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Abstract—The 2-hop relay algorithm and its variants have been
attractive for ad hoc mobile networks, because they are simple
yet efficient, and more importantly, they enable the capacity and
delay to be studied analytically. This paper considers the 2-hop
relay with f -cast (2HR-f ) under the independent and identically
distributed (i.i.d.) mobility model, a general 2-hop relay algorithm
that allows one packet to be delivered to at mostf distinct relay
nodes. The 2HR-f algorithm covers the available 2-hop relay
algorithms (f = 1,

√

n) as special cases. Closed-form analytical
models rather than order sense ones are developed for the 2HR-
f algorithm with a careful consideration of important medium
contention and queuing delay issues, which enable an accurate
delay and capacity analysis to be performed for ad hoc mobile
networks employing 2HR-f . Based on our models and some
typical settings of f (say, f = 1,

√

n), one can easily derive the
corresponding order sense results.

I. I NTRODUCTION

Since the seminal work of Grossglauser and Tse (2001) [1],
the 2-hop relay algorithm and its variants have become a class
of attractive routing algorithms for ad hoc mobile networks,
because they are simple yet efficient, and more importantly,
they enable the capacity and delay to be studied analytically.
The 2-hop relay algorithm defines two phases for packet
transmission, where in phase 1 a packet is transmitted from
its source node to an intermediate node (relay node), and then
in phase 2 the packet is transmitted from the relay node to its
destination node. Since the source node can directly transmit
a packet to its destination node every time such transmission
opportunity arises, every packet goes through at most 2 hops
to reach its destination in a 2-hop relay network.

By now, extensive order sense results of delay and capacity
have been reported to illustrate the scaling laws of 2-hop
relay ad hoc mobile networks under various mobility models.
Grossglauser and Tse (2001) [1] showed that it is possible
to achieve aΘ(1) throughput per node under i.i.d. mobility
model. Later, Gamalet al. [2] showed that theΘ(1) throughput
is also achievable under the random walk model, but which
comes at the price of aΘ(n log n) delay. Mammenet al.
[3] proved that the same throughput and delay scaling are
also achievable even with a variant of the Grossglauser-Tse
2-hop relay and a restricted mobility model. The delay and
throughput trade-off has been further widely studied under
different mobility models, like the i.i.d. mobility model [4],
hybrid random walk and discrete random direction models

[5], Brownian motion model [6], [7], and correlated mobility
model [8]. These order sense results are helpful for us to
understand the general scaling laws of delay and capacity in
a 2-hop relay ad hoc mobile network, but they tell us a little
about the real end-to-end delay and capacity of such networks.
In practice, however, the real delay and capacity results are of
great interest for network designers.

It is notable that the relay algorithms discussed above can be
regarded as the basic 2-hop relay without packet redundancy
(i.e., without redundant copies of each packet). As throughput
and delay can be traded with each other in a multi-hop way,
this trade-off can also be achieved to somewhat extent via
delivering redundant copies for each packet. Neely and Modi-
ano [9] considered a modified version of the Grossglauser-
Tse 2-hop relay algorithm for ad hoc mobile networks, and
proved that under i.i.d. mobility model it achieveO(1/

√
n)

throughput andO(
√

n) delay with exact
√

n redundancy
for each packet. Sharma and Mazumdar [10] explored the
order sense delay and capacity trade-off in ad hoc mobile
networks under random way-point mobility model and with
multiple redundancy for each packet. The idea of using packet
redundancy has also been adopted to reduce average packet
deliver delay in intermittently connected mobile networks
(ICMNs) [11]–[13].

In this paper we consider the 2-hop relay withf -cast
(2HR-f ) under i.i.d. mobility model, a general 2-hop relay
algorithm that allows one packet to be delivered to at most
f distinct relay nodes, and develop closed-form analytical
models rather than order sense ones for an accurate delay and
capacity analysis for 2HR-f -based ad hoc mobile networks.
With such closed-form models and some typical settings of
f (say,f = 1,

√
n), one can easily derive the corresponding

order sense results for delay and capacity.

The rest of the paper is organized as follows. In Section
II, we provide the network model, interference model and
mobility model considered in our analysis. Section III intro-
duces the the 2-hop relay algorithmf -cast (2HR-f ) and the
corresponding scheduling scheme. We develop the closed-form
models in Section IV to analyze the expected end-to-end delay
and capacity, and finally we conclude the paper in Section V.



II. SYSTEM MODELS

A. Network Model

We assume the network is a square region of unit area,
with n mobile nodes which are initially independently and
uniformly distributed inside the network region. The unit
square is evenly divided into

√
n × √

n cells each of which
has an area of1/n. All the n mobile nodes are independently
roaming from cell to cell, and time is assumed to be slotted
so that each node remains in its current cell for one time slot.

We consider a bi-dimensional i.i.d. mobility model, or so-
called reshuffling model in this paper. At the beginning of
each time slot, every node independently selects a destination
cell and stays in it for the whole time slot, thus the position
of each node is updated every time slot. The destination cell
is chosen uniformly and randomly among alln cells, so each
cell would be chosen with same probability1/n.

We assume a time-scale of fast mobility [8] in this paper,
i.e., the mobility of nodes is at the same time-scale as the data
transmission. Thus, only one-hop transmissions are feasible
during any single slot, and the total number of bits that can
be transmitted in a time slot is a fixed constant independent
of n. We normalize this constant to 1 here.

B. Interference Model

Similar to [1], we assume a uniform communication range
r = Θ(1/

√
n) for all nodes, and adopt the protocol model

introduced in [14] to account for interference among simulta-
neous transmissions. Suppose nodei is transmitting to nodej
at some time slott, and their Euclidean distance isdij(t).
According to the protocol model, this transmission can be
successful if and only if the following two conditions hold:

(1) dij(t) ≤ r;
(2) dkj(t) ≥ (1+∆)r for every other nodek which transmits

simultaneously, where∆ is a protocol specified guard-
factor to prevent interference.

C. Traffic Model

Similar to previous works we consider permutation traffic
patterns, in which each node is a source and at the same time
a destination of some other node. Hence there aren source-
destination pairs in the network. For convenience of expres-
sion, we useS(K) andD(K) to denote the source node and
destination node of nodeK, respectively. We further assume
a homogeneous scenario in which the traffic originating at
each node is a Poisson stream with rateλ (packets/slot). We
also assume that the packet arrives at the beginning of time
slots, and the arrival process at each node is independent of
its mobility process.

III. 2HR-f ALGORITHM AND SCHEDULING SCHEME

A. 2HR-f Algorithm

We consider a generalization of the 2-hop relay algorithm
[9] with f -cast(2HR-f ), which allows up tof (1 ≤ f ≤ √

n)
relay nodes for a single packet. As we keep one copy at the

source node, so there are at mostf + 1 copies of a single
packet to coexist in the network.

As a node can be a potential relay for any of othern − 2
flows (except the two flows originating at and destined for
itself), we assume that every node maintainsn individual
queues at its buffer, one local-queue for storing its locally
generated packets waiting for copy-distribution, one already-
sent-queue for storing packets whosef replicas have already
been distributed but reception status are not confirmed yet
(from destination node), andn − 2 parallel relay-queues for
storing packets of other flows (one queue per flow). We further
assume all packets of one flow are labeled with sequence
numbers, so that a packet can be efficiently retrieved from the
queue buffers of its source node or relay node(s) according
to its sequence number and destination information. During
each time slot, a TCP-style handshake is proceeded before
packet transmission to indicate which packet the receiver
currently needs. Now we are ready to formally define the 2HR-
f algorithm.

2HR-f Algorithm: Every time a node (sayK) gets a
transmission opportunity, it operates as follows:

Step 1: (Source-to-Destination) Check if nodeD(K) is
among its one-hop neighbors. If so, a handshake goes as
follows: D(K) first sends its currentrequest numberRN to
K, thenK comparesRN with the send numberSN(Ph) of
the packetPh at the head of its local-queue.

• If SN(Ph) > RN , K retrieves from its already-sent-
queue the packet withSN = RN , and deletes all packets
with SN ≤ RN inside the already-sent-queue;

• If SN(Ph) = RN , K sendsPh directly toD(K), moves
ahead remaining packets waiting at its local-queue and
deletes all packets withSN < RN in its already-sent-
queue;

• If SN(Ph) < RN (thenRN = SN(Ph) + 1), K sends
the packet behindPh with the send numberequal to
RN to D(K), moves ahead remaining packets inside its
local-queue (by two packets) and empties its already-sent-
queue.

Step 2: Otherwise,K flips a unbiased coin, and choose
either one from the following:

• (Source-to-Relay)K randomly selects one node as relay
from its current one-hop neighbors, and a similar hand-
shake between them is proceeded to indicate whether the
selected node, sayR, has received one copy ofPh, i.e.,
the packet for which nodeK is distributing copies. If so,
K remains idle for this time slot. Otherwise,K sends
a copy ofPh to R, and checks whetherf copies have
already been delivered out forPh, if yes,K moves ahead
its local-queue and putPh to the end of its already-sent-
queue. At the relay node,R addsPh to the end of its
relay-queue dedicated to nodeD(K).

• (Relay-to-Destination)K acts as a relay and randomly
selects one node as receiver from its one-hop neighbors.
The selected receiver, sayV , sends itsrequest number
RN(V ) to K, and K checks whether a packet with



SN = RN(V ) exists inside its relay-queue destined
for V . If yes, K sends it directly toV , and deletes all
packets withSN ≤ RN(V ) from its relay-queue forV .
Otherwise,K remains idle for this time slot.

Notice that in the above two steps, every time a node moves
ahead its local-queue by one packet (or receives a packet
destined for itself), it increases itssend number(or request
number) by one.

Remark 1:For any packet, each copy travels at most two
hops. Actually only the copy (at some relay) that reaches
the destination first will travel two hops, the otherf copies
will be flushed out from their queue buffers after receiving
confirmation from the destination node. Thus, the queue size
of the already-sent-queue andn−2 relay-queues will not grow
indefinitely. According to therequest numbersequence, all
packets are received in order by their destinations.

Remark 2: It takes at mostf +1 transmission opportunities
for each packet to reach its destination, and nearly every
packet received at its destination will consume exactf + 1
transmission opportunities. There are only two scenarios in
which a packet will take less thanf + 1 transmissions, (1)
node D(K) receives this packet directly from nodeK, (2)
D(K) first receives this packet from one of its relay nodes
and then crashes intoK (to notify K to stop delivering out
remaining copies). Notice that either of these two scenarios
should happen beforeK finishes the distribution of allf
copies, which happens with a vanishingly small probability
(as we show later). Thus, in the actual case, asn scales up
every packet takesf +1 transmissions to reach its destination
with high probability.

B. A Scheduling Scheme

As we assume a cell-partitioned network and a time slotted
system, we make the following restrictions on the transmis-
sions during each time slot:

• For each time slot, we allow at most one transmitter inside
each cell. If there are more than one nodes inside a cell,
then a transmitter is chosen randomly.

• If some node, sayK, wins the transmission opportunity
in its cell for the current time slot, it can only send
packets to the nodes in the same cell or its eight adjacent
cells. Two cells are said to be adjacent if they share a
common points. Thus, the maximum distance between
a transmitter and receiver is

√

8/n, and we set the
communication range asr =

√

8/n.
• Every time a node gets a transmission opportunity, it

follows 2HR-f algorithm.

As the wireless transmissions interfere with each other, only
cells that are sufficiently far away could simultaneously trans-
mit without interfering each other. In our scheme we allow a
receiver to be selected among any of the eight adjacent cells,
so the maximum number of cells that support a transmitting
node during every time slot is finite. Toward this end, similar
to the “equivalence class” in the [15] we define here the
“transmission-group” of cells such that one node in each cell

Fig. 1. An example of a transmission-group of cells withα = 4. The shaded
cells all belong to the same transmission-group.

of the transmission-group can transmit simultaneously without
interfering with one another.

Transmission-group: A transmission-group is defined as a
subset of cells, which keeps a vertical and horizontal distance
of exactly some multiple of an integer number of cells away.
We denote such integer number byα. The shaded cells in
Fig. 1 represent one such transmission-group.

Now we are able to determine the value ofα for our
scheduling scheme. Suppose during some time slot, nodeV is
scheduled to receive a packet. Then, according to the defini-
tion of “transmission-group”, the closest another simultaneous
transmitting node (other thanV ’s transmitter), sayK, is at a
distance of at least(α − 2)/

√
n away fromV . The condition

that K will not interfere the reception atV is that,

(α − 2)/
√

n ≥ (1 + ∆) · r

substitutingr =
√

8/n, we obtain that

α ≥ (1 + ∆)
√

8 + 2

As α is an integer, we takeα = ⌈(1+∆)
√

8⌉+2, where⌈x⌉
returns the smallest integer not smaller thanx.

Notice that there are only a finite number of transmission-
groups, i.e.,α2, and each cell belongs to an individual
transmission-group. If all transmission-groups become ac-
tive (have transmission opportunity) alternatively, theneach
transmission-group will be active in everyα2 time slots.
Therefore, each cell is activated in everyα2 time slots.

C. Probability of Medium Contention

We show here explicitly the probability of contending for a
transmitting or receiving opportunity.

Lemma 1:For any time slot and an active cell in the slot,
as n approaches infinity, its contention probability for trans-
mitting opportunity approaches1− 2e−1, while its contention
probability for receiving opportunity approaches1 − e−1 −
19
2 e−9.

Proof: The proof is omitted here due to space limit. Please
refer to [16] for details.



IV. EXPECTEDEND-TO-END DELAY AND THROUGHPUT

CAPACITY

Before presenting our main results, we first establish the
following lemma.

Lemma 2:For a time slot and a given nodeK in network
adopting the 2HR-f algorithm and our scheduling scheme
introduced in Section III, we denote byp1, p2 and p3 the
probability thatK conducts a packet transmission, the proba-
bility that K conducts a source-to-destination transmission and
the probability thatK conducts a source-to-relay or relay-to-
destination transmission, respectively. If we assume the local-
queue ofK always has waiting packets, then we have

p1 =
1

α2

(

1 − (1 − 1

n
)n − (1 − 9

n
)n−1

)

(1)

p2 =
1

α2

( 8

n − 1
− (1 − 1

n
)n−2(

7

n
+

1

n2
)
)

(2)

p3 =
1

α2

(n − 9

n − 1
− (1 − 9

n
)(1 − 1

n
)n−2 − (1 − 9

n
)n−1

)

(3)

Remark 3:One can easily prove thatp1 = p2 + p3, andp2

quickly approaches zero asn scales up.
Lemma 3:For a time slot and a nodeK with head packet

Ph in its local-queue. Suppose that there are alreadym (m ≤
f +1) copies ofPh in the network at the current time slot and
SN(Ph) = RN(D(K)). We usepa(m) andpc(m) to denote
the probability that the nodeD(K) will receive Ph and the
probability thatK will successfully deliver out a new copy of
Ph (if m ≤ f ) in the next time slot, respectively. Then we
have

pa(m) = p2 +
m − 1

2(n − 2)
· p3 (4)

pc(m) =
n − m − 1

2(n − 2)
· p3 (5)

The proofs of Lemma 2 and 3 are omitted here due to space
limit. Please refer to [16] for details.

Based on the above basic probabilitiespa(m) and pc(m),
we are ready to derive the overall expected end-to-end delay
and achievable throughput per node. Notice that a packet may
take at mostf +1 transmissions to travel from its source node
to the destination, we usepd(m) to denote the probability
that it takesm transmissions to reach its destination,m =
1, ..., f+1. From Remark 2 we can easily see that

∑f

i=1 pd(m)
is much less thanpd(f + 1). Thus, to simplify the analysis,
we make the following assumption:

Assumption 1:We assume that for each packet waiting in
the local-queue, exactf copies of it are delivered to distinct
relay nodes before its destination receives the packet.

Obviously, the mean end-to-end delay derived under this
assumption serves as an upper bound for the actual expected
end-to-end delay of the 2HR-f relay, as shown in the following
theorem.

Theorem 1:For a network with the 2HR-f relay, let S1

denote the time a node takes to deliver outf copies of the
head-of-line packet at its local-queue,S2 denote the time its
destination node takes to receive one of thef+1 copies,E{Te}

denote the actual expected end-to-end delay per packet, and
µ denote the per-node throughput (i.e., the network can stably
support any rateλ < µ). Then we have

µ = min{ 1

E{S1}
,

1

E{S2}
} (6)

E{Te} ≤ E{S1}
1 − ρ1

+
E{S2}
1 − ρ2

− ρ2

2(1 − ρ2)
(7)

E{S1} =
2(n − 2)

p3

f
∑

m=1

1

n − m − 1
(8)

E{S2} =
1

p2 + f
2(n−2) · p3

(9)

whereρ1 = λE{S1} andρ2 = λE{S2}.
Proof: Notice that the expected valueE{S1} of S1 is

given by

E{S1} =

f
∑

m=1

1

pc(m)
(10)

After substituting (5) into (10), the (8) follows. Similarly, the
expected valueE{S2} of S2 is determined as

E{S2} =
1

pa(f + 1)
(11)

After substituting (4) into (11), the (9) follows.
The proof of (7) is similar to the derivation of the standard

Pollaczek-Khinchinformula for mean waiting time in an
M/G/1 queue. We consider some tagged packet arriving to
the local-queue of nodeK at the beginning of a time slot,
and useW1 to denote the waiting time of this packet in the
local-queue before getting service (i.e., to be replicatedand
delivered tof distinct relays), hence we have

W1 =

Lq
∑

i=1

Xi + R (12)

where variableR is the residual service time,Lq is the number
of packets waiting in the queue, andXi is the service time
of the ith packet. The service times{Xi} are independent,
and their expected values are upper bounded byE{S1}. Let
ρr represent the real probability that the node is busy with
delivering copies of some packet, andE{X} represent the
actual mean time the node takes to serve a generic packet, so
we haveR = ρrE{X} andρr = λE{X}. Thus,ρr ≤ ρ1 and
R ≤ ρ1E{S1}. Taking expectations of the both sides of (12)
yields

E{W1} ≤ E{Lq}E{S1} + ρ1E{S1}
= λE{W1}E{S1} + ρ1E{S1}
= ρ1E{W1} + ρ1E{S1}

(13)

We then have

E{W1} ≤ ρ1E{S1}
1 − ρ1

(14)

whereλ < 1/E{S1} andρ1 = λE{S1}.



Notice that based on the Assumption 1, the whole network
can be regarded as two single-server queues in tandem, where
a packet enters the second queue as soon as itsf copies have
been delivered out (i.e., as soon as this packet finishes its ser-
vice in the first queue). As the time required to deliver out the
(m+1)th copy of this packet follows a geometric distribution
with mean1/pc(m), the service timeS1 of the first queue
can be interpreted as the sum off mutually independent and
identically distributed geometric random variables. According
to the theory of departure processes in [17], the input to the
second queuing process can be approximated by a Poisson
stream with arrival rateλ.

Recall that in the 2HR-f relay algorithm, the destination
node receives packets in order according therequest number.
Thus, after a packet enters the second queuing process, it has
to wait until its send numberequals therequest numberof its
destination node (i.e., the destination node has received all the
preceding packets). LetW2 denote such a waiting time, then
from Pollaczek-Khinchinformula we have

E{W2} =
ρ2E{S2}
1 − ρ2

− ρ2

2(1 − ρ2)
(15)

whereλ < 1/E{S2} andρ2 = λE{S2}.
When a new packet reaches the head-of-line at its local-

queue, if itsSN equals theRN of its destination node, then
the time required for the packet to reach its destination is at
mostS1 + S2. Therefore, we have

E{Te} ≤ E{W1} + E{S1} + E{W2} + E{S2} (16)

where E{Te} is the actual expected end-to-end delay per
packet under the 2HR-f relay. Substituting (14) and (15) into
(16), the (7) follows.

Remark 4:Theorem 1 provides a closed-form (rather than
order sense) results for the achievable throughput per nodeand
the expected end-to-end delay per packet in 2HR-f -based ad
hoc mobile networks. Based on Theorem 1 and some typical
settings off , one can easily derive the corresponding order
sense results. For example, by settingf = 1 one can obtain
a Θ(1/n) throughput andO(n) delay; by settingf =

√
n,

one can easily recover the order sense results (O(1/
√

n)
throughput andO(

√
n) delay) reported in Theorem 6 of [9].

Remark 5:One may also notice that when settingf = 1,
Theorem 1 results in aO(n) delay and aΘ(1/n) throughput,
which is lower than the throughput resultΘ(1) reported in
[1]. This is due to the rule of “reception in order” employed
in 2HR-f . The restriction of receiving packets according to
request numberensures that all packets arrive at the destination
in order, but it wastes the opportunities of receiving “out of
order but fresh” packets (i.e., packets withsend numberlarger
than the currentrequest numberof destination node). Thus, the
benefits of receiving all packets in order come at the price of
a reduced throughput per node.

V. CONCLUSION

We considered a 2HR-f relay algorithm for ad hoc mobile
networks under i.i.d. node mobility, which extends the classic

2-hop relay to a general setting, i.e.,f -cast. Closed-form re-
sults were developed to characterize the achievable throughput
and the expected end-to-end delay per packet in such a 2HR-
f network. With our closed-form results and some typical
settings off , one can easily derive the corresponding order
sense results, like theΘ(1/n) throughput andO(n) delay with
f = 1, and theO(1/

√
n) throughput andO(

√
n) delay with

f =
√

n.
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