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Abstract—Since the original work of Grossglauser and Tse,
which showed that mobility can increase the capacity of an ad
hoc network, there has been a lot of interest in characterizing the
delay–capacity relationship in ad hoc networks. Various mobility
models have been studied in the literature, and the delay–ca-
pacity relationships under those models have been characterized.
The results indicate that there are trade-offs between the delay
and capacity, and that the nature of these trade-offs is strongly
influenced by the choice of the mobility model. Some questions
that arise are: (i) How representative are these mobility models
studied in the literature? (ii) Can the delay–capacity relationship
be significantly different under some other “reasonable” mobility
model? (iii) What sort of delay–capacity trade-off are we likely
to see in a real world scenario? In this paper, we take the first
step toward answering some of these questions. In particular,
we analyze, among others, the mobility models studied in recent
related works, under a unified framework. We relate the nature
of delay–capacity trade-off to the nature of node motion, thereby
providing a better understanding of the delay–capacity relation-
ship in ad hoc networks in comparison to earlier works.

Index Terms—Ad-hoc networks, capacity, delay, mobility,
throughput, trade-offs, wireless.

I. INTRODUCTION

I N THIS PAPER, we study the delay and capacity trade-offs
in mobile ad hoc networks. This line of investigation started

with the seminal work of Gupta and Kumar [1], in which they
defined and studied the notion of “capacity” for wireless ad hoc
networks. Note that their notion of capacity is distinct from the
information theoretic notion of capacity studied, for example, in
[2], [3]. More precisely, unlike in information theoretic studies
of capacity, the physical layer modulation and coding scheme
was kept fixed in their work. Their main finding was that the
capacity of a random wireless network with static nodes scales
as , provided all transmissions are carried out at

the same power level. Recent works [4], [5] have shown that
a throughput of is achievable if the nodes are allowed
to exercise power control.

Note that since the system capacity is shared between
nodes, the per-node throughput scales as . Thus, each
node gets smaller and smaller throughput as the network size
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grows, thereby implying that static ad hoc networks are not
scalable. The researchers have also investigated the possible
improvement in capacity that can be achieved by adding a
relatively small number base stations [6], [7] or mobile relay
nodes [8] to a static ad hoc network.

An interesting observation was made in [9], where the au-
thors considered a mobile ad hoc network. They showed that
node mobility can significantly increase the capacity of an ad
hoc network. In fact, they showed that even constant, non-zero,
per-node throughput is achievable in case of mobile ad hoc net-
works. Traditionally, node mobility has been looked upon as a
“liability” in wireless networks. For example, in cellular net-
works, mobile nodes can move from one cell to another, thereby
necessitating a “hand-off”. This has led to significant research
on hand-off protocols (see, for example, [10]). The mobility also
has an adverse effect on the performance of traditional ad hoc
routing protocols (see, for example, [11]). The work in [9] has
shown that mobility can be an “asset”, if properly exploited.
However, delay related issues were not considered in [9].

Since both capacity as well as delay are important from
an application point of view, a significant effort has recently
been devoted within the networking research community to
understand the delay–capacity relationship in ad hoc networks.
Bansal and Liu [8] were among the first to study the delay–ca-
pacity relationship in wireless networks. They considered a
wireless network consisting of static sender-destination pairs
and mobile relays, and proposed a geographic routing scheme
that achieves a near optimal capacity and studied its delay per-
formance. Perevalov and Blum [12] studied the delay limited
capacity of mobile ad hoc networks. Their work was motivated
by the diversity coding approach given in [13].

Recent works of Neely and Modiano [14], [15], El Gamal et
al. [16], Toumpis and Goldsmith [17], Sharma and Mazumdar
[18], [19], Lin and Shroff [20], and Lin et al. [21], have all
studied the delay–capacity trade-offs in mobile ad hoc net-
works. The mobility models and the network settings studied in
these works differ considerably, and so do the delay–capacity
trade-offs that are reported. The mobility models that have
been studied include the i.i.d. mobility model [14], [17], [20];
random way-point mobility model [18], [19]; Brownian mo-
bility model [18], [16], [21]; and random walk mobility model
[16], [22].

Since the network settings considered in these works are quite
different, it is difficult to single out the impact the nature of node
mobility has on the delay–capacity trade-off. For example, both
[14] and [20] study the i.i.d. mobility model, but the trade-offs
reported in these works are quite different. In particular, in [14],
the authors consider a cell partitioned network setting and show
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that the trade-off: , where is the average packet
delay and is the average per-node throughput, is both neces-
sary as well as sufficient under their setting. Under a less re-
strictive network setting in [20], the delay–capacity trade-off
is shown to be: . Thus, we see that the
delay–capacity trade-off depends not only on the nature of the
node mobility, but also on the network setting.

The main insight we provide in this paper1 is that there is a
critical value of delay (henceforth denoted by critical delay),
below which, the node mobility cannot be exploited for im-
proving the capacity. We also show that the critical delay de-
pends on the nature of node mobility, but not so much on the
network setting. In terms of the notion of critical delay (see
Section III for a rigorous definition), some recent results in the
literature can be summarized as follows:

• The critical delay under the Brownian motion model and
random walk model is roughly 2 (see [21], [22]).

• The critical delay under the random way-point mobility
model is roughly (see [19]).

• The critical delay under the i.i.d. mobility model is
(see [20]).

Observing the above results, it is natural to ask: (i) How rep-
resentative are the above mentioned mobility models? (ii) Can
the critical delay and, in general, the delay–capacity relationship
be significantly different under some other mobility model? (iii)
What scaling for critical delay are we likely to see in a real world
scenario? This paper makes the following contributions toward
answering these fundamental questions:

• We propose and study a family of hybrid random walk
models, and show that they exhibit a continuous range of
critical delays in-between those of the i.i.d. mobility model
and random walk mobility model. In particular, for every

between 0 and 1/2, there exists a mobility model in the
family of hybrid random walk models for which the crit-
ical delay is roughly . As expected, cor-
responds to the random walk mobility model, and
corresponds to the i.i.d. mobility model.

• We propose and study a family of discrete random direc-
tion models exhibiting a continuous range of critical de-
lays in-between those of the random way-point mobility
model and the Brownian mobility model. In particular, for
every between 0 and 1/2, there exists a mobility model
in the class of discrete random direction models for which
the critical delay is roughly . Note that for

and 1/2 the corresponding discrete random direc-
tion models are similar to the random way-point mobility
model and Brownian mobility model, respectively. These
models approximate the motion of nodes under commonly
used random direction models in the literature (see, for ex-
ample, [24], [25]3), and are simpler to analyze.

An interesting feature of the above classes of mobility models
is that for all mobility models in these classes, the delay under

1Most of the material in this paper appears in [23].
2Note that in [21], the results are stated in terms of the variance parameter

� (n). We have set � (n) = 1=n for the sake of easy comparison with the
other results.

3In [25], such models are referred to as random walk models.

the 2-hop relaying scheme is roughly ; which is in line
with the other mobility models considered in the literature. Our
results therefore show that the mobility models considered in
the literature are in some sense extreme: they either exhibit the
smallest critical delays (i.i.d. mobility model and random way-
point mobility model) or the largest critical delays (Brownian
motion model and random walk mobility model), among the
mobility models in their respective classes.

The rest of the paper is organized as follows. We introduce
the hybrid random walk models and discrete random direction
models, and discuss our system model in Section II. We define
the notions of critical delay and 2-hop delay in Section III.
We study the critical delay and 2-hop delay under the hybrid
random walk models in Section IV, and under the discrete
random direction models in Section V. A discussion on the
implications of our results for large mobile ad hoc networks is
provided in Section VI. Finally, we end this paper with some
concluding remarks in Section VII.

II. THE MODEL

A. System Model

We consider an ad hoc network consisting of mobile nodes,
distributed uniformly on a unit square . We consider a homoge-
neous scenario in which each node generates traffic at the same
rate. Further, we assume that each node, say node , generates
traffic for exactly one other node, say node , and that the
mapping is bijective. We also assume that the packet
arrival process at each node is independent of the node mobility
process.

The communication between any source-destination pair can
possibly be carried out via multiple other nodes, acting as relays.
That is, a source node can, if possible, send a packet directly to
its destination node; or, the source node can forward the packet
to one or more relay nodes; the relay nodes can also forward
the packet to other relay nodes; and finally, a relay node or the
source node itself can deliver the packet to its destination node.

For simplicity, we assume that the success or failure of a
transmission between a pair of nodes is governed by the protocol
model of [1]. Let be the bandwidth of the system in bits per
second. Let denote the position of node , for ,
at time . Under the protocol model, node can communicate
directly with node at a rate of bits per second at time , if
and only if, the following interference constraint is satisfied [1]:

(1)

for every other node that is simultaneously transmitting.
Here is some positive number; and is the distance
between points , defined as
follows:

where is the set of points
, and is defined simi-

larly (the motivation for this definition will become clear in
Section II-B).



SHARMA et al.: DELAY AND CAPACITY TRADE-OFFS IN MOBILE AD HOC NETWORKS: A GLOBAL PERSPECTIVE 983

Note that for a packet to be successfully received by node ,
the above interference constraint must be satisfied over the en-
tire duration of the packet transmission from node to node .

We use the following definition of the throughput: Let
be the total number of bits delivered end-to-end for destination
up to time , then the throughput of the system is given by

Next, we describe our mobility models, starting with the hy-
brid random walk models.

B. Hybrid Random Walk Models

These models are parameterized by a single parameter , that
takes values between 0 and 1/2. The unit square is divided into

squares of area each (henceforth referred to as cells),
resulting in a discrete torus of size . Each cell is then
further divided into square subcells of area each,4

as shown in Fig. 1. Time is divided into slots of equal dura-
tion. At each slot a node is assumed to be in one of the sub-
cells inside a cell. Initially, each node is equally likely to be in
any of the subcells, independent of the other nodes. At the
beginning of a slot, a node jumps from its current subcell to
one of the subcells in an adjacent cell, chosen in an uniformly
random fashion. By adjacent cell we mean the following: Let

, be a numbering of the cells of
the 2-D torus, as shown in Fig. 2. The cells adjacent to cell
are the cells , , , and , where
the addition and subtraction operations are performed modulo

. Note that for , the above mobility model is essentially
the i.i.d. mobility model considered in [14], [17], [20]; and for

, it is the same as the random walk model of [16].
Next, we describe the random direction models (see, for ex-

ample, [24], [25]).

C. Random Direction Models

These models are parameterized by a single parameter , that
takes values between 0 and 1/2. The initial position of each node
is assumed to be uniformly distributed within . The motion of
each node under these models is independent and identical to
the other nodes. The motion of a node is divided into multiple
trips. At the beginning of a trip, the node chooses a direction
uniformly between , and moves a distance of in that
direction, with a speed ; and the process repeats itself. Note
that we are assuming a complete wrap-around of , resulting in
a unit torus (see Fig. 3).

Remark 1: In the rest of the paper, we consider
, as in [19]. This particular choice of node speed is

motivated by the fact that we keep the network area fixed and
let the number of nodes increase to infinity, which means that
the average neighborhood size scales as . In order to
account for this “shrinking” of the neighborhood size, we scale
the node velocity as . Note that alternatively one

4Throughout this paper we ignore the issues pertaining to n ; n not
being perfect squares.

Fig. 1. The division of unit square into cells and subcells; and the motion of a
node under a hybrid random walk model.

Fig. 2. A numbering of cells on a 2-D torus.

could scale the area of the network in proportion to , while
keeping the velocity of the nodes fixed.

Next, we describe the discrete random direction models, that
we study in this paper. As discussed before, these models ap-
proximate the motion of the nodes under the random direction
models, and are simpler to analyze.

D. Discrete Random Direction Models

These models, like the random direction models, are param-
eterized by a single parameter , which takes values between 0
and 1/2. The unit square is divided into squares of area

each (henceforth referred to as cells), resulting in a dis-
crete torus of size .

Time is divided into slots of equal duration. At the beginning
of a slot, each node jumps from its current cell to an adjacent
cell, chosen uniformly from within the set of adjacent cells. The
motion of a node during the slot is as follows: The node chooses
start point and an end point uniformly from within the current
cell. During the slot, the node moves from the start point to the
end point. In order to keep the duration of all slots the same, the
speed of the node is set in proportion to the distance between
the start point and end point.

In view of Remark 1, the duration of a slot should be
. In order to be able to compare these models

with the Brownian motion model of [18], [21], we consider
, where is the variance parameter of the Brownian

motion model, as defined in [18], [21]. Note that with the above
choice of and , each node moves an average distance of

in unit time, under all these models. Also observe
that under these settings, the discrete random direction model
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Fig. 3. An example motion path of a node under the random direction model.

with degenerates into the random walk model, which
is the discrete time version of the Brownian motion model.

III. PRELIMINARIES: CRITICAL DELAY, 2-HOP DELAY,
SCHEDULING SCHEMES

In this section, we build the platform required for the study
of critical delay in subsequent sections. We first start by pro-
viding a rigorous definition of the critical delay and motivating
its study.

It is now well known that the per-node throughput capacity
of static ad hoc networks scales as , with the capacity
achieving scheme being the famous multi-hop relaying scheme.
Grossglauser and Tse [9] showed that a constant throughput per-
node can be achieved under any stationary and ergodic mobility
model which preserves the uniform distribution of nodes at all
times. The delay performance of the capacity achieving 2-hop
relaying scheme of [9] has been studied in many recent works
[14], [16], [18]–[20], [22], and the 2-hop relaying scheme has
been shown to incur an average delay of about under many
different mobility models. Alternative schemes that provide a
throughput in between that of multi-hop relaying and 2-hop re-
laying have also been studied in the literature, under various mo-
bility models. The objective of these schemes is to provide a
better delay performance than the 2-hop relaying scheme at the
cost of some sacrifice in the throughput capacity. An important
quantity to study in this respect is what we call the critical delay,
which we next define:

Definition 1: Let be the class of scheduling and relaying
schemes under consideration. For , let , be the
average delay and per-node throughput, respectively, under
scheme . The critical delay for the class of schemes , denoted
by , is the minimum average delay that must be tolerated
under a given mobility model in order to achieve a per-node
capacity of , that is,

(2)

Remark 2: The requirement of capacity in the
above definition is to ensure that the asymptotic throughput is
above that of static ad hoc networks.

Remark 3: Each scheme in the class of schemes is actually
sequence of schemes , where is the scheme used with
nodes in the network. Similarly, and are also sequences
rather than numbers. The infimum in (2) should therefore be
interpreted as a sequence of infimums, one for each .

Remark 4: From the above definition, it is clear that the larger
class is, the smaller will be the critical delay for . Ideally,
one would like the class to include all possible scheduling
schemes. In that case, if the delay that can be tolerated is smaller
than the critical delay for a given mobility model, then one
cannot exploit the node motion under that mobility model to in-
crease the throughput capacity (in order sense) beyond its value
under static conditions.

Henceforth, we will denote by 2-hop delay, the delay under
the 2-hop relaying scheme. Observe that the delay–capacity
trade-off exists for delay values that are greater than the critical
delay, and smaller than the 2-hop delay. Next, we introduce
two key notions: first hitting time and the first exit time, which
will be used for studying the 2-hop delay and critical delay,
respectively.

We start with some notation. Let denote the set of
points within such that . Let denote the po-
sition of node at time , under some arbitrary mobility model.
Note that the time index could either be continuous or discrete,
depending on the mobility model. We are now ready to define
the notion of first exit time:

Definition 2 (First Exit Time): Let . The first exit
time of , denoted by , is given by

It should be clear from the above definition that the statistical
properties of the first exit time do not depend on the choice of

or node . The notion of first exit time is well studied in the
mathematics literature, under a variety of contexts. Our interest
in notion of exit time stems from the fact that it has a close
connection with the critical delay, which will be exploited in
the subsequent sections.

We will next define the notion of first hitting time. In our case,
we find it more convenient to define it in discrete time. In order
to do so, we need some more notation. Let be a Markov
chain taking values in , and with a stationary distribution of

. We have the following definition:
Definition 3 (First Hitting Time): The first hitting time for the

set of states is given by

with being distributed according to .
Again, we would like to point out that the notion of first hit-

ting time has been widely studied in the mathematics literature,
under many different contexts. As will be discussed in subse-
quent sections, the first hitting time has a close connection with
the 2-hop delay as well as the critical delay. This connection
has been exploited in several recent works for estimating the
2-hop delay under various mobility models (see, for example,
[19], [21]).

Next, we recall the result concerning the first hitting time for
a single state in case of a 2-D torus of size (for a proof
see, for example, [21]).

Lemma 1: Let denote the first hitting time for a single state
on a 2-D torus of size , then .

The above result will be used quite often in analysis in sub-
sequent sections.
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We now define the class of scheduling schemes that we study
in this paper. From the above discussion, it is clear that for the
purpose of estimating the critical delay, one should allow for
as many scheduling schemes as possible. We limit our study to
scheduling schemes that satisfy the following assumption:

Assumption A:
• Only the source node can initiate a replication; i.e., the

relay nodes holding a packet do not initiate a replication.
We now elaborate on the notion of replication. By replication
we mean packet duplication; i.e., creating redundant copies of a
packet. This is different from multi-hop relaying, where a single
copy of each packet exists in the network. It is important to note
that the notions of replication and relaying are different, even
though both involve forwarding packets to other relay nodes.
To understand this, suppose node decides to replicate a packet
at node ; then node can either transmit the packet directly
to node ; or use multi-hop relaying, where the packet reaches
node through multiple intermediate nodes. Note that, if asked
by node , the intermediate nodes may also keep a copy of the
packet with them, and in that case, all of them are said to receive
the packet due to the same replication decision initiated by node
. In this example, although both node and the other interme-

diate nodes forward the packet to other nodes, their roles are
different. Node is the one that initiates the replication, while
the intermediate nodes passively follow the instructions of node
. Thus, we see that Assumption A only prohibits relay nodes to

initiate replication and, in particular, multi-hop relaying is al-
lowed under Assumption A.

We also allow immediate capture of the destination node
using multi-hop relaying or long range wireless broadcast, at
any time during the replication process. Note that by capture of
the destination node we mean successful delivery of a packet
to the destination node. Although we allow for other less intu-
itive alternatives, in a typical scheduling scheme a successful
capture usually occurs when a relay node holding the packet
comes within a small area around the destination node, so
that fewer resources are needed to forward the packet to the
destination node. For example, a relay node could enter a disk
of a certain radius around the destination node, or a relay node
could enter the same cell as the destination node. We call such
an area the capture neighborhood. The purpose of replication
is to reduce the time before a successful capture occurs (since
with more nodes holding the packet, the likelihood of one of
them capturing the destination node sooner is higher).

We use the word “immediate” to emphasize that capture can
be carried out (using multi-hop relaying or long range wireless
broadcast, if required) at a much faster time-scale than the node
mobility, and the same is true of the replication process as well.
The reason for this is that the packet transmission is usually
carried out at a much faster time scale than the node mobility,
and as a result the change in the position of a node during a
packet transmission is often negligible.

Note that almost all scheduling schemes studied in the liter-
ature satisfy Assumption A [9], [14], [16], [17]–[20], [22]. The
reason for this, we believe, is that in a distributed system, where
nodes make replication decisions and capture decisions without
any knowledge of the decisions at the other nodes, restricting
the replication decisions to the source node is a natural way

to control the number of copies of a packet. Note that higher
redundancy implies smaller throughput. The source node of a
packet is in the best position to control both the total number of
replications of the packet and the number of relay nodes getting
a copy of the packet with each replication. If the relay nodes
were allowed to initiate a replication, then additional coopera-
tion among the relay nodes would likely be required in order
to limit the number of replicas of a packet. An interesting ex-
ample of this would be the scheme of Bansal and Liu [8], where
the relay nodes know the location of the static destination node,
and also have some knowledge of the future direction of other
relay nodes’ movement, based on which they can cooperate to
make selective and more efficient replication toward the desti-
nation node. Whether such a scheme can be devised for an ad
hoc network with mobile source-destination pairs is still an open
research challenge.

IV. CRITICAL DELAY AND 2-HOP DELAY UNDER HYBRID

RANDOM WALK MODELS

In this section, we study the critical delay and 2-hop delay
under hybrid random walk models. We first study the critical
delay.

A. Critical Delay

Recall that the critical delay is the minimum delay that must
be tolerated in order to achieve a throughput of . Next,
we develop lower bounds on the critical delay for hybrid random
walk models. Observe that for (which corresponds to
the i.i.d. mobility model) we have a trivial lower bound of 1
on the critical delay. Further, it has been shown in [20] that a
throughput of roughly can be achieved
with a constant average delay under the i.i.d. mobility model,
which implies that 1 is also an asymptotically tight bound (in
order terms).

In the sequel, assume therefore that . The main idea
is to show that if the average delay is below a certain value,
then the packets travel an average distance of using wire-
less transmissions in order to reach their respective destination
nodes; and then to show that under the protocol model, this re-
sults in a throughput of .

Recall the mobility model described in Section II-B. Let
be the first exit time in case of a hybrid random walk model with
parameter . We start by establishing the following lower bound
on , that holds with probability approaching 1 as .
The proof is available in Appendix.

Lemma 2: For , we have

We are now ready to show that if the average delay is smaller
than , where , then, on average, the
packets must be relayed over a distance of .

Lemma 3: Suppose nodes move in accordance with the hy-
brid random walk model with parameter , for some ,
and the average delay is smaller than , then there ex-
ists such that for all , the packets are relayed
over an average distance no smaller than .
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Fig. 4. Disks A and B of radius 1/16 centered at (�1=4;�1=4) and
(1=4;1=4), respectively, that are used in the proof of Lemma 3.

Proof: Consider disks A and B of radius 1/16, as shown in
Fig. 4. Note that according to our assumption in Section II-A, the
arrival process at each node is independent of the node mobility
process. For a given number of nodes , let denote the frac-
tion of packets having their source nodes inside disk A and des-
tination nodes inside disk B, at the time of arrival. Since, under
our setting, the node distribution is uniform in the subcells at all
times, we have that as . Thus, for all

, where is chosen appropriately, we have .
Now, since the average delay is smaller than , the delay
of at least of one-half of such packets must be at most

for all . Consider one such packet; let its time of arrival
be . Using Lemma 2 and the union bound, we have that with a
probability of at least

none of the nodes in the network will exit the disk of radius
1/8 centered around its initial position at time before time

. Let and be the positions of the source node and
destination node, respectively, for which the distance between
them at time is minimized (see Fig. 4). Let the destination node
be captured by the relay node , when the latter is placed at the
point (see Fig. 4). Assuming that the total time spent in the
replication (which resulted in the relay node getting a copy
of the packet) and capture is , the contribution
of node mobility during the replication and capture phase in
carrying the packet toward its destination node is , and can
be ignored. A simple geometrical argument shows that in order
to reach the destination node, the packet must be relayed over a
distance of at least

where the term corresponds to the minimum pos-
sible distance between the source node and the destination node
at time , that is, the distance between points and ; the term

corresponds to the maximum distance the source node and

destination node can possibly travel toward each other between
time ; and the term corresponds to the max-
imum possible distance the relay node can travel in the direction
of the destination node, after receiving the packet and before
time .

By choosing large enough, we can ensure that
for , and the average distance that the

packets must be relayed over in that case would be no smaller
than

proving the Lemma.
Remark 5: Note that in the above proof we assumed that

the total time spent in the replication and capture phase is
. This assumption is motivated by the fact that

in most scheduling schemes the replication and capture are
performed using a wireless broadcast or multi-hop relaying,
and are therefore carried out at a much faster time-scale than
the node mobility. Note also that a packet might be relayed
over several hops during either the replication or capture phase,
and for technical consistency, one might then need to scale
down the packet size in order to keep the total time spent in
replication and capture phases small enough. This kind of
packet size scaling has been used quite often in the literature
(see, for example, [16], [17], [20], [22]). We now show that if
the packets are, on average, relayed over a distance of ,
then the throughput must be :

Lemma 4: Suppose that there exists a constant , inde-
pendent of , such that on average the packets are relayed over
a total distance no less than , then .

Proof: Consider a large enough time interval . The
total number of packets communicated end-to-end between
all source-destination pairs during the interval is then ,
where is the number of bits per packet; and the total
distance traveled by these packets is no smaller than .
Let be the number of times packet is relayed, and let ,
for , denote the transmission range for the th
relaying. Observe that we have

(3)

Let denote the position of node , for . Con-
sider nodes , transmitting directly to nodes and , respec-
tively, at time . Then, in order for the transmissions to be suc-
cessful under the protocol model of interference, the following
inequalities must hold at the time of transmission:

Hence,

Similarly,
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Therefore,

That is, disks of radius times the transmission range centered
at the transmitter are disjoint from each other.5 We can therefore
measure the radio resources that each transmission consumes by
the areas of these disjoint disks. Note that the area of is 1; for
each of these disks, at least 1/4 of it must lie within ; and each
relaying of a packet lasts amount of time. Thus,

(4)

By Cauchy–Schwarz Inequality,

(5)

Further, since there are at most simultaneous transmissions at
any given time in the network, we have

(6)

Using (3)–(6), we have

Hence,

Remark 6: Following the line of analysis used for proving
Theorem 4.2 in [5], it is possible to establish the above result
under the generalized physical model (see [5]), which is more
realistic than the protocol model considered in this paper.

The following result is an easy consequence of Lemmas 3 and
4, and the definition of critical delay.

Proposition 1: Under the class of scheduling schemes satis-
fying Assumption A, the critical delay for the hybrid random
walk model with parameter scales as .

We now derive an upper bound on the critical delay. Note
that the delay under a scheme that can provide a throughput of

is an upper bound on the critical delay. For
(which corresponds to the random walk mobility model) it is
claimed in [16] that a simple modification of the 2-hop relaying
scheme of Grossglauser and Tse can provide a throughput

5A similar observation is used in [1] except that they take a receiver point of
view.

capacity of , incurring a delay of . This result
immediately establishes an upper bound of on the
critical delay for . In what follows, we consider hybrid
random walk model with parameter , for ,
and show that the critical delay for the model scales as

.
The idea is to develop a scheduling and relaying scheme that

can provide a throughput of , while incurring a delay
of . In this paper, we only provide the main insight
behind such a scheme, leaving out the detailed analysis for our
future work.

Consider a scheme in which each packet is replicated at a
single relay node, which delivers the packet to the destination
node, once it is in the same cell as the destination node, possibly
using multi-hop transmission. Note that such a scheme would
require an appropriate scaling of the packet size to ensure that
the packet can be delivered to its destination node within one
slot, i.e., before the relay node and destination node can pos-
sibly move into different cells. We now provide an approximate
analysis of the delay and throughput under such a scheme. In
order to keep our discussion simple and insightful, we will ig-
nore possible delays due to queuing at the source node or the
relay nodes. More precisely, we will assume that the delay of
the packet is the time it takes for the relay node to move into
the same cell as the destination node, starting from the time it
receives the packet from the source node.

Now, consider a packet arrival at the source node. Note that
since the packet arrival process at each node is independent of
the node mobility process, the source node and destination node
are equally likely to be in any of the cells, at the time of the
packet arrival. Thus, the expected delay of the packet is of the
same order as the expected first hitting time of a single state, in
case of a random walk on a 2-D torus of size , which,
by Lemma 1, is .

Now in order to the estimate the throughput, we need to
account for the following factors: (i) the loss in throughput
due to multiple relaying of the same packet, (ii) the loss
in throughput due to the interference. Using the standard
multi-hop scheme, where each hop carries the packet over

distance,6 and noting that the packet travels

a distance of no more than using multi-hop trans-
missions, it follows that the number of times a packet must
be relayed is . The loss in throughput due
to multiple relaying is correspondingly .

Since each transmission is carried over dis-
tance, it follows easily using the protocol model that the nodes
which are within distance of the sender must
be kept quiet, resulting in a loss of throughput by a factor of

. Thus, the throughput of such a scheme would be
for .

The above discussion shows that the critical delay scales as
for a hybrid random walk model of parameter .

Although, the above arguments are heuristic, they can easily be

6Note that this is the minimum possible communication range needed for
ensuring almost sure connectivity (see [1]).
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made precise. However, in order to do so, one would need to
specify the details of the scheduling scheme, which is beyond
the scope of this paper.

Remark 7: By choosing the size of capture neighborhood ap-
propriately (e.g., ), one can show that the critical
delay is bounded by .

B. Two-Hop Delay

In this section, we analyze the 2-hop delay under hybrid
random walk models. Recall that the original 2-hop relaying
protocol of Grossglauser and Tse [9] allows only nearest
neighbor transmissions. Subsequent works [14], [16], [18],
[19], [22] have considered a slightly different version of the
protocol that allow transmissions between nodes that are either
in the same cell (of size ), or within a
distance of from each other. Note that these different
versions of the protocol are roughly the same, because when
nodes are distributed uniformly within a unit square the average
nearest neighbor distance is .

Next, we analyze the delay under 2-hop relaying protocol,
assuming that the transmissions are scheduled between nodes
that are in the same subcell. As in the analysis of critical delay,
we will ignore the queuing delays, postponing their analysis
to future work. Thus, we would mainly be interested in esti-
mating the time it takes for the relay node and destination node
to come within the same subcell, starting from two randomly
and uniformly chosen subcells in the network. Let us denote this
random time by . In subsequent analysis, we will say that two
nodes are in a “meeting” if they are currently inside the same
cell, and will denote the time between successive meetings as
the inter-meeting time.

Observe that

(7)
where is the time required by nodes to enter the same cell,
starting from their initial random and uniformly distributed
positions, henceforth denoted by first meeting time; and for

are the successive inter-meeting times. Observe that
is the probability that the nodes choose the same subcell

inside a given cell. It is easy to see that the mean first meeting
time is of the order of mean first hitting time of a single state,
in case of a random walk on a 2-D torus of size . Using
Lemma 1, it follows that . Further, the
mean inter-meeting times are of the order of mean first return
time (see, for example, [26, Chap 2, p. 2]) of a random walk on
a 2-D torus of size , which is well known to be .
We therefore have for . Taking the
expectations on both sides of (7), and performing some simple
algebraic manipulations, we obtain

Thus, for , we have ; and for ,
we have .

Remark 8: Note that our results for and are in
agreement with the corresponding results for the i.i.d. mobility

model in [14] and random walk model in [22]. Both these works
also account for the queuing delays: In [14], queuing delays at
the source nodes as well as relay nodes are considered, whereas,
[22] considers queuing delays at the relay nodes only. It is in-
teresting to see that our simplified analysis yields exact results
(in order sense) for two extreme choices of , i.e., , 1/2.

Remark 9: Observe that all hybrid random walk models
incur roughly delay under the 2-hop relaying scheme,
but their critical delays vary significantly. More precisely, as

increases the critical delay increases as well (roughly as
), shrinking the delay–capacity trade-off region. The

two extreme cases being: (i) the i.i.d. mobility model (i.e.,
), for which a per-node capacity of can be

achieved even under a constant delay constraint; and (ii) the
random walk model (i.e., ), for which the delay on
the order of or more must be tolerated in order to
achieve a per-node capacity of .

V. CRITICAL DELAY AND 2-HOP DELAY UNDER DISCRETE

RANDOM DIRECTION MODELS

In this section, we study the critical delay and 2-hop delay
under discrete random direction models. As in the previous sec-
tion, we first study the critical delay.

A. Critical Delay

Recall that the discrete random direction models are charac-
terized by a single parameter that takes values between 0 and
1/2. As in the previous section, we will first derive a lower bound
on the critical delay by lower bounding the first exit time for a
disk of radius 1/8. Let denote the first exit time for such
a disk in case of discrete random direction model with param-
eter . Let the duration of a slot be . For , one
trivially obtains a lower bound of on . For ,
we have the following result, the proof of which follows mutatis
mutandis from the proof of Lemma 2:

Lemma 5: For , we have

It is interesting to note that a similar result can also be proved
for random direction models (see the Appendix):

Lemma 6: Let denote the first exit time of a disk of
radius 1/8 for the random direction model with parameter .
For , we have

The following Lemma and Proposition can now be proved in a
similar fashion to Lemma 3 and Proposition 1, respectively.

Lemma 7: Suppose nodes move in accordance with the dis-
crete random direction model with parameter , for some

, and the average delay of packets under a scheduling scheme
is smaller than , then there exists such that
for all , the packets are, on average, relayed over a dis-
tance greater than .

Proposition 2: Under the class of scheduling schemes
satisfying Assumption A, the critical delay for a discrete
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random direction model with parameter scales as
.

Remark 10: Analogs of the results in Lemma 7 and Proposi-
tion 2 can easily be proved for random direction models using
Lemma 6.

Remark 11: Note that for , using the lower bound
of on , and arguing as in the proof of Lemma 7,
we can easily establish a lower bound of on the crit-
ical delay. Moreover, the same reasoning shows that a lower
bound of on critical delay also holds under the random
way-point mobility model. This result was earlier shown in [19],
but under a more restricted class of scheduling and relaying
schemes than in this paper.

Next, we establish an upper bound on the critical delay. Con-
sider the scheme discussed before in Section IV-A. Recall that
each packet is replicated to at most one relay node, which de-
livers it to its destination node on entering the same cell as the
destination node. An approximate analysis of the throughput
and delay under such a scheme can be carried out following
the line of analysis in Section IV-A, and it is straightforward to
show that the delay under such a scheme is ,
and the throughput is for

. Thus, for , the critical delay is bounded above
by .

Remark 12: One might think that by increasing the size of
capture neighborhood to , where , one might
be able reduce the delay below , while main-
taining a throughput of . This is, however, not pos-
sible. In fact, it can be shown that with a capture neighborhood
of size the delay becomes , and
the throughput becomes . Thus, choosing
a capture neighborhood of size for any will not
change the order of the delay. Also, by considering a capture
neighborhood of size , one can establish an upper
bound of on the critical delay.

Next, we consider . Note that for , the dis-
crete random direction model is similar to the random way-
point mobility model, with the difference being that the succes-
sive trips (moving between a chosen pair of points) that a node
makes under the discrete random direction model are indepen-
dent; whereas, there is some dependency between successive
trips in case of the random way-point mobility model (since the
next trip starts from the point where the previous trip ends). The
random way-point mobility model has been analyzed7 in [19].
In particular, a protocol that allows one to trade-off throughput
for delay has been developed in [19], and shown to achieve the
following delay–capacity trade-off:

where is the average packet delay and the is the
per-node throughput. Following the line of analysis in [19], one
can show that the same delay–capacity trade-off can also be

7Although [19] considers a slightly different version of the random way-point
mobility model on a sphere, the results in [19] can easily be extended to a 2-D
torus.

achieved under the discrete random direction model with param-
eter . Now, by choosing , where

(8)

it follows that the critical delay is for all
satisfying condition (8). In particular, the critical delay is
for any .

B. Two-Hop Delay

In this section, we analyze the 2-hop delay under discrete
random direction models. We assume that the transmissions are
scheduled between nodes that are within a distance of
from each other, and ignore the queuing delays. Thus, we are
mainly be interested in estimating the time it takes for the relay
node and destination node to come within a distance of
of each other, starting from two randomly and uniformly chosen
positions in the network.

Let us denote this random time by . Ar-
guing as in Section IV-B, it can be shown that

, where
is the first meeting time; is the inter-meeting time; and
is the probability that two arbitrary nodes will come within
a distance of of each other any time during a slot,
given that they are within the same cell in that slot. Note
that the factor of comes because the duration of
each slot is now . As in Section IV-B, we have

and . Furthermore,
it is easy to see that . Thus,

Hence, we see that for , and
for .

Remark 13: Once again, we note that our results for
and are in agreement with the corresponding results
for the random walk model in [22] and the random way-point
mobility model in [19]. Both these works also account for the
queuing delays: In [19], queuing delays at the source nodes
as well as relay nodes are considered, whereas, [22] considers
queuing delays at the relay nodes only. Again, we see that our
simplified analysis yields exact results (in order sense) for two
extreme choices of , i.e., , 1/2.

Remark 14: Observe that all discrete random direction
models incur roughly delay under 2-hop relaying scheme;
however, their critical delays vary significantly. More precisely,
as increases the critical delay increases as well (roughly as

), shrinking the delay–capacity trade-off region. The two
extreme cases being: (i) (random way-point mobility
model), for which a per-node capacity of can be
achieved incurring delays of about ; and (ii)
(random walk model), for which a delay of or
more must be tolerated in order to achieve a per-node capacity
of .
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Fig. 5. The scaling of critical delay in case of hybrid random walk and discrete
random direction models.

VI. DISCUSSION

The main contribution of this paper is the definition and study
of the notion of critical delay, which provides us with a platform
to compare and contrast several existing mobility models. The
notion of critical delay is important as it provides us with a way
of determining whether a particular form of node mobility can
be exploited to improve the throughput capacity under a given
delay constraint. We also showed that there exists a strong con-
nection between the notion of exit time and critical delay, and
used this connection to estimate the critical delay under various
mobility models.

The results obtained in the previous sections are summarized
in Fig. 5. Clearly, the mobility models considered in the litera-
ture are in some sense extreme: they either exhibit the smallest
critical delays or the largest critical delays among all mobility
models having roughly the same 2-hop delay. Thus, on one ex-
treme, there is almost no delay–capacity trade-off under the
Brownian motion model and random walk model, and, on the
other extreme, there is a smooth delay–capacity trade-off for
a wide range of delays under the random way-point mobility
model and i.i.d. mobility model.

An interesting insight provided by our results is that the crit-
ical delay is inversely proportional to the characteristic path
length. By characteristic path length, we mean the distance
that a node travels without changing direction. (Recall that in
case of (discrete) random direction model with parameter ,
the characteristic path length is of the order of and the
critical delay is roughly of the order of .) Thus, in terms
of application support, a scenario where the nodes move over
long distances without changing directions (as in the random
way-point mobility model) is more desirable than a scenario
where nodes change directions over short distances (as in the
Brownian motion model). This is because the former scenario
provides more flexibility in terms of choosing the point of op-
eration on the delay–capacity trade-off curve, and can therefore
support a wider range of applications.

In a real world scenario, it is rather unlikely that the (density)
number of nodes in the network will have a strong influence on

the motion of nodes.8 We therefore believe that a mobility model
like the random way-point model might be more appropriate for
determining the scaling laws for large mobile ad hoc networks,
rather than a mobility model like the Brownian motion model
(random walk model). We therefore expect that future mobile
ad hoc networks would provide network designers with ample
flexibility in terms of choosing the desired operational point on
the delay–capacity trade-off curve, and this opportunity must be
fully exploited for optimal operation of such networks, possibly
using a cross-layer design approach.

VII. CONCLUSION

We have studied the delay–capacity trade-offs in mobile ad
hoc networks. We introduced the meaningful notion of critical
delay to systematically study how much delay must be tolerated
for a given form of node mobility to result in an improvement of
the network capacity. The notion of critical delay allowed us to
look at various forms of node mobility studied in the literature
from a common perspective, and to compare and contrast them.

We proposed two different classes of mobility models and
showed that they both exhibit critical delays that are in-be-
tween that of the mobility models studied in the literature, thus
showing that the mobility models considered in the literature
are rather extreme. More importantly, we showed that the
critical delay is inversely proportional to the characteristic path
length, which is the distance nodes travel without changing
direction. These results, among other things, provide a clear un-
derstanding of why is it that the critical delay under Brownian
motion model is larger than the critical delay under random
way-point mobility model.

One would expect that the density of nodes should have little,
if any, influence on the motion of nodes in a practical setting.
Thus the characteristic path length should have a rather weak
dependence on the number of nodes or the node density. One
would therefore expect the critical delay in a practical scenario
to be close to , as in the case of the random way-point
mobility model. This result is optimistic, since it suggests that
the future mobile ad hoc networks would provide network de-
signers with ample flexibility in terms of choosing the desired
operational point on the delay–capacity trade-off curve; an op-
portunity that must be fully exploited for optimal operation of
such networks, possibly using a cross-layer design approach.

APPENDIX

In this appendix, we provide proofs for Lemmas 2 and 6. We
start with the following simple result that is a version of Ho-
effding’s Inequality (see, for example, [27, ch. 3, p. 120]).

Lemma 8: Let be i.i.d. random variables
taking values in for , and suppose
for all . Let and be the variance of .
Then

8This is likely to be the case for moderate densities of nodes. At higher den-
sities, crowding of the nodes might occur which can restrict their motion, and
therefore density of the nodes can influence node motion.
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for all .
We are now ready to prove Lemmas 2 and 6.

Proof of Lemma 2: Recall the hybrid random walk model
of Section II-B, and the definition of , given in Section III.
As discussed in Section III, the statistical properties of the first
exit time do not depend on the choice of . So let be the origin,
that is, the point . Let be the cell containing the
origin. Also, let be the cell in which node lies at time
. Further, let

and , be similarly defined with in place of and
, respectively. Observe that

for . Using the union bound and appealing to the sym-
metry of node motion, we obtain

Now, observe that before time , has the following
form:

where are i.i.d. random variables taking values in
with probabilities , respectively. Although, is
not a simple random walk, it is clear due to its symmetry that
the reflection principle for 1-D random walk holds in case of
as well, and we have

(9)

for , where denotes the greatest integer function. Since
each has mean 0 and variance 1/2, a straightforward applica-
tion of Lemma 8 gives

(10)

for . Substituting in (9), and com-
bining with (10), we obtain

and the result follows by noting that

for .
Proof of Lemma 6: Recall the random direction model of

Section II-B, and the definition of , given in Section III.

Arguing as in the previous proof, it suffices to consider
. Let be the position of node after trips. Let

and

It is then clear that

Appealing to the symmetry of the node motion and using the
union bound, we obtain

Let be the -coordinate of the nodes’ position immediately
after completing the trip. Before time , has the
simple form:

where are i.i.d. random variables taking values in
. Note also that each has mean zero and

variance . Using Lemma 8, we have

for . Using the symmetry of the node motion once
again, we have

Noting that the duration of each trip is , it follows that

where denotes the smallest integer greater than
. Since for , we have

Thus

as claimed.
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