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Abstract

In recent years, smartphone users are interested in large volumes to view live videos and sharing video resources over social

media (e.g., Youtube, Netflix). The continuous streaming of video in mobile devices faces many challenges in network

parameters namely bandwidth estimation, congestion window, throughput, delay, and transcoding is a challenging and time-

consuming task. To perform these resource-intensive tasks via mobile is complicated, and hence, the cloud is integrated with

smartphones to provide Mobile Cloud Computing (MCC). To resolve the issue, we propose a novel framework called delay

aware bandwidth estimation and intelligent video transcoder in mobile cloud. In this paper, we introduced four techniques,

namely, Markov Mobile Bandwidth Cloud Estimation (MMBCE), Cloud Dynamic Congestion Window (CDCW), Queue-

based Video Processing for Cloud Server (QVPS), and Intelligent Video Transcoding for selecting Server (IVTS). To

evaluate the performance of the proposed algorithm, we implemented a testbed using the two mobile configurations and the

public cloud server Amazon Web Server (AWS). The study and results in a real environment demonstrate that our proposed

framework can improve the QoS requirements and outperforms the existing algorithms. Firstly, MMBCE utilizes the well-

known Markov Decision Process (MDP) model to estimate the best bandwidth of mobile using reward function. MMBCE

improves the performance of 50% PDR compared with other algorithms. CDCW fits the congestion window and reduces

packet loss dynamically. CDCW produces 40% more goodput with minimal PLR. Next, in QVPS, the M/M/S queueing

model is processed to reduce the video processing delay and calculates the total service time. Finally, IVTS applies the

M/G/N model and reduces 6% utilization of transcoding workload, by intelligently selecting the minimum workload of the

transcoding server. The IVTS takes less time in slow and fast mode. The performance analysis and experimental evaluation

show that the queueing model reduces the delay by 0.2 ms and the server’s utilization by 20%. Hence, in this work, the cloud

minimizes delay effectively to deliver a good quality of video streaming on mobile.

Keywords Mobile bandwidth estimation · Dynamic congestion window · Video processing · Quality of service ·

Queueing delay · Intelligent video Transcoder · Mobile cloud

1 Introduction

The traditional mobile phones play a significant role in

effective communication, especially in transmission media.
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Although they support heterogeneous networks, the mobile

phones do not support many multimedia applications [1, 2].

Hence, smartphone networks, such as 5G and 6G support

video streaming. In this work, the author discusses briefly

the 6G wireless network which operates with the current

telecommunication technologies such as IoT, cloud and

edge computing, and Big data. To handle the smart and

secure building, the author proposed a new mechanism

called Secure Cache Decision System (CDS) in the wireless

network. This provides a safer internet service for sharing

and scalability of data [3]. Kaium et.al discuss the future

view of IoT management in the context of cloud, fog,

and mobile edge computing [4]. Ahmed et. al provides a

different mechanism for the benefit of IoT applications to

handle the fog computing services like low latency. This

model is mainly designed to achieve scalability and partial
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validation is committed only in read and write transactions

[5].

The prerequisite of a smartphone is to deliver a good qual-

ity of the video to the viewers. Some of the multimedia

challenges faced by a streaming video are delay and net-

work performance. [6]. Apart from these QoS(Quality of

Service) challenges, smartphones need to solve network

QoS issues such as a battery, energy consumption, low

bandwidth, latency, and packet loss. Therefore, the solu-

tion is integrating smartphones with the cloud. Mobile

Cloud Computing (MCC) defines on-demand service and

resource-constrained mobile devices offloads tasks from

mobile devices to cloud. Thus it saves energy, power, the

battery in mobile. This work proposes the offloading pro-

cess of the mobile application in the cloud. The code is

going to be offloaded to the cloud. Therefore, the cloud

is responsible to parallel execute the task independently

[7]. This will reduce the battery consumption and execu-

tion time of mobile [8–10]. In recent years cloud-based IoT

applications useful for day to life activities. For example,

this work introduced blockchain-based authentication and

authorization services for smart city applications. In this

work, the security information is decentralized for the smart

city ecosystem, and blockchain technology is used to detect

the management and provide the access control which is

integrated within the FIWARE platform [11]. The author

proposed a novel algorithm for watermark embedding and

extraction by using a synergetic neural network. In this

work, the optimal PSNR is achieved efficiently compared

with other models [12].

Lai et al. focus mainly on delay and packet loss as network

parameters [13]. Hence, the need is to estimate the available

bandwidth based on the profile of the mobile. Profile means

history of the mobile which is already registered in the

cloud server. The mobile user activates the cloud monitors

services, and the device manager maintains the various QoS

parameters such as bandwidth, link capacity, network status,

signal strength, buffering stream, and energy. Whenever, a

device state change occurs, the device information updates

in the cloud server for the registered mobile users and the

estimated bandwidth fits the congestion window. There is

a lot of research on bandwidth estimation [14], and TCP

congestion control algorithms exist in the literature [15–

20]. Lai et al. shows that the buffering in the transport layer

reduced to deliver a good quality of video live streaming

in mobile [13]. As far as cloud networks are concerned,

Leong et al. input the necessary parameters as Round Trip

Time (RTT) and video segments for bandwidth estimation

in heterogeneous networks [21].

We propose MMBCE to estimate the bandwidth of

mobile using MDP. Here, MDP defines the available band-

width of each video request of mobile with different actions and

reward functions for each region or state. The reward

function derives with Best First Reward Search(BFRS) algo-

rithm using heuristic value, and the cloud server dynamically

fits the congestion window. After estimating the bandwidth,

in the cloud server, the next proposed QVPS schedules

the video process as per the estimated bandwidth, arrival

rate of video request, and queue length of individual video

server with the M/M/S queueing model. QVPS identifies

the minimum queue length of a video server for process-

ing the video request. The server significantly minimizes

the computational workload and processing time of each

video processor, which directly implies the reduction in

a video processing delay. To calculate the average out-

put video chunk size and average transcoding time of the

server, we propose IVTS for deciding the different transcod-

ing modes by comparing maximum delay with average

delay, maximum chunk size with average chunk size. After

mode selection, the transcoding server selects the optimal

transcoder. Thus, IVTS reduces both transcoding delay and

resource utilization.

1.1 Contribution

1. We propose the MMBCE algorithm to estimate the

bandwidth of the mobile in the cloud network.

2. CDCW is the new congestion algorithm proposed to fit

the congestion window dynamically in the cloud.

3. We compared MMBCE with an existing TCPHas,

TCPW, Cubic, and Reno algorithms to evaluate the

performance metrics of bandwidth, packet delivery

ratio, and throughput.

4. Our CDCW algorithm compared with the existing

congestion algorithm to reduce PLR and improve the

congestion window size.

5. We proposed QVPS using the M/M/S queueing model

to schedule the video process, minimize video server

utilization and process time.

6. IVTS intelligently selects an optimal transcoder server,

and comparative analysis made with existing work,

which reduces the transcoding delay.

7. Overall, the above-proposed algorithms improve the

network QoS parameters and deliver a quality of video

streaming in the mobile cloud.

This paper is organized as follows: Section 2 briefly

covers the background on three areas (1) Bandwidth

estimation and congestion window, (2) Queueing model, (3)

Transcoding. Section 3 gives a detailed description of the

proposed framework of delay – aware bandwidth estimation

and intelligent video transcoder in the mobile cloud. Next,

Section 4 deals with three components such as experimental

setup, case study and performance metrics, then we present

the results and discussion in Section 5. Finally, Section 6

concludes with future work.
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2 Related work

In this section, we review the Network QoS parameters,

namely, Bandwidth estimation and congestion window,

Queueing Model for video processing, and Transcoding.

2.1 Bandwidth estimation and congestion window

We first address the bandwidth estimation in a wireless

network and study their influence on the parameters of

TCP congestion control variants. The famous TCP variants

such as Reno [22], Binary Increase Congestion control

(BIC) [23], CUBIC [24], TCPWestwood (TCPW) [25]

and TCPHas [26] have been analyzed and compared with

proposed work. The detailed working of each algorithm

mentioned above discussed below.

Reno Among different TCP congestion control variants, TCP

Tahoe, detects the packet loss after the time interval expires.

Then the performance of the algorithm becomes slow, and

transmission flow also decreases. [15, 27, 28]. Since Slow

Start, Congestion Avoidance, and Fast Retransmit techniques

followed in Tahoe. Reno is similar to Tahoe but applicable

only when three duplicate acknowledgments (ACKs)

receives at the sender, then it incur packet loss in a network.

A Fast recovery algorithm overcomes the drawback of this

method sets a threshold value to retransmit the lost packet.

After receiving the third duplicate ACKs, the congestion

window is fit to half, based on the threshold value. The

threshold has added to three times of Maximum Segment

Size (MSS) [29], which assigns to the congestion window

to reduce packet loss. However, in experimental scenarios,

when multiple packet loss occurs in the same window, Reno

exhibits the capability to improve the throughput. To address

these challenges, the authors introduce a new algorithm,

namely, a queueing delay-based rate control algorithm. Lin

et al. and Wang et al. observe that Reno does not show

the ability to identify the impact of a packet loss. Hence,

we believe that full link utilization may not achieve [30,

31]. The analysis of RENO incurs the low bandwidth with

minimum delay. To improve this, we will move on to

BIC.

BIC Next, we discuss the packet loss-based TCP congestion

control algorithm is BIC [23, 32]. Based on the maximum

window size, a binary search technique fits the destination

window. The window selects the midpoint of the maximum

and minimum level, to enhance the window size than BIC,

CUBIC. To simplify the window size and friendliness, BIC

enhances to CUBIC.

Cubic Cubic, also considered a packet loss-based conges-

tion algorithm fixes the Congestion window size (cwnd)

through a cubical function. Two shaping approaches explain

in CUBIC. While TCP handles congestion by slow start

mechanism, CUBIC handles utilizing a Hybrid Slow-Start

mechanism [33]. Packet loss is identified based on ACK and

RTT. The main drawback of CUBIC is time consumption

and more bandwidth requirement.

TCPWestwood (TCPW) In this method, the sender analyzes

the ACKs arrival rate to evaluate the RTT and bandwidth.

If RTT is minimum, the congestion is said to be low and

vice-versa. In some situations, packet drops occur at the

receiver. In such cases, TCP-Westwood [25] determines

a new BDP (Bandwidth Delay Product) and allocates it

to a threshold values instead of assigning half of the

limit. Later, Yet another scheme, namely Persistent Non-

Congestion Detection, was introduced to determine the

congestion [34]. To improve throughput, Westwood adjusts

the congestion window. Instead of fixing the window, we

strive to incorporate TCPHas, to fit the congestion window.

TcpHas TCPHas is an entirely new TCP congestion algo-

rithm that helps estimate bandwidth and fits the congestion

window. In TCPHas, the quality levels of video expect the

bandwidth of the network, queueing delay, a historic level

of video, and bit rates. This rate calculates with the help of

shaping function. The sending rate of this function should

be suitable for the encoding bitrate of the estimated optimal

quality level. Since the reduction happens in the queueing

delay and packet loss rate, the QoS improves live streaming

[26, 35]. In our work, we intend to reduce the same param-

eter with the help of the queueing model. The above survey

examines the TCP congestion control variants for estimat-

ing the bandwidth. Then, the video packets are processed in

the video server as per the bandwidth by utilizing the differ-

ent queueing models. Further, the discussion proceeds with

the survey of the queueing model.

2.2 Queueingmodel for video processing

The theory of queueing is a mathematical model defined

for measuring the capacity of the queue length and the

waiting time to be produced in a network [36, 37]. M/M/1,

M/M/S, M/G/1, M/G/N are some of the different types of

queueing model. M/M/1 is the queueing model where the

arrival of the video request follows a Poisson distribution

with exponential service rate. The drawback of the model is

always single server handles only one queue at a time. As

a result, the waiting time increases. To solve this problem,
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M/M/S was applied to increase system performance by

having multiple servers. Therefore, this M/M/S and M/G/N

model are used for the application of multi-service cloud

computing. The resulted in processing delay minimization

and response time, maximizing the average queue length

compared to other models [38, 39]. The video packets in

the queue are ready to enter in the transcoding server.

To process, the server operation, the analysis of existing

transcoding work has been explained as follows.

2.3 Transcoding

Nearly every corporate public cloud service, such as Spritdsp,

Amazon Web Services (AWS) and Bitcodin helps manage the

transcoding service of a user to create a different solution for

uploading video files. In multiple devices, a user can experi-

ence online video content with varying sizes of resolution [40].

The work in [41] jointly measured transcoding and delivery

of video based on user priorities in the geographical areas

and video varieties of the Content Delivery Network (CDN).

The existing literature survey [42, 43] does not contain the

capacity scaling problem [44]. In microdata center, based on

the broadcast request, Heuristic schedules the live transcoding

jobs dynamically. The schedule allows small degradation in

the output [45]. To overcome these problems, Lei Wei.et al.

introduced a new Cloud-based Online Video Transcoding

system (COVT) [46] to provide a QoS guaranteed video,

using the profiling approach to achieve the different

metrics for performing tasks with separate infrastructures.

Based on the queueing model, the QoS metrics design,

the findings from the experimental analysis show that a

COVT dynamically resolve the resource limitation, and the

task is programmed at runtime to implement an assured

QoS.

2.4 Motivation

In the literature, we find that TCP Tahoe detects the packet

loss only after a timeout occurs. Whereas, Reno does not

detect packet loss within a single RTT. As far as the rest

of the techniques like BIC, CUBIC, TCP Westwood are

concerned, they commonly face fairness issues. On the other

hand, TcpHas, a reasonably new method requires slight

performance improvement in delivering live streaming

service, especially when the network is stable. Hence, our

motivation provides a solution for the issues of packet loss,

delay, network performance in existing techniques. Thus the

need for a framework to handle bandwidth estimation, video

processing, transcoding challenges and stream the quality of

the video in mobile.

3 Delay – aware bandwidth estimation
and intelligent video transcoder in mobile
cloud

The proposed framework for delay – aware bandwidth

estimation and intelligent video transcoder in a mobile cloud

has two major components. (1) Mobile Client, (2) Cloud

Server.

3.1 Mobile client

This component has two significant elements, namely, a

video player and a decoder. Smart mobile users request

for different types of video from heterogeneous networks.

According to video requests, a decoder decodes video

content from the cloud server with good quality. Then, video

streaming happens in a real-time player of mobile.

3.2 Cloud server

The cloud server manages three main components, namely,

proposed MMBCE, QVPS, and IVTS. The mobile profile

manager maintains the historical information of mobile and

helps to estimate the bandwidth. MMBCE applies Markov

Decision Process (MDP) to achieve available bandwidth.

Then, BFRS in server estimates the bandwidth of mobile

in the cloud environment. To stream good quality video,

we define the action and reward function in each state to

calculate the goal state. Then fits the congestion window

dynamically by using CDCW. Then, QVPS processes the

video as per the bandwidth. After video processing, IVTS

transcodes the video content. Once the transcoding process

completes, the cloud server streams the video to the mobile

client. We will discuss the three proposed components

briefly in the following section. Firstly, the working

principle of MMBCE explains in the next subsection.

3.2.1 Bandwidth estimation process formulation

The cloud server estimates bandwidth and analyzes the

mobile profile manager. By considering the available

bandwidth, the current bandwidth estimation assigns to an

individual mobile, and it will act as an agent. The agent

works on the principle of reinforcement learning task [47].

In the cloud environment (Fig. 1), the actual bandwidth

passes to the agent of each mobile (State S). Then, the

agent identifies the best bandwidth correspondingly. For

each bandwidth, the cloud environment, in turn, responds

with a reward to the bandwidth estimation agent. The

Markov Decision Process (MDP) develops to provide better
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Fig. 1 Framework for the delay – aware bandwidth estimation

bandwidth estimation, and the transition state behavior of

the same Markov process [48]. The Markov chain is defined

to derive the transition state model as follows:

Markov Chain (Definition) Let State X denote the state

of the available bandwidth of all mobiles with different

locations. X ∈ d(a,b) of the Euclidean distance for

heterogeneous mobile. The dynamic movement of mobile

measures with the discrete-time interval [49].

P(XMt+1 = X)|Xt , Xt−1, .....X0) = P(XMt+1 = X|XMt ) (1)

T P (yMt |x) = P(XMt+1 = y|XMt=x) (2)

Markov Decision Process (MDP) is defined as a four tuples

MDP = (X, A, TP, r). X, A are the state and action space.

TP(y/x, a) is the transition probability with

T P ((y|x), a) = P(XMt+1 = y|XMt = x, at = a) (3)

where r(x, a, y) is reward of transition probability (x, a,

y). The estimated bandwidth is mapped with the actual Bw

bandwidth for each step.

The study of MDP helps to develop our bandwidth esti-

mation algorithm MMBCE. The new bandwidth algorithm

description is as follows:

Algorithm 1 Description In the cloud server, to estimate

bandwidth, we propose MMBCE, to measure the best

available bandwidth of each video request of the mobile
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user. This performance of the available bandwidth has

evaluated; three inputs passed to the MMBCE algorithm

are the number of video requests, segment size, and RTT.

Here, the number of requests considers the number of states.

Therefore, based on the segment size and time interval,

each state of mobile’s available bandwidth is calculated.

Then, the output of the state and the available bandwidth

are input to the Best-First Search() procedure (Algorithm

2). The output of Algorithm 2 assigns EBw in Algorithm

1(MMBCE). The next step is to compare the estimated

bandwidth of each mobile and maximum bandwidth. If

EBw is greater than the maximum, the estimated bandwidth

assigns to maximum bandwidth and action of each state

to available bandwidth. This comparison repeats for all the

states of the mobile. Next, we move on to determine the best

first reward from the transition matrix and states. The BFRS

function is as follows:

Description of Algorithm 2 The mobile network faces

different challenges in traffic and time intervals. When

different mobile users request the video in the cloud,

the bandwidth estimation of every mobile becomes a

complicated task. To overcome this issue, the Markov

channel model proposed to estimate with a time-varying

random variable. The Markov model has two elements (1)

Transition matrix, (2) state model. To generate a transition

matrix, TPM (Refer 2) represents the total number of mobile

transitions for each state i to j. According to the TPM,

the state model is indicated by n with n x n matrix. The

number of states, the available bandwidth are received from

algorithm 1 given as input to Algorithm 2. The steps 6 to

10 makes a corresponding entry in the transition matrix

of available bandwidth start from an initial state to the

total number of states. Then step 11 through 16 counts the

number of requests for each state and fills the TPM. To

assign the reward for each state, step 17 calls the reward

function (Algorithm 3). Next, the reward adds along with

TPM. Finally, EBw returns as the output of Algorithm 2.

Description of Algorithm 3 and 4 According to the MDP,

a reward is added to the estimated bandwidth. To select

the reward, algorithm 3 determines the best reward, which

falls under the heuristic or informed search calculation.

The two inputs, such as many states and TPM, assigns to

algorithm 3. A priority queue also initializes for vertices,

and the maximum value assigns as 999. There are two

states introduced in this algorithm, namely computing state

and goal state. Step 8 through 11 determines the heuristic

function for all vertices until it reaches the goal state. The

level 13 through 14 inserts a new vertex as a computing node

for each neighboring vertex v in the priority queue and is

marked as unvisited.

Here, the initial state is added in the priority queue

to identify the computing state and labeled as a visited

node and marked as 1. Step 16 through 26 calculates the

minimum heuristic value for every computing state, and

the goal state is marked as visited. Step 16 checks the

priority queue is empty or not. If it is not empty, determine

the computing state using getStateWithMin Heuristic()

procedure. Now, the goal state assigns 1. Step 19 compares

the goal state with many states. If it is less than or equal to

a number of states, it checks the step 21. If this condition

is satisfied, that particular vertex is added to the priority

queue and marked as visited. The goal state is assigned

1. Next, the goal state increments and repeats until the

priority queue empty. Then the minimum value is removed

from the priority queue, and that reaches a final goal

state.

All the above four algorithms have devised to calculate

the best bandwidth estimation at different states in the

heterogeneous network. Next, to minimize the packet loss,

the cloud dynamically adjusts the congestion window as per

the estimated bandwidth. The steps involved are explained

in the CDCW algorithm as follows:
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Description of Algorithm 5 CDCW algorithm takes the

estimated bandwidth as input from Algorithm 1. The

maximum mobile window size initializes to 64 kbps. The

cloud server receives three duplicate acknowledgments to

calculate MaxSZ . The dynamic congestion window fits to

avoid congestion by comparing the MaxMW with MaxSZ .

The cloud server minimizes the packet loss as per the

estimated bandwidth and congestion window through this

algorithm. Then, the video server in the cloud receives the

packets in the queue. In the next section, we elaborately

explain the operation of the video processing server.

3.2.2 Video processing server

Assume that mobile users are in a heterogeneous network.

These users send video requests to the cloud server. Since

multiple mobile clients send the request, they fall under

the M/M/S queueing model, also known as buffering.

Consequently, video processing happens through the server.

In this work, we applied a queueing model named multi-

server system to accept the request from the mobile and

issue the appropriate services in the cloud. This architecture

works on the open Jackson network [38, 50]. The symbols

and description list are given in Table 1:

Video Processing Server using M/M/S Queueing model

formulation Model : (M/M/S): (∞/ FIFO) [51] This model

is based on the following assumptions:

– The number of video request arrivals follows a Poisson

distribution with a mean arrival rate Vλ.

– The response time has an exponential distribution with

the average response rate AV µ.

– Arrivals are infinite population α.

– Number of video requests follows First-in First-out

basis (FIFO).

Table 1 Table of notations

Symbols Description

Vλ Mean of Video arrival rate

AVµ Average response rate of video request

A Video arrivals are infinite population

ρ Traffic intensity of the Video Processing Server

NV P Expected number of process in video server

QLn Number of process expected in the server queue

Wq Mean waiting time in queue

WS Average waiting time in the server

ELq Expected length of non-empty queue

Pn Probability of n process in the server

V S Video server

V PST Video Processing service time

C(n, ρ) Erlang’s C distribution video processing

VSZ Video Segment Size

MaxMW Maximum mobile window size 64kB
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This model provides a solution for mobile users to satisfy

demand. It depends on the values of Vλ and AVµ. If Vλ

≥ AV µ, then the waiting line of the Video Processing

Server (VPS) would increase without limit. Therefore, it

must satisfy a condition as Vλ ≤ AV µ.

As mentioned earlier, traffic intensity of the VPS ρ = Vλ /

S * AV µ which refers to the probability of time. High traffic

intensity makes the server busy. The probability of VPS is

idle, or there are no video processes in the system, V P0 =

1− ρ. The probability of a single process in the server is

V P1 = ρ V P0. Similarly, the probability of two processes

in the server V P3 = ρ V P1 = ρ2 V P0. The probability of n

process in the server is

V Pn = ρnV P0 = ρn(1 − r) = (Vλ/AVµ)nV P0 (4)

The expected number of processes in the video server is given

by,

Nvp =

α
∑

n=1

nV Pn =

α
∑

n=1

n(1 − Vλ/AVµ)(Vλ/AVµ)n (5)

Nvp =
Vλ

AVµ − Vλ

(6)

The expected number of process in the server queue is given by,

QLn =

α
∑

n=1

(n − 1)V Pn (7)

=

α
∑

n=1

nV Pn −

α
∑

n=1

V Pn (8)

QLn =
V 2

λ

AVµ(AVµ − Vλ)
=

ρ2

1 − ρ
(9)

With an average arrival rate of video Vλ, the average time

between the arrivals is 1
Vλ

. Therefore, the mean waiting time

in the queue, Wq, calculates the average time between the

arrivals of video packets and the average queue length.

Wq =

[

1

V λ

] [

1

1 − ρ

]

(10)

=

[

1

V λ

] [

Vλ

AVµ − Vλ

]

(11)

Similarly the average waiting time in the server, Ws

Ws =

[

1

V λ

] [

1

1 − ρ

]

(12)

Ws =

[

1

AVµ − Vλ

]

(13)

Expected length of non-empty queue,

ELq(m/m > 0) =
AVµ

AVµ − Vλ

(14)

Probability that there are n video segments in the server,

V Pn =

[

1

V λ

]n

(15)

Probability that there is no video process in the cloud server,

V P0 =
1 − Vλ

AVµ

(16)

Video Server (VS) queue is assigned to provide the service

Video Processing Service Time (VPST ) given by VPST 1 ....

VPST n. This is formulated in the following equation as

V PST ←
1

AVµ

+
c(S, ρ)

n
(

AVµ − Vλ

) (17)

where n is the number of VS. Then, µV SR and γV AR are

the parameters of the M/M/S model which represents µV SR

video service rate and γV AR , video arrival rate. Therefore,

γV AR and µV SR = µi . where i=1,2 ... S. In some cases, the

new video request which is forwarded to the video server,

the Erlang’s C distribution will be denoted as [52]

C(S, ρ) ←

(

(S∗p)S

S!

) (

1
1−ρ

)

S−1
∑

k=0

(

(S∗p)k

k!

) (

(S∗p)S

S!

) (

1
1−ρ

)

(18)

The above M/M/S model equation is used to calculate the

total video processing service time in QVPS algorithm. The

steps are explained as follows:
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According to the bandwidth prediction of the cloud

server, the video packets arrive in the VPS. Table 2

diminishes the arrival rate, the queue length of the server,

and the probability of an idle server. The arrival rates

of video packets examine with the servers (2, 4, and 6).

In general, whenever the arrival video packet arises, the

probability of idle server decreases. Table 2 shows for

the number of servers is 2. Similarly, for the same arrival

rate, the VPS increases, which increases the probability of

idle server by an average of approximately 2%. The same

arrival rate process with more number of servers. Hence,

we have chosen the number of servers as 6. Then, there

is an automatic decrease in queue length. This reduction

happens due to the implementation of the M/M/S Queueing

model in the VPS. The overall advantage is to reduce the

computational overhead and energy consumption. Thus,

we significantly minimize video processing delay. After

processing the video packets, the cloud server deals with the

transcoding server as follows.

3.3 Transcoding server (TS)

The TS mainly focuses on two parameters, namely

Transcoding Mode(TM ) and different video types (Vd ).

Table 2 Measurement of Queue length and Probability of idle server

with different arrival rate

No. of Server Arrival rate Queue Probability

(No. of request /time) length in Q idle server (%)

2 100 0.083 50.0000

105 0.098 48.1480

110 0.113 46.3130

115 0.128 44.4780

120 0.143 42.6430

125 0.158 40.8080

130 0.173 38.9730

4 100 0.066 51.3310

105 0.082 49.6450

110 0.098 47.9973

115 0.114 46.3498

120 0.13 44.7023

125 0.146 43.0548

130 0.162 41.4073

6 100 0.042 51.3420

105 0.058 49.6570

110 0.074 47.9870

115 0.09 46.3170

120 0.106 44.6470

125 0.122 42.9770

130 0.138 41.3070

Frequently, mobile users request different types of video,

like popular videos, news, live sports streaming, etc. In

the Federation International de Football Association (FIFA),

live streaming happens. The same request is made by

different mobile clients in various networks around the

world, across regions (Higher to a lower network). Herein,

the networks specify the mode of operation. Slow mode

indicates a low spectrum, which results in delay. It follows

that higher mode is faster than the slower mode. Hence

the two parameters are well defined. Now the received

video is fragmented into chunks. The TS must process the

Average Output of Video chunks (AOVc), and the following

formula [36, 46] calculate the Average Video Transcoding

time (AVTT ).

AV TT =

{

tvq

}

(19)

AOVc =

{

wv
q

}

(20)

In the above equations, 19 and 20, the transcoding mode

q ranges from 1 to TM and video type limits from 1 to

Vd . The obtained values help find the total time spent for

transcoding the video packets based on historical data. In

the following section, the AVTT and AOVc mapped with

each other. Both are directly proportional. The growth of

AVTT , AOVc makes the transcoder to work in a faster

mode. Thus, there is no possibility of a delay. The overall

transcoding mode distribution evaluates the maximum delay

of MaxD and maximum transcoding video size MaxVsz.

The following conditions give this:

Td ≤ MaxD (21)

T VSZ ≤ MaxVSZ (22)

Where Td represents the transcoding delay of individual TS ,

and TVSZ is the transcoder video size of TS .

By applying the above equation, we propose the IVTS

algorithm to choose the optimal transcoding server with a

Table 3 Total delay with two servers

No. of request VPS Delay VTS Delay Output Delay Total Delay

(ms) (ms) (ms) (ms)

100 0.016 0.013 0.09 0.119

200 0.049 0.048 0.54 0.637

300 0.082 0.083 0.99 1.155

400 0.115 0.118 1.44 1.673

500 0.148 0.153 1.89 2.191

600 0.181 0.188 2.34 2.709

700 0.214 0.223 2.79 3.227

800 0.247 0.258 3.24 3.745

900 0.28 0.293 3.69 4.263

1000 0.313 0.328 4.14 4.781
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different mode. Then determine the transcoding delay and

video segment size of the individual transcoder.

Description of IVTS The intelligent video transcoder server

proposed in this framework helps to choose a transcoder.

The algorithm’s input is transcoding mode, history of

transcoding time with a different mode, and prehistoric

average segment size. Apart from this, maximum delay and

maximum transcoding video segment size are given as input

in our algorithm. IVTS mainly focuses on two processes.

The first process continuously receives the number of video

requests from 1 to n and video segment size of transcoder

checks with maximum video segment size. Based on the

condition in step 7, the transcoding server increments. Step

9 through 12 compares the transcoding delay with 0. If

it is greater than zero, calculate the transcoding delay of

individual server (Td ) and that of video segment size. The

second process deals with the selection of the transcoding

mode, which consists of two modes, namely fast mode and

slow mode. Step 17 compares the maximum delay, VSZ

with Td and TS . If this criterion becomes true, then the

mode is selected as a fast or slow mode. In the fast mode,

the current transcoder queue length has computed using

step 23. The minimum current transcoder queue is assigned

as a video segment size. Similarly, in the slow mode, the

input of the video segment size waits in the queue. As per

the condition in step 27, the video segment resides in the

waiting queue and is assigned to VSZ . Hence, this IVTS

algorithm minimizes the transcoding delay by intelligently

distributing the workload for individual transcoder. In turn,

it reduces the burden for a single server. Thus, it also reduces

the transcoding delay in the transcoder server.

3.4 Delay

The framework aims to achieve the QoS parameter of

delay in all three components. According to the video

request, MMBCE estimates the bandwidth. Then, the below

equation calculates the overall delay. The result of VPS,

VTS, and Output delay is tabulated as follows:

Delay = V PSDelay + V T SDelay + OPDelay (23)

Table 4 Total delay with four servers

No. of request VPS Delay VTS Delay Output Delay Total Delay

(ms) (ms) (ms) (ms)

100 0.008 0.0065 0.045 0.0595

200 0.0245 0.024 0.27 0.3185

300 0.041 0.0415 0.495 0.5775

400 0.0575 0.059 0.72 0.8365

500 0.074 0.0765 0.945 1.0955

600 0.0905 0.094 1.17 1.3545

700 0.107 0.1115 1.395 1.6135

800 0.1235 0.129 1.62 1.8725

900 0.14 0.1465 1.845 2.1315

1000 0.1565 0.164 2.07 2.3905
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Table 5 Total delay with six servers

No. of request VPS Delay VTS Delay Output Delay Total Delay

(ms) (ms) (ms) (ms)

100 0.004 0.00375 0.0275 0.03525

200 0.01225 0.012 0.185 0.20925

300 0.0205 0.02025 0.3425 0.38325

400 0.02875 0.0285 0.5 0.55725

500 0.037 0.03675 0.6575 0.73125

600 0.04525 0.045 0.815 0.90525

700 0.0535 0.05325 0.9725 1.07925

800 0.06175 0.0615 1.13 1.25325

900 0.07 0.06975 1.2875 1.42725

1000 0.07825 0.078 1.445 1.60125

In Table 3, the no. of servers fixed as 2, then response

delay is 0.05 ms with the transcoding queue capacity 25.

Tables 3, 4 and 5 demonstrates the delay parameters for

video processor, transcoding server and the time taken to

deliver the video packets in the mobile client. Therein, the

delay affects the delivery of good quality, and buffering

happens on the mobile. To overcome this issue, we propose

an intelligent transcoder using M/G/N queueing model. The

M/M/S video processing server reduces the delay as 0.82

ms, which improves the QoS in the video.

4 Experimental setup and performance
metrics

This section provides a detailed description of the exper-

imental setup, implementation of the mobile client, and

public cloud in Table 6.

To better evaluate the performance of our proposed video

streaming algorithm, we established a realistic testbed to

measure the performance with a real video stream and an

Android mobile phone. We implemented a video streaming

application that can request the video contents from the

web server through the HTTP/1.1 protocol. The proposed

framework is implemented using Samsung Galaxy mobile

phones [53] and AWS cloud server [54]. We used a

Samsung Galaxy S7 edge smartphone with Android 6.0

(Marshmallow) OS as the client. The Samsung Galaxy

is equipped with a dual-core 1.2 GHz Cortex-A9 CPU

and 14GB RAM in Configuration 1. Samsung Galaxy

Note20 Ultra 5G mobile phone with Android 10 OS,

and Octa-core 2x2.73 GHz Mongoose M5 & 2x2.50 GHz

Cortex-A76 & 4x2.0 GHz Cortex-A55 CPU and 12GB

RAM in Configuration 2. The minimum RTT between the

smartphone and the proxy is about 25.83 ms, and between

the proxy and the server is about 1.79 ms, respectively.

Our experimental setup machine was utilized in the

research lab setup with the system following system

configuration as shown below in Table 6. Twitch TV and

YouTube live are the two major real-time live streaming

service providers which were used in this work as

video datasets. The results are aimed at synchronizing

smartphones with the cloud environment by effectively

utilizing the estimated bandwidth of mobile, efficient

queue-based video processing, and intelligent transcoding,

smoothly download the video without any packet loss.

In the cloud server, the mobile profile manager maintains

the historical information of mobile which helps MMBCE

to estimate the best bandwidth. The proposed queuing

theory model QVPS was implemented using AWS. AWS

goes beyond a classic hypervisor (i.e., VirtualBox3,

Xen4, and VMware5), provides the creation and setup

of virtual machines dynamically, which are required for

computational resources. This enables the way to handle

QoS constraints in traffic peaks. Based on traffic conditions,

the arrival rate of the requests that need to be served

increases. When traffic decreases, AWS creates new

instances automatically and current servers are destroyed

and shut down. The structure composed for this experiment

was formed with different servers created as virtual

machines (VMs) containing the Entering Server (ES),

servicing nodes, VPS1 . . . VPSn, and a MySQL6 database,

Table 6 Experimental setup
Configuration Mobile Public cloud

Processor Octa-core (4x2.3 GHz Intel � Xeon � CPU E5

Mongoose) 2686 v4 2.3 GHz

RAM 4 32 GB

Storage 64 GB 1 TB

Operating System Android 6.0 (Marshmallow) Ubuntu 14.04.5 LTS Server

Video Standard MP4 H.265

Software MX Player Pro AWS Device Farm, S3,

Amazon CloudFront,

Amazon EBS

2048 Peer-to-Peer Netw. Appl.  (2021) 14:2038–2060



Database Server(DS), and the Output Server (OS) and client

servers. Twitch API provides parallel online video channels

in Twitch which helps to enable online video services for

transcoding servers. We use the arrival rates on different

days as the arrival rates for the different types of videos.

After video processing, the IVTS algorithm minimizes the

transcoding delay by intelligently distributing the workload

for individual transcoder using M/G/N queuing model.

Herein, the cloud server uses public cloud: Amazon

Web Service (AWS). The results observed and experimental

analysis has been made with Amazon Elastic Cloud

Computing (EC2) [55] to demonstrate the working principle

in a public cloud. In this cloud environment, the availability

zone (AZ) specifies the regions(R). There are 8 regions

globally. For our experimental setup, two regions namely,

the Asia Pacific and USWest (Northern California) have

been considered to demonstrate the live video streaming.

The reason for choosing the particular two regions is to

examine network traffic between short and far geographic

distances.

In the demo shown in appendix 1, in step1, the user can

choose the AMI. In step 2, the user can create and launch

an instance. In step 3, the user can execute the existing

algorithm and our proposed algorithms in this framework.

Finally, to test the application, AWS is used to provide

the Device farming testing forum. By using this service,

the Samsung Galaxy S7 edge has been tested successfully.

Finally, we could view our video outputs smoothly with

good quality in the mobile screen AWS platform as shown

in the output screen. To provide a demo of our system, we

have added a set of screenshots in Appendix 1 of this paper.

4.1 Analysis of Industrial application for video
streaming

Cloud-based mobile live streaming is executed in many dif-

ferent applications such as enterprise and corporate stream-

ing, health care, social media live streaming, telecommuni-

cation public safety, and law enforcement and government.

Among these applications, we focus on health care, social

media, and telecommunication. For example, the world

faces pandemic situations due to coronavirus and people

are utilizing the telehealth sevices effectively. Nowadays,

doctors in many healthcare organizations are adopting live

video streaming services for medical purposes like surgical

and diagnostic processes. Doctors are also practicing live

streaming to guide and educate new doctors, broadcasting

surgical procedures, respond to the patients via live chat.

For example, The U.S. Department of Health and Human

Services (HHS) practices live video to broadcast work-

shops, advisory council meetings, and other events to create

awareness for covid 19 and improve medical fitness.

The above industrial application for video streaming uses

the resolution, frame rate, video bit-rate settings are the

basic requirement to stream the video on platforms like

YouTube Live, Twitch.tv, Netflix, Beam, and Hitbox. The

stream settings are different on each platform. We aim

to deliver a good quality of video on different streaming

platforms with estimated bandwidth. To achieve this goal,

we analyzed the two different configurations of mobile

standards with different resolutions and frame rates as

shown in Table 7. To evaluate the better performance of our

proposed algorithms, we made a comparative study with the

existing TCP variants.

We used a Samsung Galaxy S7 edge smartphone with

Android 6.0 (Marshmallow) OS as the client. The Samsung

Galaxy is equipped with a dual-core 1.2 GHz Cortex-

A9 CPU and 14GB RAM in Configuration 1. Samsung

Galaxy Note20 Ultra 5G mobile phone with Android 10

OS, and Octa-core 2x2.73 GHz Mongoose M5 & 2x2.50

GHz Cortex-A76 & 4x2.0 GHz Cortex-A55 CPU and 12GB

RAM in Configuration 2. To better test, the usefulness

and robustness of our methods, two different mobile

configurations with the encoded videos are employed,

which are shown in Table 7. The frame rate of the two

configurations 1 and 2 are set to 24 frames and 30 frames.

Hence, the duration of the individual segment is about 1000

ms and 3000 ms for the two configurations, respectively.

Table 7 Different mobile client

video streaming configuration Mobile client Resolution Frame rate Video bitrate Bandwidth

(FPS) (Kbps) (Mbps)

Samsung Galaxy 640×360 24 522.96 0.8112

S7 edge 1280×720 24 2211.84 2.8848

1440×2560 24 8847.36 11.179

Samsung Galaxy 640×360 30 691.2 0.984

Note20 Ultra 5G 1280×720 30 2764.8 3.576

1440×2560 30 11059.2 13.944

1440×3088 30 13436.16 16.789
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In our scenario, 200 segments are elected for configuration

1 and 100 segments for configuration 2. In Table 7, we

notice how much bandwidth is required for two different

mobile configurations with varying resolution and frame

rates. The novel idea of our approach is to estimate the

bandwidth effectively to minimize packet loss and delay.

The requirement of the bandwidth is available in Table 7.

4.1.1 Case 1

In configuration 1, with 24 frame rate and 640×360

resolution, the exact bandwidth which needs to stream

the good quality video is shown in Table 7. Hence, the

bandwidth is necessary to stream the video. In case, if

bandwidth is not available, then packet loss occurs with

delay and the quality of the video also becomes low.

To avoid the case, the cloud server plays a vital role to

estimate the bandwidth of mobile. We implemented the

different existing TCP variants in cloud server such as

Cubic, TCPW, and TCPHas with the given configuration.

Experimental results demonstrate the estimated bandwidth

of different TCP variants and our approach. TCP Cubic,

TCP Westwood, TCPHas achieves the estimated bandwidth

as 0.4, 0.52, and 0.78 with low resolution. The required

bandwidth is 0.8112 but it is not estimated efficiently by

the existing TCP variants. Hence, in our work, we used the

Markov decision process to estimate the bandwidth. The

bandwidth of each link will be divided into several regions.

In the cloud environment, the actual bandwidth from Table 7

passes to the agent of each mobile (State S). Then, the

agent identifies the best bandwidth correspondingly. For

each bandwidth, the cloud environment, in turn, responds

with a reward to the bandwidth estimation agent. The

Markov Decision Process (MDP) develops to provide better

bandwidth estimation and the transition state behavior of

the same Markov process. The MMBCE achieves 0.8

Mbps. Similarly, with the same procedure, MMBCE obtains

11.002 Mbps than other TCP variants. The analysis made

with the high resolution 1440×2560 and with frame rate

24 in the same configuration 1. The required bandwidth

is 11.179 to stream the good quality video. We made the

comparative study with other TCP variants and obtains

10.452, 9.28, 10.56 for cubic, TCPwestwood and TCPHas.

The existing work does not reach the actual bandwidth. In

order to solve the issue, MMBCE proposed in this work and

it achieves 11.002 as estimated bandwidth respectively.

4.1.2 Case 2

In configuration 2, we added one more high resolution,

and the frame rate is fixed as 30. We analyzed with a

Table 8 Comparison of bandwidth estimation for different segment

size

Segment Size MMBCE TCPHas TCPW Cubic

(MB)

30 0.5 0.4 0.3 0.3

60 0.8 0.6 0.5 0.4

90 1 0.8 0.7 0.6

120 1.3 1.1 0.9 0.8

150 1.4 1.2 1 0.9

180 1.7 1.4 1.2 1.1

low-resolution 640×360 and 30 frame rate. The required

bandwidth is 0.984 Mbps to stream good quality video but

the existing algorithm Cubic, TCPW, and TCPHas as 0.60,

0.75, 0.84. Mbps respectively. To improve the bandwidth,

our MMBCE proposed and it achieves 0.9 Mbps. Next, the

comparative study is made with high resolution 1440×3088

and with 30 frames. Table 7 shows the required bandwidth

as 16.7 Mbps. But 13.125, 13.810, 14.065 Mbps are

the bandwidth which is achieved by Cubic, TCPW, and

TCPHas. Our proposed algorithm MMBCE attains 15.992

Mbps estimated bandwidth which nearly occupies the actual

bandwidth to deliver good quality video.

For both mobile configurations, to minimize the packet

loss, the CDCW algorithm in the cloud dynamically adjusts

the congestion window as per the estimated bandwidth.

The main advantage of CDCW dynamically adjusts the

congestion window to improve the goodput with minimal

PLR. According to the bandwidth prediction of the cloud

server, the video packets arrive in the VPS. The arrival rates

of video packets examine with the servers (2, 4, and 6).

In general, whenever the arrival video packet arises, the

probability of an idle server decreases. Similarly, for the

same arrival rate, the VPS increases, which increases the

probability of idle servers by an average of approximately

2%. The overall advantage is to reduce the computational

overhead and energy consumption. Thus, we significantly

minimize video processing delay. After processing the

Table 9 Comparison of TCP Variants for PDR with time

Time Cubic Reno TCPW TCPHas MMBCE

(ms)

100 38 40 40 45 50

200 42 45 50 50 55

300 47 50 55 55 60

400 50 55 60 65 70

500 60 65 70 75 80

600 65 70 80 85 90
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Table 10 Analysis of Goodput Vs. Packet Loss Rate

PLR CDCW TCPHas TCPW Cubic

0 4.5 4 3.8 3.5

0.00001 3.8 3.5 3.1 3

0.0001 3.5 3.1 2.8 2.6

0.001 3.2 2.7 2.5 2.2

0.01 2.9 2.3 2.2 1.8

0.1 2.6 1.9 1.9 1.4

0.2 2.3 1.5 1.4 1

0.3 2 1.1 1 0.6

0.4 1.7 1 0.9 0.2

0.5 1.4 0.9 0.7 0.2

0.6 1.1 0.7 0.4 0.2

0.7 0.8 0.6 0.4 0.2

video packets, the cloud server deals with the transcoding

server. We propose the IVTS algorithm to choose the

optimal transcoding server with a different model. Then

determine the transcoding delay and video segment size of

the individual transcoder. It always monitors and schedules

the performance of transcoders to reduce the workload of

the individual transcoder and delay.

4.2 Performance evaluationmetrics

The bandwidth estimation, packet delivery ratio, packet loss

rate, congestion window, and throughput are the network

QoS parameters used to evaluate the proposed algorithms.

Tables 8, 9 and 12 show the performance of MMBCE

compare with other TCP algorithms. Our CDCW reduces

the PLR in Table 10 and improves the congestion window

size in Table 11.

Table 11 Comparison of the congestion window among TCP variants

Time CDCW TCPHas TCPW Cubic Reno

(sec)

0 32 30 34 30 31

50 266 165 98 33 27

100 269 166 103 63 34

150 300 204 112 54 35

200 264 170 123 55 46

250 258 162 122 65 39

300 263 173 123 54 50

350 230 136 121 77 40

400 283 189 128 53 42

450 282 188 130 61 43

500 330 255 130 61 41

550 244 148 128 59 36

600 211 150 122 62 44

Table 12 Performance of throughput for a different time interval

Time Cubic Reno TCPW TCPHas MMBCE

(sec)

2 67 98 100 118 128

5 562 823 723 823 860

7 613 781 760 815 854

10 749 883 748 848 900

13 798 854 805 906 990

15 815 833 825 908 995

17 814 765 755 804 840

20 814 803 690 790 885

23 816 833 725 782 880

25 826 858 740 799 900

27 830 847 800 830 910

30 816 829 800 809 900

33 818 823 760 791 890

35 800 831 760 813 920

37 789 820 778 815 925

40 789 804 790 792 900

Packet Delivery Ratio (PDR) Packet Delivery Ratio (PDR)

defines the sum of accepted video packets to the total no.

of video packets sent from the cloud server during different

RTT.

Goodput Goodput is defined as the ratio of the total number

of video packets received by the mobile in sequence order

to the total number of video packets sent by the cloud.

The unit of goodput is bytes per second. When any packet

loss occurs, retransmission is performed in the goodput

parameters based on bandwidth.

Fig. 2 Comparison of bandwidth estimation over actual bandwidth
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Fig. 3 Packet Delivery Ratio for TCP variants

Packet Loss Rate (PLR) PLR, defines the number of losing

video packets per unit of time. In some cases, the video

packets are retransmitted from the sender because they are

either damaged or dropped.

Throughput The throughput is defined as the transmission

rate of video packets from the cloud server to the mobile

client at the given time.

T hroughput =
Packet T ransf er Rate

Packet T ransf er T ime
(24)

5 Results and discussion

In this Section, the framework evaluates the performance of

estimated bandwidth, Packet Delivery Ratio(PDR), Packet

Loss Ratio(PLR), goodput, dynamic congestion window,

and throughput for MMBCE. The performance analysis of

video processing server utilization and delay carried out in

QVPS. Next, we discuss the transcoding parameters such as

workload, mode, average output size, and delay.

5.1 Mobile bandwidth estimation

Figure 2 depicts the estimated bandwidth of different TCP

variants. When the file size and RTT vary, the estimation

of actual bandwidth also shows variations in the multi-

flow distributed cloud environment. Our approach MMBCE

applies the Markovian mathematical model to achieve high

bandwidth estimation compared to other TCP algorithms.

To make it more transparent, for the file size 30 MB with

50 ms, RTT, the MMBCE reaches 0.5 Mbps, and TCPHas

utilizes 0.4 Mbps. The slight modification that occurs

between the two algorithms is 0.1 Mbps. Our algorithm

provides the best bandwidth estimation using a reward

function. The same analysis is also applicable to larger file

sizes.

5.2 Packet delivery ratio

PDR is an important parameter to improve network

performance. The higher rate of PDR provides a functional

network capacity. The unit of PDR metrics measures in

terms of percentage. Figure 3 depicts PDR concerning RTT.

For example, the lowest RTT 100 ms, the PDR for MMBCE,

and TCPHAS is 50% and 48%. The rest of the congestion

control schemes TCPW, Reno, and Cubic, provides 40%

and 38%. The results show that MMBCE is more efficient

and depicts the highest value of PDR. The same analysis

performed with the highest value of 600 RTT, MMBCE,

provides a high PDR rate since the congestion window

dynamically fits in the cloud as per the bandwidth of

mobile. Hence, MMBCE improves the performance of PDR

compared with other algorithms.

Fig. 4 Performance analysis of

goodput and PLR
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Fig. 5 Congestion Window Size of different TCP variants

5.3 Packet loss rate

Figure 4 experimentally analyzed the four TCP variants

of various congestion algorithms, such as Cubic, TCPW,

TcpHas, and CDCW. This result shows the better goodput

with different Packet Loss Rate (PLR). For example,

the lowest 0.00001 PLR, the goodput for the TcpHas,

TCPW, and Cubic is 25%, 23%, and 12%, whereas our

approach CDCW achieves 28% improvement. TCPHas,

TCPW, and our proposed algorithm comparatively made a

slight modification in the goodput. The reason behind this

result is, all three algorithms deal with high Bandwidth

Delay Product (BDP), and it handles the packet loss

issue. A similar analysis examines with the highest PLR

as 0.7%. We notice that the proposed algorithm, CDCW,

produces 40% more goodput than other algorithms. For

a better understanding as PLR increases, the goodput

decreases gradually, as both deal with congestion loss and

dynamically adjust the congestion window. The congestion

window sets the reduction in packet loss. A cubic function

fixes the CWND as a low percentage in TCP Cubic.

Fig. 6 Comparison of Throughput

Fig. 7 Queue Utilization of different servers

According to the estimated bandwidth, dynamic adjustment

of the congestion window happens in the sender side itself.

The main advantage of CDCW dynamically adjusts the

congestion window to improve the goodput with minimal

PLR.

5.4 Dynamic congestion window

The congestion window is flow control forced through

the sender, whereas the receiver inflicts the advertised

window flow control. Figure 5 outlines the window size

deviation for various algorithms at different RTT. In Fig. 5

CDCW window size steeply improves by adjusting the

window dynamically based on segment size and estimated

bandwidth. The window of other TCP variants such as

TCPW, Cubic, Reno individually increased slowly, but

TCPHas has a slight variation compare with proposed

CDCW.

5.5 Throughput

Figure 6 shows the throughput performance for our

proposed MMBCE compared with other TCP variants.

Our approach improves throughput performance than other

existing algorithms due to the reduction of PLR. Figure 6

Fig. 8 Video Processing delay of different servers
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Fig. 9 Comparison of transcoding workload for different Algorithm

observed that the proposed MMBCE algorithm attempts

maximum throughput than other TCP Variants.

5.6 Video processing server queue utilization

Figure 7 illustrates the evaluation of two different queueing

models as M/M/1 and M/M/S for the utilization of video

server based on the arrival of request. In the graph, we

noticed the arrival rate starts from 100 to 200 with different

service rate and utilization of queue are calculated in

percentage. The VPS utilizes 91% of the server for the

M/M/1 queueing model at 100 arrival rate. Whereas for the

same arrival rate, our proposed M/M/S queueing model in

QVPS reduces as 45% of server utilization. This variation

predicts until 200 requests. Hence, whenever the arrival rate

increases, the server utilization also gradually increases in

M/M/1. Using M/M/S, the server utilization significantly

reduced due to the processing server increasing in the

proposed model. The next figure shows the processing delay

changes with an increase in the arrival rate of many servers.

5.7 Video processing delay

Figure 8 shows the processing delay for the different

number of servers. We noticed that the increase in the

number of servers (S=6) reduces the video processing delay.

The result achieves the goal of the QVPS algorithm. Once

video processing over, the next step is transcoding. Here, for

the heterogeneous network, experiments were performed for

different workloads and modes.

5.8 Transcoding server workload

Figure 9 illustrates the comparison of transcoding servers

utilization for different algorithms. To understand transcod-

ing server utilization, we analyzed three approaches, namely

Heuristic, COVT, and IVTS. Our algorithm utilizes 29%

Fig. 10 Comparison of

transcoding mode for various

methods
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Fig. 11 Comparison of output

segment size

transcoder, and COVT employs 35%. Hence, our IVTS

method reduces 6% utilization of transcoding workload, and

overall, it uses only 13 transcoders. This reduction happens

due to the intelligent decision making of IVTS. It always

monitors and schedules the performance of transcoders to

reduce the workload of the individual transcoder.

5.9 Transcodingmode

Figure 10 investigates with three different video transcoding

algorithms, namely IVTS, COVT, and Heuristic. The

analysis shows various video data types with varying

intervals of time. While transcoding, sports video occupies

more transcoding time due to on-demand of different

viewers with the heterogeneity of mobiles heavy network

traffic, different encoding standards, and billions of user’s

demands make the delay in slow mode. The time takes for

IVTS will always be less in both modes, such as slow and

fast. Here, the transcoder operates on the workload instead

of applying the heavy load to the particular transcoder.

Our algorithm IVTS equally schedules the workload and

optimize the time.

5.10 Transcoding average output size and delay

Figure 11 illustrates the comparison of the video output

size and average delay for a different algorithm in video

streaming. The utilization of video transcoder correlates

with IVTS to select the video transcoder based on the output

segment size, and thereby, it reduces the transcoding delay.

Initially, the maximum segment size fixes as 500 KB, and

the delay sets at 2 hours. As per the algorithm 3 and 4,

the parameters MaxD and MaxVSZ map with QoS (SMax)

and (DMax) of the given figure. The above analysis of

Figs. 11 and 12 gives the result of average output size and

average delay for different video transcoding algorithms.

In this, we noticed, at the initial time of 0.5 hours, COVT

executes 510 KB, whereas our proposed IVTS takes 500

KB, which is equal to SMax . The figure clearly states that

always IVTS maintains the execution of transcoder output

segment size to the QoS(SMax). But, the existing approach

Heuristics exceeds the maximum segment size at a specified

time interval. Then, it reflects the transcoding delay in the

execution process. Since our algorithm maintains a constant

level, to minimize the delay and buffering. Next, we move

on to the average delay. Once, IVTS identifies the segment

size of individual video transcoder, the execution begins.

Herein, the video transcoder is scheduled based on the

video output segment size. In turn, it depicts the delay

in Fig. 12. The average delay is plotted with a different

Fig. 12 Flow analysis
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time interval, as shown in Fig. 12. Here, the comparison

analysis performs with the traditional approaches of COVT,

Heuristic, IVTS, and QoS (DMax). The maximum delay for

the execution of the different algorithm fixes as an average

of 2 seconds. COVT and IVTS take the lower bound of QoS

(DMax) of minimum average delay. But heuristic executes

with upper bound of DMax . Hence, this figure clearly shows

that the IVTS delay is minimal compared with COVT and

Heuristic.

6 Conclusion

In this paper, we proposed an MMBCE, CDCW, QVPS,

and IVTS approach to improve the network and multimedia

QoS. The first approach, MMBCE and CDCW estimated

the bandwidth with MDP’s help to avoid congestion and

made a comparative analysis with the existing approach.

The second approach, QVPS, involves the M/M/S queue

to reduce the delay and server utilization of video

processing. Thirdly, IVTS works intelligently for selecting

the transcoding server using M/G/N queueing model, which

reduces the transcoding time efficiently. The experimental

evaluation shows that the overall system delay has reduced

by using the above approaches. The queue model in the

cloud helps to deliver a good quality of the video. In the

future, we intend the cloud server to minimize congestion

avoidance in the router for mobile live video streaming.

Appendix 1

This section provides the details on the implementations

carried out in this work with suitable screenshots and

demos. The proposed framework in cloud server (AWS)

Fig. 13 depicts the screen taken from the Samsung Galaxy

S7 used in the experiment. Here, the user requests for a

video from cloud side. The video is retrieved and delivers

good quality of live streaming.

Figure 14 shows integration of Samsung mobile with

the public cloud namely AWS. Figure 15 has been taken

while testing the proposed algorithms in a public cloud

environment with AWS device farm. Figure 16 shows the

video delivery using the public cloud AWS farm to the

user by applying the proposed algorithms and download the

video contents with better response.

Fig. 13 Samsung Galaxy S7
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Fig. 14 Public Cloud AWS Device Farm tested output

Fig. 15 Public Cloud AWS Device Farm tested
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Fig. 16 Public Cloud AWS Device Farm tested output

References

1. Dinh HT, Lee C, Niyato D, Wang P (2013) A survey of mobile

cloud computing: architecture, applications, and approaches.

Wirel Commun Mobile Comput 13(18):1587–1611
2. Sanaei Z, Abolfazli S, Gani A, Buyya R (2014) Heterogeneity in

mobile cloud computing: taxonomy and open challenges. IEEE

Commun Surv Tutor 16(1):369–392

3. Stergiou CL, Psannis KE, Gupta B (2020) Iot-based big data

secure management in the fog over a 6g wireless network. IEEE

Internet Things J

4. Hossain K, Rahman M, Roy S (2019) Iot data compression and

optimization techniques in cloud storage: current prospects and

future directions. Int J Cloud Appl Comput (IJCAC) 9(2):43–59

5. Al-Qerem A, Alauthman M, Almomani A, Gupta B (2020) Iot

transaction processing through cooperative concurrency control

on fog–cloud computing environment. Soft Comput 24(8):5695–

5711

6. Tamizhselvi S, Muthuswamy V (2014) Adaptive video streaming

in mobile cloud computing. In: 2014 IEEE International

conference on computational intelligence and computing research.

IEEE, pp 1–4

7. Jadad HA, Touzene A, Day K, Alziedi N, Arafeh B (2019)

Context-aware prediction model for offloading mobile application

tasks to mobile cloud environments. Int J Cloud Appl Comput

(IJCAC) 9(3):58–74

8. Ahmed E, Naveed A, Gani A, Ab Hamid SH, Imran M, Guizani M

(2019) Process state synchronization-based application execution

management for mobile edge/cloud computing. Futur Gener

Comput Syst 91:579–589

9. Noor TH, Zeadally S, Alfazi A, Sheng QZ (2018) Mobile cloud

computing: Challenges and future research directions. J Netw

Comput Appl 115:70–85

10. Abdo JB, Demerjian J (2017) Evaluation of mobile cloud

architectures. Pervasive Mob Comput 39:284–303

11. Esposito C, Ficco M, Gupta B (2021) Blockchain-based authen-

tication and authorization for smart city applications. Inf Process

Manag 58(2):102468

12. Li D, Deng L, Gupta B, Wang H, Choi C (2019) A novel cnn based

security guaranteed image watermarking generation scenario for

smart city applications. Inform Sci 479:432–447

13. Lai CF, Wang H, Chao HC, Nan G (2013) A network and device

aware qos approach for cloud-based mobile streaming. IEEE

Trans Multimed 15(4):747–757

14. Tamizhselvi S, Muthuswamy V (2015) A bayesian gaussian

approach for video streaming in mobile cloud computing. Adv Nat

Appl Sci 9(6 SE):470–478

15. Wang Z, Zeng X, Liu X, Xu M, Wen Y, Chen L (2016) Tcp

congestion control algorithm for heterogeneous internet. J Netw

Comput Appl 68:56–64

16. Lukaseder T, Bradatsch L, Erb B, Van Der Heijden RW, Kargl

F (2016) A comparison of tcp congestion control algorithms in

10g networks. In: 2016 IEEE 41st conference on local computer

networks (LCN). pp. IEEE, 706–714

17. Wang J, Wen J, Zhang J, Xiong Z, Han Y (2016) Tcp-fit:

An improved tcp algorithm for heterogeneous networks. J Netw

Comput Appl 71:167–180

18. Jiang X, Jin G (2015) Cltcp: an adaptive tcp congestion

control algorithm based on congestion level. IEEE Commun Lett

19(8):1307–1310

2058 Peer-to-Peer Netw. Appl.  (2021) 14:2038–2060



19. Parichehreh A, Alfredsson S, Brunstrom A (2018) Measurement

analysis of tcp congestion control algorithms in lte uplink. In:

2018 Network Traffic Measurement and Analysis Conference

(TMA). IEEE, pp 1–8

20. Callegari C, Giordano S, Pagano M, Pepe T (2014) A survey

of congestion control mechanisms in linux tcp. In: Distributed

computer and communication networks. Springer, pp 28–42

21. Leong WK, Wang Z, Leong B (2017) Tcp congestion control

beyond bandwidth-delay product for mobile cellular networks.

In: Proceedings of the 13th international conference on emerging

networking experiments and technologies. ACM, pp 167–179

22. Jacobson V (1990) Modified tcp congestion control and avoidance

alogrithms. Technical Report 30

23. Xu L, Harfoush K, Rhee I (2004) Binary increase congestion

control (bic) for fast long-distance networks. In: Ieee Infocom,

vol 4. INSTITUTE OF ELECTRICAL ENGINEERS INC (IEEE),

pp 2514–2524

24. Ha S, Rhee I, Xu L (2008) Cubic: a new tcp-friendly high-speed

tcp variant. ACM SIGOPS Operat Syst Rev 42(5):64–74

25. Mascolo S, Casetti C, Gerla M, Sanadidi MY, Wang R (2001)

Tcp westwood: Bandwidth estimation for enhanced transport over

wireless links. In: Proceedings of the 7th annual international

conference on Mobile computing and networking. ACM, pp 287–

297

26. Metzger F, Liotou E, Moldovan C, Hoßfeld T. (2016) Tcp video

streaming and mobile networks: not a love story, but better with

context. Comput Netw 109:246–256

27. Jacobson V (1995) Congestion avoidance and control. ACM

SIGCOMM Comput Commun Rev 25(1):157–187

28. Fall K, Floyd S (1996) Simulation-based comparisons of tahoe,

reno and sack tcp. ACM SIGCOMM Comput Commun Rev

26(3):5–21

29. Alrshah MA, Othman M, Ali B, Hanapi ZM (2014) Comparative

study of high-speed linux tcp variants over high-bdp networks. J

Netw Comput Appl 43:66–75

30. Lin S, Zhang X, Yu Q, Qi H, Ma S (2013) Parallelizing

video transcoding with load balancing on cloud computing. In:

2013 IEEE International symposium on circuits and systems

(ISCAS2013). IEEE, pp 2864–2867

31. Wang Z, Sun L, Wu C, Zhu W, Zhuang Q, Yang S (2015) A joint

online transcoding and delivery approach for dynamic adaptive

streaming. IEEE Trans Multimed 17(6):867–879
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