
Delay analysis of the Max-Weight policy under
heavy-tailed traffic via fluid approximations

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation Markakis, Mihalis G., et al. "Delay Analysis of the Max-Weight
Policy under Heavy-Tailed Traffic via Fluid Approximations." 2013
51st Annual Allerton Conference on Communication, Control, and
Computing (Allerton), 2-4 October, 2013, Monticello, Illinois, IEEE,
2013, pp. 436–44.

As Published http://dx.doi.org/10.1109/Allerton.2013.6736557

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/114642

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/114642
http://creativecommons.org/licenses/by-nc-sa/4.0/


Delay Analysis of the Max-Weight Policy under
Heavy-Tailed Traffic via Fluid Approximations

Mihalis G. Markakis, Eytan Modiano, and John N. Tsitsiklis

Abstract—We consider a single-hop switched queueing net-
work with a mix of heavy-tailed (i.e., arrival processes with
infinite variance) and light-tailed traffic, and study the delay
performance of the Max-Weight policy, known for its through-
put optimality and asymptotic delay optimality properties.
Classical results in queueing theory imply that heavy-tailed
queues are delay unstable, i.e., they experience infinite expected
delays in steady state. Thus, we focus on the impact of heavy-
tailed traffic on the light-tailed queues, using delay stability as
performance metric. Recent work has shown that this impact
may come in the form of subtle rate-dependent phenomena, the
stochastic analysis of which is quite cumbersome.

Our goal is to show how fluid approximations can facilitate
the delay analysis of the Max-Weight policy under heavy-tailed
traffic. More specifically, we show how fluid approximations
can be combined with renewal theory in order to prove delay
instability results. Furthermore, we show how fluid approxi-
mations can be combined with stochastic Lyapunov theory in
order to prove delay stability results. We illustrate the benefits
of the proposed approach in two ways: (i) analytically, by
providing a sharp characterization of the delay stability regions
of networks with disjoint schedules, significantly generalizing
previous results; (ii) computationally, through a Bottleneck
Identification algorithm, which identifies (some) delay unstable
queues by solving the fluid model of the network from certain
initial conditions.

I. INTRODUCTION

We study scheduling problems arising in single-hop
switched queueing networks, a class of stochastic systems
that are often used to model the dynamics and decisions in
data communication networks, e.g., cellular networks [20],
Internet routers [19], and wireless ad hoc networks [28], but
also in flexible manufacturing systems [11] and cloud com-
puting clusters [16]. The salient feature of switched networks
is that not all queues can be served at the same time, e.g.,
due to wireless interference constraints or due to matching
constraints in a switch. Thus, only certain subsets of queues,
the so-called schedules, can be served simultaneously, giving
rise to a fundamental scheduling problem: which schedule to
activate at each time slot? Clearly, the overall performance
of the network depends critically on the scheduling policy
applied.

The focus of this paper is on a well-studied queue-length-
based scheduling policy, the Max-Weight policy. A remark-
able property of the Max-Weight policy is its throughput
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optimality, i.e., the ability to stabilize a queueing network
whenever this is possible, without any explicit information
on the traffic statistics [26]. Thus, dynamic instability phe-
nomena, such as the ones reported by Kumar & Seidman
[15] or Rybko & Stolyar [22], are avoided. Moreover, Max-
Weight-type policies achieve very good delay performance
under light-tailed traffic, e.g., they achieve optimal or order-
optimal average delay for specific network topologies [12],
[20], optimal large deviations exponent [28], and are asymp-
totically delay optimal in the heavy-traffic regime [25]. For
these reasons, Max-Weight has become the “benchmark”
policy for scheduling in switched networks. However, the
delay performance of the Max-Weight policy in the presence
of heavy-tailed traffic is not well-understood.

Empirical evidence of high variability phenomena in data
communication networks [21], manufacturing [9], and cloud
computing [8] motivates us to study switched networks with
a mix of heavy-tailed and light-tailed traffic. The impact
of heavy tails has been analyzed extensively in single or
multi-server queues, e.g., see the survey paper [6] and the
references therein, and more recently in monotone separable
networks [1], a class of stochastic systems that includes
multi-server queues, Jackson networks, and polling systems
as special cases. Closer to our work come the papers by
Borst et al. [4] and by Jagannathan et al. [14], both of which
consider a system with two parallel queues, receiving heavy-
tailed and light-tailed traffic, respectively, while sharing a
single server. The authors determine the queue-length asymp-
totics of the Generalized Processor Sharing policy [4] and of
the Generalized Max-Weight policy [14]. Also related to our
work is the paper by Boxma et al. [5], which analyzes a
M/G/2 queue with a heavy-tailed and a light-tailed server,
and shows a dependence of the queue-length asymptotics on
the arrival rate. The present paper builds upon our earlier
work [18], which considers a single-hop switched queueing
network with a mix of heavy-tailed and light-tailed traffic,
under the Max-Weight policy (a brief discussion of the
findings of [18] and the contributions of the present work
can be found below).

For the purposes of this paper, heavy-tailed traffic is
defined as an arrival process with infinite variance. Classi-
cal results in queueing theory (e.g., the Pollaczek-Khinchin
formula, Kingman’s bounds) imply that queues receiving
heavy-tailed traffic are delay unstable, i.e., they experience
infinite expected delays in steady state. Thus, we focus on
the (policy-dependent) impact of heavy-tailed traffic on light-
tailed queues, using delay stability as performance metric.
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Motivating Example

We motivate the subsequent developments by presentings
the main findings of [18] through the queueing system
of Figure 1. This very simple switched network has two
schedules, {1, 2} and {3}, and queues are served at unit rate
whenever the respective schedules are activated. We assume
that the arrivals to queue 1 are heavy-tailed whereas the
arrivals to queues 2 and 3 are light-tailed. In this setting
the Max-Weight policy compares the length of queue 3 to
the sum of the lengths of queues 1 and 2, and serves the
“heavier” schedule.

Fig. 1. Delay performance of the Max-Weight policy under heavy-
tailed traffic through a simple example. Queue 1 receives heavy-tailed
traffic whereas queues 2 and 3 receive light-tailed traffic. Queues 1 and 2
are served simultaneously, whereas queue 3 can only be served alone. Max-
Weight compares the length of queue 3 to the sum of the lengths of queues
1 and 2, and serves the “heavier” schedule. Queue 1 is delay unstable under
any scheduling policy. Queue 3 is delay unstable under the Max-Weight
policy. Finally, queue 2 may or may not be delay stable under the Max-
Weight policy, depending on the arrival rates.

The delay stability of queue 1 does not depend on the
specifics of the queueing system of Figure 1 or on the
scheduling policy applied, but merely on the fact that it
receives heavy-tailed traffic. Consider the best case scenario
for queue 1, i.e., it is served at all times. In that case, queue 1
is equivalent to a M/G/1 queue with infinite second moment
of service time. Then, classical results from queueing theory,
e.g., the Pollaczek-Khinchin formula, imply that the expected
steady-state delay is infinite, namely queue 1 is delay unsta-
ble even in the best case. This observation is the main idea
behind Theorem 1 of [18]: in a switched queueing network,
every heavy-tailed queue is delay unstable under any policy.

Coming to queue 3, notice that, under the Max-Weight
policy, it receives no service unless its length is greater
than or equal to the length of queue 1. However, queue 1
is, occasionally, very long due to its heavy-tailed arrivals.
On those occasions, queue 3 has to build up to a similar
length, leading to delay instability. This observation can be
generalized (Theorem 2 of [18]): in a switched queueing
network under the Max-Weight policy, every light-tailed
queue that “conflicts” with a heavy-tailed queue is delay
unstable.

An interesting finding of [18] concerns the delay stability
of queue 2. One would expect that this queue is delay

stable: it is light-tailed itself, and is served together with
a heavy-tailed queue, which should result in more service
opportunities under Max-Weight. Surprisingly, there exist
arrival rates in the stability region of the system, such that
queue 2 is delay unstable. The key observation is as follows:
even though queue 2 does not conflict with a heavy-tailed
queue, it does conflict with queue 3, which is delay unstable
because it conflicts with a heavy-tailed queue. Conversely,
queue 2 is delay stable if its arrival rate is sufficiently low.

Proposition 1: (Rate-Dependent Delay Instability [18])
Consider the queueing system of Figure 1 under the Max-
Weight policy. If the arrival rates satisfy λ2 >

(
1 + λ1 −

λ3
)
/2, then queue 2 is delay unstable.

Proposition 2: (Rate-Dependent Delay Stability [18])
Consider the queueing system of Figure 1, with arrival rates
in the stability region and under the Max-Weight policy. If
λ2 <

(
1 +λ1−λ3

)
/2 and the arrivals to queues 2 and 3 are

exponential-type, then queue 2 is delay stable.

Propositions 1 and 2 provide a sharp characterization of
the delay stability region of queue 2, i.e., the set of arrival
rates for which queue 2 is delay stable. Previous proofs
of these results were based on purely stochastic arguments,
and were somewhat long and tedious. However, the main
ideas behind them are rather simple and intuitive, and were
presented in [18] through an informal “fluid approximation”
to the stochastic system. The goal of this paper is to formalize
this approach: we will show that the formal use of fluid
approximations simplifies delay stability analysis, allowing
us to generalize considerably the findings of [18].

Main Contributions

The main contribution of this paper is to show how fluid
approximations can facilitate the delay analysis of switched
networks with heavy-tailed traffic. More specifically, we
show how fluid approximations can be combined with re-
newal theory in order to prove delay instability results (The-
orem 1). Furthermore, we show how fluid approximations
can be combined with stochastic Lyapunov theory in order to
prove delay stability results (Theorem 2). Finally, we identify
a class of piecewise linear Lyapunov functions, whose drift
analysis can provide exponential bounds on queue-length
asymptotics, in the presence of heavy-tailed traffic.

We illustrate the benefits of the proposed methodology in
two ways:

(i) analytically, by providing an explicit characterization of
the delay stability regions of switched networks with disjoint
schedules, under the Max-Weight policy (Theorem 3). More-
over, we show that the propagation of delay instability to
light-tailed queues is exacerbated close to certain boundaries
of the stability region (Theorem 4). This is in sharp contrast
to the asymptotic delay optimality of Max-Weight in the
heavy-traffic regime and under diffusion scaling [25];

(ii) computationally, through a Bottleneck Identification
algorithm, which identifies (some) delay unstable queues by
solving, perhaps numerically, the fluid model of the network
from specific initial conditions of interest.
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Preview of the Paper

The remainder of the paper is organized as follows. We
begin with a high-level discussion of the methodological
challenges of the scheduling problem at hand, and the ra-
tionale behind our approach, in Section II. In Section III
we provide a detailed description of a switched queueing
network under the Max-Weight policy, together with some
useful definitions and notation. In Section IV we present
the fluid approximation of this queueing system. Sections V
and VI summarize the technical contributions of the paper,
namely how fluid approximations can facilitate the delay
analysis of networks with heavy-tailed traffic. In Section
VII we analyze the delay stability of networks with disjoint
schedules. In Section VIII we introduce the Bottleneck Iden-
tification algorithm, accompanied by examples illustrating its
applicability. We conclude the paper in Section IX with some
brief remarks.

II. METHODOLOGICAL CHALLENGES AND
CONTRIBUTIONS

The problem of delay analysis of the Max-Weight pol-
icy in the presence of heavy-tailed traffic poses a number
of methodological challenges. First of all, Dynamic Pro-
gramming or Markov Decision Problem formulations of
scheduling problems in queueing systems are known to be
analytically intractable, and to have prohibitive computational
requirements. Moreover, Monte Carlo methods can be very
slow to converge, or may even fail to converge at all, due to
the very nature of heavy tails.

Regarding classical approaches in the queueing literature,
a standard way of showing that queues exhibit large delays
(e.g., lower bounds on queue-length/delay asymptotics or on
the corresponding expected values) relies on sample path
arguments. However, tracking the evolution of sample paths
can be hard when the system exhibits complex dynamics,
such as the ones imposed by Max-Weight. This also hinders
the use of transform methods, at least as a way to obtain
analytical results. The main idea of our approach is as
follows: even when we are not able to analyze sample paths
directly, we might still be able to do so approximately, in
terms of the solution to the fluid model from certain initial
conditions of interest. Then, we can use renewal theory to
translate sample path analysis to lower bounds on queue-
length asymptotics or steady-state moments.

On the other hand, showing that queues exhibit low delays
(e.g., upper bounds on queue-length/delay asymptotics or
on the corresponding expected values) is usually based on
drift analysis of suitable Lyapunov functions, since coupling
arguments can only be applied to systems with relatively
simple dynamics. Unfortunately, popular candidates such as
standard piecewise linear functions [3], [7], quadratic func-
tions [26], and norms [23], [28] cannot be used under heavy-
tailed traffic. This is because the steady-state expectation
of these functions is infinite, rendering their drift analysis
uninformative. Additionally, drift analysis can be a challenge
by itself under stochastic dynamics. Our approach to this

problem is as follows: we identify a class of piecewise linear
Lyapunov functions that are nonincreasing in the length of the
heavy-tailed queues, and which are suitable for performance
analysis of queueing systems with a mix of heavy-tailed
and exponential-type traffic (more specifically, for obtain-
ing exponential upper bounds on queue-length asymptotics).
Moreover, we show how fluid approximations can simplify
the drift analysis of this class of Lyapunov functions. Critical
to the latter is a connection that we establish between
fluid approximations and Lyapunov theory: suppose V (·) is
continuous, piecewise linear, and a “Lyapunov function” for
the fluid model; then V (·) is also a “Lyapunov function”
for the original queueing system.1 Moreover, if V (·) has
exponential-type “upward jumps” in the stochastic system,
then the results of [13] imply an exponential upper bound
for its steady-state distribution.

III. THE MODEL

In this section we give a detailed presentation of the
queueing model under consideration, together with some
necessary definitions and notation.

We denote by R+, Z+, and N the sets of nonnegative reals,
nonnegative integers, and positive integers, respectively. The
cartesian products of M copies of R+ and Z+ are denoted
by RM+ and ZM+ , respectively.

We consider a discrete time switched queueing network,
where arrivals occur at the end of each time slot. Let
F = {1, . . . , F}, F ∈ N. Central to our model is the
notion of a traffic flow f ∈ F , which is a long-lived
stream of traffic that arrives to the network according to a
discrete time stochastic arrival process

{
Af (t); t ∈ Z+

}
.

We assume that all arrival processes take values in Z+,
and are independent and identically distributed (IID) over
time. Furthermore, different arrival processes are mutually
independent. We denote by λf = E

[
Af (0)

]
> 0 the arrival

rate of traffic flow f and by λ =
(
λf ; f = 1, . . . , F

)
the

vector of arrival rates of all traffic flows.

Definition 1: (Heavy/Light Tails) A nonnegative random
variable X is heavy-tailed if E

[
X2
]

is infinite, and is light-
tailed otherwise. Moreover, X is exponential-type if there
exists θ > 0 such that E

[
exp

(
θX
)]
<∞.

We define similarly a heavy-tailed/light-tailed/exponential-
type traffic flow.

There are several definitions of heavy/light tails in the
literature. In fact, a random variable is often defined as light-
tailed if it is exponential-type, and heavy-tailed otherwise.
The definition adopted in this paper has been used in the
area of data communication networks, e.g., see [21], due to
its close connection to long-range dependence.

For technical reasons we assume the existence of some
γ ∈ (0, 1) such that E

[
A1+γ
f (0)

]
<∞, for all f ∈ F .

1This is to be contrasted to the more common use of fluid approximations
for stability analysis, where a Lyapunov function V (·) for the fluid model
implies the existence of another Lyapunov function G(·) for the stochastic
model.
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We consider single-hop traffic flows, i.e., the traffic of flow
f is buffered in a dedicated single-server queue (queue f and
server f , henceforth), eventually gets served, and then exits
the system. Our modeling assumptions imply that the set of
traffic flows can be identified with the set of queues and the
set of servers of the network. The service discipline within
each queue is assumed to be “First Come, First Served.” The
stochastic process

{
Qf (t); t ∈ Z+

}
captures the evolution

of the length of queue f . Since our main motivation comes
from data communication networks, Af (t) will be interpreted
as the number of packets that queue f receives at the end
of time slot t, and Qf (t) as the total number of packets in
queue f at the beginning of time slot t. The arrivals and
the lengths of the various queues at time slot t are captured
by the vectors A(t) =

(
Af (t); f = 1, . . . , F

)
and Q(t) =(

Qf (t); f = 1, . . . , F
)
, respectively.

In the context of data communication networks, a batch
of packets arriving to a queue at any given time slot can
be viewed as a single entity, e.g., as a file that needs to be
transmitted. We define the end-to-end delay of a file of flow
f to be the number of time slots that the file spends in the
network, starting from the time slot right after it arrives at
queue f , until the time slot that its last packet gets served.
For k ∈ N, we denote by Df (k) the end-to-end delay of
the kth file of flow f , and use the vector notation D(k) =(
Df (k); f = 1, . . . , F

)
.

The salient feature of a switched queueing network is that
not all servers can be simultaneously active, e.g., due to
interference in wireless networks or matching constraints in
a switch. Consequently, not all traffic flows can be served
simultaneously. A set of traffic flows that can be served
simultaneously is called a schedule. We denote by S the
set of all schedules, which is assumed to be an arbitrary
subset of the powerset of F . For simplicity, we assume that
all packets have the same size, and that the service rate of
all servers is equal to one packet per time slot. We denote
by Sf (t) ∈ {0, 1} the number of packets that are scheduled
for service from queue f at time slot t. Note that this is not
necessarily equal to the number of packets that are actually
served, because the queue may be empty. We use the vector
notation S(t) =

(
Sf (t); f = 1, . . . , F

)
. For convenience,

we also identify schedules with vectors in {0, 1}F .
Using the notation above, the dynamics of queue f take

the form

Qf (t+ 1) = Qf (t) +Af (t)− Sf (t) · 1{Qf (t)>0},

for all t ∈ Z+, where 1{Qf (t)>0} denotes the indicator
function of the event

{
Qf (t) > 0

}
. The vector of initial

queue lengths Q(0) is assumed to be an arbitrary element of
ZF+.

The service vector S(t) is determined by the scheduling
policy applied to the network. In this paper we focus on
the Max-Weight policy, where the scheduling vector S(t)
satisfies

S(t) ∈ arg max
(Sf )∈S

{∑
f∈F

Qf (t) · Sf
}
,

at any given time slot. If the set on the right-hand side
includes multiple schedules, then one of them is chosen
uniformly at random.

As alluded to in the Introduction, a very appealing property
of the Max-Weight policy is throughput optimality. Before
we can state this property in mathematical terms, we need to
define formally the notion of stability of a queueing network.

Definition 2: (Stability) The switched queueing network
described above is stable if the vector-valued sequences{
Q(t); t ∈ Z+

}
and

{
D(k); k ∈ N

}
converge in distri-

bution, and their limiting distributions do not depend on the
initial queue lengths Q(0).

Under a stabilizing scheduling policy, we denote by Q =(
Qf ; f = 1, . . . , F

)
and D =

(
Df ; f = 1, . . . , F

)
generic random vectors distributed according to the limiting
distributions of

{
Q(t); t ∈ Z+

}
and

{
D(k); k ∈ N

}
,

respectively. We refer to Qf as the steady-state length of
queue f . Similarly, we refer to Df as the steady-state delay
of a file of traffic flow f .

The ability to stabilize a switched queueing network de-
pends on the arrival rates of the various traffic flows relative
to the service rates of the servers, and on the scheduling
constraints. This relation is captured by the stability region
of the network.

Definition 3: (Stability Region) The stability region of
the switched queueing network described above is the set of
arrival rate vectors{
λ ∈ RF+

∣∣∣ ∃ ζs ∈ R+, s ∈ S : λ ≤
∑
s∈S

ζs ·s,
∑
s∈S

ζs < 1
}
.

Lemma 1: (Throughput Optimality of Max-Weight)
Consider the switched queueing network described above
under the Max-Weight policy. The network is stable for any
arrival rate vector in the stability region.

Proof: For the case of light-tailed traffic, this result
follows from the findings in [26]; in the presence of heavy-
tailed traffic, it follows from Proposition 2 of [25]. For a
formal proof the reader is referred to Lemma 4.1 in [17].

Finally, we define the property that we use to evaluate the
delay performance of Max-Weight.

Definition 4: (Delay Stability) Traffic flow f is delay
stable, under a specific scheduling policy, if the switched
queueing network is stable under that policy and E[Df ] is
finite; otherwise, f is delay unstable.

IV. FLUID APPROXIMATION OF A SWITCHED NETWORK
UNDER THE MAX-WEIGHT POLICY

In this section we give some background material on
the natural fluid model of a single-hop switched queueing
network under the Max-Weight policy.

The fluid model is a deterministic dynamical system,
which aims to capture the evolution of its stochastic coun-
terpart on longer time scales by taking advantage of Laws
of Large Numbers. Initially, we give a brief description and
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some useful properties of the fluid model. Then, we introduce
the notion of fluid scaling, and establish a formal connection
between the deterministic and the scaled stochastic system.

The Fluid Model (FM) of a single-hop switched queueing
network under the Max-Weight policy is defined by the set
of ordinary differential equations Eqs. (1)-(6), for every time
t ≥ 0 for which the derivatives exist (such t is often called
a regular time):

q̇f (t) = λf −
∑
π∈S

ṡπ(t)πf + ẏf (t), ∀f ∈ F ; (1)

ṡπ(t) ≥ 0, ∀π ∈ S; (2)∑
π∈S

ṡπ(t) = 1; (3)

0 ≤ ẏf (t) ≤
∑
π∈S

ṡπ(t)πf , ∀f ∈ F ; (4)

qf (t) > 0 =⇒ ẏf (t) = 0, ∀f ∈ F ; (5)∑
f∈F

qf (t)πf < max
σ∈S

{∑
f∈F

qf (t)σf

}
=⇒ ṡπ(t) = 0, ∀π ∈ S. (6)

In the equations above, q(t) represents the vector of queue
lengths at time t, y(t) represents the vector of cumulative
idling/wasted service up to time t, and sπ(t) represents the
total amount of time that schedule π has been activated
up to time t. Eq. (3) states that the scheduling policy is
“work-conserving,” and Eq. (5) that there can be no wasted
service when queue lengths are positive. Finally, Eq. (6) is
the natural analogue of the Max-Weight policy in the fluid
domain: schedules that do not have maximum weight receive
no service.

The above differential equantions have appeared in previ-
ous studies, e.g., see [24], [25].

Fix arbitrary T > 0. A Fluid Model Solution (FMS) from
initial condition q(0) = q is a Lipschitz continuous function
x(·) =

(
q(·), y(·), s(·)

)
that satisfies: (i) x(0) = (q, 0, 0); (ii)

q(t) ≥ 0, for all t ∈ [0, T ]; (iii) Eqs. (1)-(6) over the interval
[0, T ].

A FMS is differentiable almost everywhere
(
equivalently,

almost every t ∈ [0, T ] is a regular time
)
, since it is Lipschitz

continuous by assumption.
Now we define the notion of fluid scaling, and we establish

the existence of a fluid limit and of a FMS. Consider a
sequence of initial queue lengths

{
Qb(0); b ∈ N

}
for

the queueing system of Section III, and the corresponding
sequence of queue-length processes

{
Qb(·); b ∈ N

}
.

We define the “fluid-scaled” queue-length process as

q̃b(t) =
Qb(bt)

b
, t ∈ [0, T ], b ∈ N.

We assume the existence of a vector q ∈ RF+ and of a
sequence of positive numbers

{
εb; b ∈ N

}
, converging to

zero as b goes to infinity, that satisfy

max
f∈F

∣∣q̃bf (0)− qf
∣∣ ≤ εb, ∀b ∈ N.

We recall our standing assumption from Section III that
there exists γ ∈ (0, 1) so that all traffic flows have (1 + γ)
moments. Fix some γ′ ∈ (0, γ) and consider the sequence of
sets of sample paths of the arrival processes defined by

Hb =
{
ω : sup

1≤t≤bT

1

bT
max
f∈F

∣∣∣ t−1∑
τ=0

Af (τ)−λf
∣∣∣ < (bT )−

γ′
1+γ

}
,

b ∈ N. Intuitively, Hb contains those sample paths of the
arrival processes that stay close to their average behavior
over the time interval [0, bT ].

Lemma 2: (Existence of Fluid Limit and FMS)
There exists a Lipschitz continuous function z(t) =(
z1(t), . . . , zF (t)

)
, t ∈ [0, T ], such that for every ε > 0

there exists b0(ε) so that

P
(
Hb

)
≥ 1− ε, ∀b ≥ b0(ε),

and

sup
t∈[0,T ]

max
f∈F

∣∣q̃bf (t)− zf (t)
∣∣ ≤ ε, ∀ω ∈ Hb, ∀b ≥ b0(ε).

Additionally, there exist Lipschitz continuous functions v(·)
and w(·), such that

(
z(·), v(·), w(·)

)
is a FMS from initial

condition q(0) = q.

Proof: The reader is referred to Lemma 5.1 of [17].

Lemma 3: (Uniqueness and Continuity of FMS) For
any given q ∈ RF+ there exists a unique Lipschitz continuous
function z(t) =

(
z1(t), . . . , zF (t)

)
, t ∈ [0, T ], such that the

queue-length part of every FMS from initial condition q is
z(·). Moreover, z(·) depends continuously on both the initial
condition q and the arrival rate vector λ.

Proof: The reader is referred to Lemma 5.2 of [17].

V. DELAY INSTABILITY RESULTS VIA FLUID
APPROXIMATIONS

Next, we illustrate how fluid approximations can be used
for proving delay instability results. A standard way for
showing large delays (e.g., lower bounds on the tail asymp-
totics or on the corresponding expected values) is through
sample path arguments. However, tracking the evolution of
sample paths can be hard when the system exhibits complex
dynamics. The main idea of our approach is to analyze
sample paths approximately, as the solution to the FM from
certain initial conditions of interest, and then to translate the
findings to delay instability results through renewal theory.

Our contribution is summarized in the following theorem,
which provides a sufficient condition for the delay instability
of traffic flows.

Theorem 1: Consider the single-hop switched queueing
network of Section III under the Max-Weight policy, and
its natural FM of Section IV. Let h ∈ F be a heavy-tailed
traffic flow, and q∗(·) be the (unique) queue-length part of a
FMS from initial condition q∗h(0) = 1 and q∗f (0) = 0, for all
f 6= h. If there exists τ ∈ [0, T ] such that q∗j (τ) > 0, then
traffic flow j is delay unstable.
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Proof: (Outline) Suppose that there exists τ ∈ [0, T ]
such that q∗j (τ) > 0. Then, the existence of a fluid limit,
which also guarantees the existence of a FMS, and the
uniqueness of the queue-length part of a FMS imply that,
after a big arrival to queue h, queue j builds to the order of
magnitude of the heavy-tailed queue with high probability.
In turn, renewal theory and Little’s Law provide the desired
delay instability result. For a formal proof the reader is
referred to Theorem 5.1 of [17].

Remark: Theorem 1 holds for any choice of T > 0 (the
horizon of the FMS). However, the fact that a single-hop
switched queueing network is stable under the Max-Weight
policy (Lemma 1) implies the existense of some T ∗ > 0,
proportional to the initial condition of the FMS, such that
q(t) = 0, for all t > T ∗. Consequently, the most effective
application of Theorem 1 is when T is chosen large enough
so that the FMS “drains” within this horizon.

VI. DELAY STABILITY RESULTS VIA FLUID
APPROXIMATIONS

In this section we shift our attention to delay stability
results in networks that receive a mix of heavy-tailed and
exponential-type traffic. Typically, proving low delays is ei-
ther based on coupling arguments, if the underlying dynamics
are relatively simple, or, more often, on drift analysis of
suitable Lyapunov functions. We focus on the latter approach.
The presence of heavy-tailed traffic, though, introduces an
additional complication: popular candidate Lyapunov func-
tions such as standard piecewise linear functions [3], [7],
quadratic functions [26], and norms [23], [28] cannot be
used because the steady-state expectation of these functions
is infinite under heavy-tailed traffic, rendering drift analysis
uninformative.

We introduce a class of piecewise linear Lyapunov func-
tions that are nonincreasing in the length of the heavy-tailed
queues, and which can provide exponential upper bounds on
queue-length asymptotics despite the presence of heavy-tailed
traffic. However, drift analysis of piecewise linear Lyapunov
functions is sometimes a challenge by itself, due to the fact
that the stochastic descent property is often lost at locations
where the function is nondifferentiable. This difficulty can
be handled by either smoothing the Lyapunov function, e.g.,
as in [7], or by showing that the stochastic descent property
still holds if we look ahead a sufficiently large number of
time slots, e.g., as in [27]. We follow the second approach,
and show how fluid approximations can simplify significantly
drift analysis of this class of functions.

Theorem 2: Consider the single-hop switched queueing
network of Section III under the Max-Weight policy, and its
natural FM of Section IV. Consider a function V : RF+ → R+

of the form

V (x) = max
j∈J

{∑
f∈F

cjfxf

}
,

where J = {1, . . . , J}, and cjf ∈ R, for all j ∈ J , f ∈ F .
Suppose that:

(i) there exists l > 0 such that, for every initial condition
q(0) and regular time t ≥ 0, we have V̇ (q(t)) ≤ −l,
whenever V (q(t)) > 0;

(ii) if cjf > 0, for some j ∈ J , then traffic flow f is
exponential-type.
Then,

(i) the sequence
{
V
(
Q(t)

)
; t ∈ Z+

}
converges in distri-

bution to random variable V (Q);
(ii) E

[
exp

(
θV (Q)

)]
<∞, for some θ > 0.

Proof: See Theorem 5.2 of [17].

VII. DELAY STABILITY REGIONS OF NETWORKS WITH
DISJOINT SCHEDULES

In this section we consider a single-hop switched queueing
network with disjoint schedules, i.e., each traffic flow belongs
to exactly one schedule, and we provide a sharp charac-
terization of the delay stability regions of the Max-Weight
policy in the presence of heavy-tailed traffic. To achieve this,
we apply the connections between fluid approximations and
delay stability/instability that we established in Theorems 1
and 2.

More specifically, we consider a system with (K + 1)
schedules, which we denote by σ0, σ1, . . . , σK . Schedule σ0
includes (F0 + 1) queues that we denote by (σ0, f), f =
0, . . . , F0; schedule σk, k = 1, . . . ,K, includes Fk queues
that we denote by (σk, f), f = 1, . . . , Fk. Note that
σk∩σl = ∅, if k 6= l. Since the system has single-hop traffic,
we use the notions of queue and traffic flow interchangeably.

We denote the arrival rate to queue (σk, f) by λσkf . The
characterization of the delay stability regions hinges on the
assumption that the arrival rates are distinct. Without loss
of generality, we also assume that queues are indexed in
descending order of arrival rates, except, possibly, for queue
(σ0, 0) (the significance of the latter queue will become
obvious shortly). In mathematical terms,

λσkf > λσkf+1, f ∈
{

1, . . . , Fk−1
}
, ∀k ∈ {0, . . . ,K}. (7)

At each time slot at most one schedule can be activated.
If a schedule is activated then one packet is removed from
all nonempty queues of that schedule.

We assume that the arriving traffic is in the stability region
of the system, which implies that

max
f=0,...,F0

{
λσ0

f

}
+

K∑
k=1

max
f=1,...,Fk

{
λσkf
}
< 1. (8)

Traffic flow (σ0, 0) is heavy-tailed whereas every other
traffic flow is exponential-type. Theorem 2 of [18] implies
that, under the Max-Weight policy, every traffic flow that does
not belong to schedule σ0 is delay unstable, for any positive
arrival rate, because it conflicts with (σ0, 0). In contrast, we
expect traffic flows (σ0, f), f = 1, . . . , F0 to have nontrivial
delay stability regions, since they do not conflict with the
heavy-tailed flow (σ0, 0); much similar to the 3-queue system
in Figure 1, where traffic flow 2 had a nontrivial delay
stability region.
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Theorem 3: Consider the single-hop switched queueing
network with disjoint schedules described above under the
Max-Weight policy, and arrival rates satisfying Eqs. (7) and
(8). The conditions

λσ0

f ≤
1

1 +Kf

(
1 +K

f−1∑
l=0

λσ0

l −
K∑
k=1

λσk1

)
, f = j, . . . , F0,

(9)
are necessary for the delay stability of traffic flow
(σ0, j), j ∈

{
1, . . . , F0

}
. If all inequalities are strict, then

these conditions are also sufficient for delay stability, and the
steady-state length of the associated queue is exponential-
type.

Proof: (Outline) The necessity part relies on Theorem
1, and on showing that the length of queue (σ0, j), along the
FMS from initial condition one for queue (σ0, 0), becomes
positive if one of the above conditions is violated. The
sufficiency part is based on drift analysis of the piecewise
linear Lyapunov function

V (q) =

F0∑
f=j

cfq
σ0

f + max
k=1,...,K

{[ Fk∑
f=1

qσkf −
F0∑
f=0

qσ0

f

]+}
,

where cf ∈ (0, 1), for all f ∈
{
j, . . . , F0

}
, and subsequent

use of Theorem 2. For a formal proof the reader is referred
to Theorem 3 in [17].

Remark: The delay stability of traffic flow (σ0, j) when
one of the above conditions holds with equality will depend,
in general, on higher order moments of the arrivals, and not
just the rates. To see this, suppose that a large batch of b
packets arrives to the heavy-tailed queue (σ0, 0). A random-
walk-type argument can show that queue (σ0, j) will build
up to Ω

(√
b
)

during an Ω(b) time interval, assuming that
the configuration corresponding to the equality condition is
reached. Thus, the aggregate length of this queue over a busy
period will be Ω

(
b3/2

)
, which implies that the delay stability

of traffic flow (σ0, j) will depend on the 1.5 moment of the
arrivals to the heavy-tailed queue.

Theorem 4: Consider the single-hop switched queueing
network with disjoint schedules described above under the
Max-Weight policy. There exist arrival rates satisfying Eqs.
(8) such that all traffic flows in the network are delay
unstable.

Proof: (Outline) The proof reduces to showing that the
lengths of all light-tailed queues of schedule σ0, along the
FMS from initial condition one for queue (σ0, 0), become
positive for the set of arrival rates

λσ0
0 = λσkf = ε > 0, ∀f ∈

{
1, . . . , Fk

}
, ∀k ∈ {1, . . . ,K},

and

λσ0

f = 1− (K + 1)ε, ∀f ∈
{

1, . . . , F0

}
,

when ε is sufficiently small. Then, the result is implied
directly from Theorem 1. For a formal proof the reader is
referred to Theorem 4 in [17].

VIII. THE BOTTLENECK IDENTIFICATION ALGORITHM

Theorem 1 provides a sufficient condition for the delay
instability of traffic flows, based on the FMS from a specific
initial condition. The following algorithmic procedure, which
we term the Bottleneck Identification (BI) algorithm, tests
this condition for all initial conditions of interest.

INITIALIZATION: U = ∅
REPEAT
For every heavy-tailed traffic flow h ∈ F ,

(i) solve the FM with initial condition one for queue h,
and zero for all other queues;

(ii) find the set of queues that become positive at any point
before the FMS drains, Uh;

(iii) set U = U ∪ Uh;
END

Clearly, upon termination of the algorithm, all
queues/flows included in U are delay unstable.

Below we present concrete examples that illustrate the use
of the BI algorithm.

3×3 Switch

Consider a 3 × 3 input-queued switch under the Max-
Weight policy. This is a system of 9 queues indexed by
(i, j), i = 1, . . . , 3, j = 1, . . . , 3, with index i representing
the input port and index j the output port of the switch.
A schedule is a matching between input and output ports.
Namely, the set of schedules is as follows:

S =
{{

(1, 1), (2, 2), (3, 3)
}
,
{

(1, 1), (2, 3), (3, 2)
}
,{

(1, 2), (2, 1), (3, 3)
}
,
{

(1, 2), (2, 3), (3, 1)
}
,{

(1, 3), (2, 1), (3, 2)
}
,
{

(1, 3), (2, 2), (3, 1)
}}
.

The 3 × 3 input-queued switch is a network with non-
disjoint schedules, so an explicit characterization of its delay
stability regions is not available.

Consider the set of arrival rates λ11 = 0.1, λ12 = 0.1,
λ13 = 0.1, λ21 = 0.1, λ22 = 0.38, λ23 = 0.4, λ31 = 0.1,
λ32 = 0.42, and λ33 = 0.44. Note that this set of rates
satisfies

∑
i λij < 1 and

∑
j λij < 1, so that the system is

stable under the Max-Weight policy [19].
We assume that traffic flow (1, 1) is heavy-tailed, while

all other traffic flows are light-tailed. We are interested in
the delay stability of flows (2,2), (2,3), (3,2), (3,3); these
are the flows that do not conflict with flow (1,1). Figure 2
shows the FMS for the considered set of rates, and with initial
condition one for queue (1,1), and zero for all other queues
(we present only the queues of interest). The lengths of all
queues of interest become positive before the FMS drains,
so according to Theorem 1 they are delay unstable.

3×3 Grid Network

Consider the 3×3 grid network depicted in Figure 3 under
the Max-Weight policy. This system represents a wireless
network with interference constraints. Queues are identified
with links and are indexed by i = 1, . . . , 12. As soon as a
packet is transmitted through the respective wireless link,
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Fig. 2. The FMS of a 3 × 3 switch, with initial condition one for queue
(1,1) and zero for the other queues, and arrival rates λ11 = 0.1, λ12 = 0.1,
λ13 = 0.1, λ21 = 0.1, λ22 = 0.38, λ23 = 0.4, λ31 = 0.1, λ32 = 0.42,
λ33 = 0.44.

it exits the system. We assume the two-hop interference
constraint model, i.e., if a wireless link is transmitting, all
links in a two-hop distance must idle. This implies that the
set of schedules is as follows:

S =
{
{1, 11}, {1, 12}, {1, 10}, {2, 8}, {2, 11},

{2, 12}, {3, 5}, {3, 10}, {3, 12}, {4},

{5, 8}, {5, 11}, {6}, {7}, {8, 10}, {9}
}
.

Again, this is a network with non-disjoint schedules, so an
explicit characterization of its delay stability regions is not
available.

Fig. 3. A 3×3 grid wireless network with two-hop interference constraints.

Consider the set of arrival rates λ1 = 0.01, λ2 = 0.02,
λ3 = 0.03, λ4 = 0.04, λ5 = 0.05, λ6 = 0.06, λ7 = 0.07,
λ8 = 0.08, λ9 = 0.09, λ10 = 0.1, λ11 = 0.11, and λ12 =
0.12. It can be verified that this set of rates is in the stability
region of the system.

We assume that traffic flow 1 is heavy-tailed, while all
other traffic flows are light-tailed. We are interested in the
delay stability of traffic flows 10, 11, and 12, since these
flows do not conflict with flow 1. Figure 4 shows the FMS
for the considered set of rates, and with initial condition
one for queue 1, and zero for all other queues (we present
only the queues of interest). The lengths of all queues of
interest become positive before the FMS drains, so according

to Theorem 1 they are delay unstable.

Fig. 4. The FMS of the 3×3 grid network of Figure 3, with initial condition
one for queue 1 and zero for the other queues, and arrival rates λ1 = 0.01,
λ2 = 0.02, λ3 = 0.03, λ4 = 0.04, λ5 = 0.05, λ6 = 0.06, λ7 = 0.07,
λ8 = 0.08, λ9 = 0.09, λ10 = 0.1, λ11 = 0.11, λ12 = 0.12.

IX. DISCUSSION

This paper built on, and extended the results of, our
earlier work [18]. More specifically, we studied a single-hop
switched queueing network with a mix of heavy-tailed and
light-tailed traffic, and carried out a delay stability analysis
of the Max-Weight policy. Our goal was to showcase the
use of fluid approximations in showing both delay insta-
bility (combined with renewal theory) and delay stability
(combined with stochastic Lyapunov theory). Moreover, we
applied these results to get a sharp characterization of the
delay stability regions of the Max-Weight policy in networks
with disjoint schedules, generalizing the findings of [18].

We conclude the paper with some brief remarks.
The use of fluid approximations in delay analysis of

queueing systems with heavy-tailed traffic is not new. For
example, Baccelli et al. [2] have used fluid models to
determine the precise tail asymptotics of the steady-state
maximal dater (i.e., the time to clear all customers present
at time t, assuming arrivals are stopped from that point on,
in the limit as t goes to infinity) of generalized Jackson
networks with subexponential service times. The tail asymp-
totics are determined through a sample path construction
of the maximal dater, which preserves crucial monotonicity
properties of Jackson networks. In contrast, our approach is
based on renewal theory, which on one hand does not provide
as refined results (moment bounds instead of the precise
asymptotics), but on the other hand does not rely on any
special structure, besides the regenerative property, making
it easier to apply.

Theorems 1 and 2 are stated and proved in the context
of a single-hop switched queueing network under the Max-
Weight policy. However, a closer look at their proofs reveals
that the properties that we are really leveraging are:

(i) the existence of a fluid limit;
(ii) the uniqueness of the fluid model solution;
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(iii) the existence of a suitable Lyapunov function for the
fluid model.
Thus, Theorems 1 and 2 can be easily extended to any
Markovian queueing system for which properties (i)-(iii)
hold. Regarding properties (i) and (ii), which would allow
the generalization of Theorem 1, one could potentially take
advantage of the extensive literature on fluid approximations
that has developed over the last 20 years. Proving property
(iii), though, brings up several questions: given a queueing
system, is a there a systematic and efficient algorithm for
constructing a Lyapunov function? And even if there exists
such an algorithm, can we ensure that the Lyapunov function
is piecewise linear and nonincreasing in the lengths of
the heavy-tailed queues? The undecidability results in [10]
suggest that the answers to the above questions could very
well be negative in the general case. So, in order to extend
Theorem 2, one would probably have to restrict to systems
with special structure.

In Theorem 4 we showed that, in every network with
disjoint schedules that receives heavy-tailed traffic and op-
erates under the Max-Weight policy, there exists an arrival
rate vector in the corresponding stability region for which all
flows are delay unstable. We conjecture that the same is true
for every single-hop switched queueing network, i.e., with,
possibly, overlapping schedules. Moreover, the rate vectors
of interest are always close to certain boundaries of the
stability regions, suggesting “heavily loaded” systems. Thus,
at a conceptual level, our result is in sharp contrast to the
asymptotic optimality of the Max-Weight policy in the heavy-
traffic regime [25]. The latter result, of course, concerns
the diffusion-scaled queue-length processes, whereas our
findings apply to the unscaled processes.

Finally, we conjecture that, for the Max-Weight policy,
the BI algorithm identifies all delay unstable traffic flows
in the network, except, possibly, for the case of arrival rate
vectors on the boundaries of delay stability regions. A closer
look at the proof of Theorem 3 reveals that this conjecture is
true for networks with disjoint schedules. The general case is
expected to be more challenging, since certain monotonicity
properties of networks with disjoint schedules no longer hold.
However, affirmative resolution of this conjecture would
reduce the problem of delay stability analysis to solving (per-
haps numerically) a system of ordinary differential equations
from certain initial conditions.

REFERENCES

[1] F. Baccelli, S. Foss (2004). Moments and tails in monotone-separable
stochastic networks. The Annals of Applied Probability, 14(2), pp. 612-
650.

[2] F. Baccelli, S. Foss, M. Lelarge (2005). Tails in generalized Jackson
networks with subexponential service-time distributions. Journal of
Applied Probability, 42(2), pp. 513-530.

[3] D. Bertsimas, D. Gamarnik, J.N. Tsitsiklis (2001). Performance of mul-
ticlass Markovian queueing networks via piecewise linear Lyapunov
functions. The Annals of Applied Probability, 11(4), pp. 1384-1428.

[4] S. Borst, M. Mandjes, M. van Uitert (2003). Generalized processor
sharing with light-tailed and heavy-tailed input. IEEE/ACM Transac-
tions on Networking, 11(5), pp. 821-834.

[5] O. Boxma, Q. Deng, B. Zwart (2002). Waiting-time asymptotics for
the M/G/2 queue with heterogeneous servers. Queueing Systems, 40(1),
pp. 5-31.

[6] O. Boxma, B. Zwart (2007). Tails in scheduling. Performance Evalu-
ation Review, 34(4), 13-20.

[7] D. Down, S.P. Meyn (1997). Piecewise linear test functions for stability
and instability of queueing networks. Queueing Systems, 27(3-4), pp.
205-226.

[8] D. Ersoz, M. Yousif, and C. Das (2007). Characterizing network traffic
in a cluster-based, multi-tier data center. In: Proceedings of the 27th

International Conference on Distributed Computing Systems.
[9] M. Fisher, A. Raman (1996). Reducing the cost of demand uncertainty

through accurate response to early sales. Operations Research, 44(1),
pp. 87-99.

[10] D. Gamarnik, D. Katz (2009). On deciding stability of multiclass
queueing networks under buffer priority scheduling policies. The
Annals of Applied Probability, 19(5), pp. 2008-2037.

[11] N. Gans, G. van Ryzin (1997). Optimal control of a multi-class, flexible
queueing system. Operations Research, 45(5), pp. 677-693.

[12] A. Ganti, E. Modiano, J.N. Tsitsiklis (2007). Optimal transmission
scheduling in symmetric communication models with intermittent
connectivity. IEEE Transactions on Information Theory, 53(3), pp.
998-1008.

[13] B. Hajek (1982). Hitting-time and occupation-time bounds implied by
drift analysis with applications. Advances in Applied Probability, 14(3),
pp. 502-525.

[14] K. Jagannathan, M.G. Markakis, E. Modiano, J.N. Tsitsiklis (2012).
Queue-length asymptotics for generalized Max-Weight scheduling in
the presence of heavy-tailed traffic. IEEE/ACM Transactions on Net-
working, 20(4), pp. 1096-1111.

[15] P.R. Kumar, T. Seidman (1990). Dynamic instabilities and stabilization
methods in distributed real-time scheduling of manufacturing systems.
IEEE Transactions on Automatic Control, 35(3), pp. 289-298.

[16] S.T. Maguluri, R. Srikant, L. Ying (2012). Stochastic models of load
balancing and scheduling in cloud computing clusters. In: Proceedings
of the 31st IEEE Infocom Conference.

[17] M.G. Markakis (2013). Scheduling in switched queueing networks with
heavy-tailed traffic. PhD Thesis, Massachusetts Institute of Technology.

[18] M.G. Markakis, E. Modiano, J.N. Tsitsiklis (2013). Max-Weight
scheduling in queueing networks with heavy-tailed traffic. IEEE/ACM
Transactions on Networking, 22(1).

[19] N. McKeown, A. Mekkittikul, V. Anantharam, J. Walrand (1999).
Achieving 100% throughput in an input-queued switch. IEEE Trans-
actions on Communications, 47(8), pp. 1260-1267.

[20] M.J. Neely (2008). Order optimal delay for opportunistic scheduling
in multi-user wireless uplinks and downlinks. IEEE/ACM Transactions
on Networking, 16(5), pp. 1188-1199.

[21] K. Park, W. Willinger (2000). Self-similar network traffic: an overview.
In: Self-Similar Network Traffic and Performance Evaluation, Wiley
Inc.

[22] A. Rybko, A. Stolyar (1992). Ergodicity of stochastic processes de-
scribing the operation of open queueing networks. Problemy Peredachi
Informatsii., 28(3), pp. 3-26.

[23] D. Shah, J.N. Tsitsiklis, Y. Zhong (2010). Qualitative properties of α-
weighted scheduling policies. In: Proceedings of the ACM Sigmetrics
2010 Conference.

[24] D. Shah, D. Wischik (2012). Switched networks with maximum weight
policies: fluid approximation and multiplicative state space collapse.
The Annals of Applied Probability, 22(1), pp. 70-127.

[25] A. Stolyar (2004). Maxweight scheduling in a generalized switch: state
space collapse and workload minimization in heavy traffic. The Annals
of Applied Probability, 14(1), pp. 1-53.

[26] L. Tassiulas, A. Ephremides (1992). Stability properties of constrained
queueing systems and scheduling policies for maximum throughput
in multihop radio networks. IEEE Transactions on Automatic Control,
37(12), pp. 1936-1948.

[27] J.N. Tsitsiklis (1987). Analysis of a multiaccess control scheme. IEEE
Transactions on Automatic Control, 32(11), pp. 1017-1020.

[28] V.J. Venkataraman, X. Lin, L. Ying, S. Shakkottai (2010). On schedul-
ing for minimizing end-to-end buffer usage over multihop wireless
networks. In: Proceedings of the 29th IEEE Infocom Conference.


