ0
i ≤ µσ0(x), which

implies that

(35) (K|xσ0 |+ 1)λσ0
i ≤

(
1 +K

i∑
f=1

λσ0

f x
σ0

f −
K∑
k=1

λσk1

)
.

On the other hand, since queues are indexed in descending order of arrival rates,

Kλσ0
i ≤ Kλ

σ0

f , f = 1, . . . , i.

By adding both sides of this inequality over all f ∈ {1, . . . , i} such that xσ0

f = 0 (there are
i− |xσ0 | such f) and adding the result to Eq. (35), we obtain

(
Ki+ 1

)
λσ0
i ≤

(
1 +K

i∑
f=1

λσ0

f −
K∑
k=1

λσk1

)
.

By comparing to Eq. (32), we conclude that λσ0
i ≤ µσ0(xi).

We now show that if λσ0
i < µσ0(xi), for i = j, . . . , F0, then every flow (σ0, i), with i ∈

{j, . . . , F0}, is delay stable and the steady-state length of the associated queue is exponential-
type. This will prove part (b) directly, and in combination with the results above, part (c) as
well. Our approach is based on Theorem 2. Consider the candidate Lyapunov function:

(36) V (q) =

F0∑
i=j

ciq
σ0
i + max

k=1,...,K

{[ Fk∑
f=1

qσkf −
F0∑
f=1

qσ0

f

]+}
,

where ci ∈ (0, 1), for all i ∈
{
j, . . . , F0

}
.

Let q(0) be an arbitrary initial condition for the queue lengths in the FM. We will verify
that if the ci-parameters are properly chosen, then V̇

(
q(t)

)
is uniformly negative whenever

V
(
q(t)

)
> 0 and the derivative exists. Then, Theorem 2 will directly imply that every queue

(σ0, i), i = j, . . . , F0, is delay stable, since V (·) is continuous and piecewise linear. Moreover,
the associated steady-state length of every such queue is exponential-type because the variable
qσ0

f∗ associated with the queue that receives heavy-tailed traffic appears in V (q) with a negative
coefficient.

In the analysis that follows, we distinguish between different cases, which correspond to
different regions in the space of all possible vectors q.

(i) Schedule σ0 does not have maximum weight at time t: in this case the candidate Lyapunov
function reduces to

V
(
q(t)

)
=

Fk∗∑
f=1

qσk∗f (t)−
j−1∑
f=1

qσ0

f (t)−
F0∑
i=j

(
1− ci

)
qσ0
i (t),
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for some k∗ ∈ {1, . . . ,K}. Since schedule σ0 does not have maximum weight, at least one of
the queues of schedule σk∗ must be nonempty at time t. If k∗ is the unique maximum weight
schedule, then

V̇
(
q(t)

)
=

Fk∗∑
f=1

(
λσk∗f − 1

)
· 1{qσk∗f (t)>0} −

j−1∑
f=1

λσ0

f · 1{qσ0f (t)>0} −
F0∑
i=j

(
1− ci

)
λσ0
i · 1{qσ0i (t)>0}.

The right-hand side of the expression above is strictly negative. This is due to Eqs. (26)-(27)
and our assumption that ci ∈ (0, 1), for all i ∈

{
j, . . . , F0

}
.

The same holds even if k∗ is one of multiple schedules with maximum weight; this can be
easily derived from the fact that the arriving traffic is in the stability region, and that Max-
Weight drains the weights of all maximum weight schedules at the same rate;

(ii) Schedule σ0 has maximum weight at time t: in this case the candidate Lyapunov function
reduces to

V
(
q(t)

)
=

F0∑
i=j

ciq
σ0
i (t).

Since V
(
q(t)

)
> 0, we have that at least one of the queues (σ0, j), . . . ,

(
σ0, F0

)
is nonempty.

We distinguish between two subcases: if schedule σ0 is the unique maximum weight schedule
at time t, then

V̇
(
q(t)

)
=

F0∑
i=j

ci
(
λσ0
i − 1

)
· 1{qσ0i (t)>0} < 0.

On the other hand, if schedule σ0 is one of multiple schedules with maximum weight at time
t, then

V̇
(
q(t)

)
=

F0∑
i=j

ci

(
λσ0
i − µ

σ0
(
x
(
q(t)

)))
· 1{qσ0i (t)>0}.

We now need to further distinguish between two subcases. The details of the argument are quite
tedious and are relegated to Appendix 1.

(a) If all queues of schedule σ0 are nonempty at time t, then Lemmas 5, 6, and 7 in Appendix
1 imply that

(37) µσ0
(
xF0
)
≤ µσ0

(
x
(
q(t)

))
.

Thus, if we chose ci � cF0 , for all i ∈
{
j, . . . , F0−1

}
, then V̇

(
q(t)

)
< 0 because λσ0

F0
< µσ0

(
xF0
)
.

For more details on how Eq. (37) is arrived at, Lemmas 5 and 6 imply that µσ0
(
x
(
q(t)

))
is

greater than the service rate that schedule σ0 receives under a configuration x̄, where exactly the
same queues are nonempty at σ0 but only the highest rate queues of the competing schedules
that have positive weight in x

(
q(t)

)
are nonempty. Lemma 5 covers the case where x

(
q(t)

)
has

more than one nonempty queue in a competing schedule, while Lemma 6 covers the case where
there is exactly one nonempty queue. Finally, by using iteratively Lemma 7 we establish that
µσ0
(
xF0
)

is less than µσ0(x̄), since in schedules x
(
q(t)

)
and x̄ some competing schedules may

have zero weight.

(b) If all but one queues of schedule σ0 are nonempty at time t, then, by an argument similar
to the one for case (a), Lemmas 5, 6, and 7 imply that

µσ0
(
xF0−1

)
≤ µσ0

(
x
(
q(t)

))
.

Thus, if we chose ci � cF0−1, cF0 , for all i ∈
{
j, . . . , F0 − 2

}
, then V̇

(
q(t)

)
< 0 because at least

one of the queues
(
σ0, F0

)
and

(
σ0, F0 − 1

)
is nonempty and λσ0

F0
< λσ0

F0−1 < µσ0
(
xF0−1

)
;

The other cases are treated similarly.
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Remark: The delay stability of traffic flow (σ0, j), j > f∗, when one of the conditions in
part (b) of Theorem 3 holds with equality may depend, in general, on higher order moments of
the arrivals, and not just the rates. To see this, suppose that a large batch of b packets arrives to
the heavy-tailed queue (σ0, f

∗). A random walk-type argument can show that queue (σ0, j) will
build up to Ω

(√
b
)

during an Ω(b) time interval, assuming that the configuration corresponding
to the equality condition is reached. Thus, the aggregate length of this queue over a busy period
will be Ω

(
b3/2

)
, which implies that the delay stability of traffic flow (σ0, j) may depend on the

1.5 moment of the arrivals to the heavy-tailed queue.

Theorem 3 provides a tight characterization of the delay stability regions of flows (σ0, j),
with j > f∗, but does not address flows (σ0, j), with j < f∗. The delay stability analysis of
those flows poses an additional challenge: it is not clear a priori whether the heavy-tailed queue
(σ0, f

∗) is empty or not at the point in time where all schedules have maximum weight and
only the highest rate queues of schedules σk, k = 1, . . . ,K, are nonempty. In the terminology
of Theorem 3, it is not clear whether the “critical” configurations for delay stability are the
configurations xi or the configurations x̂i, where:

(i) x̂σk1 = 1, k = 1, . . . ,K;

(ii) x̂σkf = 0, f > 1, k = 1, . . . ,K and ;

(iii) x̂σ0
i = 0, i ≥ j, i 6= f∗;

(iv) x̂σ0

f∗ = 1.

Theorem 3 shows that this distinction does not play a role in the delay stability of flows (σ0, j),
with j > f∗. This is not surprising because µσ0(x̂i) = µσ0(xi), for i > f∗. However, this
distinction is expected to play a role in the delay stability regions of flows (σ0, j), with j < f∗.
More specifically, Lemma 5 implies that µσ0(x̂i) < µσ0(xi), for i < f∗. Thus, if queue (σ0, f

∗) is
nonempty when the “critical” configuration is reached, the result would be a reduced stability
region.

Nevertheless, the proof strategy of Theorem 3 can still be followed in order to derive necessary
as well as sufficient rate conditions for delay stability, albeit not matching. In particular, through
drift analysis of the piecewise linear Lyapunov function:

V (q) =
∑

i≥j,i 6=f∗
ciq

σ0
i + max

k=1,...,K

{[ Fk∑
f=1

qσkf −
F0∑
f=1

qσ0

f

]+}
,

combined with Lemmas 5-7, one can prove that if λσ0
i < µσ0(x̂i), for all i = j, . . . , F0, then flow

(σ0, j) is delay stable and the steady-state length of the associated queue is exponential-type.
Conversely, if queue (σ0, j), with j < f∗, is assumed delay stable then the same line of

arguments as in the proof of part (a) of Theorem 3 (leading up to Lemma 4) can be followed
in order to show that λσ0

i ≤ µσ0(x̂i), for all i > f∗, are necessary conditions for delay stability.
However, it is not clear whether the necessary conditions corresponding to flows i with j ≤ i < f∗

should be of the form λσ0
i ≤ µσ0(x̂i) or λσ0

i ≤ µσ0(xi); this depends on whether queue (σ0, f
∗)

is empty or not when a critical configuration is reached, which is hard to determine a priori.

3.4 The Bottleneck Identification Algorithm.

Theorem 1 provides a sufficient condition for the delay instability of traffic flows, based on the
FMS from a specific initial condition. The following algorithmic procedure, which we term the
Bottleneck Identification (BI) algorithm, tests this for all initial conditions of interest.

BI Algorithm: For every heavy-tailed traffic flow h ∈ F ,
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(i) solve the FM with initial condition 1 for queue h and 0 for all other queues;
(ii) let Uh be the set of queues that become positive at any point before the FMS drains;

Let U be the set of queues that belong to Uh, for some heavy-tailed traffic flow h. Clearly, all
queues/flows included in the set U produced by the algorithm are delay unstable.

The Bottleneck Identification algorithm is consistent with, and perhaps the natural extension
of the “single big event/jump principle”: the most likely way a queue may become delay unstable
is through a single big event, i.e., a single big arrival to exactly one heavy-tailed queue. While
this principle has been shown to hold in other (much simpler) single-server FCFS systems with
heavy-tailed traffic [51, 66] it does not hold in our setting, so the above algorithm may not
always be “tight.” In fact, one can construct simple examples where delay instability is caused
by a combination of big events and, thus, would not be identified by the BI algorithm [58]. Of
course, correspondingly, one can introduce modified versions of the algorithm where the fluid
model is solved from more complex initial conditions, in order to account for combinations of big
events; in the extreme case, all different combinations of big events. However, it is unclear (in
fact, unlikely) that there exists a BI-type algorithm which provably identifies all delay unstable
queues.

Nevertheless, either the basic or a modified version of the BI algorithm can be used to
identify (some) delay unstable queues in a mechanical manner. This is particularly important
in networks with complex topology, where any form of non-asymptotic analysis becomes quite
challenging to apply. Below we present concrete examples that illustrate the use of the proposed
algorithm.

3×3 Switch. Consider a 3× 3 input-queued switch under the Max-Weight policy. This is a
system of 9 queues indexed by (i, j), where i, j ∈ {1, 2, 3}, with index i representing the input
port and index j the output port of the switch. A schedule is a matching between input and
output ports, so that the set of all schedules is as follows:

S =
{{

(1, 1), (2, 2), (3, 3)
}
,
{

(1, 1), (2, 3), (3, 2)
}
,
{

(1, 2), (2, 1), (3, 3)
}
,{

(1, 2), (2, 3), (3, 1)
}
,
{

(1, 3), (2, 1), (3, 2)
}
,
{

(1, 3), (2, 2), (3, 1)
}}
.

The 3× 3 input-queued switch is a network with non-disjoint schedules, so an explicit char-
acterization of its delay stability regions is not available.

Consider the set of arrival rates λ11 = 0.1, λ12 = 0.1, λ13 = 0.1, λ21 = 0.1, λ22 = 0.38,
λ23 = 0.4, λ31 = 0.1, λ32 = 0.42, and λ33 = 0.44. Note that this set of rates satisfies

∑
i λij < 1

and
∑
j λij < 1, so that the system is stable under the Max-Weight policy [48].

We assume that traffic flow (1, 1) is heavy-tailed, while all other traffic flows are light-tailed.
We are interested in the delay stability of flows (2,2), (2,3), (3,2), (3,3); these are the flows that
do not conflict with flow (1,1). Figure 2 shows the FMS for the considered set of rates, and with
initial condition one for queue (1,1) and zero for all other queues (we present only the queues
of interest). The lengths of all queues of interest become positive before the FMS drains, so
according to Theorem 1 they are delay unstable.

3×3 Grid Network. Consider the 3 × 3 grid network depicted in Figure 3 under the Max-
Weight policy. This system represents a wireless network with interference constraints. Queues
are identified with (directed) links and are indexed by i = 1, . . . , 12. As soon as a packet is
transmitted through the respective link, it exits the system. We assume the two-hop interference
model, i.e., if a wireless link is transmitting, all links in a two-hop distance must idle. This implies
that the set of schedules is as follows:

S =
{
{1, 11}, {1, 12}, {1, 10}, {2, 8}, {2, 11}, {2, 12}, {3, 5},

{3, 10}, {3, 12}, {4}, {5, 8}, {5, 11}, {6}, {7}, {8, 10}, {9}
}
.
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Figure 2: The FMS of a 3 × 3 switch, with initial condition one for queue (1,1) and zero for the
other queues, and arrival rates λ11 = 0.1, λ12 = 0.1, λ13 = 0.1, λ21 = 0.1, λ22 = 0.38, λ23 = 0.4,
λ31 = 0.1, λ32 = 0.42, λ33 = 0.44.

Again, this is a network with non-disjoint schedules, so an explicit characterization of its
delay stability regions is not available.

Figure 3: A 3× 3 grid wireless network with two-hop interference constraints.

Consider the set of arrival rates λ1 = 0.01, λ2 = 0.02, λ3 = 0.03, λ4 = 0.04, λ5 = 0.05,
λ6 = 0.06, λ7 = 0.07, λ8 = 0.08, λ9 = 0.09, λ10 = 0.1, λ11 = 0.11, and λ12 = 0.12. It can be
verified that this set of rates belongs to the stability region of the system.

We assume that traffic flow 1 is heavy-tailed, while all other traffic flows are light-tailed.
We are interested in the delay stability of traffic flows 10, 11, and 12, since these flows do not
conflict with flow 1. Figure 4 shows the FMS for the considered set of rates, and with initial
condition one for queue 1 and zero for all other queues (we present only the queues of interest).
The lengths of all queues of interest become positive before the FMS drains, so according to
Theorem 1 they are delay unstable.

4 Delay Analysis of the Back-Pressure Policy under Heavy-
Tailed Traffic via Fluid Approximations.

Here, we show how several of the results and insights in Section 3 generalize naturally to a
multi-hop setting, i.e., a multi-hop switched queueing network with a mix of heavy-tailed and
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Figure 4: The FMS of the 3×3 grid network of Figure 3, with initial condition one for queue 1 and
zero for the other queues, and arrival rates λ1 = 0.01, λ2 = 0.02, λ3 = 0.03, λ4 = 0.04, λ5 = 0.05,
λ6 = 0.06, λ7 = 0.07, λ8 = 0.08, λ9 = 0.09, λ10 = 0.1, λ11 = 0.11, λ12 = 0.12.

light-tailed traffic under the Back-Pressure policy. Even though the extension is relatively
straightforward from a mathematical standpoint, it is quite important in practice since most
real-world networks are multi-hop. Moreover, the often complex topology of multi-hop networks
makes a stochastic analysis even more challenging, which provides further motivation for our
fluid approximations-based methodology. In the interest of space we provide a brief description of
a multi-hop switched queueing network model, highlighting only the differences from the single-
hop case. In particular, unless otherwise stated, most definitions, probabilistic assumptions,
and notation remain unchanged. Moreover, several technical results that facilitate our delay
analysis, e.g., stability of the network, existence of fluid limit, uniqueness of FMS, are relegated
to Appendix 2.

We emphasize that the queueing system presented and analyzed below does not include as
a special case the single-hop network of Section 2. As will become clearer shortly, the multi-hop
network considered here does not feature link-scheduling constraints. Thus, in contrast to the
network of Section 2, all servers can be active simultaneously. It features though flow-scheduling
constraints: any given server serves the traffic of potentially multiple flows, and needs to pick
a single one at each time slot. While the extension to a network that incorporates both types
of scheduling constraints is possible, we have opted to simplify the exposition and minimize the
overlap with Section 2.

As mentioned in the Introduction, the companion paper [47] studies the same setting as
this section. However, while the present section, and the paper in general, is methodologically
oriented - to introduce analytical tools that facilitate a delay analysis under heavy-tailed traffic
- the companion paper is more geared towards applications. In particular, it uses the analytical
tools derived here (more specifically, Theorems 4 and 5) to study the impact of the network
topology, the routing constraints, and the link capacities on the delay stability of Back-Pressure.

The remainder of Section 4 is organized as follows. We begin by presenting a particular
model of a multi-hop switched queueing network under the Back-Pressure policy. Then we
introduce its natural fluid model, based on which we state the extensions of our earlier results
for the single-hop case, accompanied by an example.
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4.1 A Multi-hop Switched Queueing Network under the Back-Pressure
Policy.

The topology of a multi-hop network is captured by a directed graph G =
(
N ,L

)
, where N

is the set of nodes and L is the set of directed links. Nodes represent the physical or virtual
locations where traffic is buffered before transmission, and edges represent communication links,
i.e., the means of transmission. With few exceptions, we use variables i and j to represent nodes,
and (i, j) to denote a directed link from node i to node j.

Each traffic flow f ∈ F has a unique source node sf ∈ N where it enters the network, and
a unique destination node df ∈ N where it exits the network. Moreover, each traffic flow f has
a predetermined set of links Lf ⊂ L that it is allowed to access. We assume that sf 6= df and
that there exists at least one directed path from sf to df within the links in Lf . If the set Lf
includes exactly one path from the source to the destination, then we say that flow f has fixed
routing. On the other hand, if there are multiple source-destination paths, we say that flow f
has dynamic routing.

Node i belongs to set Nf if there exists a directed path from sf to i that includes only links
in Lf . Thus, Nf ⊂ N is the set of nodes that traffic flow f can access. Note that the source
node sf is trivially included in Nf , while the destination node df is included in Nf due to our
assumptions on Lf .

The network operates in discrete time slots. Traffic flow f maintains a queue at every node
i ∈ Nf . We refer to this queue as queue (f, i) and denote its length at the beginning of time slot
t ∈ Z+ by Qf,i(t). We emphasize that queue (f, i) buffers only packets of flow f . The service
discipline within each queue is “First Come, First Served.”

Traffic may arrive to queue (f, i) either exogenously if i is the source node sf (in which case
the arrivals are Af (t)), or endogenously through a link in Lf whose destination node is i. We
refer to queue (f, sf ) as the source queue of traffic flow f . We denote by Sf,i,j(t) the number
of packets that are scheduled for transmission from queue (f, i) through link (i, j) ∈ Lf . These
packets serve as (potential) departures from queue (f, i) and arrivals to queue (f, j), at time
slot t.

We assume that all links can transmit packets simultaneously, and that all attempted trans-
missions are successful. Thus, our queueing model is suitable for several wireline applications
(although not in the presence of “interference constraints” between links, as for example in
switches).

Each link can only serve one traffic flow at any given time slot, giving rise to flow-scheduling
constraints. The set of decisions regarding which flow is scheduled through each link can be
interpreted as joint scheduling and routing. For simplicity, we assume that the capacity of all
links is equal to one packet per time slot. We use the shorthand notation Q(t) for the set of
queue lengths

{
Qf,i(t); i ∈ Nf , f ∈ F

}
, and S(t) for the set of scheduling/routing decisions{

Sf,i,j(t); (i, j) ∈ Lf , f ∈ F
}

. Moreover, we let D(k) =
{
Df,i(t); i ∈ Nf , f ∈ F

}
, k ∈ N,

be the delays of the kth packet in the various queues of the network. We reserve the notation
Df (k) for the end-to-end delay of the kth packet of flow f .

Similarly to the single-hop case, stability of the multi-hop network is defined as convergence
in distribution of Q(t) and D(k).

In the given context, a queue length-based policy is a sequence of mappings from the history
of queue lengths

{
Q(τ); τ = 0, . . . , t

}
to scheduling decisions S(t), t ∈ Z+. Moreover, a

scheduling vector S(t) is feasible if:

(i) Sf,i,j(t) ∈ {0, 1}, for all (i, j) ∈ Lf , f ∈ F ;

(ii)
∑
f∈F Sf,i,j(t) ≤ 1, for all (i, j) ∈ L;

(iii)
∑
j:(i,j)∈Lf Sf,i,j(t) ≤ Qf,i(t), for all i ∈ Nf , f ∈ F .

Here, we focus on a particular stationary and Markovian queue length-based policy, the
Back-Pressure policy : at each time slot t, S(t) is a feasible scheduling vector that maximizes
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the aggregate Back-Pressure in the network, i.e.,

S(t) ∈ arg max
∑
f∈F

∑
(i,j)∈Lf

(
Qf,i(t)−Qf,j(t)

)
Sf,i,j(t).

If the solution is not unique, then each of the maximizing scheduling vectors is chosen with
equal probability.

We note that the above description, which is referred to as Max-Pressure in [20], is slightly
different from the original, and most studied, version of Back-Pressure [62]. The original policy
is a greedy one, in the sense that it maximizes the “back-pressure” on individual links, one
at a time. It is not hard to see that on certain occasions, namely when queues have few
packets to transmit but many outgoing links, the original Back-Pressure policy may result in
different scheduling decisions compared to our version. However, in the regime of large queue
lengths/delays that we are interested in this paper, the two policies are indistinguishable.

The dynamics of the multi-hop switched queueing network can be written in the following
form:

(38) Qf,sf (t+ 1) = Qf,sf (t)−
∑

j:(sf ,j)∈Lf

Sf,sf ,j(t) +Af (t),

and

(39) Qf,i(t+ 1) = Qf,i(t)−
∑

j:(i,j)∈Lf

Sf,i,j(t) +
∑

j:(j,i)∈Lf

Sf,j,i(t), f ∈ Nf \ {sf , df}.

Finally, by convention,

(40) Qf,df (t) = 0, ∀f ∈ F .

The initial queue lengths are arbitrary nonnegative integers.
Finally, the amount of traffic that can be stably supported by the network is, again, captured

by the notion of stability region.

Definition 5: (Stability Region of Multi-Hop Networks) An arrival rate vector λ =(
λ1, . . . , λF

)
is in the stability region of the multi-hop switched queueing network described

above if there exist ζf,i,j ≥ 0, f ∈ F , i, j ∈ N , such that the following set of constraints is
satisfied:

(i) Flow Efficiency Constraints:

ζf,i,i = ζf,i,sf = ζf,df ,i = 0, ∀i ∈ N , ∀f ∈ F ;

(ii) Routing Constraints:

ζf,i,j = 0, ∀(i, j) /∈ Lf , ∀f ∈ F ;

(iii) Flow Conservation Constraints:∑
j∈N

ζf,j,i + λf · 1{i=sf} =
∑
j∈N

ζf,i,j , ∀i 6= df , ∀f ∈ F ;

(iv) Link Capacity Constraints:∑
f∈F

ζf,i,j < 1, ∀(i, j) ∈ L.
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If an arrival rate vector is in the stability region, then there exists a policy that stabilizes the
network, in the sense that the sequences of queue lengths and file delays converge in distribution.
This can be shown by arguing similarly to Corollary 3.9 of [29], and by utilizing our assumptions
on the arrival processes, i.e., independence and finiteness of (1 + γ) moments.

Finally, Lemma 8 in Appendix 2 proves that the multi-hop switched queueing network is
stable under the Back-Pressure policy for any arrival rate vector in the stability region. This
is done by showing that the above queueing system is a special case of a Stochastic Processing
Network under the Maximum Pressure policy, and then using results in [20].

We denote by Qf,i and Df,i the steady-state length and delay of queue (f, i), respectively,
and by Df the end-to-end delay of traffic flow f in steady state. In a multi-hop network setting
delay stability could be referring to a queue (f, i), depending on whether E[Df,i] is finite or not,
or to a traffic flow f , depending on whether E[Df ] is finite or not. Note that the source queue
of a heavy-tailed flow is delay unstable under the “First Come, First Served” discipline, which
implies that every heavy-tailed flow is delay unstable irrespective of the policy applied.

4.2 Fluid Approximation of the Network.

The Fluid Model (FM) of the multi-hop switched queueing network under the Back-Pressure
policy is defined by the following set of equations, for every regular time t ≥ 0:

(41) q̇f,i(t) = −
∑

j:(i,j)∈Lf

ṡf,i,j(t) +
∑

j:(j,i)∈Lf

ṡf,j,i(t) + λf · 1{i=sf},

(42) qf,i(t) ≥ 0,

(43) sf,i,j(0) = 0 and ṡf,i,j(t) ≥ 0,

(44)
∑

f :(i,j)∈Lf

ṡf,i,j(t) ≤ 1,

(45)
[
∃f ′ : qf ′,i(t)− qf ′,j(t) > 0

]
=⇒

∑
f :(i,j)∈Lf

ṡf,i,j(t) = 1,

(46)
[
qf ′,i(t)− qf ′,j(t) < max

f :(i,j)∈Lf

{[
qf,i(t)− qf,j(t)

]+} ]
=⇒ ṡf ′,i,j(t) = 0.

In the equations above, we assume that i 6= df . Also, qf,i(t) represents the length of queue
(f, i) at time t, while sf,i,j(t) represents the amount of time that link (i, j) ∈ Lf has been
serving queue (f, i) up to time t. Henceforth, we use the shorthand notation q(t) for the set of
queue lengths

{
qf,i(t); i ∈ Nf , f ∈ F

}
, and s(t) for the set of cumulative scheduling decisions{

sf,i,j(t); (i, j) ∈ Lf , f ∈ F
}

.
Eqs. (41)-(46) are translated from the fluid model of Stochastic Processing Networks in [20].

More specifically, Eq. (41) follows from Eq. (14) of [20], Eq. (42) follows from Eq. (15) of [20],
Eq. (43) follows from Eqs. (18) of [20], and Eq. (44) follows from Eq. (17) of [20]. Finally, Eq.
(20) of [20], at any regular time t, translates into:

(47) ṡ(t) ∈ arg max
∑
f∈F

∑
(i,j)∈Lf

(
qf,i(t)− qf,j(t)

)
ṡf,i,j(t).
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Consider any service rate allocation s(t) that satisfies Eqs. (41)-(44). It can be verified that if
this allocation satisfies Eqs. (45)-(46), then it satisfies also the above inclusion, and vice versa.

Our convention regarding zero queue lengths at destination nodes provides a final equation
for the description of the FM:

(48) qf,df (t) = 0.

Note that unlike the FM Section 2.1, the lack of link-scheduling constraints in this model
implies that we do not need to keep track of the idleness at each queue.

Fix arbitrary T > 0. A Fluid Model Solution (FMS) from initial condition q(0) = q is a
Lipschitz continuous function x(·) =

(
q(·), s(·)

)
that satisfies: (i) x(0) = (q, 0); (ii) Eqs. (41)-(48)

over the subset of [0, T ] where q(·) is differentiable. A FMS is differentiable almost everywhere
since it is Lipschitz continuous by assumption.

Exactly as in Section 2.1, we introduce a sequence of initial queue lengths
{
Qb(0); b ∈ N

}
,

a corresponding sequence of queue-length process
{
Qb(·); b ∈ N

}
, a “fluid-scaled” queue-length

process

q̃b(t) =
Qb(bt)

b
, t ∈ [0, T ], b ∈ N

(cf. Eq. (8)), a vector q that satisfies

max
f∈F

max
i∈Nf

∣∣q̃bf,i(0)− qf,i
∣∣ ≤ εb, ∀b ∈ N,

where εb → 0 (cf. Eq. (9)), and the sets Hb of “well-behaved” sample paths, defined in Eq. (10).
Lemmas 9 and 10 in Appendix 2 prove the existence of a fluid limit and the uniqueness of

the FMS, respectively.

4.3 Delay Stability Analysis via Fluid Approximations.

Fluid approximations of switched queueing networks under the Back-Pressure policy have been
employed in previous studies in order to show stability, e.g., in [20]. In this section we show
how fluid approximations can be used to prove delay stability/instability results in the presence
of heavy-tailed traffic, by extending the scope of Theorems 1 and 2 to the multi-hop setting. A
closer look at the proofs of those two theorems reveals that they rely mainly on the existence of a
fluid limit and the uniqueness of the fluid model solution, without making any further use of the
single-hop nature of the network. Thus, having established these properties for the multi-hop
network under consideration (Lemmas 9 and 10 in Appendix 2), the extension of Theorems 1
and 2 becomes trivial and their proofs are omitted.

Theorem 4: Consider the multi-hop switched queueing network described above under the
Back-Pressure policy, and its natural FM, i.e., Eqs. (41)-(48). Let h ∈ F be a heavy-tailed traffic
flow, and q∗(·) be the (unique) queue-length part of a FMS from initial condition q∗h,sh(0) = 1
and zero for every other queue. If there exists τ ∈ [0, T ] such that q∗f,i(τ) > 0, then queue (f, i)
is delay unstable.

Theorem 5: Consider the multi-hop switched queueing network described above under
the Back-Pressure policy, and its natural FM, i.e., Eqs. (41)-(48). Then, Theorem 2 applies
verbatim.

Similar to the single-hop case, Theorem 4 can be used in a Bottleneck Identification algo-
rithm, to systematically test for delay instability in a multi-hop network. More specifically, for
every heavy-tailed traffic flow h ∈ F , we solve the FM with initial condition 1 for queue (h, sh)
and 0 for all other queues, and find the set, Uh, of queues that become positive at any point
before the FMS drains. Then, any queue that belongs to some Uh is delay unstable.
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To illustrate the use of the above analytical tools, we borrow an example from the companion
paper [47]: consider the multi-hop network of Figure 5, which includes the heavy-tailed flow 1
and the exponential-type flows 2 and 3. The source of flow 1 is node 2 and the source of flows 2
and 3 is node 1. The destination of flows 1 and 2 is node 3 and the destination of flow 3 is node
4. All links can transmit simultaneously at unit rate and the Back-Pressure policy is applied.

Figure 5: An example from [47]: the heavy-tailed flow 1 enters the network at node 2 and exits at
node 3. The light-tailed flow 2 enters the network at node 1 and exits at node 3. The light-tailed
flow 3 enters the network at node 1 and exits at node 4. Under the Back-Pressure policy, traffic
flow 2 is delay unstable for all nonzero arrival rates whereas flow 3 has a nontrivial delay stability
region.

It is not hard to see that traffic flow 2 is delay unstable because it competes for link (2, 3)
with the source queue of the heavy-tailed flow 1. The more interesting question concerns flow
3, which serves as cross-traffic to flow 2, and which turns out to have a nontrivial delay stability
region as the results of [47] prove. More specifically, if λ3 <

(
2 + λ1 − 2λ2

)
/3, then traffic flow

3 is delay stable and its aggregate queue length in steady state is exponential-type. The proof
of this result has two parts: initially, one shows that the function

H
(
q(t)

)
= V

(
q(t)

)
+G

(
q(t)

)
,

where

V
(
q(t)

)
= max

{[
q3,1(t)− q3,2(t)

]+
,
[
q2,1(t)− q2,2(t)

]+}
= max

{
q3,1(t),

[
q2,1(t)− q2,2(t)

]+}
,

and
G
(
q(t)

)
=
[
q2,2(t)− q1,2(t)

]+
,

is a Lyapunov function for the FM of the network; then, by applying Theorem 5 one proves
directly the delay stability of flow 3; for details see Proposition 6 of [47]. Conversely, if λ3 >(
2 + λ1− 2λ2

)
/3, then traffic flow 3 is delay unstable. The proof of the latter result is based on

a straightforward application of Theorem 4; for details see Proposition 5 of [47].
Finally, we showcase the application of the BI algorithm on the particular network. Figure

6 shows the FMS for arrival rates λ1 = 0.2, λ2 = 0.1, and λ3 = 0.8, from initial condition one
for queue (1,2) and zero for all other queues. The length of queue (3,1) becomes positive before
the FMS drains, so Theorem 4 implies that traffic flow 3 is delay unstable for the particular
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set of rates. We emphasize that we reached this conclusion in a mechanical manner, by solving
numerically a set of “well-behaved” ODEs from a certain initial condition, without any need for
analysis.

Figure 6: The FMS of the multi-hop network of Figure 5 from initial condition one for queue (1,2)
and zero for the other queues, and arrival rates λ1 = 0.2, λ2 = 0.1, λ3 = 0.8. (We have zoomed
in the figure for clarity - the dark blue line, which represents the length of queue (1,2), continues
upwards, with a negative slope, and intersects the vertical axis at point (0,1).) Theorem 5 implies
that the source queues of all three flows are delay unstable, which implies that the traffic flows
themselves are delay unstable as well.

5 Discussion.

This paper built on and extended significantly the results of [46]. More specifically, we studied
single-hop switched queueing networks with a mix of heavy-tailed and exponential-type traffic,
and carried out a delay analysis of the Max-Weight policy. Our goal was to showcase the use
of fluid approximations in showing both delay instability (using also renewal theory) and delay
stability (combined with stochastic Lyapunov theory). Moreover, we applied these results to
get a complete characterization of the delay stability regions of certain queues in networks with
disjoint schedules.

We conclude the paper with some brief remarks. Theorems 1 and 2 were stated and proved in
the context of a single-hop switched queueing network under the Max-Weight policy. However,
the properties that we exploited in the respective proofs were only:

(i) the finiteness of the (1 + γ) moment of every arrival process, for some γ > 0;
(ii) the existence of a fluid limit;
(iii) the uniqueness of the fluid model solution.

Thus, Theorems 1 and 2 can be easily extended to any Markovian queueing system for which
properties (i)-(iii) hold. We followed exactly this approach in order to extend these results to
multi-hop switched queueing networks under the Back-Pressure policy in Section 4.

5.1 Open Problems.

The application of Theorem 2 rests on the availability of a suitable Lyapunov function for the
fluid model. As the proof of Theorem 3 suggests, finding such a Lyapunov function is a nontrivial
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task and brings up some open problems:
(a) If a certain queue in a switched queueing network is delay stable under the Max-Weight

policy, does there exist a piecewise linear Lyapunov function (i.e., a function with the properties
in Theorem 2) that can demonstrate delay stability?

(b) Is there a polynomial time algorithm for constructing and certifying such a Lyapunov
function whenever one exists?

Note that if both of the above problems have affirmative answers, then we will have a
polynomial time algorithm for deciding delay stability. The undecidability results in [26] suggest
that such results do not hold for certain types of policies. On the other hand, as we are dealing
with a different class of policies, which has special properties/structure, we cannot rule out that
the answers will turn out positive, either for all switched queueing networks, or at least for some
special cases.

A related open problem concerns the BI algorithm. Theorem 1 implies that the BI algorithm
identifies some delay unstable queues. For the special case of single-hop networks with disjoint
schedules, the proof of Theorem 3 essentially establishes that the BI algorithm identifies all
delay unstable queues whose arrival rate is below the arrival rate of the heavy-tailed queue.
However, as already discussed in Section 3.4, one can construct simple examples where delay
instability is caused by combinations of big events [58]. For such cases to be identified one would
need a modified BI algorithm that solves the fluid model from more complex initial conditions,
corresponding to the particular combinations of rare events. It is still not clear, though, whether
there exists a BI-type algorithm that provably identifies all delay unstable queues in any given
switched queueing network, or whether one has to take into account information about higher-
order moments of the arrivals in order to determine delay stability.

Appendix 1: Monotonicity Properties of Networks with
Disjoint Schedules.

In this appendix we consider the setting of Section 3.3, i.e., a single-hop switched queueing
network with disjoint schedules under the Max-Weight policy. We analyze the FM of this
system and prove certain monotonicity properties in the service rates of schedules, which are
used to prove Theorem 3.

We use ej to denote the vector whose jth element is equal to one, whereas all other elements
are equal to zero. The dimension of this vector will be clear from the context.

Let x =
(
xσ0 , xσ1 , . . . , xσK

)
be a generic configuration. For reasons that become apparent in

Section 3.3, we are interested in the service rate of schedule σ0 under different configurations,
so we assume that the vector xσ0 is nonzero. Moreover, for concreteness, we assume that
all vectors xσk , k = 1, . . . ,K, are nonzero, i.e., all schedules have maximum weight and are
drained simultaneously. The proofs of Lemmas 5, 6, and 7 that follow can be easily modified to
accommodate the case where some of the schedules σ1, . . . , σK do not have maximum weight.

We also consider four modifications of x:

(i) configuration x̄ differs from x only in the fact that it includes an additional “lower
rate” nonempty queue in a schedule different than σ0. Without loss of generality, suppose
that it is schedule σ1. More precisely, x̄ =

(
xσ0 , x̄σ1 , . . . , xσK

)
, where x̄σ1 = xσ1 + ej , with

argmaxf∈{1,...,F1}
{
xσ1

f > 0
}
< j ≤ F1;

(ii) configuration x̂ differs from x only in the fact that it includes an additional “lower rate”
nonempty queue in schedule σ0. Specifically, x̂ =

(
x̂σ0 , xσ1 , . . . , xσK

)
, where x̂σ0 = xσ0 + ej′ ,

with argmaxf∈{1,...,F0}
{
xσ0

f > 0
}
< j′ ≤ F0;

(iii) configuration x̃ differs from x only in the fact that one of the nonempty queues of a
schedule different than σ0 has been replaced by another nonempty queue of the same schedule
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that has lower arrival rate. Without loss of generality, suppose that is schedule σ1, and that
xσ1
j = 1, xσ1

j+1 = 0, for some j ∈ {1, . . . , F1 − 1}. Then, x̃σ1
j = 0 and x̃σ1

j+1 = 1, whereas
x̃σkf = xσkf , for every other queue and schedule.

(iv) configuration x̆ differs from x only in the fact that one of the nonempty queues of schedule
σ0 has been replaced by another nonempty queue of the same schedule that has lower arrival
rate. Without loss of generality, suppose that xσ0

j′ = 1, xσ1

j′+1 = 0, for some j′ ∈ {1, . . . , F0 − 1}.
Then, x̆σ0

j′ = 0 and x̆σ0

j′+1 = 1, whereas x̆σkf = xσkf , for every other queue and schedule.

We denote by µσk(x), µσk(x̄), µσk(x̂), µσk(x̃), and µσk(x̆) the service rates of schedule σk in
the FM and under configurations x, x̄, x̂, x̃, and x̆, respectively.

Lemma 5: The service rates of schedule σ0 under configurations x, x̄, and x̂ are ordered as
follows:

µσ0(x̂) < µσ0(x) < µσ0(x̄).

Proof. Eq. (28)-(29) and some simple algebra imply that the service rate of schedule σ0 under
configuration x satisfies the following equality:

(49) µσ0(x)
(

1 +

K∑
k=1

|xσ0 |
|xσk |

)
= 1 +

K∑
k=1

1

|xσk |

( F0∑
f=1

λσ0

f x
σ0

f −
Fk∑
f=1

λσkf xσkf

)
.

A similar derivation (omitted) shows that the service rates of schedule σ0 under configura-
tions x̄ and x̂ satisfy:

µσ0(x̄)
(

1 +
|xσ0 |
|xσ1 |+ 1

+

K∑
k=2

|xσ0 |
|xσk |

)
= 1 +

1

|xσ1 |+ 1

( F0∑
f=1

λσ0

f x
σ0

f −
F1∑
f=1

λσ1

f x
σ1

f − λ
σ1
j

)

+

K∑
k=2

1

|xσk |

( F0∑
f=1

λσ0

f x
σ0

f −
Fk∑
f=1

λσkf xσkf

)
,(50)

and

(51) µσ0(x̂)
(

1 +

K∑
k=1

|xσ0 |+ 1

|xσk |

)
= 1 +

K∑
k=1

1

|xσk |

( F0∑
f=1

λσ0

f x
σ0

f −
Fk∑
f=1

λσkf xσkf + λσ0

j′

)
,

respectively.

We first show that µσ0(x) < µσ0(x̄). For notational convenience we define:

A = 1 +

K∑
k=2

|xσ0 |
|xσk |

,

B = 1 +

K∑
k=2

1

|xσk |

( F0∑
f=1

λσ0

f x
σ0

f −
Fk∑
f=1

λσkf xσkf

)
,

and

C = B|xσ1 |+
F0∑
f=1

λσ0

f x
σ0

f −
F1∑
f=1

λσ1

f x
σ1

f .

Then, Eq. (49) and (50) can be written as follows:

µσ0(x)
(
A|xσ1 |+ |xσ0 |

)
= C,
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µσ0(x̄)
(
A|xσ1 |+A+ |xσ0 |

)
= C +B − λσ1

j .

The above imply that the inequality µσ0(x) < µσ0(x̄) is equivalent to:

C/
(
A|xσ1 |+ |xσ0 |

)
<
(
C +B − λσ1

j

)
/
(
A|xσ1 |+A+ |xσ0 |

)
⇐⇒ AB|xσ1 |+B|xσ0 | −A|xσ1 |λσ1

j − |x
σ0 |λσ1

j − CA > 0

⇐⇒ B|xσ0 | −A|xσ1 |λσ1
j − |x

σ0 |λσ1
j −A

( F0∑
f=1

λσ0

f x
σ0

f −
F1∑
f=1

λσ1

f x
σ1

f

)
> 0.

Substituting the expressions for A and B, we get:

|xσ0 | −
( K∑
k=2

|xσ0 |
|xσk |

) Fk∑
f=1

λσkf xσkf −
F0∑
f=1

λσ0

f x
σ0

f +

F1∑
f=1

λσ1

f x
σ1

f

+
( K∑
k=2

|xσ0 |
|xσk |

) F1∑
f=1

λσ1

f x
σ1

f − λ
σ1
j

(
|xσ0 |+ |xσ1 |+ |xσ1 |

K∑
k=2

|xσ0 |
|xσk |

)
> 0.

By taking into account Eq. (26) and the fact that (σ1, j) is a “lower rate” queue, in order to
prove that µσ0(x) < µσ0(x̄) it suffices to show that

|xσ0 |
(

1−λσ0
1 −

K∑
k=2

λσk1

)
+|xσ1 |λσ1

j +|xσ1 |λσ1
j

( K∑
k=2

|xσ0 |
|xσk |

)
−λσ1

j

(
|xσ0 |+|xσ1 |+|xσ1 |

K∑
k=2

|xσ0 |
|xσk |

)
> 0,

or, equivalently,

|xσ0 |
(

1− λσ0
1 − λ

σ1
j −

K∑
k=2

λσk1

)
> 0.

The latter is true because of Eq. (27).

Now we show that µσ0(x̂) < µσ0(x). Again, for notational convenience we define the quan-
tities:

A′ = 1 +

K∑
k=1

|xσ0 |
|xσk |

,

B′ = 1 +

K∑
k=1

1

|xσk |

( F0∑
f=1

λσ0

f x
σ0

f −
Fk∑
f=1

λσkf xσkf

)
.

Then, Eq. (49) and (51) can be written as follows:

µσ0(x)A′ = B′,

µσ0(x̂)
(
A′ +

K∑
k=1

1

|xσk |

)
= B′ +

K∑
k=1

λσ0

j′

|xσk |
.

The above imply that µσ0(x̂) < µσ0(x) is equivalent to

K∑
k=1

1

|xσk |

(
1 +

K∑
k=1

1

|xσk |

( F0∑
f=1

λσ0

f x
σ0

f −
Fk∑
f=1

λσkf xσkf

))
−

K∑
k=1

λσ0

j′

|xσk |

(
1 +

K∑
k=1

|xσ0 |
|xσk |

)
> 0,
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which, in turn, is equivalent to

K∑
k=1

1− λσ0

j′

|xσk |
+

K∑
k=1

1

|xσk |

( K∑
k=1

1

|xσk |

( F0∑
f=1

λσ0

f x
σ0

f −λ
σ0

j′ |x
σ0 |
))
−

K∑
k=1

1

|xσk |

( K∑
k=1

1

|xσk |

Fk∑
f=1

λσkf xσkf

)
> 0.

By taking into account Eq. (26), in order to show that µσ0(x̂) < µσ0(x) it suffices to show
that:

K∑
k=1

1

|xσk |

(
1− λσ0

j′ −
K∑
k=1

λσk1

)
+

K∑
k=1

1

|xσk |

K∑
k=1

1

|xσk |

( F0∑
f=1

λσ0

f x
σ0

f − λ
σ0

j′ |x
σ0 |
)
.

The latter is true because of Eq. (27) and the fact that (σ0, j
′) is a “lower rate” queue.

Lemma 6: The service rates of schedule σ0 under configurations x, x̃, and x̆ are ordered as
follows:

µσ0(x̆) < µσ0(x) < µσ0(x̃).

Proof. Eq. (49), regarding the service rate of schedule σ0 under configuration x, can be rewritten
as follows:

µσ0(x)
(

1 +

K∑
k=1

|xσ0 |
|xσk |

)
= 1 +

K∑
k=2

1

|xσk |

( F0∑
f=1

λσ0

f x
σ0

f −
Fk∑
f=1

λσkf xσkf

)
+

1

|xσ1 |

( F0∑
f=1

λσ0

f x
σ0

f −
F1∑
f=1

λσ1

f x
σ1

f

)

= 1 +

K∑
k=1

1

|xσk |

F0∑
f=1

λσ0

f x
σ0

f −
K∑
k=1

1

|xσk |

Fk∑
f=1

λσkf xσkf .

By arguing similarly, and taking into account the fact that |xσk | = |x̃σk | = |x̆σk |, for all
k ∈ {0, . . . ,K}, we have that the service rates of schedule σ0 under configurations x̃ and x̆
satisfy the following equalities:

µσ0(x̃)
(

1+

K∑
k=1

|xσ0 |
|xσk |

)
= 1+

K∑
k=2

1

|xσk |

( F0∑
f=1

λσ0

f x
σ0

f −
Fk∑
f=1

λσkf xσkf

)
+

1

|xσ1 |

( F0∑
f=1

λσ0

f x
σ0

f −
F1∑
f=1

λσ1

f x̃
σ1

f

)
.

µσ0(x̆)
(

1 +

K∑
k=1

|xσ0 |
|xσk |

)
= 1 +

K∑
k=1

1

|xσk |

F0∑
f=1

λσ0

f x̆
σ0

f −
K∑
k=1

1

|xσk |

Fk∑
f=1

λσkf xσkf .

Let us prove that µσ0(x) < µσ0(x̃). We use the notation:

A = 1 +

K∑
k=1

|xσ0 |
|xσk |

,

and

B = 1 +

K∑
k=2

1

|xσk |

( F0∑
f=1

λσ0

f x
σ0

f −
Fk∑
f=1

λσkf xσkf

)
+

1

|xσ1 |

F0∑
f=1

λσ0

f x
σ0

f .

Then, the service rates of schedule σ0 under configurations x and x̃, respectively, can be
written as follows:

µσ0(x) =
(
B − 1

|xσ1 |

F1∑
f=1

λσ1

f x
σ1

f

)
/A,
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µσ0(x̃) =
(
B − 1

|xσ1 |

F1∑
f=1

λσ1

f x̃
σ1

f

)
/A.

Since configuration x̃ differs from x only in the fact that one of the nonempty queues of schedule
σ1 has been substituted by another nonempty queue of the same schedule that has lower arrival
rate, these equations imply directly that µσ0(x) < µσ0(x̃).

The fact that µσ0(x̆) < µσ0(x) is proved similarly.

Finally, we consider the configuration y =
(
yσ0 , e1, e1, . . . , e1

)
, which corresponds to a situ-

ation where only the highest rate queue from each of the schedules σ1, . . . , σK is nonempty. In
contrast, we do not impose any restrictions on which queues are nonempty in schedule σ0. Let us
also consider a modification of this configuration, ȳ, which differs from y only in the fact that one
of the highest rate queues of schedules σ1, . . . , σK is empty. Without loss of generality, suppose
that it is the highest rate queue of schedule σ1. In mathematical terms, ȳ =

(
yσ0 , 0, e1, . . . , e1

)
.

We denote by µσk(y) and µσk(ȳ) the service rates of schedule σk in the FM and under
configurations y and ȳ, respectively.

Lemma 7: The service rates of schedule σ0 under configurations y and ȳ are ordered in the
following way:

µσ0(y) < µσ0(ȳ).

Proof. Eq. (28)-(29) imply that the service rates of the different schedules under configuration
y satisfy:

F0∑
f=1

λσ0

f y
σ0

f − |y
σ0 |µσ0(y) = λσk1 − µσk(y), k = 1, . . . ,K,

and
K∑
k=0

µσk(y) = 1.

The above equations and some simple algebra imply that

(52) µσ0(y)
(
1 +K|yσ0 |

)
= 1 +K

( F0∑
f=1

λσ0

f y
σ0

f

)
−

K∑
k=1

λσk1 .

Now, under configuration ȳ, we have that µσ1(ȳ) = 0 while the rest of the service rates are
split in the Max-Weight fashion, i.e.,

F0∑
f=1

λσ0

f y
σ0

f − |y
σ0 |µσ0(ȳ) = λσk1 − µσk(ȳ), k = 2, . . . ,K.

Then, the work-conserving nature of the policy and some simple algebra imply that

(53) µσ0(ȳ)
(
1 + (K − 1)|yσ0 |

)
= 1 + (K − 1)

( F0∑
f=1

λσ0

f y
σ0

f

)
−

K∑
k=2

λσk1 .

For notational convenience we define the quantities

A = 1 +K|yσ0 |,
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and

B = 1 +K
( F0∑
f=1

λσ0

f y
σ0

f

)
−

K∑
k=1

λσk1 .

Then, Eq. (52) and (53) can be written as follows:

µσ0(y)A = B,

and

µσ0(ȳ)
(
A− |yσ0 |

)
= B −

F0∑
f=1

λσ0

f y
σ0

f + λσ1
1 .

The above imply that µσ0(y) < µσ0(ȳ) is equivalent to

B|yσ0 | −A
F0∑
f=1

λσ0

f y
σ0

f +Aλσ1
1 > 0,

which, in turn, is equivalent to

|yσ0 |
(

1−
K∑
k=1

λσk1 −
1

|yσ0 |

F0∑
f=1

λσ0

f y
σ0

f

)
+
(
1 +K|yσ0 |

)
λσ1

1 > 0.

The latter is true because of Eq. (27) and the fact that

1

|yσ0 |

F0∑
f=1

λσ0

f y
σ0

f ≤ max
f∈{1,...,F0}

{
λσ0

f

}
.

Lemmas 5, 6, and 7 can be easily modified to accommodate the case where not all schedules
have maximum weight: instead of adding over all k ∈ {1, . . . ,K}, as in the preceding proofs, we
add over the set of maximum weight schedules, i.e., over all k ∈ K(x), as dictated by Eqs. (28)
and (29).

Appendix 2: Technical Results in the Delay Analysis of the
Back-Pressure Policy under Heavy-Tailed Traffic.

The Switched Queueing Network in Section 4.1 as a Stochastic Pro-
cessing Network.

Stochastic Processing Networks (SPNs) are a general class of queueing systems, aiming to cap-
ture the dynamics and decisions in a wide range of settings in services and manufacturing. Since
their introduction in [32], several variations and extensions of the original formulation have ap-
peared in the literature. In this section we give a brief overview of SPNs, and we show that the
multi-hop switched queueing network and the Back-Pressure policy described above are special
cases of the SPN model and the Maximum Pressure policy studied in [20], respectively. The
reason we do this is two-fold: (i) all fluid models of multi-hop switched queueing networks under
the Back-Pressure policy that have appeared thus far assume fixed routing [17, 37, 38, 43]. By
appealing to the very broad modeling class of SPNs we are able to extract a concrete fluid model
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for Back-Pressure that allows for multiple source-destination paths and loops, both quite com-
mon characteristics of real-world networks; (ii) through this mapping, certain technical lemmas
that are needed for the delay analysis of Back-Pressure will follow directly from [20].

A SPN can be described in terms of four entities: buffers, jobs, processors, and activities. In
our multi-hop network context, buffers correspond to queues, jobs correspond to packets, and
processors correspond to links. SPNs also include a special buffer, termed buffer 0, where all
jobs waiting to enter the network are queued. However, what makes the comparison between
the two models a nontrivial task is the notion of activity, an equivalent of which does not exist
in switched networks. An activity can simultaneously process jobs from a set of buffers. In
order to do this, it requires the simultaneous occupation of a set of processors. Each activity
has a certain processing time, upon the completion of which jobs depart from the associated
buffers and may arrive at other buffers. Depending on the availability of processors, multiple
activities may be undertaken at the same time. In general, there are two types of activities:
input activities that process jobs only from buffer 0, and service activities that process jobs only
from the other buffers. Upon the completion of an input activity, jobs depart from buffer 0
and arrive to certain buffers. Upon the completion of a service activity, jobs depart from some
buffers (but not buffer 0) and arrive to other buffers. In the context of the multi-hop network
described above an input activity is, essentially, an exogenous arrival process, while a service
activity is a queue-link allocation that satisfies the routing constraints imposed by the sets Lf .

The paper [20] studies two variations of SPNs. The first assumes that the capacities of
processors are infinitely divisible, so that multiple activities can be undertaken at the same
time, at utilization level less than 100% at each one. The second variation assumes that the
capacities of servers are nondivisible, so that activities can be undertaken at utilization level
100%, or not at all. Since a link can serve packets from only one queue at any given time slot,
the multi-hop network described above clearly falls within the class of SPNs with nondivisible
server capacities.

In the SPNs considered in [20], activities have general processing requirements and can
be preempted by other activities before their completion. The in-service jobs of a preempted
activity are “frozen,” and their service is resumed only when that activity is undertaken again.
In our discrete time model described above, the processing requirement of all activities is equal
to one time slot. Moreover, the decision of which activities to undertake is made at the beginning
of each time slot. Thus, in our model activities are never preempted and there are no “frozen”
jobs.

An important characteristic of the SPN model in [20] is that, for an activity to be undertaken
at any given point in time, there have to be jobs available for processing at each of the constituent
buffers. In other words, if a certain buffer is empty then activities that process jobs from that
buffer cannot be undertaken. In the language of multi-hop networks, a queue is served only
if it has packets available for transmission, which implies that there are no wasted service
opportunities.

With these correspondences, it can be verified that the multi-hop network described above
is a special case of the SPN analyzed in [20]. Moreover, our version of Back-Pressure does not
waste service opportunities, and it is a Maximum Pressure policy, i.e., it satisfies Eq. (7) of [20].

As a final remark, we note that Assumption 1 of [20] holds in switched networks, while the
static planning problem defined by Eqs. (24)-(27) of [20] is, essentially, the stability region given
in Definition 5.

As alluded to earlier, our main motivation for viewing multi-hop networks as SPNs is to take
advantage of known results from the SPN literature, which will serve as intermediate lemmas for
the purposes of this section. One such result is the throughput optimality of the Back-Pressure
policy. This property was first proved in [62] for the original version of Back-Pressure assuming
light-tailed traffic. The following lemma establishes the throughput optimality of the slightly
modified version of Back-Pressure introduced above, and in the presence of heavy-tailed traffic.
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Lemma 8: (Throughput Optimality of Back-Pressure) The multi-hop switched queue-
ing network described above is stable under the Back-Pressure policy for any arrival rate vector
in the stability region.

Proof. (Outline) It can be seen that under the Back-Pressure policy and our independence
assumptions on the arrival processes, the sequence

{
Q(t); t ∈ Z+

}
is a time-homogeneous,

irreducible, and aperiodic Markov chain on a countable state space. The fact that this Markov
chain is also positive recurrent is implied by results in [20]. More specifically, Theorem 8 of [20]
implies that the fluid model of the multi-hop network under the Back-Pressure policy (described
in the following section) is weakly stable, i.e., if we consider the fluid model solution with the
queues being initially empty, then the queue-length part of the solution remains zero. Then,
Theorem 3 of [20] implies that the stochastic system is pathwise stable, i.e., the long-term
departure rates are equal to the respective long-term arrival rates, for all queues. Of course,
this is a weaker form of stability compared to the one adopted in this paper. However, we
have defined the stability region of the multi-hop network in terms of strict inequalities for all
link capacity constraints; as a consequence, we can strengthen this result in a straightforward
manner, very similar to the way Theorem 5 in [20] strengthens Theorem 4 in [20]. In particular,
it can be verified that the fluid model is stable, i.e., if we consider the fluid model solution
from a finite initial condition, then the queue-length part of the solution becomes zero in finite
time, and remains zero thereafter. Consequently, using Theorem 3.1 in [19], the Markov chain
that describes the stochastic system is positive recurrent. Hence,

{
Q(t); t ∈ Z+

}
converges in

distribution, and its limiting distribution does not depend on Q(0). Because of the latter fact,
the sequence

{
D(k); k ∈ N

}
is a, possibly delayed, aperiodic and positive recurrent regenerative

process. Therefore, it also converges in distribution, and its limiting distribution does not depend
on Q(0); see [59].

Existence and Uniqueness Results for the Fluid Model in Section 4.2.

In this section we state and prove the existence of a fluid limit, and the existence and unique-
ness of the solution to the fluid model in Section 4.2. Both results are necessary for the fluid
approximations-based delay analysis proposed in Section 4.3.

Lemma 9: (Existence of Fluid Limit and FMS) There exists a Lipschitz continuous
function z(t) =

{
zf,i(t); i ∈ Nf , f ∈ F

}
, t ∈ [0, T ], such that for every ε > 0 there exists b0(ε)

so that
P
(
Hb

)
≥ 1− ε,

and
sup
t∈[0,T ]

max
f∈F

max
i∈Nf

∣∣q̃bf,i(t)− zf,i(t)∣∣ ≤ ε, ∀ω ∈ Hb,

for all b ≥ b0(ε). Additionally, there exists a Lipschitz continuous function w(·), such that(
z(·), w(·)

)
is a FMS from initial condition q(0) = q over the interval [0, T ].

Proof. The fact that P(Hb) converges to one as b goes to infinity was proved in Lemma 2. The
existence of a fluid limit, and that a fluid limit is a FMS, follows directly from Appendix A
of [20].

As discussed in Section 2.1, the uniqueness of the FMS of a single-hop network under the
Max-Weight policy has been established in [61]. However, we are not aware of any similar
uniqueness results in a multi-hop context. For this reason, a complete proof is provided using a
strategy similar to that in [61].
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Lemma 10: (Uniqueness and Continuity of FMS) For any given q =
{
qf,i ∈ R+, i ∈

Nf , f ∈ F
}

there exists a (unique) Lipschitz continuous function z(t) =
{
zf,i(t); i ∈ Nf , f ∈

F
}
, t ∈ [0, T ], such that the queue-length part of every FMS from initial condition q is z(·).

Moreover, z(·) depends continuously on both the initial condition q and the arrival rate vector
λ.

Proof. The existence of a FMS was established in Lemma 9. Regarding the uniqueness of the
FMS, we proceed as follows: fix time T > 0, initial condition v(0) =

(
vf,i(0); i ∈ Nf , f ∈ F

)
,

arrival rate vector λv, and let v(·) be the queue-length part of the FMS from v(0) on the interval
[0, T ], in vector form. Eq. (41) implies that, at any regular time t ∈ [0, T ], this solution satisfies

v̇f,i(t) = −
∑

j:(i,j)∈Lf

ṡvf,i,j(t) +
∑

j:(j,i)∈Lf

ṡvf,j,i(t) + λvf · 1{i=sf},

i ∈ Nf , f ∈ F . Also, let w(·) be the queue-length part of the FMS from initial condition w(0)
on the interval [0, T ], under arrival rate vector λw. Similarly, this solution satisfies

ẇf,i(t) = −
∑

j:(i,j)∈Lf

ṡwf,i,j(t) +
∑

j:(j,i)∈Lf

ṡwf,j,i(t) + λwf · 1{i=sf},

i ∈ Nf , f ∈ F . We measure the distance between the queue-length parts of the two solutions
with the square of the Euclidean norm of their difference:∥∥v(t)− w(t)

∥∥2

2
=
∑
f∈F

∑
i∈Nf

(
vf,i(t)− wf,i(t)

)2
.

At any regular time t ∈ [0, T ],

d

dt

∥∥v(t)− w(t)
∥∥2

2
=2
∑
f∈F

∑
i∈Nf

vf,i(t)v̇f,i(t) + 2
∑
f∈F

∑
i∈Nf

wf,i(t)ẇf,i(t)

− 2
∑
f∈F

∑
i∈Nf

vf,i(t)ẇf,i(t)− 2
∑
f∈F

∑
i∈Nf

wf,i(t)v̇f,i(t).

We have that

vf,i(t) · v̇f,i(t) = −vf,i(t) ·
∑

j:(i,j)∈Lf

ṡvf,i,j(t) + vf,i(t) ·
∑

j:(j,i)∈Lf

ṡvf,j,i(t) + vf,i(t) · λvf · 1{i=sf},

wf,i(t) · ẇf,i(t) = −wf,i(t) ·
∑

j:(i,j)∈Lf

ṡwf,i,j(t) + wf,i(t) ·
∑

j:(j,i)∈Lf

ṡwf,j,i(t) + wf,i(t) · λwf · 1{i=sf},

vf,i(t) · ẇf,i(t) = −vf,i(t) ·
∑

j:(i,j)∈Lf

ṡwf,i,j(t) + vf,i(t) ·
∑

j:(j,i)∈Lf

ṡwf,j,i(t) + vf,i(t) · λwf · 1{i=sf},

wf,i(t) · v̇f,i(t) = −wf,i(t) ·
∑

j:(i,j)∈Lf

ṡvf,i,j(t) + wf,i(t) ·
∑

j:(j,i)∈Lf

ṡvf,j,i(t) + wf,i(t) · λvf · 1{i=sf},

for all i ∈ Nf , and for all f ∈ F . Therefore,

d

dt

∥∥v(t)− w(t)
∥∥2

2
= 2

∑
f∈F

∑
i∈Nf

(
λvf − λwf

)(
vf,i(t)− wf,i(t)

)
1{i=sf} +A+B,

where the term A is equal to

−2
∑
f∈F

∑
i∈Nf

vf,i(t)
( ∑
j:(i,j)∈Lf

ṡvf,i,j(t)−
∑

j:(j,i)∈Lf

ṡvf,j,i(t)
)

+2
∑
f∈F

∑
i∈Nf

vf,i(t)
( ∑
j:(i,j)∈Lf

ṡwf,i,j(t)−
∑

j:(j,i)∈Lf

ṡwf,j,i(t)
)
,
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and the term B is equal to

−2
∑
f∈F

∑
i∈Nf

wf,i(t)
( ∑
j:(i,j)∈Lf

ṡwf,i,j(t)−
∑

j:(j,i)∈Lf

ṡwf,j,i(t)
)

+2
∑
f∈F

∑
i∈Nf

wf,i(t)
( ∑
j:(i,j)∈Lf

ṡvf,i,j(t)−
∑

j:(j,i)∈Lf

ṡvf,j,i(t)
)
.

Now notice that, by rearranging the terms, we have that∑
f∈F

∑
i∈Nf

vf,i(t)
( ∑
j:(i,j)∈Lf

ṡvf,i,j(t)−
∑

j:(j,i)∈Lf

ṡvf,j,i(t)
)

=
∑
f∈F

∑
(i,j)∈Lf

ṡvf,i,j(t)
(
vf,i(t)− vf,j(t)

)
,

and∑
f∈F

∑
i∈Nf

wf,i(t)
( ∑
j:(i,j)∈Lf

ṡwf,i,j(t)−
∑

j:(j,i)∈Lf

ṡwf,j,i(t)
)

=
∑
f∈F

∑
(i,j)∈Lf

ṡwf,i,j(t)
(
wf,i(t)− wf,j(t)

)
.

The identities above, together with Eq. (47), imply that∑
f∈F

∑
i∈Nf

vf,i(t)
( ∑
j:(i,j)∈Lf

ṡvf,i,j(t)−
∑

j:(j,i)∈Lf

ṡvf,j,i(t)
)
≥
∑
f∈F

∑
i∈Nf

vf,i(t)
( ∑
j:(i,j)∈Lf

ṡwf,i,j(t)−
∑

j:(j,i)∈Lf

ṡwf,j,i(t)
)
,

and∑
f∈F

∑
i∈Nf

wf,i(t)
( ∑
j:(i,j)∈Lf

ṡwf,i,j(t)−
∑

j:(j,i)∈Lf

ṡwf,j,i(t)
)
≥
∑
f∈F

∑
i∈Nf

wf,i(t)
( ∑
j:(i,j)∈Lf

ṡvf,i,j(t)−
∑

j:(j,i)∈Lf

ṡvf,j,i(t)
)
,

so that both terms A and B are nonpositive.
Consequently,

d

dt

∥∥v(t)− w(t)
∥∥2

2
≤ 2

∑
f∈F

∑
i∈Nf

(
λvf − λwf

)(
vf,i(t)− wf,i(t)

)
· 1{i=sf}

≤ 2
∥∥λv − λw∥∥∞∑

f∈F

∑
i∈Nf

∣∣vf,i(t)− wf,i(t)∣∣
≤ 2

∥∥λv − λw∥∥∞(∥∥v(t)− w(t)
∥∥2

2
+ 1
)
.

Finally, Gronwall’s inequality [71] and the fact that v(·) and w(·) are differentiable almost
everywhere imply that

(54)
∥∥v(t)− w(t)

∥∥2

2
≤
∥∥v(0)− w(0)

∥∥2

2
exp

(
2t
∥∥λv − λw∥∥∞)+ 2t

∥∥λv − λw∥∥∞, ∀t ∈ [0, T ].

If v(0) = w(0) and λv = λw, so that v(·) and w(·) represent two solutions to the FM for a
given initial condition and arrival rate vector, then Eq. (54) implies that∥∥v(t)− w(t)

∥∥2

2
= 0, ∀t ∈ [0, T ],

resulting in the uniqueness of the queue-length part of the FMS. The continuity with respect to
the initial condition and arrival rate vector follows directly from Eq. (54).

Similarly to the single-hop case (cf. Lemma 3), the above lemma guarantees only the unique-
ness of the queue-length part of the FMS. One can construct simple examples where the service
part of the FMS from zero initial condition is not unique.
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