
Delay-Aware Period Assignment in Control Systems

Bini, Enrico; Cervin, Anton

2008

Link to publication

Citation for published version (APA):
Bini, E., & Cervin, A. (2008). Delay-Aware Period Assignment in Control Systems. Paper presented at 29th IEEE
Real-Time Systems Symposium, Barcelona, Spain.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/ffa332f8-fc3a-4e6f-90f3-185dd0152c3f

Delay-Aware Period Assignment in Control Systems∗

Enrico Bini

Scuola Superiore Sant’Anna

Pisa, Italy

e.bini@sssup.it

Anton Cervin

Automatic Control, Lund University

Lund, Sweden

anton@control.lth.se

Abstract

We consider the problem of optimal static period assign-

ment for multiple independent control tasks executing on the

same CPU. Previous works have assumed that the control

performance can be expressed as a function of the sampling

rate only. Arguing that the control delay has a large impact

on the control performance, in this work we include the con-

trol delay in the cost function. The delay is estimated using

an approximate response-time analysis. Assuming linear

cost functions for the controllers then allows us to solve the

optimal period assignment problem analytically. The per-

formance improvements over previous methods are verified

in evaluations on synthetic task sets as well as detailed co-

simulations of the controllers, the plants, and the scheduler.

1 Introduction

In the design of control systems, the law for controlling

a plant is often developed starting from a continuous-time

model. Based on the control performance specifications,

the sampling rate is decided and the controller is synthe-

sized. Finally, the controller is implemented as a periodic

task that is assigned to the scheduler. However, as pointed

out by several authors [18, 17, 19, 8, 7, 15], it can happen

that the controller misbehaves with respect to the theoretical

behavior foreseen in the design phase. A reason of possible

misbehavior is that the interactions between the task imple-

menting the controller and the other activities running on

the processor may be incompatible with the stringent con-

straints on the controller schedule implicitly assumed in the

design phase, such as no jitter and no delay between read-

ing from the sensors and writing to the actuators. Unfortu-

nately, these hypotheses cannot be guaranteed by any task

schedulers. It follows that, during the design phase of the

controller, as many aspects as possible of the scheduling

∗This work was partially supported by ArtistDesign NoE IST-2008-

214373.

environment should be taken into account. However, since

the general control–scheduling co-design problem is highly

nonlinear, any design procedure will typically have to be it-

erative and involve several model simplifications as well as

additional (artificial) design constraints. The key to devel-

oping a successful design methodology is finding the right

simplifications and constraints. The mathematical models

should be simple enough to facilitate efficient synthesis of

the control laws and the scheduling parameters, but at the

same time they should capture the properties that matter the

most to the application performance.

To be able to do the proper trade-offs in the design phase,

it is important to understand how the quality of the control

is affected by the scheduling parameters. The control per-

formance is typically measured using a cost function. The

primary timing attributes that we will consider in this paper

are the activation rate of the controller and the delay be-

tween the controller start time (when the sensors are read)

and its finish time (when the actuation occurs). Other at-

tributes include jitter in the sensing and actuation instants.

In order to limit the complexity, we will not consider jit-

ter in the design state, but only in final control performance

evaluation. A previous case study [6] has indicated that de-

lay is indeed the more important attribute to consider at the

design stage.

A basic assumption in the paper is that the achievable

cost for a given plant is a monotonically decreasing function

of the activation rate and a monotonically increasing func-

tion of the control delay. The best case is hence a short sam-

pling period and a short delay. This is true for all reasonable

choices of activation rates (i.e. all cases but extremely slow

sampling, where the sampling frequency is lower than the

speed of the fastest pole of the plant). As the sampling rate

approaches infinity and the delay approaches zero, the cost

approaches that of an ideal, analog controller.

1.1 Contributions

The main contribution of the paper is the development of

an approximate response-time analysis under fixed-priority

2008 Real-Time Systems Symposium

1052-8725/08 $25.00 © 2008 IEEE

DOI 10.1109/RTSS.2008.45

291

scheduling that can be used to roughly estimate the control

delay. We further show, assuming cost functions that are lin-

ear in the task periods and in the delays, how the response-

time approximation allows the optimal period assignment

problem for a set of controllers to be solved analytically.

Being very efficient, the period assignment method can be

used in an iterative co-design procedure, where the real

(nonlinear) cost functions are linearized around the cur-

rent solution in each step. Since the delay has a quite sig-

nificant impact on the control performance, taking the de-

lay into account at design time can significantly reduce the

implementation-related performance degradation. In both

theoretical and simulation-based evaluations, we show that

our co-design method overall provides a lower cost than

previously proposed period assignment schemes for mul-

tiple controllers.

1.2 Related Work

In 1996, Seto et al. [17] found the optimal task rate

assignment such that a given performance index is max-

imized and the available computational resources are not

overloaded. In this work, which is a milestone in the liter-

ature of real-time control co-design, however the delay be-

tween sensing and actuation is still assumed to have no im-

pact in the performance of the system. This was pointed out

by Kim [12], who proposed to extended the cost function

to include also the control delay. No method for assigning

periods based on the modified cost function was proposed

however. Another limitation of [17] was that they assumed

as feasibility constraint the utilization upper bound [14].

However the utilization upper bound is only a sufficient

condition when a fixed priority scheduler is used. Bini and

Di Natale [5] proposed an algorithm that finds the optimal

period assignment of control tasks scheduled by fixed pri-

ority. In their work, the delay is guaranteed not to exceed

the period for all tasks. Since the optimal method requires

a time-consuming branch-and-bound algorithm to be exe-

cuted, they also proposed a faster algorithm to find a sub-

optimal period assignment taking advantage of some geo-

metrical considerations in the space of feasible activation

rates. The simpler method will be compared with assign-

ment method proposed in this paper in Section 5.

In recent years, there has been a growing interest in on-

line control task period assignment, where the purpose is

to reallocate more resources to the control loop currently

in need. However, neither Martı́ et al. [16] nor Henriksson

and Cervin [9] considered the control delay in their resource

allocation schemes.

1.3 Outline

The remainder of this paper is outlined as follows. In

Section 2, we state the system model, including the schedul-

ing and controller parameters. In Section 3, the approxi-

mate response-time analysis is developed, followed by the

analytical solution of the optimal period assignment prob-

lem. Section 4 very briefly discusses the problem of also

assigning optimal priorities. The performance evaluation is

given in Section 5, where the quality of the approximate

analysis and the optimization is first tested on synthetic task

sets and then in simulated multi-loop control systems. The

conclusion and some discussion on future work are given in

Section 6.

2 Application Model

An application consists of a set of n independent control

tasks, each one controlling a plant. A task τi is charac-

terized by two sets of parameters: the real-time parameters,

which describe how the task interacts with the scheduler and

the other tasks, and the control parameters, which describe

the plant, the controller, and the quality of the control.

2.1 Real-Time Parameters

The tasks are scheduled by a preemptive fixed-priority

(FP) scheduler. A task τi is characterized by the following

attributes:

• The worst-case computation time Ci is the maximum

execution requirement that a task can require. We

highlight that the computation time of a linear con-

troller is often quite static and predictable, since the

code typically has not many conditional branches.

• The period of the task activations Ti is the time sep-

aration between two consecutive activations. Equiv-

alently, we will sometimes use the frequency of the

activations, fi = 1
Ti

.

• The task utilization Ui is equal to Ci

Ti

, and it measures

the worst-case amount of computational resources re-

quired by the controller. If
∑

i Ui > 1, then we say

that we are in overload conditions.

• The task priority is used by the FP scheduler to sched-

ule the tasks for execution. Without loss of generality

we assume that the priority is implicitly assigned by

the task ordering, such that τi has higher priority than

τi+1.

• The worst-case response time Ri is the maximum time

that may elapse from the task activation to its finishing

time.

292

The periods Ti and the priorities are independent param-

eters, in the sense that they can be freely specified by the

system designer. All the other parameters can be derived

once these parameters are set.

2.2 Control Parameters

For the control parameters, we adopt a linear-quadratic

Gaussian (LQG) framework [1], where each plant is de-

scribed by a linear system

dx(t)

dt
= Ax(t) + Bu(t) + vc(t)

y(tk) = Cx(tk) + e(tk)
(1)

where x is the plant state, u is the controlled input, and vc is

a continuous-time Gaussian white noise process with inten-

sity R1c. The output y is measured at discrete time instants

tk, with measurement noise e described by a discrete-time

Gaussian white noise process with variance R2. A, B, and

C are matrices of appropriate size. The control performance

is measured by a standard quadratic cost function

J = lim
t→∞

1

t
E

{
∫ t

0

(

y2(τ) + ρu2(t)
)

dτ

}

(2)

where ρ is a weighting factor that describes how much large

control signals should be penalized compared to large plant

outputs. (The E {·} operator denotes expected value.)

For a given sampling period T and a constant control

delay ∆ (from reading y to updating u), it is straightforward

to synthesize an optimal discrete-time LQG controller that

minimizes (2). Further, it is possible to evaluate how the

cost will change if ∆ is changed from its nominal value.

The controller and the corresponding cost can be calculated

using MATLAB and the Jitterbug toolbox [13].

In general, the cost J is a nonlinear function of the sam-

pling period T and the delay ∆. For reasonably short peri-

ods however (abiding to common rules of thumb for sam-

pling period selection [1]), the cost is usually a near-linear

function of T and ∆. Three examples with scalar plants

(A = {−1, 0, 1}, B = 1, C = 1, R1c = 1, R2 = 0, ρ = 0)

are shown in Figure 1. For the case A = 0 (an integrator

plant), the cost is indeed an exact linear function,

J = 3+
√

3
6 T + ∆

In the general case, the cost function can at least locally be

approximated by a linear function (possibly with a constant

offset that will not matter for the design problem at hand).

For each control task τi, we hence model the relation be-

tween period, delay, and cost as

Ji = αiTi + βi∆i =
αi

fi

+ βi ∆i (3)

Typically, the parameters αi and βi are found to be

within the same order of magnitude. This is not surpris-

ing, since the sample-and-hold operation can itself be inter-

preted as a delay. A common rule of thumb says that sam-

pling with the interval T is roughly equivalent to a control

delay of T/2 [1].

3 The Period Assignment

In our design problem we assume that the task execution

times are known. In this section we also assume that the pri-

orities are given. In Section 4 we briefly discuss the priority

assignment problem.

The goal of the design is to assign task periods such that

the overall system cost is minimized. We define the overall

cost J as

J =

n
∑

i=1

Ji (4)

Notice that the controller cost function (3) also allows the

designer to assign different weights wi to the controllers,

which can be taken into account by simply multiplying both

αi and βi by wi.

3.1 Modeling the Delay

As argued in Section 2.2, a reasonable model of the cost

of a controller should take the delay into account. The con-

cept of job delay is quite clear: it is the time that elapses

from the sampling instant (that can be assumed coincident

with the job activation or the job start time) to the actua-

tion instant (that can be assumed equal to the job comple-

tion time). Unfortunately the job delay can vary from job to

job. An exact approach would have to investigate how the

controller cost is affected by the full schedule of the task,

taking into account all the different delays experienced by

the jobs. However, current scheduling theory does not al-

low us to express all the job delays as a function of the task

periods. Hence the following problem arises: what should

we consider as the control delay ∆i such that (3) is a proper

model of the controller cost?

A first attempt is to set the control delay equal to the

maximum job delay. Hence, we can set the delay ∆i equal

to the task response time Ri. In fact, the response time is

the maximum time that can elapse from the task activation

to its completion. However, the response time is not a con-

tinuous function of the task periods [11, 2]. It then becomes

unclear what optimization method we can use to perform

the minimization of the overall cost.

A second option can be to use an approximation of the

response time that has some smoothness properties that al-

lows us to solve the problem of minimizing J . Recently,

293

0
0.2

0.4
0.6

0

0.2

0.4

0.6
0

0.1

0.2

0.3

0.4

0.5

PeriodDelay

C
o
st

0
0.2

0.4
0.6

0

0.2

0.4

0.6
0

0.2

0.4

0.6

0.8

1

1.2

PeriodDelay

C
o
st

0
0.2

0.4
0.6

0

0.2

0.4

0.6
0

1

2

3

4

PeriodDelay

C
o
st

Figure 1. Typical cost functions under LQG control. Left: stable plant, middle: marginally stable plant, right:

unstable plant. In the plots, it is assumed that the delay never exceeds the period.

Bini and Baruah [3] proposed a continuous and differen-

tiable upper bound of the response time. They proved that

Ri ≤ Rub
i =

Ci +
∑i−1

j=1 Cj(1 − Uj)

1 − ∑i−1
j=1 Uj

(5)

Thanks to the smoothness of this upper bound, we can

imagine finding the task periods that minimize the cost (4)

by replacing all delays ∆i by the expression (5). However,

this approach presents two drawbacks:

1. Since Rub
i is not convex, numerical solvers are not

guaranteed to find a period assignment that guarantees

a global minimum cost J .

2. Since the response time Ri is the maximum response

time of all the jobs activated by τi and Rub
i ≥ Ri, if

we set ∆i = Rub
i we would overestimate the impact

of the delay in the controller.

Instead we would prefer to approximate the delay ∆i by

the average of all the job response times over the task sched-

ule. To follow this intuition we set

∆i = Rapprox
i =

Ci

1 − ∑i−1
j=1 Uj

(6)

that is the response time that the task τi would experience in

a processor that provides a fluid share of 1−∑i−1
j=1 Uj of the

available bandwidth. This would be the exact response time

if the higher priority tasks τ1, . . . , τi−1 received a constant

share of the processor equal to their utilization.

Let’s now examine some properties of Rapprox
i . First,

its convexity allows to assert that a period assignment that

is a local minimum is also the global minimum. Second,

Rapprox
i is no longer an upper bound of the task response

time Ri. Instead it is a lower bound on the (worst-case)

response time Ri. In fact,

Ri = Ci +

i−1
∑

j=1

⌈

Ri

Tj

⌉

Cj ≥ Ci +

i−1
∑

j=1

Ri

Tj

Cj

Ri(1 −
i−1
∑

j=1

Uj) ≥ Ci

Ri ≥
Ci

(1 −
∑i−1

j=1 Uj)
= Rapprox

i

This property makes Rapprox
i suitable for our purposes,

since our goal is to find an approximation of the average

response time that is smaller than or equal to the task re-

sponse time Ri. In Section 5.1 we will show that the aver-

age response time of the jobs does not deviate significantly

from Rapprox
i .

Finally, from a design point of view, an excellent prop-

erty of Rapprox
i is that, if we assume ∆i = Rapprox

i we

are able to find a closed solution of the optimal periods that

minimizes the system cost J .

3.2 Solving the Minimum Cost Problem

If we now assume ∆i = Rapprox
i then the cost of a single

controller becomes

Ji = αi

1

fi

+ βi

Ci

1 −
∑i−1

j=1 Uj

(7)

To have more compact expressions we will use the con-

troller utilizations as optimization variables instead of the

task periods. Hence, by introducing

ai = αiCi bi = βiCi (8)

the task cost Ji becomes

Ji =
ai

Ui

+
bi

1 − ∑i−1
j=1 Uj

(9)

294

Clearly the utilization assignment must satisfy the nec-

essary feasibility constraint on the available bandwidth,

n
∑

i=1

Ui ≤ 1 (10)

It is well known that the constraint (10) is not sufficient to

guarantee that the jobs complete not later than the activation

of the next one [14]. However this condition is not required

in our context. In fact there may be controllers poorly sensi-

tive to the delay that work fine even if the jobs are not com-

pleted before the activation of the next one. Hence, in our

problem we allow Ri > Ti and we use the condition (10)

as unique feasibility constraint.

It follows that the problem that we are solving is

minimize J =
n

∑

i=1

(

ai

Ui

+
bi

1 −
∑i−1

j=1 Uj

)

subject to

n
∑

i=1

Ui ≤ 1, Ui ≥ 0

(11)

Now we start computing the partial derivatives of the

task costs Ji with respect to the utilizations Uk. First of

all we realize that the utilization Un only affects the cost

Jn, because the lowest priority task τn does not interfere

with any other task. We have

∂Jn

∂Un

= − an

U2
n

(12)

Since an ≥ 0, Jn is a decreasing function of Un. Then

it follows that the best value for Un is the largest possible.

Hence the bandwidth constraint of Equation (10) is always

adherent (it holds with the equal sign), and we have

Un = 1 −
n−1
∑

j=1

Uj (13)

This also has an intuitive explanation: since τn is the low-

est priority task, it does not interfere with any other task.

Hence, increasing Un can only benefit τn without causing

any damage to the other tasks. From (13), the cost Jn be-

comes

Jn =
an

Un

+
bn

1 − ∑n−1
j=1 Uj

=
an + bn

1 − ∑n−1
j=1 Uj

(14)

The minimization problem (11) is then performed on the

first n − 1 utilizations only, because Un is implicitly as-

signed by (13). It can be rewritten as

minimize J =

n−1
∑

i=1

(

ai

Ui

+
bi

1 − ∑i−1
j=1 Uj

)

+
an + bn

1 − ∑n−1
j=1 Uj

subject to

n−1
∑

i=1

Ui ≤ 1, Ui ≥ 0

(15)

We observe that J goes to +∞ at the boundary of the do-

main of the feasible utilizations,

D=

{

(U1, . . . , Un−1)∈ R
n−1: Ui≥ 0,

n−1
∑

i=1

Ui ≤ 1

}

(16)

In fact, when some Ui → 0 then the corresponding Ji →
+∞ because it has a term ai

Ui
in it. When

∑n−1
i=1 Ui → 1

then Jn → +∞. Hence the minimum cost utilization as-

signment must occur in the interior D̊. This observation

allows us to disregard all the constraints of the minimiza-

tion problem, and the problem can then be solved by un-

constrained minimization.

Since J is differentiable, the minimum must satisfy the

null gradient condition

k = 1, . . . , n − 1
∂J

∂Uk

=

n
∑

i=1

∂Ji

∂Uk

= 0 (17)

If we differentiate Jn with respect to all the utilizations

U1, . . . , Un−1 we find

k = 1, . . . , n − 1
∂Jn

∂Uk

=
an + bn

(1 − ∑n−1
j=1 Uj)2

(18)

Now we differentiate the costs J1, . . . , Jn−1 with respect to

the controller utilizations. Since the value of Uk does not

affect the tasks τi with higher priority, we have

k = 1, . . . , n − 1, k > i
∂Ji

∂Uk

= 0 (19)

Moreover we simply have

k = 1, . . . , n − 1
∂Jk

∂Uk

= − ak

U2
k

(20)

Finally when k < i we have

k = 1, . . . , n − 1, k < i ≤ n − 1

∂Ji

∂Uk

=
bi

(1 − ∑i−1
j=1 Uj)2

(21)

Now we write the null gradient condition of (17) for all

its components, for k from n − 1 down to 1:

∂J

∂Un−1
= 0 ⇒ an−1

U2
n−1

=
an + bn

(1 − ∑n−1
j=1 Uj)2

(22)

an−2

U2
n−2

=
bn−1

(1 − ∑n−2
j=1 Uj)2

+
an + bn

(1 − ∑n−1
j=1 Uj)2

(23)

. . .

ak

U2
k

=

n−1
∑

i=k+1

bi

(1 − ∑i−1
j=1 Uj)2

+
an + bn

(1 − ∑n−1
j=1 Uj)2

(24)

295

To find the closed solution for the optimum it is neces-

sary to explore the properties of the relationship

µ2
k

U2
k

=
λ2

k

(1 −
∑k

j=1 Uj)2
(25)

for any µk and λk , since the (22)–(24) can be written in a

similar way to (25).

From (25) it follows that

µk

Uk

=
λk

1 −
∑k

j=1 Uj

Uk =
µk

λk

(1 −
k

∑

j=1

Uj) =
µk

λk

(1 −
k−1
∑

j=1

Uj) −
µk

λk

Uk (26)

(1 +
µk

λk

)Uk =
µk

λk

(1 −
k−1
∑

j=1

Uj) (27)

Uk =
µk

λk + µk

(1 −
k−1
∑

j=1

Uj) (28)

1 −
k

∑

j=1

Uj =
λk

µk

Uk =
λk

λk + µk

(1 −
k−1
∑

j=1

Uj) (29)

1

1 −
∑k

j=1 Uj

=
λk + µk

λk

1

1 −
∑k−1

j=1 Uj

(30)

Equations (28) and (29) also provide an interesting interpre-

tation of the coefficients µk and λk. Basically µk + λk is

proportional to the bandwidth 1−∑k−1
j=1 Uj that is available

to the task τk. Then the task τk uses a bandwidth Uk that

is proportional to µk and leaves λk for the lower priority

tasks.

Thanks to the found relationship it is possible to find a

solution of (22)–(24). We rewrite (22), introducing µn−1

and λn−1,

an−1

U2
n−1

=
an + bn

(1 − ∑n−1
j=1 Uj)2

⇒ µ2
n−1

U2
n−1

=
λ2

n−1

(1 −
∑n−1

j=1 Uj)2
(31)

For all the other equations we have

ak

U2
k

=

n−1
∑

i=k+1

bi

(1 − ∑i−1
j=1 Uj)2

+
an + bn

(1 − ∑n−1
j=1 Uj)2

⇒ µ2
k

U2
k

=
λ2

k

(1 − ∑k

j=1 Uj)2
(32)

ak−1

U2
k−1

=
µ2

k−1

U2
k−1

=
bk

(1 − ∑k−1
j=1 Uj)2

+
λ2

k

(1 − ∑k
j=1 Uj)2

=
λ2

k−1

(1 − ∑k−1
j=1 Uj)2

(33)

Recalling (30), the following recursive definition of µk and

λk holds:

⎧

⎪

⎨

⎪

⎩

µk =
√

ak k = 1, . . . , n − 1

λn−1 =
√

an + bn

λk−1 =
√

bk + (λk + µk)2 k = 2, . . . , n − 1

(34)

Notice that µk and λk are functions of only the input pa-

rameters a1, . . . , an, b1, . . . , bn.

The values of µk and λk can be used to express the so-

lution of the problem. From (28) we can find the optimal

utilization U1 of task τ1,

U1 =
µ1

λ1 + µ1
(35)

and, in general, from (28) and (26) we have

Uk =
µk

λk + µk

(1 −
k−1
∑

j=1

Uj) =
µk

λk + µk

λk−1

µk−1
Uk−1 (36)

from which we finally have the closed solution

Uk = U1
µk

µ1

k−1
∏

j=1

λj

λj+1 + µj+1

Uk

µk

=
U1

µ1

k−1
∏

j=1

λj

λj+1 + µj+1

(37)

3.3 Iterative Period Assignment

The closed solution above gives the optimum task peri-

ods in the case that all the cost functions are exactly linear in

T and ∆. In general, however, the cost of each control loop

may be given by a nonlinear but smooth function Ji(T, ∆).
The period assignment can then be performed iteratively as

follows.

Based on the control specifications, nominal task periods

T 0
i are assigned and nominal task delays ∆0

i are computed.

For k = 1, 2, . . ., the following steps are then performed:

1. Evaluate αk
i =

∂Ji(T
k

i
,∆k

i
)

∂T
and βk

i =
∂Ji(T

k

i
,∆k

i
)

∂∆ nu-

merically for all tasks using e.g. finite difference ap-

proximations and the Jitterbug toolbox [13].

2. Assign new periods T k
i using (37) based on the lin-

earized cost functions Jk
i (T, ∆) = αk

i T + βk
i ∆.

296

3. Evaluate ∆k
i and redesign the controllers according to

T k
i and ∆k

i .

To guarantee the convergence of the algorithm, further as-

sumptions on the cost functions Ji(T, ∆) must be made.

This however lies outside the scope of the current paper.

4 The Priority Assignment

In the previous section we assumed that the priorities of

the control tasks are given. Here we expose two possible

strategies for assigning priorities.

Seto96RM. One technique to assign the static priorities

to the control tasks is to assign rate-monotonic (RM)

priorities based on the periods returned by the algo-

rithm in Seto’s classical paper [17]. The advantage of

this technique is its low run-time. However, this as-

signment is delay-insensitive, since it does not take the

cost parameter βi into account.

BruteForce. Since the optimal period assignment for a

given priority assignment is extremely simple (it has

complexity O (n)), we could try to test all the possi-

ble n! priority assignments and then select the one that

gives the smallest cost. Even though this method is

brute force and is clearly not scalable with n, it fin-

ishes in a few minutes for a dozen tasks.

Other suboptimal but more efficient methods for assign-

ing priorities to control tasks will be investigated in future

work.

5 Performance Evaluation

In this section we evaluate the proposed period assign-

ment method against other existing methods in the litera-

ture. The methods that we will consider are the following.

RiApprox. The method proposed in this paper, minimiz-

ing
∑

i αiTi + βi∆i assuming the delay ∆i equal to

the response time approximation Rapprox
i of (6).

Seto96. The method proposed in Seto et al. [17], mini-

mizing
∑

i αiTi over the constraint
∑

i
Ci

Ti

≤ 1 or
∑

i
Ci

Ti

≤ U lub
RM. This period assignment method ne-

glects the effect of delay.

FirstVertex. The suboptimal method proposed in Bini and

Di Natale [5], minimizing
∑

i αiTi subject to the FP

schedulability constraint. The suboptimal method is

much faster than the true optimal solution that re-

quires integer linear programs to be solved but per-

forms nearly as well. This period assignment method

also neglects the effect of delay, although thanks to the

FP schedulability constraint, it guarantees that the de-

lay ∆i will never exceed the period Ti.

In Section 5.1 we estimate the amount of bias introduced

by the response time approximation Rapprox
i . In Section 5.2

we evaluate the cost on synthetic task sets. Finally, in Sec-

tion 5.3 we evaluate the overall control cost in detailed co-

simulations.

5.1 Quality of the Delay Approximation

In Section 3.1 we set the control delay ∆i equal to the

response time approximation Rapprox
i . In this section we

are going to evaluate the amount of bias introduced by this

delay estimate.

In this experiment we assumed n ∈ {3, 7, 19}. The com-

putation times are uniformly distributed in (0.01/n, 0.1/n).
The cost coefficients αi and βi are extracted using a prob-

ability density that reproduces a posteriori the same statis-

tical distribution observed in the experiments made in Sec-

tion 5.3. For each task number n we generated 1000 task

sets. For each task set we have proceeded as follows:

1. We assigned the priorities according to Seto96RM.

2. We computed the optimal periods Ti, using RiApprox.

3. Starting from the computation times Ci and the periods

Ti we estimated the average task response time Ravg
i .

This value is extracted by making the average of the

first 50 jobs of the task τi. Notice that the periods Ti

returned by RiApprox are real-valued, hence it is not

possible to compute the response times of all the jobs

within the hyperperiod, because the hyperperiod does

not exist.

In Figure 2 we report the results. For each number of

tasks n we report the statistics of
R

approx

i

R
avg

i

that we call “ap-

proximation bias” (reported on the y-axis). The tasks are

sorted along the x-axis from the highest to the lowest pri-

ority. A thick line marks the average value for all the 1000

experiments, and a dot is placed in correspondence of a task.

Also the stripe of the average value plus/minus the standard

deviation is drawn.

In can be noted that Rapprox
i is, on the average, some

amount above the average response time Ravg
i . This over-

estimation is small for high priority tasks and it increases as

the priority becomes smaller. A good property of Rapprox
i

seems to be that the factor of over-estimation does not scale

with the number of tasks.

For the lowest priority task we notice an unexpected be-

havior, since in this case Rapprox
i becomes smaller than

Ravg
i . A partial explanation of this behavior can be found

in the experiment methodology. The periods returned by Ti

297

0

0.5

1.0

1.5

2.0

2.5

lowesthighest task priority

a
p

p
ro

x
im

a
ti
o

n
 b

ia
s

n = 3

n = 7

n = 19

Figure 2. Quality of the response time approxima-

tion.

returned by the method RiApprox are such that the proces-

sor is fully utilized (see Eq. (13)). Hence the first 50 jobs,

used to compute Ravg
i are probably experiencing more in-

terference than the average. This could partially motivate

the fact that the real average response time is lower than the

value Ravg
i measured in our experiment.

We can conclude that the usage of Rapprox
i to estimate the

delay introduces an overestimation of the delay. This neg-

ative aspect however does not compromise the validity of

the presented results. First of all, it is not clear whether the

delay ∆i experienced by the task is well modeled by Ravg
i .

Moreover this bias can be corrected by adjusting the values

of βi, as shown in the pseudo-code (in Matlab) reported in

Figure 3.

The function RiApproxIter starts by invoking the effi-

cient algorithm RiApprox. Using the returned vector of pe-

riods T and the computation times C, it estimates the vec-

tor of delays ∆ experienced by each task using, for exam-

ple, the average response time of some initial jobs. Then, it

compares the delays with the response time approximation

Rapprox (that was assumed by RiApprox to be the delay for

finding T), storing the bias factor. The function continues

invoking RiApprox until the bias factor has become stable.

5.2 Evaluation on Synthetic Tasks

In this experiment we have investigated the cost reduc-

tion that is possible to achieve by the presented methods.

In this context we compare the three period assignment

methods FirstVertex, RiApprox, and RiApproxIter (the it-

erative method that was described in Section 5.1). The

cost achieved by the three methods is divided by the cost

achieved by Seto96.

The number of tasks n is set to 5. The computation times

Ci and the cost coefficient αi are generated as in the exper-

function T = periodRiApprox(C, α, β)

% Returns a vector of optimal periods

function ∆ = delayEstimate(C, T);

% Returns a vector of delay estimates . It can be

% done, for example, by simulating the schedule

% and returning the average of the response times

function T = periodRiApproxIter(C, α, β)

err = 1;

bias = ones(1,n);

while (err > η), % stop when err below η
% invoke the period assignment

T = periodRiApprox(C, α, β./bias);

% estimate the delay

∆ = delayEstimate(C, T);

% evaluate the bias

oldBias = bias ;

bias = Rapprox./∆;

err = norm((oldBias−bias)./ bias);

end

Figure 3. Pseudo-code of RiApproxIter

iment of Section 5.1. The coefficient βi is extracted uni-

formly in [0, 2s βref
i], where βref

i is extracted in the same

way as in was extracted βi in Sec. 5.1, and s indicates the

sensitivity to the delay. In fact, if s = 0 then all the βi will

be set equal to zero. As s increases the values of βi will

increase as well. For each method the cost is evaluated as-

suming as delay the average response time of the first 10

jobs Ravg
i .

In Figure 4 we show the results. We plot the cost of the

three methods normalized with the cost by Seto96, as a

function of the sensitivity to the delay s. It can be noticed

that when s = 0 the methods RiApprox and RiApproxIter

gives the same cost as Seto96. This is quite evident, since

when all βi = 0 the minimization problem of Eq. (11) is

exactly the same as Seto’s. FirstVertex is worse, because it

bounds the delay by the period even though βi = 0, which

is clearly suboptimal.

As the sensitivity to delay s increases all the three meth-

ods improve. When s ≈ 0.75, FirstVertex returns solutions

with lower cost than Seto96. As expected both RiApprox

and RiApproxIter reduce the overall cost, as the system be-

comes more sensitive to the delay.

Finally it can be noticed that the benefit of RiApprox-
Iter w.r.t. the simpler RiApprox is quite negligible. Hence

we can affirm that even if the response time approximation

Rapprox
i can deviate significantly than the average response

time Ravg
i , the effect of this difference is negligible in terms

of the system cost of the final solution. Hence we drop the

298

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005

c
o
s
t
w

.r
.t
.
S

e
to

9
6

sensitivity to the delay

FirstVertex

RiApprox

RiApproxIter

Figure 4.

method RiApproxIter in the final experiment, since its long

execution time does not pay off,

5.3 Evaluation of the Control Cost

For the control evaluation, we considered a set of random

tasks controlling a set of randomly generated plants.

5.3.1 Random Task Generation

For the control evaluation, we considered n = {2, 5, 10, 20}
control tasks. Nominal task utilizations Unom

i were gen-

erated using an n-dimensional uniform distribution with

total utilization 1 [4]. The execution time was given by

Ci ∈ U(0.01, 0.1)/n. Nominal task periods were given

by T 0
i = Ci/Unom

i and priorities were assigned based on

the periods returned by Seto96.

5.3.2 Random Plant Generation

In order to vary the sensitivity towards delay, random plants

were generated in three different families.

In Family I, all plants had two stable poles, with each

plant with equal probability drawn from

P1(s) =
1

(s + a1)(s + a2)
, P2(s) =

1

s2 + 2ζωs + ω2

with a1,2 ∈ U(0, 1), ω ∈ U(0, 1), ζ ∈ U(0, 1).
In Family II, all plants had two stable and/or unstable

poles, with each plant with equal probability drawn from

P3(s) =
1

(s + a1)(s + a2)
, P4(s) =

1

s2 + 2ζωs + ω2

with a1,2 ∈ U(−1, 1), ω ∈ U(0, 1), ζ ∈ U(−1, 1).

In Family III, all plants had three stable and/or unstable

poles, with each plant with equal probability drawn from

P5(s) =
1

(s + a1)(s + a2)(s + a3)
,

P6(s) =
1

(s2 + 2ζωs + ω2)(s + a3)

with a1,2,3 ∈ U(−1, 1), ω ∈ U(0, 1), ζ ∈ U(−1, 1).
Unstable plants are more sensitive to delay and jitter, and

we would hence expect to see a larger performance differ-

ence for Families II and III than for Family I.

For the control design we throughout assumed the pa-

rameters ρ = 0.01, R1c = BBT , and R2 = 0.01 tr{R1c}.

(Here, tr{·} denotes trace.) Optimal LQG controllers were

then designed assuming the assigned period T and expected

control delay ∆.

5.3.3 Simulation Results

The various period assignment methods were evaluated in

Monte Carlo simulations, where the plants (including the

random disturbances), the controllers, and the scheduler

were simulated in parallel using the TrueTime simulation

toolbox [10]. From each family of plants, 20 random plants

and controllers were generated and simulated for 100 s, the

total cost J being recorded. The cost under Seto96 (with

U = U lub
RM), FirstVertex, and RiApprox were compared to

an ideal case where each controller had its own CPU and

could execute at its maximum possible rate, Ti = Ci. From

the simulation results, the average performance degradation

in percent and the standard deviation was computed.

For Family I the results were as follows:

n = 2 n = 5 n = 10 n = 20

Seto96 20(+8
−9) 39 ± 3 49 ± 7 67 ± 3

FirstVertex 16(+9
−9) 35 ± 3 50 ± 12 59 ± 5

RiApprox 16(+6
−8) 33 ± 3 42 ± 6 55 ± 4

For Family II the results were:

n = 2 n = 5 n = 10 n = 20
Seto96 24 ± 6 51 ± 9 60 ± 11 87 ± 14

FirstVertex 22 ± 6 42 ± 9 57 ± 6 76 ± 10
RiApprox 19 ± 5 40 ± 6 48 ± 8 66 ± 4

Finally, for Family III the results were:

n = 2 n = 5 n = 10 n = 20
Seto96 27 ± 3 81 ± 24 121 ± 13 155 ± 9

FirstVertex 27 ± 8 61 ± 14 108 ± 11 146 ± 9
RiApprox 24 ± 4 102 ± 79 100 ± 12 128 ± 7

It is seen that all period assignment schemes introduce

some performance degradation. Overall RiApprox outper-

forms FirstVertex which in turn outperforms Seto96. The

299

former achieve a utilization close to 1 while Seto96 stays

at the RM least upper bound. As expected the performance

degradation is the worst for Family III, and there the period

assignment scheme matters the most. Also, the choice of

method seems to be more important the larger the task set.

6 Conclusion

The paper has tackled the control–scheduling co-design

problem of optimal period assignment for multi-loop con-

trol systems. The key improvement compared to previ-

ous work has been the closed-form formulas for the ap-

proximate control delay and optimal periods, which en-

abled delay-aware period assignment under fixed-priority

scheduling. Detailed co-simulations showed that delay-

aware period assignment could indeed significantly the re-

duce the implementation-induced performance degradation,

especially for large task sets and delay-sensitive plants.

For future work, it would be interesting to investigate

how to assign optimal priorities to the controllers. An ex-

tension to the EDF case would also be of interest. From the

control perspective, it would be useful to develop approxi-

mate formulas also for the jitter and include its effect in the

cost function.

References

[1] K. J. Åström and B. Wittenmark. Computer-Controlled Sys-

tems. Theory and Design. Prentice Hall, third edition, 1997.
[2] N. C. Audsley, A. Burns, M. Richardson, K. W. Tindell, and

A. J. Wellings. Applying new scheduling theory to static pri-

ority pre-emptive scheduling. Software Engineering Jour-

nal, 8(5):284–292, Sept. 1993.
[3] E. Bini and S. K. Baruah. Efficient computation of response

time bounds under fixed-priority scheduling. In Proceedings

of the 15
th conference on Real-Time and Network Systems,

pages 95–104, Nancy, France, Mar. 2007.
[4] E. Bini and G. C. Buttazzo. Biasing effects in schedulability

measures. In Proceedings of the 16
th Euromicro Conference

on Real-Time Systems, pages 196–203, Catania, Italy, June

2004.
[5] E. Bini and M. Di Natale. Optimal task rate selection in fixed

priority systems. In Proceedings of the 26
th IEEE Real-Time

Systems Symposium, pages 399–409, Miami (FL), U.S.A.,

Dec. 2005.
[6] G. Buttazzo and A. Cervin. Comparative assessment and

evaluation of jitter control methods. In Proceedings of the

15
th conference on Real-Time and Network Systems, pages

163–172, Nancy, France, Mar. 2007.
[7] A. Cervin. Improved scheduling of control tasks. In Pro-

ceedings of the 11
th Euromicro Conference on Real-Time

Systems, pages 4–10, York, UK, June 1999.
[8] A. Crespo, I. Ripoll, and P. Albertos. Reducing delays in RT

control: the control action interval. In Proceedings of the

14
th IFAC World Congress, pages 257–262, Beijing, China,

July 1999.

[9] D. Henriksson and A. Cervin. Optimal on-line sampling pe-

riod assignment for real-time control tasks based on plant

state information. In Proceedings of the 44
th IEEE Confer-

ence on Decision and Control and European Control Con-

ference, Seville, Spain, Dec. 2005.

[10] D. Henriksson, A. Cervin, and K.-E. Årzén. TrueTime: Sim-

ulation of control loops under shared computer resources. In

Proceedings of the 15
th IFAC World Congress on Automatic

Control, Barcelona, Spain, July 2002.

[11] M. Joseph and P. K. Pandya. Finding response times in a

real-time system. The Computer Journal, 29(5):390–395,

Oct. 1986.

[12] B. K. Kim. Task scheduling with feedback latency for real-

time control systems. In Proceedings of the 5
th International

Workshop on Real-Time Computing Systems and Applica-

tions, pages 37–41, Hiroshima, Japan, Oct. 1998.

[13] B. Lincoln and A. Cervin. Jitterbug: A tool for analysis of

real-time control performance. In Proceedings of the 41
st

IEEE Conference on Decision and Control, Las Vegas, NV

U.S.A., Dec. 2002.

[14] C. L. Liu and J. W. Layland. Scheduling algorithms for

multiprogramming in a hard real-time environment. Journal

of the Association for Computing Machinery, 20(1):46–61,

Jan. 1973.

[15] P. Martı́, J. M. Fuertes, K. Ramamritham, and G. Fohler. Jit-

ter compensation for real-time control systems. In Proceed-

ings of the 22
nd IEEE Real-Time System Symposium, pages

39–48, London, UK, Dec. 2001.

[16] P. Martı́, C. Lin, S. A. Brandt, M. Velasco, and J. M.

Fuertes. Optimal state feedback based resource allocation

for resource-constrained control tasks. In Proceedings of

the 25
th IEEE Real-Time Systems Symposium, pages 161–

172, Lisbon, Portugal, Dec. 2004.

[17] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. On task

schedulability in real-time control systems. In Proceedings

of the 17
th IEEE Real-Time Systems Symposium, pages 13–

21, Washington (DC), U.S.A., Dec. 1996.

[18] K. G. Shin, C. M. Krishna, and Y.-H. Lee. A unified method

for evaluating real-time computer controllers and its applica-

tions. IEEE Transactions on Automatic Control, 30(4):357–

366, Jan. 1985.

[19] M. Törngren. Fundamentals of implementing real-time con-

trol applications in distributed computer systems. Real-Time

Systems, 14(3):219–250, 1998.

300

