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Abstract—Scheduling is a critical and challenging resource usually evaluated under the assumption that flows have an
allocation mechanism for multihop wireless networks. It iswell  jnfinite amount of data and keep injecting packets into the
known that scheduling schemes that favor links with larger network. However, in practice, when accounting for muipl
gueue length can achieve high throughput performance. Hower, .. ; T
these queue-length-based schemes could potentially suffieom time sca}e_s [6]-[8], there also exist other _types. of flows tha
|arge (even |nf|n|’[e) packet de|ays due to the well-knownast haVe a f|n|te number Of paCketS to tl’ansmlt, Wh|Ch can I‘eSU|t
packet problem, whereby packets belonging to some flows may in the well-knownlast packet problemconsider a queue that
be excessively delayed due to lack of subsequent packet amls. holds the last packet of a flow, then the packet does not see any
Delay-based schemes have the potential to resolve this |getcket subsequent packet arrivals, and thus the queue lengthiiemai

problem by scheduling the link based on the delay the packet Il and the link be st df | fi .
has encountered. However, characterizing throughput-opmality very small an € link may be starved Ior a long ime, since

of these delay-based schemes has largely been an open prable the queue-length-based schemes give a higher priorityks i

in multihop wireless networks (except in limited cases wher with a larger queue length. In such a scenario with flow-level
the traffic is single-hop.) In this paper, we investigate dely- dynamics, it has also been shown in [6] that the queue-length
based scheduling schemes for multihop traffic scenariosith fixed based schemes may not even be throughput-optimal.

routes. We develop a scheduling scheme based on a new dela . ;
metric, and show IC;hat the propgosed scheme achieves optimaly Recent works in [9]_.[14] havg studied the performange
throughput performance. Further, we conduct simulations o Of delay-based scheduling algorithms that use Head-oé-Lin
support our analytical results, and show that the delay-basd (HOL) delays instead of queue lengths as link weights. One
schgduler successfully removes e>l<cessive packet delay$ilevit  desirable property of the delay-based approach is that they
achieves the same throughput region as the queue-length&=d  ,5\ide an intuitive way around the last packet problem. The
scheme. . . . . .
schedulers give a higher priority to the links with a larger
Index Terms—Throughput-optimal, Scheduling, Delay-based, \yeight as before, but now the weight (i.e., the HOL delay) of
Back-pressure, Fluid limit, Lyapunov approach a link increases with time until the link is scheduled. Herite
the link with the last packet is not scheduled at this momeént,
is more likely to be scheduled in the next time. However, the
Link scheduling is a critical resource allocation compdnefhroughput of the delay-based scheduling schemes is rgt ful
in multihop wireless networks, and also perhaps the most chanderstood, and has only been established for limited cases
lenging. The seminal work of [1] introduces a joint adaptiveyith single-hop traffic.
routing and scheduling algorithm, called Queue-lengtsebla  The delay-based approach was introduced in [9] for schedul-
Back-Pressure (Q-BP), that has been shown to be throughpidy in Input-Queued switches. The results have been ex-
Optimal, i.e., it can stabilize the network under any femibtended to wireless networks for Sing|e-h0p traffic, prmgj|
load. This paper focuses on the settings with fixed routefroughput-optimal delay-based MaxWeight scheduling-alg
where the Q-BP algorithm becomes a scheduling algorithfithms [11], [12], [15]. It has also been shown that delagdzh
Since the development of Q-BP, there have been numer@gsemes with appropriately chosen weight parametersggovi
extensions that have integrated it in an overall optimasgsro good Quality of Service (QoS) [10], and can be used as an
layer framework. Further, easier-to-implement queueflen jmportant component in a cross-layer protocol design [14].
based scheduling schemes have been developed and showrhperformance of the delay-based MaxWeight scheduler has
be throughput-efficient (see [2] and references thereidn& peen further investigated in a single-hop network with flow-
recent attempts [3]—[5] focus on designing real-world Veiss |eve| dynamics [13]. The results show that, when flows arrive
protocols using the ideas behind these algorithms. at the base station carrying a finite amount of data, the delay
While these queue-length-based schedulers have bggRed MaxWeight scheduler achieves optimal throughput per
shown to achieve excellent throughput performance, they asrmance while its queue-length-based counterpart does no
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works that employ delay-based algorithms to address thve show throughput-optimality of Q-BP using fluid limit
important issue of throughput-optimal scheduling in nindpp  techniques, and extend the analysis to D-BP in Section IV.
wireless networks. Indeed, the problem becomes much mdige discussions are further extended to the greedy algusith
challenging in the multihop scenario. In [12], the key idea iin Section V. We evaluate the performance of delay-based
showing throughput-optimality of the delay-based MaxWiig schedulers through simulations in Section VI, and conclude
scheduler is to exploit the following property: after a finit our paper in Section VII.

time, there exists a linear relation between queue lengtts a

HOL delays in the fluid limits (which we formally define in Il. SYSTEM MODEL

Section IlI-A), where the r_atlo Is the mean arnyal rate. blgn We consider a multihop wireless network described by a
the delay-based MaxWeight scheme is basically equwalecrt

. . irected graphg = (V,€), whereV denotes the set of
to its queue-length-based counterpart, and thus achities nodes andf denotes the set of links. Nodes are wireless

OP“T“"“ _throughput. This property holds_for the Slngle'hOPransmitters/receivers and links are wireless channdigdam
traffic. Since given that the exogenous arrival procesdésifo . . . .
two nodes if they can directly communicate with each other.

the Strong Law of Large Numbers (SLLN) and the fluid Iirnit?During a single time slot, multiple links that do not intede

exist, the arrival processes are deterministic with caristtes . . . ,
) . . . with each other can be active at the same time, and each active
in the fluid limits. However, such a linear relation does notl.

. ; o ink transmits one packet during the time slot if its queue is
necessarily hold for the multihop traffic, since at a nonsseu b 9 g

. : npt empty. LetS denote the set of flows in the network. We
(or relay) node, the arrival process may not satisfy SLLN an . .
. assume that each flow has a single, fixed, and loop-free route.
the packet arrival rate may not even be a constant, depend

on the underlying schedulers dynamic$o this end, we in- THe route of flows has anf (s)-hop length from the source

vestigate delay-based scheduling schemes that achieivmcbpttO the destination, where eadhth hop link is denoted by

throughput performance in multihop wireless networks (5,K). Let ™™ 2 maxacs H(s) < oo denote the length
ghput p P ' of the longest route over all flows. Note that the assumption

Unlike previous delay-based schemes, we view the packgtsingie route and unit link capacity is only for ease of

delay as a sojourn time in the network, and re-design theydel, sition, and one can readily extend the results to more
metric of the queue as the sojourn-time difference between 4o qra) scenarios witiultiple fixed routes and heterogeneous

queue’s HOL packet and the HOL packeF of itg previous h,(?f?lk rates applying the techniques used in this paper. To
(see Eq. (36) for the formal definition). Using this new metri specify wireless interference, we consider thtlh hop of each

we can establish a linear relation between queue lengths gpd, . or link-flow-pair (s, k). Let P denote the set of all link-
delays in the fluid limits. The linear relation then plays Key flow-pairs, i.e., ’
role in showing that the proposed Delay-based Back-Pressur
(D-BP) scheduling scheme is throughput-optimal in mujtiho PE{(s,k)|seS, 1<k<H(s)}
networks.

In summary, the main contributions of our paper are
follows:

The set of link-flow-pairs that interfere witls, k) can be

Hescribed as

I(s,k) £ j i) interf ith(s, k

« We devise a new delay metric for multihop wireless (s, k) = {(r.3) € P | (r.J) |'n erferes with(s, k),
networks and develop the D-BP algorithm, under which or (r,j) = (s, k)}-

a linear relation between queue lengths and delays in thete that the interference model we adopt is very general,

fluid limits can be established. From this linear relatiorand includes the class of th&-hop interference modél A

we can show that D-BP achieves optimal throughpgthedule is a set of (active or inactive) link-flow-pairsgan

performance. To do this, we first re-visit throughputcan be represented by a vectdf € {0,1}/”!, where| - |

optimality of Q-_BP using fluid limit te_chni_ques. Furtherdenotes the cardinality of a set. Each elemént, is set

we develop a simpler greedy approximation of D-BP fofo 1 if link-flow-pair (s, k) is active, and 0 if link-flow-pair

practical implementation. (s, k) is inactive. Slightly abusing the notation, we also use
« We provide extensive simulation results to evaluate thg to denote the set of active link-flow-pairs 81, i.e., M £

performance of the delay-based schedulers, including Ds k) € P | M, = 1}. A schedule) is said to befeasible

BP. Through simulations, i) we observe that the lagtno two link-flow-pairs of M interfere with each other, i.e.,

packet problem can cause excessive delays for cert@'pj) ¢ I(s, k) forall (r,7), (s, k) with M,.; = 1 and M, ;, =

flows under Q-BP, while the problem is eliminated under, | et My denote the set of all feasible schedulesPinand

D-BP. ii) We show that D-BP also achieves better fairnesst Co(Mp) denote its convex hull.

and prevents the flows that lack subsequent packet arrivals et A, (¢) denote the number of packet arrivals at the source

from starving. iii) Finally, we simulate the simpler greedy\ode of flows at time slott. We assume that packets are of unit
approximation algorithms of Q-BP and D-BP, and show

that the delay-based approximation empirically achievestUnder thek -hop interference model, two links withinZd-hop “distance”
a throughput region that is no smaller than that of it tefe{e with each other and cannot be activated at the same{19). When
= 1, it is also called theprimary or node-exclusiventerference model.

queue-based counterpart. The 1-hop interference model has been known as a good repatise for

. . . Bluetooth or FH-CDMA networks [20]-[23]. WheR = 2, it is often used to

The paper is organized as follows. In Section Il, we preset‘ﬂgdel the ubiquitous IEEE 802.11 DCF (Distributed Coortioma Function)

a detailed description of our system model. In Section Iyireless networks [22], [24]-[26].
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length. Similar to [12], we assume that each arrival processWe summarize the notations in Appendix A for quick
A, (t) is a stationary and ergodic Markov chain with countableference.
state space, and satisfid®e Strong Law of Large Numbers
(SLLN): That is, with probability one, I1l. QUEUE-LENGTH-BASED BACK-PRESSURE
Sb A A @) ALGORITHM
k ’ _ It has been shown in [1] that Q-BP stabilizes the network for

for each flows € S, where), denotes the mean arrival rateyny feasible arrival rate vector using stochastic Lyaptaol-
of flow s. We letA = [A1, Ag, - -+, A5] denote the arrival rate pigues. Specifically, we can use a quadratic Lyapunov fancti
vector. to show that the function has a negative drift under Q-BP when

Let Qx(t) denote the number of packets at the queyg,eye lengths are large enough. In this section, we re-visit
of (s,k) at the beginning of time slot. For notational ,rqyghput-optimality of Q-BP using fluid limit techniques
case, we also us@; ;. to denote the queue itself. We letthe analysis will be extended later to prove throughput-
Q(t) = [Qsk(t), (s,k) € P] denote the queue length vector abptimality of the delay-based back-pressure algorithm.

time slott, and use - | to denote thel,-norm of a vector, €.9.,  To begin with, we define thqueue differentiahQ, . (¢) as
QI = > (s.1ep @s.i(t). Let Il x(¢) denote the service N

of Q,  at time slott, which takes a value of either 1 if link- AQsk(t) = Qs i(t) — Qs pr1(t), (6)
flow-pair (s, k) is active, or O otherwise, in our settings. We, g specify the back-pressure algorithm based on queue
let ¥, ,(t) denote the actual number of packets transmittefgngthS as follows.

from @, i at time slot¢. Clearly, we havel, ;(¢) < II, £ (¢)
for all time slotst > 0. Let P, 1 (t) = Zle Qs,i(t) denote .
the cumulative queue lengths up to tketh hop for flow M* € argmaxy; o > (s pyep AQsk(t) - M. (7)

s. By convention, we set), u(s)11(f) = 0, and then we The algorithm needs to solve a MaxWeight problem with

have P 1i(5)11(t) = Psps)(1)- The queue length e\/Olvesweights as queue differentials, and ties can be broken arbi-

according to the following equations: trarily if there is more than one schedule that has the larges
Qs (t+1) = Qsr(t) + Vs p—1(t) — Vs 1(t), (3) weight sum.

We establish the fluid limits of the system in the followin
where we setl, o(t) = A4(1). subsection. y 9

Let F,(t) be the total number of packets that arrive at the
source node of flows until time slot¢ > 0, including those
present at time slot 0, and lef, ,(t) be the total number A. Fluid Limits
of packets that are served @ ; until time slot¢ > 0. By We define the process describing the behavior of the under-
convention, we sef’, ;. (0) = 0 for all link-flow-pairs (s, k) € lying system ast = (X(t),t =0,1,2,---), where
P. We letZ, ;. ;(t) denote the sojourn time of thigh packet of N
Qs i in the net\(/vt))rk at time slot, where the time is measured X(t) = (Zoga(®), -+ s Zs k@) (1)): (5, k) € P).
from the time when the packet arrives in the network (i.e\e define the norm oft(t) as
when the packet arrives at the source node), and/let(t) = o w R -
Z, 1.1 (t) denote the sojourn time of the HOL packet@f ; [X®I = QN + W @) (8)

in the network at time slat We setW (¢) = 0 forall s € 5. clearly, under Q-BP, the evolution &f forms a discrete-time
Further, if Q, () = 0, we setW, x(t) = W x-1(t). Letting  pmarkov chain with countable state space. L&) denote a

A .
Usk(t) =t — Wy () denote the time when the HOL packeyrgcessy with an initial configuration such that
of ()s; arrives in the network, we have that

Usr(t) =inf{r <t | Fy(r) > Fy1(t)}, forall t >0. (4)

1inlt~>oo

Queue-length-based Back-Pressure (Q-BP) algorithm:

@ 0)] = . (9)

As in 127 di te-ti : tem i id t The following Lemma was derived in [28] for continuous-
s in [27], a discrete-time queueing system is said to QI(?T‘IG countable Markov chains, and it follows from more

stable if the underlying Markov pham Ispositive Harris eneral results in [29] for discrete-time countable Markov
recurrent When the state space is countable and all statgs_.

co_m_munic_ate (as in the system tha'_[ we (_:ons_i(_jer in this paper)i'enri'ma 1 (Theorem 4 of [12])Suppose there exist an>

Elrlrllselfh?(?l:“\;lale?t to _the I;/IarkO\r/] Cga;.n be|pg|;_5|t|\_/e r;cfgrrednt 0 and a finite integefl” > 0 such that for any sequence of
ghput regionof a scheduling policy is defined as rocessed LX) (2T), z = 1,2, -}, we have

the set of arrival rate vectors for which the network remains z

stable under this policy. Further, toptimal throughput region limsup,_,,, E [2[|X@@T)|] <1-e (10)

(or stability regior) is defined as the union of the throughput . .

regions of all possible scheduling policies. We Mt denote Then, the Markov proces§ is positive recurrent.

: : ; A stability criteria of (10) leads to a fluid limit ap-
th timal th hput hich b ted
© optimal troughplit region, which can be represente aBroach [30], [31] to the stability problem of queueing sys-

A 2 (X |3 € Co(Mp) St Ay < b, ¥(s,k) € P}. (5) tems. Hence, we start our analysis by establishingfitiid

= ; ) A

An arrival rate vector is strictly insida*, if the inequalities lIMit model as in [12], [30]. We define the process =
above are all strict. (A, FF,Q,PIL,V, W, U), and it is clear that a sample path



of Y uniquely defines the sample path &%*). Then we follows.
extend the definition o = A, F, F',Q, P,1I, ¥, W andU to

continuous time domain as(t) £ Y (|¢]) for each continuous >ses £s(0) =1, (20)

time ¢ > 0. Pos(t) = S8 qs(t), (21)
As in [12], we extend the definition oFS(I)(t) to the psk(t) = fs(1) _f&k(t), (22)

negative intervalt € [—z,0) by assuming that the packets Fo(t) = £,(0) + Aot (23)

present in the initial staté&’(*) (0) arrived in the past at some “° . o

of the time instants—(z — 1), —(z — 2),-- - , 0, according to us k() =t — wsn(?), (24)

their delays in the stat& (*)(0). By this convention, we have sk () < 7s,k(t), (25)

F(—z)=0forall s € Sandz, andY g FX7(0) <2 Aqei(t) = qon(t) — qopr (t), (26)

for all . . Va1 (t) = mek(®), i qui(t) >0,
Then, applying the techniques used in the proof for The- ardsn(t) = { (Yo p1(t) — e ()T, otherwise

orem 4.1 of [30] or Lemma 1 of [12], we can show ' (27)

that with probability one, for any sequence of processes N )
(LY@ (2,-)}, where {z,} is a sequence of positive in-where(z)" = max(z,0), and we seth; o = 75,0 = As. Fluid
tegers withz,, — oo, there exists a subsequenge, } with model equations can be thought of as belonging to a fluid

T, — 0o asj — oo such that the following convergence@etwork which is the deterministic equivalence of the oradi
hold uniformb} over compact (u.o.cijitervals: stochastic network. Any set of functions satisfying thedlui

model equations is calledfuid model solutiorof the system.
It is easy to check that any fluid limit is a fluid model solution

o fomnjt A,im"”(T)dT — st (11) It is clear from (7) that Q-BP will not schedule link-flow-

! (@) pair (s, k) if Qs x(t)—Qs.x+1(t) < 0. Hence, if link-flow-pair
mo B () = fo(0), (12) (s,k) is scheduled, it must satisfy thak,  (t) — Qs k41 (t) >

. R 0. Moreover, the length of queu€,; can decrease by at
wor Fon (@nyt) = fon (D), (13)  most one within one time slot, and the length of quelg. +1

PNCH 14 can increase by at most one within one time slot, due to the
s @’ (@nyt) = @5k (2), (14) " assumption of unit link capacity (a similar argument alstilbo
%Ps(a;nj)(xnjt) — pok(t), (15) with non-unit link rates). This implies that, if

;S

enit  (Tn.) Qsk(t) > Qs prr(t) —2 (28)

e Jo I ()dr [y wn(r)dr,  (16)

Tnt () . initially holds for all (s, k) at time slot 0, then the inequality
[0 U, (n)dr = [y s k(T)dr. (17)  holds for every time slot > 0. This further implies that

Gs,e(t) = Qs it1(t), i€, Agsi(t) =0, (29)

bfor all (scaled) timet > 0, from the convergence of (14)Ve
assume that at time slot 0, all queues on the route of each
flow are empty except for the first queue, then it follows that
(0, 1) = ws i (1), (18) (28) holds for all (scaled) time > 0, and thusAg; x(t) > 0
holds for all timet > 0.

Similarly, the following convergences (which are denotgd
“=") hold at every continuous point of the limit function:

1 (Inj)
T s,k

Lg% (1, 1) = g n(), (19)

T s,k

Remark:Note that we make the assumption of empty queues
for ease of analysis. Even without this assumption, we can
The above convergence properties follow directly from thg o that there exists a finite timi > 0 such that for all
Arzela-Ascoli Theorem and the structure of the model: thg}e ¢ > T, (29) holds for all(s, k) € P. This can be proved
the arrival process satisfies the SLLN and that the sequemngeinduction. The detailed proof can be found in our online
of the (scaled) departure process is uniformly bounded agnnical report [32], but the basic idea is as follows: Goes
uniformly equicontinuous. X a flow s € S. We want to show that there exists a finite time

Any set of limiting functions(f, f, ¢, p, 7,1, w,u) is called Tz > 0 such that for all time > T3, (29) holds for all(3, k)

a fluid limit. The family of these fluid limits is associatedwith k € {1,2,---, H(3)}.
with our original stochastic network. The scaled sequences) First, we show that there exists a finite tifig; > 0

{7-Y@)(z,)} and their limits are referred to as fiuid such that for all timet > T 1, (29) holds for link-flow-
limit model[27]. Since some of the limiting functions, namely  pair (3,1). Suppose that (29) does not hold fex, 1).

[, fs.k> @s.k> Ps i @re Lipschitz continuous iff), o), they are Then Q-BP does not schedu(& 1), i.e., gz 1 (t) does not
absolutely continuous. Hence, at almost all poings|[0, o), decrease angk »(t) does not increase. On the other hand,
the derivatives of these limiting functions exist. We caitls due to the exogenous arrivals at the source node offlow
pointsregular time. qs.1(t) must increase with time. Hence, there must exist

We then present thituid model equationsf the system as a finite timeT; ; such that (29) holds fo(s, 1) at time



Proof: Since the first part, i.e., that the two conditions are
equivalent, is straightforward from the definition of fluichlts
and (4), we focus on the second part, i.ef;ijc (ts.x) > f5(0),
then (30) follow.

Suppose thafsyk(ts_,k) > fs(0). Then, by the definition of
us (), we havefsyk(t) = fo(usx(t)), for all t > ts ;. From
(22), (23) and (24), we obtain that

Psk(t) = fu(t) = far(t)
= (fs(0) + Ast) = (fs(0) + Asus,k(t))
=X (t — us,x(1))
= )\Sw&k(t).

Fig. 1. Linear relation between queue lengths and delaykerfltid limits.

|
Proof of Proposition 2: We prove stability using stan-
dard Lyapunov techniques L&t(g(¢)) denote the Lyapunov
function defined as

T; 1. We can further show that (29) holds for alb> T5 ;
under Q-BP. This can be proved by contradiction.
2) Then, we discuss the induction step: Considerc
{1,2,---,H(5)—1}. Suppose that for all time> T} j, >
0, (29) holds for(s, j) and for allj € {1,2,--- ,k}, we 1)) A 1 2
show that there (exis)ts a finite tirri&_iﬂ > Tg_’k}SUCh V(@) 2 Z(S’k)ep (@ (8))" (1)
that for all timet > T% 11, (29) holds for(3, ;') and for ~ From the results of Lemmas 1 and 3, to show positive
all 5/ € {1,2,--- ,k 4 1}. For simplicity, we consider recurrence, we only need to prove that for any 0, there

the case for whichk = 1, and the general induction exists a finite timel; > 0 such that for any fluid limit with
step follows similarly. Now, suppose that (29) does nat7(0)|| < 1, we have

hold for (s, 2), and we prove it by contradiction. Clearly,

Q-BP will schedule only link-flow-pairs for which (29) gl < ¢, (32)
holds (i.e., link-flow-pair(3, 1) in this case). Hence, the ) o o

fluid limit model of the subsystem that consists of linkfor all time¢ > T1. To show the above, it is sufficient to show

flow-pairs for which (29) holds must be stable, from théhat for any¢, > 0, there existsz > 0 such that/’(q(t)) = Gy
throughput-optimality of Q-BP (see Proposition 2). Thismplies 7=V (4(t)) < —(, for any regular timet > 0, where
in particular, implies thatg; ; is stable, which further %V(J(t)) = lims0 w

implies thatg; »(¢) must increase with time, because Q- SupposeX is strictly inside A*, then there exists a vector
BP keeps forwarding packets fromy; to gs» While ¢ e Co(Mp) such thatk < @, i.e., A, < ¢ for all (s, k) €
not servinggs 2. Hence, there must exist a finite timep. Sinceq(t) is differentiable, then for any regular time> 0,
Ts2 > T, such that for all time > 75 », (29) holds for we can obtain the derivative 8f (q(t)) as

(3,2).

+

Hence, lettingl; £ T m(s), We have that for all time > T, %V(Q(f))

(29) holds for all(s, k) with &k € {1,2,---, H(§)}. Since the @ . o _ .

above arguments can be applied to any flow S, we can ® Z(S*k)ep 9s.(8) - (Wok-1(t) = ok (£))
H A

complete the proof by setting = maxzcs 7. < Z(s,k)ep Gon(t) - (Toso1(t) — wor(t))

33
= mer Ade(®) - A, (33)

= 2 (s, k)ep Ds i (t) - o k()

Proposition 2: Q-BP can support any traffic with arrival = 2 mer Aek(t) - (s = dar)
rate vector that is strictly insida*. T 2 (s ke Bsk(t) - (Psk — T,k (1)),

Before giving the pr_oof of Prqposition 2, in the foI_Iowingwhere (a) and (b) are from (27) and (25), respectively.
lemma, we present a I_|r_1ear _relatlon betwee_n cqmulatlve«queu Note that ¢, (f) < H™ max, jyep Ao (£),
length ps 1 (t) and waiting timews j(t), which is used for for any (s,k) ’e P. Hence, we haVéV(q‘(t))J <

proving Proposition 2. 1| G| gmax( pymax _ Ac. ()2, Let us choose
Lemma 3:For any fixedts;, > 0, the two conditions 3151 ( max(r,j)ep Adrs (£)"

B. Throughput-Optimality of Q-BP

~ _ 21 — : ;
us k(ts,) > 0and f, x(ts 1) > fs(0) are equivalent for every G = /sy then ‘Z(Q(tp > G implies
link-flow-pair (s, k) € P. Further, if the conditions hold, we max, jyep Agrj(t) > (3. SinceX < ¢(t) and Agg x(t) > 0
have for all (s,k) € P, then in the final result of (33), we can
Pok(t) = Asws (1), (30) conclude that the first term is bounded as follows:
for all t > ¢, &, with probability one. Z(s,k)eP Agsk(t) - (As = @s,k) < —Caming k(ds,k — As)

Fig. 1 describes the relations between the variables. £ (<0,



and that the second term becomes non-positive due to the V. DELAY-BASED BACK-PRESSUREALGORITHM
following. Since Q-BP chooses schedules that maximize the a|gorithm Description

queue differential weight sum (7), then we have that In this section, we develop the Delay-based Back-Pressure

7(t) € argmaxy, ., S Ags () - ok, (D-BP) policy, and in Section IV-B, we prove that it is thrdug
o $€ColMp) ~(sk)eP put optimal. A similar delay-based approach has appeared
which implies that first in [12] for single-hop networks-However, as mentioned

earlier, when packets travel multiple hops before leavimg t
2o (syep Ads k() - Ps g < Do e Ddsk(t) - Tk (t), system, the analytical approach in [12] (i.e., using HOLagel
for all gZe Co(Mp). Therefore, this shows that(¢(t)) > G in the queue as the metric) cannot captgre queueing dynamics
) IiesD—+V(*(t)) < —¢,. Then, it immediately follows that of m_uItlhoptrafflc and thg resultant solu_t|on§ cannptgu_wa
IMPUES 7=V (¢ = o S the linear relation. We will carefully design link weightsiog
for any ¢ > 0, there exists a finite tim&; > 0 such that for . : : ;
D - z a new delay metric, and re-establish the linear relatiowéen
any fluid limit with ||g(0)]] < 1, we havel|g(t)|| < ¢ for any . e :
imet> T Al h gueue lengths and delays in the fluid limits for multihopftcaf
Imei = 11. AlSo, we have Recall thatlV ,(t) denotes the sojourn time of the HOL
pex(t) < @) < ¢, (34) Packet of queueQ,(t) in the network, where the time
’ B B is measured from the time when the packet arrives in the
for all (s,k) € P. Let us choosel large enough, then it network. We define the delay metit’; . (¢) as

follows from (20), (22) and (34) that . o
Ws‘,k(t) = Ws‘,k(t) - Ws,k—l(t)a (36)

Fsp(Th) = fo(T1) = ps k(T1) > £+(0), and also definelelay differentialas
for all (s,k) € P and for any timet > T;. Hence, we have AW, 1 () 2 Wi () — Wi (1) (37)
(30) from Lemma 3, and thus, we have > > ShE
The relations between these delay metrics are illustrated i

. L@ 1 . i i . i i
17| + 1@ < 4@ + 5 15| Fig. 2. We_specn‘y the back-pressure algorithm with the new
min, As delay metric as follows.
(2) <1 N |S|Hmax) ¢ Delay-based Back-Pressure (D-BP) algorithm:
- ming Ag ~ % ,
s, M* € argmax i v (s pyep AW k(t) - Mgy (38)
= €1,

) D-BP computes the weight df, k) as the delay differential
where (a) and (b) are from (30) and (34), respectively. We caQyi/_, (1) and solves the MaxWeight problem, i.e., finds a

makee, arbitrarily small by choosing small enough set of non-interfering link-flow-pairs that maximizes weig
Now, consider any fixed sequence of processggm. Ties can be broken arbitrarily if there is more than
{2X)(at),x = 1,2,---} (for simplicity also denoted gne schedule that has the largest weight sum. An intuitive

by {z}). Hence, for any fixed, > 0, we can always choosejnterpretation of the new delay metrid’, .(t) is as follows.
a large enough integef > 0 such that for any subsequenceéyote that the queue lengt, . (¢) is roughly the number of
{an} of {z}, there exists a further (sub)subsequetieg, } packets arriving at the source node of flevduring the time
such that slots betweefilU, k (), U,k (t)+ W x(t)), and from the SLLN,
. 1 (2n.) e - Qs (t) is on the order o\, W 1, () when W i (¢) is large.
i oo Tn 1777, T = T+ |E(T)]] < e Hence, a largéV ;(t) implies a large queue lengt; 5 (t),
almost surely. This in turn implies (for small enougf) that and similarly, a large delay differentiah IV, x(¢) implies a
large queue length differentiah@; 1 (¢). Therefore, being
limsup, . 2[|X@ @T)| < £1—-€e< 1 (35) favorable to the delay weight sum in (38) is in some sense
. , “equivalent” to being favorable to the queue length weight
almost surely. This is because there must exist a Sy in (7) as Q-BP. We later formally establish the linear
;equence of{z} that converges to the same limit 83elation between the fluid limits of queue lengths and delays
limsup,, o, 7| X (2T)]. in Section 1V-B.

IOne can readily ~show that the sequence e highlight here that the last packet problem can be solved
{|X¥@ @), = 1,2,---} is uniformly integrable |

. : ) } X é/the D-BP scheme using our proposed delay metric. Let us
using standard techniques by invoking the Dominated: s on the source nodes first. Suppose that at the source

Convergence Theorem and so the details are omitted N§f§qe of flows, there are a finite number of packets waiting to

Then, the almost sure convergence in (35) along with uniforg, yansmitted and there are no further packet arrivalanFro
integrability implies the following convergence in the mea o gefinition of (36) and the fact that, o(t) = 0, we have

limsup, . B[L[X@ @T)|] <1 —-. Wia(t) = Wea(t). If some of the packets are stuck at the
i source node, the delay metrit ;(t) keeps increasing with
Since the above convergence holds for any sequencetiofe. On the other handIstyz(t) = Wsa(t) — Wsa(t) is
processe{ || X (z-),z = 1,2, -}, the condition of (10) equal to the inter-arrival time between two packets and does
in Lemma 1 is satisfied. This completes the proof. B not increase with time, in particular because some packets a




Hows — ik TR | = Lemma 4:For any fixedt, , > 0, if fo(tsr) > fs(0) for

(s.k-1) \ (s,K) \ (s k+1) \ every link-flow-pair(s, k) € P, then we have
Wok. W Wk .
k1(t) k() kre1(t) Qs 1o(t) = At 1 (1), (41)
Wak(t) = Wer(t) - Wepa(t . .
i ’k(t)_ W‘k()t Wk1(: for all ¢ > ¢, 1, with probability one.
S’A“*’() - As’k*’“'n aHll Proof: It follows immediately from Lemma 3. [
AWei(t) = Wo(®) - Weka(t) We emphasize the importance of (41). Lemma 4 implies that

after a finite time (i.e.max, 1yep ts,x), the queue lengths are
s times delays in the fluid limit model. Then the schedules
of D-BP are very similar to those of Q-BP, which implies

the source node are not served. Hence, the delay differenfittt D-BP achieves the optimal throughput regibn In the

AW, 1(t) = We1(t) — W, 2(t) also increases with time. Thisfollowing, we show that the condition of Lemma 4 indeed
implies that under DBP, the increasing delay will evenguall’!ds: i-€..such a finite time exists. _

“push” all the packets that are waiting at the source nodeeo t -€mma 5:Consider a system under the D-BP policy. Then
second-hop link. After all the packets leave the source nod@" A strictly inside A, there exists a finite timd” > 0
we can observe similar procedure at the transmitting node 3¢l that the fluid limits satisfy the following property it
the second-hop link: sinc@; 1(t) = 0 and W, 1(t) = 0, we probability one, R

have W, 5 (t) = W, (t). Repeating the same argument, we fs 1 (T) > £5(0), (42)
can conclude that all the packets will ultimately be “pushed 4 link-flow-pairs (s, k) € P.

to the destination node of flow. . We can prove Lemma 5 by induction following the tech-
Recall thatUs 1.(t) denotes the time when the HOL pa‘Ckeﬁiques described in Lemma 7 of [12]. The formal proof is pro-

of @ 1, arrives in the netwo/rk (or the source node, rather thafijeq in Appendix B. We next outline an informal discussion,
the current node). We lel; , () denote the time when thepich highlights the main idea of the proof. First, we coesid
packet that arrives (in the network or the source node) iMM@g hase case. D-BP chooses one of the feasible schedules in
diately after the HOL packet of); ;. arrives in the network. Mp (we omit the term “feasible” in the following, whenever

R _ o
Let B, (1) = Uy 1.(t) — Us x(f) denote the inter-arrival ime a6 s no confusion) at each time slot. Each schedulevesei
between the HOL packet @, and the packet that amives, faction of the total time and there must exist a schedule th

immediately after it. Clearly, D-BP will not schedule link- .o cives at |easmpl fraction of the total time. Thus, after

flow-pair (s, k) if . . -
pair (s, k) a large enough tim@; > 0, there must exist a scheduld*
Wik (t) = We a1 (t) < 0. that is chosen for at Ieaﬂ\% amount of time. The number

T SRR . . .. of initial packets ofd7* is bounded from (20), thus, for a large
Hence, if link-flow-pair (s, k) is scheduled, it must safisfy enoughTy, all initial “fluid” of at least one link-flow-pair of

Wik (t) — W r1(t) > 0. Moreover, the delayV x(t) can -
decrease by at mo#t; ;. (¢) within one time slot, and the deIayM must be complete*ly served, i.66,x(T1) > f5(0), for at
’ least one(s, k) with M7, =1.

Next, we consider the inductive step. Suppose there exists a

W k+1(t) can increase by at modB; j(t) within one time
slot, due to the assumption of unit link capacity (a S'm”afh ~ 0, such that for at least one subsitc P of cardinality
, we have

argument also holds with non-unit link rates). Therefofe, }
inequality

Fig. 2. Delay differentials using new delay metric.

fs,k(Tl) > fs(o)a (43)

. o B
Wi (t) > Wi gy (t) — 2B k(1) (39) for all (s,k) € S;. Then there exist§},, > T; such that
initially holds for all (s, k) at time slot O, then the inequality

holds for all time slott > 0. This further leads to s (Ti1) > £5(0),

(40) holds for all Iink—flgw—pairs(&k) \{vithin at least one subset
Si+1 C P of cardinality ! + 1. Since flows travel hop-by-
for all (scaled) timet > 0, in the fluid limits, from the hop, packets that have been served by one link must have
convergence of (18jnd that LB(w”'j)(a:njt) ~ 0, as been served by the link at the p_revious hop (of the flow that
the packets belong to). Hence, (i§, k) € S;, we must have

Ty, 8,k
. — otherwise we will arrive a contradiction with the ;

Tn, = 20 ( (s,k — 1) € S;. Repeating the argument, (&, k) € S;, we

J& ve(s,i) € S; for 1 <i < k. Let

assumption on the arrival process, i.e., it satisfies thengtr
Law of Large Numbers). Recall that we assume that all que

on each route are empty at time slot 0, except for the firstsx 2 ¢ 4y | (r,j) ¢ S}, (r,j — 1) € S}, for j > 1;
queue, then (39) and (40) follow. or (r,j) & S, for j = 1}

(44)

Ws k() > W pt1(), i€, Aty (1) >0,

(45)

denote the set of link-flow-pairs, j) such that(r, j) € P\S;

is the closest hop to the source af To avoid unnecessary
The following lemma provides the linear relation betweegomplications, we discuss the induction step for 1. The

queue lengths and delays in the fluid limits. generalization for > 1 is straightforward. We show that for

B. Throughput-Optimality



given S; andTi, there exists a finite tim&, > T such that link-flow-pairs in the set ofS} for most of time for a

(44) with T holds for at least two different link-flow-pairs. sufficiently larget. This implies that the amount of time
Let (s, k) denote the link-flow-pair that satisfies (43) with unavailable toS; is O(¢), which contradicts with our
Ty. Since(%,k) € S, implies (5,7) € S; forall 1 <i <k, we previous statement in 1) that the fraction of time that

must havek = 1 andS; = {(§,1)}. From (45), we have that is given to(r, j) € P\S: is negligible.
St = {(r1) | r € S\{3}} U N, (46) We provide the detailed proof of Lemma 5 in Appendix B.

We then present throughput-optimality of D-BP in the
whereN; = {(5,2)} if H(3) > 1, andN; = 0 if H(s) =1. following proposition.
We discuss only the case that(3) > 1, and the other case Proposition 6: D-BP can support any traffic with arrival
can be easily shown following the same line of analysis. Nowate vector that is strictly insida*.
suppose that Proof: We show the stability using fluid limits and

. _ standard Lyapunov techniques. From Lemmas 4 and 5, we

frj(t) < fr(0), forall (r,j) € P\S1, and allt > 0, (47)  gptain the key property for proving throughput-optimality
i.e., for all the link-flow-pairs except those &, the total D-BP in Eq. (41), i.e., after a finite time, there is a linear
amount of service up to timeis no greater than the amountelation between queue lengths and delays in the fluid limit
of the initial fluid for all ¢ > 0. We show that this assumptionmodel. We start with the following quadratic-form Lyapunov
leads to a contradiction, which completes the inductiop.stefunction, .

From the base case and Lemma 4, we haye(t) = V(d(t) £ 3 3 pyep sl (48)

Asws,1 (1) for all ¢ > Ty. We view the subset of link-flow- £410wing the line of analysis in the proof for Proposition 2

pairs S, as a generalized system, and consider the time slQ{§ 1 show that for angi > 0, there exist, > 0 and a finite
when there is at least one packet transmission from thedmtsgime T > 0 such thatV(g(t)) > ¢ implies D—+V((j(t)) <
= i+ =

of Sl.’ i'e"(r’j.') € P\Sl' For each such time slot, we say that_CQ for any regular time > T, if the underlying scheduler
the time slot isunavailableto S;.

) _ _ maximizes) . AqA—’“(t) -7s.1(t). Then, by applying the linear
1) The number of such unavailable time slots is boundegjation (41), we can see that D-BP indeed satisfies such a
from the above by, since at every such time slot, atcongition, and obtain the results. We omit the detailed proo

least one initial packet will be transmitted and the totaince it mirrors the derivations in Proposition 2. -
number of initial packets is bounded Y (0)|| < x,,
from (9). Hence, the amount of (scaled) time unavailable V. GREEDY ALGORITHMS

to Sy is bounded byj|¢(0)|| < 1.
2) Since the amount of (scaled) time unavailableStois
bounded, there exists a sufficiently large> T; such

It is well known that the schemes (e.g., Q-BP and D-
BP) based on the back-pressure techniques are complex to
. . N i implement because they involve computing a MaxWeight

it2art1;gﬁgrg?guer:dowémr?]ljzsth:vgv?(?)t(i’]é)(i)f;ild component, which in general is NP-hard [19]. Hence, altimoug

. ' . ] D-BP operates efficiently and achieves the optimal throughp
Ay 5(t) = O(1) for (7, 7) € P\(51 U S57). _ region, it could be difficult to implement in practice. Thime,

3) Then, we can restrict our focus on the generalized SyStgil ore interested in simpler approximations of D-BP that can
51 totimet > Ty, and ignore the time that is unavﬁ'lablfaachieve a guaranteed fraction of the optimal performanke. T
to 5. Then Q-BP and D-BP are in some sense "equiyyg|ay hased Greedy Maximal Scheduling (D-GMS) algorithm
alent” in the generalized systes for ¢ > Ty with the 5 5 550 candidate approximation algorithm. A Greedy Maxi-
following properties: First, Q-BP will stabilize the syste mal Scheduling (GMS) algorithm [23], [26], [33], [34] (whic
if the_ arrival ratg vector is strictlyinsiql&*. Seconq,s?nce is also known as Longest Queue First (LQF)) operates (in
the linear refation (41) holds for all link-flow-pairs i 6 scenarios with single-hop traffic) as follows: at eaaheti
from Lemma 4, D-BP will schedule links similar to Q-BPg ¢ 4 *starts with an empty schedule; first picks a linkith
and also stabilizes the generalized syst&m the maximum weight (e.g., queue length or delay); aéids

4) Now let us focus onSy. Link-flow-pairs in 57 must ing the schedule, and disables other links that interfeite w
have some initial fluid at > 7} becauseSi N ST = 0. . hayt picks a link/’ with the maximum weight from the
On the other hand, the generalized netwSikis stable. 1o aining set of links, addé into the schedule, and disables
This implies that the delay metrics of link-flow-pairs iNgiher jinks that interfere with’; and continues this process
Si should increase on the same order as we inCreg§g;i 4 links are either chosen or disabled. All choserksin
t, 1.e., w5 (1) = O() for (1",j%) € S7. Then we iy pe scheduled during time slat Note that any schedule
haveAw,- ;- (t) = O(t), smcewT*J*H(t)_: O(1) from obtained by GMS is maximal.

(r*,j" + 1) € P\(S1 U SP) and 2). Since the delay  Gys has been extensively studied due to its low complexity
differentials A, « (1) for all (s,k) € Si and Ay 5(1) (23], distributed implementations [35] (or distributedpapx-
for all (7,7) € P\(S1 U S7) are bounded above fromjmations [36]) and empirically observed good performance
stability of S; and 2), respectively, D-BP will choose[22]. It was first shown in [33] that GMS is throughput-optima
2We use the standard order notatiop(n) — o(f(n)) implies in networks where the so-calleldcal pooling condition is
F(n)) < satisfied. The authors of [21], [34] generalize the idetoél

limn—oo(g(n)/f(n)) = 0; and g(n) = O implies ¢ ! - ; - ‘
limy, 00 (g(n)/f(n)) < c2 for some constants; and ca. pooling to o-local pooling whereo is a topological notion



Algorithm 1 Greedy Maximal Scheduling (GMS) Algorithm @ @

1: procedure GMS(P, z) 3
2 M+ 0 8 Short 15!

3: P+ P
4: while P’ # () do Long @1@1@ Long
5: pick a link-flow-pair(s, k) with maximum weight: ! i
— _ ; 110 15/
x(s, k) = maX(m)e{? xé;ij) | |
6 M +— M U{(s,
7: P P\I(s, k) @ @
8: end while (a) “H™-type network topology
9: end procedure .
x 10
10 T
o 88
depending on the underlying network topology and is called il
the local pooling factor There, the authors show that GMS g I
can achieve ar-fraction of the optimal throughput region. o) :
On the other hand, in [37], [38], thiecal pooling condition § Al
is generalized to the scenarios with multihop traffic, i.e., =
GMS is throughput-optimal in networks where theultihop 2 2l
local-poolingcondition is satisfied. Next, we will discuss the il
performance limits of D-GMS. 0
To generalize the GMS algorithm to settings with multihop 1 . - - - .
traffic, we consider link-flow-pairs. We lek(s, k) denote Time (slots) x10°
the weight of link-flow-pair(s, k) € P, and conclude the (b) HOL delay of short flow(2 — 4 — 6) when = 3

procedure of GMS in Algorithm 1. We then describe the

operations of D-GMS and its queue-length-based counterpfdg- 3. Illustration of the last packet problem under Q-BP.

(called Q-GMS) in the following.

Delay-based Greedy Maximal Scheduling (D-GMS) Algo-

rithm: At each time slot, the algorithm sets the weight ofnetwork topology under th-hopinterference model. Finally,

each link-flow-pair to the delay differential, i.e., we compare throughput performance of Q-GMS and D-GMS
R in a size-6 ring network under thehopinterference model.
(s, k) < AW, i (1), for all (s, k) € P, (49  We first show the last packet problem of Q-BP through

and finds its schedule in decreasing order of weight conforgiulations. We observe that several last packets of a short

ing to the underlying interference constraints, by apmyirflow (that carry a finite amount of data) may get stuck,
Algorithm 1. which could cause excessigelays We consider a scenario
Queue-length-based Greedy Maximal Scheduling (Q- consisting of 7 nodes and 6 links as shown in Fig. 3(a), where

GMS) Algorithm: At each time slot, the algorithm sets the nNodes are represented by circles and links are represepted b
weight of each link-flow-pair to the queue-length diffeiaht dashed lines with their associated link capaciti®¥e assume

a time-slotted system. We establish three flows: one short

i.e.,
2(s, k) < AQ, (1), for all (s,k) € P, (50) flow (2 — 4 — 6) and two long flows [ — 2 — 3)
i _ ) ] and 6 — 6 — 7). The short flow arrives in the network

and finds its schedule by applying Algorithm 1. with 10 packets at time 0. The long flows have an infinite

We characterize the throughput performance of D-GMS Hnount of data and keep injecting packets at the source
the following proposition. _ nodes following Poisson distribution with mean ratat each

Proposition 7: The achievable throughput region of Dyime slot. Numerical calculation shows that the feasibke ra
GMS is no smaller than that of Q-GMS. under the 2-hop interference should satisfy thatl 4.44.

We omit the proof here, since it follows the similar lingpne conduct our simulation for0® time slots, and plot time
of analysis for D-BP to establish the linear relation betweg gces of HOL delay of the short flow when= 3. Fig. 3(b)
queue lengths and delays in the fluid limits, and the result cgy,strates the results that the delay increases lineaitly time
then be obtained by applying the techniques used in [37], [33nder Q-BP, which implies that several last packets of the
short flow are excessively delayed. On the other hand, D-BP
VI. NUMERICAL RESULTS succeeds in serving the short flow and keeps the delay close
In this section, we first highlight thé&ast packet problem to 0. This also implies that certain flows whose queue lengths
for the queue-length-based back-pressure algorithm. @$te Ido not increase due to lack of future arrivals (or whose inter
packet problem implies that flows that lack packet arrivals arrival times between groups of packets are very large) may
subsequent time may experience excessive delays under Q@Perience a large delay under Q-BP, which will be confirmed
which is later confirmed in the simulations. Then, we compare
throughput and delay performance of Q-BP and D-BP in a grid®unit of link capacity is packets per time slot.
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Fig. 4. Performance of scheduling algorithms for multihoadfic following (11 — 10 — 9) over offered loads.
Poisson distribution.

to examine the performance limits of scheduling schemes.
ﬁpch result represents an average of 10 simulation runs with

schedulers in a grid network that consists of 16 nodes aiependent stochastic arrivals, where each run lasts (for
24 links as shown in Fig. 4(a), where nodes and links afgne slots. Since _the optimal through_put region is defined
represented by circles and dashed lines, respectively,limk S the set of arrival rates under which the queue lengths

capacity. We establish 9 multihop flows that are represebyedremain finite, we c.an consider the traffic load, under which
arrows. Let\; = 0.1 and\, = 1. At each time slot, there is athe queue length increases rapidly, as the boundary of the

file arrival with probabilityp = 0.01 for flow (11 — 10 — 9) OPtimal throughputregion. Fig. 4(b) shows that D-BP acktev

(represented by the red thick arrow in Fig. 4(a)), and the fif3€ Same throughput region as Q-BP, thus supporting the

size follows Poisson distribution with mean rhje\, /p. Note ~ "€oretical results on throughput performance.
that flow (L1 — 10 — 9) has bursty arrivals with a small mean Although Q-BP and D-BP perform similarly in terms of the

rate (we simply call it the bursty flow in the following part).2verage queue length (or average delay due to Little’s Law)
All the other 8 flows have packet arrivals following PoissoRVer the network, the tail of the delay distribution of Q-BP
distribution with mean rate, at each time slot. Although cogld be substantially longer bec_ause certain flows areestar _
these flows share the same stochastic property with an Mntfrh's could cause enormous unfairness between flows, regulti
mean arrival rate)),, uniform patterns of traffic are avoidedin Very poor QoS for certain flows.

by carefully setting the link capacities and placing the fow Note that although a bursty flow is a long flow that has
with different number of hops in an asymmetric manner. an infinite amount of data, the arrivals occur in a dispersed

We evaluate the scheduling performance by measuriftgnner (i.e., the inter-arrival times between groups okptsc

average total queue lengths in the network over time. Fig). 4@re very large) and we can view this bursty flow as consisting

illustrates average queue lengths under different offisads ©f many short flows. Thus, we expect that the bursty flow may
experience a very large delay under Q-BP. This is because the
“Note that given the network topology, it is hard to find theabzoundary ~ bursty flow lacks subsequent packet arrivals over long gsrio
of the optimal throughput region of sch_edullng policies irclased form. of time, which does not allow the queue-lengths to grow,
Hence, we probe the boundary by scaling the amount of traffiter we . . L
choose), which determines the direction of traffic load vector, we aur and thus ConmbUtes to the long tail of thel delay d|st_r|¢n0|1|
simulations with traffic loagX changingp, which scales the traffic loads. However, this phenomenon may not manifest itself in terms

in the following simulations.
Next, we evaluate the throughput performance of differe
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pooling condition is not satisfied (and thus thaultihop local
poolingis not satisfied from Lemma 7 of [38]). On the other
hand, although D-GMS is at least as efficient as Q-GMS, it is
not known whether D-GMS can achieve larger throughput in
certain scenarios, e.g., in the network in Fig. 7(a).

To see these, we construct a traffic pattern using the idea in
[34]. We consider packet arrivals in a frame of 12 time slots.
Two flows have the same arrival pattern in each frame. We as-
sume two arrival patterns for each frame. Starting with empt
g‘) Oﬁ; size-6 ring network queues at time slot 0, in each frame, the number of exogenous

pology packet arrivals at the source of each flow (i.e., nodes 1 and
4) follows patternP, = {1,0,5,0, 1,0,5,0, 1,0,5,0} with
probabilitye, and pattern?, = {1, 0,0, 1,0,0, 1,0,0, 1,0,0}
with probability (1 —¢), where0 < e < 1. The average arrival
rate vector is thetk = (8e+ 4 (1—¢))e= (1 + Iec)e, where
eis a dimension-2 vector with all components equal to 1. It is
easy to check thaX lies strictly inside the optimal throughput
region when0 < e < % while Q-GMS cannot stabilize the
network under such a traffic pattern for all> 0. Because
under Q-GMS, when patter®, occurs in a frame, all the
packets arriving in this frame can be completely served and
leave the network by the end of this frame, while patt&n
0 005 o1 015 occurs, none of the packets arriving in this frame leaves the

€ networkby the end of this frame. We evaluate the performance
(b) Average queue length of different scheduling policies under the above traffidqrat
For each policy under a fixed we take the average over 10
independent experiments, with each run being time slots.
In Fig. 7(b), we can see that Q-BP and D-BP have finite aver-
age queue length fdr < e < % = 0.143 and thus achieve the

of a higher average delay for Q-BP, as can be observed”i}"f‘)(iml_Jm throughput. on the other hand, the average queue
Fig. 4(b), because the amount of data corresponding to {ﬁQth w;creases Imez;rly with under Q'(.;MIS a?:.j D'GIMS
bursty flow in the simulation is small compared to the oth@é;mng rome = 0 ande = 0.04, respectively. This implies

w
o
o

2500

2000

1500~

1000~

Average queue length (packets)

5000

Fig. 7. Performance comparison of Q-BP, D-BP, Q-GMS and DSGidr
multihop traffic under the 1-hop interference model.

flows. On the other hand, D-BP can achieve better fairness t neither Q-GMS nor D-GMS is throughput-optimal in this

scheduling the links based on delays and not starving barsty>€ting. while D-GMS achieves larger throughput{ 0.04).

variable flows. We confirm this in the following observations @ fully characterize the performance limits of D-GMS is an

Fig. 5 illustrates the effectiveness of using D-BP over d[lterestlng yet challenging problem.
BP in terms of how each scheme affects the delay distribution
of bursty flows. We sep = 0.2. The results show that the VII. CONCLUSION
tail of the delay distribution under D-BP vanishes muchdast In this paper, we developed a throughput-optimal delay-
than Q-BP. Further, we plot the mean delthe 1st and 5th based back-pressure scheduling scheme for multihop w#rele
percentiledelay of the bursty flow over offered loads in Fig. 6.networkswith fixed routes We introduced a new delay metric
All these delays under D-BP are substantially less than undwitable for multihop traffic and established a linear iefat
Q-BP, which implies that D-BP successfully eliminates thietween queue lengths and delays in the fluid limits, which
excessive packet delays. This confirms that, Q-BP causeplays a key role in the performance analysis and proof of
substantially long tail for the delay distribution of thetwerk throughput-optimality. Delay-based schemes provide gpk&m
due to the starvation of the bursty flow, while D-BP overcomesay around the well-known last packet problem that plagues
this and achieves better fairness among the flows by scimedulgueue-based schedulers, and thus avoid flow starvation. As a
the links based on delays. result, the excessively long delays that could be expeei@nc
Finally, we consider a size-6 ring network topology unddsy certain flows under queue-based scheduling schemes are
the 1-hopinterference model as shown in Fig. 7(a), where linkgliminated without any loss of throughputNonetheless, in
have unit link capacity. We simulate two flows: flov{ 2 — this paper, we have only considered the scheduling problem
3 — 4) and flow ¢ — 5 — 6 — 1). It is known [21] that with fixed routes, albeit with multihop flows. The question
Q-GMS is not throughput-optimal in this network, as tbeal of whether delay-based schemes under dynamic routing can
achieve throughput-optimality is still very much open.

5Suppose there a¥ packets sorted by their delays from the largest to the
smallest,the X-th percentiledelay is defined as the delay of trhéi\’o—oj-th APPENDIX A
packet. If% < 1, it means the maximum delay. For example, if the delays

are[3,2,1, 1, 1], the 40th percentile delay is 2. SUMMARY OF NOTATIONS
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Symbol Definition A :
v Set of nodes Let Tl__ €1 + K. Suppose that (52) (_Joes not holt_j, ie.,
£ set of links there exists at least one packet that arrives before tinte slo
;93 set 0}[ {,'O‘liv?l _ |zn,€1] +1 and is not served by the end of time sat,, 77 |.
set of link-flow-pairs .
Mop <et of feasible schedules Hence, at each time slot betwegm,, ¢ | +1, .anj Ty |], there .
Co(Mp)  convex hull of Mp exists at least one schedule that has positive summed weight
A" optimal throughput region Therefore, the schedule determined by D-BP must serve at
gf,izx fng;hog‘}o(g)the route of flow least one packet in the original system, otherwise the suinme
s€ . .
As(t) # of packet arrivals for flows at time slott weight of the schedule (that does not serve any packet) s zer
;\Vs() meanl atrflva?l# fafte fOIr(ﬂtOV\B, < for f o o which is not the maximum over all the feasible schedules.
s(t cumulative # of packet arrivals for flow up to time slott
Qs k(1) queue length of), ; at time slott Hence, we must have
I 1 (t) service atQ, j, at timet ~(Tn,) ~(Tn,)
Wy k(t) # of packet departures &, ;. at time slott Z(S,k)ep (Fs)k ! (ll?nj Tl) - Fs)k ! (ll?nj 61))
Ps,k(t) Z§:1 Qs,i(t)
Eo (b cumulative # of packets served @, ;, up to time slott > |xn, 1] = ;€1
Zs k

i () Eomigusfﬂ)tﬂtme (in the network) of theth packet of@, » at Dividing both sides of the above inequality by, and letting

W k(t) sojourn time (in the network) of the HOL packet &f, T,,; — 00, We obtain
at time slott, i.e., Z, 1,1 (t)

Us 1 (t) time when the HOL packet af ;. arrives in the network, Z(S kep (fs k(T1) — fs k(él)) > K.

et — W, p(t) ’ ' '
W 1. (t) W (t) = W g—1(t) Then, from (51), we have
AW (1) W k() = W g41(P) . R
AQs,k(t) _Qs,k(t)__ Qs:,k+1(t) Z(SJC)G’P fs,k(Tl) 2 Z(S.k)G’P fs7k(€1) + Z(s,k)ep ps,k(ﬁl)
B i (1) inter-arrival time (at the system or the source node) be- '

tween the HOL packet of), ;, and the packet that arrives = Z(S_’k)gp fs (61)-

immediately after it R

TABLE | Therefore, fs 1 (T1) > fs(e1) for at least one link-flow-pair
SUMMARY OF NOTATIONS (s, k).

Inductive Step: Suppose that there exigt and a subse$; C
P such that for all(s, k) € S;, we have

APPENDIX B For(T1) > fsler). (53)

PROOF OFLEMMA 5 Then thereexists 7}, > 7, wherel < 1 < 3> H(s), and a
Proof: We show that there exists a finite tirie> 0 such  link-flow-pair (s, k) € P\.S; such that
that the fluid limits satisfyf, »(T") > f5(0) for all link-flow- .
pairs (s, k) € P. We prove this by induction. We show that foi(Tirn) 2 fs(er)- (54)
there exists a finite tim@ with at least one link-flow-pair that £ ther we defines;., = S; U {(5, k).

satisfies the condition, and for a given set of link-flow-pair ye prove the inductive step fdr= 1. The generalization
satisfying the condition, at least one additional link-flpair ., - | is straightforward. Hence, we show that for given

will satisfy the condition by increasing'. . S1 andTy, there exists a finitd, > 77 such that (54) with
We first fix an arbitrarye; > 0 and define a constadi, = 7, no|ds for at least two different link-flow-pairs.
maxs H(s) + (32, AsH(s)) e1. In the fluid limit model, we | ot (3 1) denote the link-flow-pair that satisfies (53) with
will have T,. Then, we ha®S; = {(3,1)} and can specify the set'
foler) = £5(0) + Aser > f5(0), for all s € S. of link-flow-pairs (s, k) € P\ S; that is closest to the source of
each flow from (46). We illustrate the case tita¢s) > 1, and
Since queue lengths are no greater than the injected amoygt gther case thall (5) = 1 can be easily shown following

Orf data, we have that; ;(e1) < fs(e1) forall (s,k) € P, and  the same line of analysis. Now, we have
thus,

2 (siyep Psk(€1) < D pyep fsler) For all the other link-fl i b h
<5 H () ((0) + Aer) (51) For all the other link-flow-pairs, we observe that

< K, 2 (rf)EP\S: (fr(q) - fr,j(Tl)) < K. (55)

where the last inequality is from Eq. (20):, fs(0) < 1 and Suppose that for all > T}, we have
the definition of ;. Now we show by induction that there

exists a finite timel” such that fri(t) < fr(er), forall (r,5) € P\S. (56)

f&k(T) > £,(0), for all link-flow-pairs (s, k). In the following part, we provide a choice @ > T; such
that assumption (56) leads to a contradiction, which coteple
Base Case:There existsT; > 0 such that for at least onethe inductive step, and then the lemma follows by induction.
link-flow-pair (s, k),

Fs1(t) > fsler), forall t > Ty.

. 6Note that if (s, k) € S;, we must havés, k — 1) € S;. Hence, forl = 1,
Fs(Th) > fs(er). (52) we must have the first hop of a flow, i.&5; = (3,1) for somes.
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We view each sample pati®") (¢) after time sloffz,,, 71| for all (s,k) € S1 and(r*, j*) € S, where (a) is from (59)
as a generalized system with link-flow-pairsSn = {($,1)}. and (63), (b) is from (60), and (c) is from (63) and (62). Hence
We say that a time slot isnavailableto S; when a packet from for large t, we have that
a link-flow-pair (r, 7) € P\S; is transmitted during the time
slot. Lethg, (t) denote the (scaled) amount of time unavailable Atbg (1) < min  {Ad,- ()} (64)
to S; during the period of 71, t] in the scaled system, for all (r.g*)€sy
t > T;. For the scaled generalized systén we obtain from Also, from (61), we have that
(55) and (56) that

hs (1) < Xpems, (fra®) = Fra(T)) < K1 (657) A | o
_ _ _ _ forall (7, 5) € P\(S1UST). Since (65) holds for an arbitrarily

forall t > T;. Since the time unavailable 1 is bounded, as small¢, and from (64), D-BP favors link-flow-pairs of; for
time ¢ increases, only I|nk—fI9w—pa|rs_|Sl will be _scheduled, all larget. Note thatAu, ,(t) is bounded fors, k) € S; from
which |mpl|es_that the _we|ght of link-flow-pairs o’P\_Sl (59), andAd, +(t) is bounded for(7, j) € P\(S; US;) from
becomes negligible. This allows us to focus S Owing  (65), andAu,., ;. (t) increases linearly on the order offor
to Lemma 4 and the definition ofy, the linear relation (.« j+) ¢ g* from (63). Hence, there exists a larG& such
between queue lengths and delays holds for the link-flow-p@hat for all ¢ > 73, link-flow-pairs in 57 will be scheduled at
in S1. Then, it can be easily shown following the same line &f|| the time slots betweefiz,, T3] + 1, |, ¢]] under D-BP.
analysis of Proposition 6 that link-flow-pairs i are stable Tnhen, we can choosg, > T} and have that
under D-BP. Hence, for all(s, k) € S1, we have

A 5(t) < 1, (65)

hs, (Te) > Ty — Ty > K.

¢s,x(t) < Cy, forall ¢t > T, (58)
However, this contradictsvith (57), which shows that, the
and thus o assumption (56) is false, and there exists a largsuch that
s, (t) < —, forall t > T, (59) ) -
As fsi(T2) = fs(e1), for at least on€s, k) € P\S1.  (66)

for some constant’;, which depends off; and K; and does )
In fact, our choice ofl> depends on the se&f;. However,

not depend on time. ) 2
Recall thatS; denotes the set of link-flow-pairs that isSiNce there are only a finite number of flows, we can always

closest to the source of each flow out $f defined in (48). cNoose a large enough so that (66) holds for som@, k) €
We chooset large enough such that for ak, &) € S; and P\S1. =
(r*,7*) € 57,
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From (56), there are packets that arrive at the source node
time ¢; and have not been servedjath hop by timet for all

(r,7) € P\S;, we obtain that REFERENCES
. [1] L. Tassiulas and A. Ephremides, “Stability properties constrained
t—e <w;(t) <t, forall (r,j) € P\Si. (61) queueing systems and scheduling policies for maximum tfimput in
. . . . multihop radio networks,"IEEE Transactions on Automatic Control
Since(r*, j*), (r*,j*+1) € P\S: for (+*,j*) € S}, we have vol. 37, no. 12, pp. 1936-1948, 1992.
[2] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on crodayer
Wy joi1(t) = Wpr oy (t) — w(r*,j*)(t) < e, (62) optimization in wireless networksEEE Journal on Selected Areas

in Communicationsvol. 24, no. 8, pp. 1452-1463, Aug. 2006.
for all (r*,5*) € S¥. From (59), (61), and that*,j* — 1) €  [3] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee, “DiffQ:adtical

S, we have differential backlog congestion control for wireless netls,” in The
! o) 28th IEEE International Conference on Computer Commuitoat
Wy o (8) 2t — € — ——, (63) (INFOCOM), 2009. _ , _
py [4] A. Sridharan, S. Moeller, and B. Krishnamachari, “Implenting
ek % Backpressure-based Rate Control in Wireless Networkdfiformation
for all (r*, ;%) € S57. Then, we have Theory and Applications Workshop009.
A X X [5] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Galw/Routing
Aws,k (t) = Ws,k (t) — Ws,k+1 (t) without routes: The backpressure collection protocolPmceedings of
(a) the 9th ACM/IEEE International Conference on Informatiormd2ssing
< C1/As — (t—e1 — C1/Ns) in Sensor Networks (IPSN2010, pp. 279-290.
b) [6] P. van de Ven, S. Borst, and S. Shneer, “Instability of Méight
(< (t e —C /)\ *) —c Scheduling Algorithms,” inThe 28th IEEE International Conference
1 L/ A 1 on Computer Communications (INFOCOM)009, pp. 1701-1709.
() . [7] S. Liu, L. Ying, and R. Srikant, “Throughput-Optimal Oggunistic
< Wy = (t) - wr*,j*+1(t) Scheduling in the Presence of Flow-Level Dynamics,The 29th IEEE
o A International Conference on Computer Communications (MZOM),
= Ay j- (1) 2010.
[8] ——, “Scheduling in multichannel wireless networks witbw-level dy-
“Note that since Lemmas 4 and 5 hold for the generalized system namics,” ACM SIGMETRICS Performance Evaluation Revieal. 38,

Proposition 6 can be applied 18 . no. 1, pp. 191-202, 2010.



El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

A. Mekkittikul and N. McKeown, “A starvation-free algithm for
achieving 100% throughput in an input-queued switch,Pioc. of the
IEEE International Conference on Communication NetwolGCCN),
1996.

M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whgti and
R. Vijayakumar, “Providing quality of service over a shareiteless

link,” IEEE Communications magazingol. 39, no. 2, pp. 150-154, [34]

2001.
S. Shakkottai and A. Stolyar, “Scheduling for multiflews sharing
a time-varying channel: The exponential ruleltanslations of the

American Mathematical Society-Seriesval. 207, pp. 185-202, 2002. [35]

M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vigymar,

and P. Whiting,Scheduling in a queuing system with asynchronousl§6]

varying service rates Cambridge Univ Press, 2004, vol. 18.

B. Sadig and G. de Veciana, “Throughput optimality ofiagedriven
MaxWeight scheduler for a wireless system with flow dynarhias
Proceedings of the 47th Annual Conference on Communicationtrol
and Computing (Allerton)2009.

M. Neely, “Delay-based network utility maximizatiénin The 29th
IEEE International Conference on Computer Communicatifihg-O-
COM), 2010.

A. Eryilmaz, R. Srikant, and J. Perkins, “Stable scHexyu policies
for fading wireless channels|[EEE/ACM Transactions on Networking
vol. 13, no. 2, pp. 411-424, 2005.

J. Liu, A. Stolyar, M. Chiang, and H. Poor, “Queue Badle$sure Ran-
dom Access in Multihop Wireless Networks: Optimality anctSlity,”
IEEE Transactions on Information Theogryol. 55, no. 9, pp. 4087 —
4098, Sept. 2009.

L. Bui, R. Srikant, and A. Stolyar, “A Novel Architectarfor Reduction
of Delay and Queueing Structure Complexity in the Back-§ues
Algorithm,” IEEE/ACM Transactions on Networkingol. 19, no. 6, pp.
1597-1609, 2011.

G. Gupta and N. Shroff, “Delay analysis and optimalitiyscheduling
policies for multihop wireless networks|[EEE/ACM Transactions on
Networking vol. 19, no. 1, pp. 129-141, 2011.

G. Sharma, R. R. Mazumdar, and N. B. Shroff, “On the camipy of
scheduling in wireless networks,” iRroceedings of the annual inter-
national conference on Mobile computing and networking §}M@om)
ACM New York, NY, USA, 2006, pp. 227-238.

B. Hajek and G. Sasaki, “Link scheduling in polynomiahé,” IEEE
Transactions on Information Theqryol. 34, no. 5, pp. 910-917, 1988.
C. Joo, X. Lin, and N. B. Shroff, “Greedy Maximal MatclginPerfor-
mance Limits for Arbitrary Network Graphs Under the Nodelasive
Interference Model,JEEE Transactions on Automatic Contralol. 54,
no. 12, pp. 2734-2744, 2009.

C. Joo and N. B. Shroff, “Performance of random acces$wedaling
schemes in multi-hop wireless network$EEE/ACM Transactions on
Networking vol. 17, no. 5, pp. 1481-1493, 2009.

X. Lin and N. B. Shroff, “The impact of imperfect schethg on cross-
Layer congestion control in wireless networkiEEE/ACM Transactions
on Networking vol. 14, no. 2, pp. 302-315, 2006.

P. Chaporkar, K. Kar, X. Luo, and S. Sarkar, “Throughjmid Fair-
ness Guarantees Through Maximal Scheduling in Wirelessidtks,”
Information Theory, IEEE Transactions ovol. 54, no. 2, pp. 572-594,
2008.

X. Wu, R. Srikant, and J. Perkins, “Scheduling Efficigraf Distributed
Greedy Scheduling Algorithms in Wireless Networke2EE Transac-
tions on Mobile Computingpp. 595-605, 2007.

M. Leconte, J. Ni, and R. Srikant, “Improved bounds oa throughput
efficiency of greedy maximal scheduling in wireless netwgrkin
Proceedings of the tenth ACM international symposium on iladd
hoc networking and computing (MobiHoc) New York, NY, USA:
ACM, 2009, pp. 165-174.

M. Bramson, “Stability of queueing networksProbability Surveys
vol. 5, no. 1, pp. 169-345, 2008.

A. Rybko and A. Stolyar, “Ergodicity of stochastic pesses describing
the operation of open queueing network®foblems of Information
Transmissionvol. 28, pp. 199-220, 1992.

V. Malyshev and M. Menshikov, “Ergodicity, continuignd analyticity
of countable Markov chainsTransactions of the Moscow Mathematical
Society vol. 39, pp. 3-48, 1979.

J. Dai, “On positive Harris recurrence of multiclassegeing networks:
a unified approach via fluid limit modelsThe Annals of Applied
Probability, pp. 49-77, 1995.

14

[32] B. Ji, C. Joo, and N. B. Shroff, “Delay-Based Back-PueesScheduling

in Multi-Hop Wireless Networks,” Arxiv preprint arXiv:1011.5674
November 2012. [Online]. Available: http://arxiv.org&th011.5674

A. Dimakis and J. Walrand, “Sufficient conditions forabtlity of
longest-queue-first scheduling: second-order propeus#sg fluid lim-
its,” Advances in Applied Probabilityol. 38, no. 2, p. 505, 2006.

C. Joo, X. Lin, and N. B. Shroff, “Understanding the ceipa region
of the greedy maximal scheduling algorithm in multihop Jéss
networks,” [EEE/ACM Transactions on Networkingol. 17, no. 4, pp.
1132-1145, 2009.

J. Hoepman, “Simple distributed weighted matching&tkiv preprint
€s/0410047 2004.

C. Joo and N. B. Shroff, “Local Greedy Approximation f8cheduling
in Multi-hop Wireless Networks,1EEE Transactions on Mobile Com-
puting, accepted for publication.

A. Brzezinski, G. Zussman, and E. Modiano, “Local pagliconditions
for joint routing and scheduling,” innformation Theory and Applica-
tions Workshop, 2008008, pp. 499-506.

G. Zussman, A. Brzezinski, and E. Modiano, “Multihop dab Pool-
ing for Distributed Throughput Maximization in Wireless tMerks,”
in The IEEE International Conference on Computer Commuraoati
(INFOCOM), April 2008, pp. 1139-1147.

Bo Ji received his B.E. and M.E. degrees in In-
formation Science and Electronic Engineering from
Zhejiang University, China in 2004 and 2006, re-
spectively. He is currently a Ph.D. candidate in the
Department of Electrical and Computer Engineering
at The Ohio State University. His research interests
include resource allocation, optimization, cross-layer
network control, and low-complexity scheduling al-
gorithm design. He is a student member of the IEEE.

Changhee Joareceived his Ph.D degree from Seoul
National University, Korea, 2005. He was with the
Center of Wireless Systems and Applications, Pur-
due University, USA, as an associated researcher,
and worked at The Ohio State University, USA,
as a research scientist. In 2009, he joined Korea
University of Technology and Education, Korea, and
from 2011, he has been with Ulsan National Insti-
tute of Science and Technology (UNIST), Korea.
His research interests include resource allocation in
wireless networks, cross-layer network optimization,

wireless sensor networks, and congestion control. He hasdeseveral
primary conferences as a committee member, including IEREOQCOM,
ACM MobiHoc, and IEEE SECON. He is a member of the IEEE, and a
recipient of the IEEE INFOCOM 2008 best paper award.

Ness B. Shroff Ness B. Shroff received his Ph.D.
degree from Columbia University, NY in 1994 and
joined Purdue university immediately thereafter as
an Assistant Professor. At Purdue, he became Pro-
fessor of the school of ECE in 2003 and director of
CWSA in 2004, a university-wide center on wireless
systems and applications. In July 2007, he joined
the ECE and CSE departments at The Ohio State
University, where he holds the Ohio Eminent Scholar
Chaired Professorship of Networking and Commu-
nications. His research interest are in fundamental

problems in communication, sensing, social, and cybeipalysetworks. Dr.

A. Stolyar, “On the stability of multiclass queueingtwerks: a relaxed Shroff is a Fellow of the IEEE, an NSF CAREER awardee, and abmurof
sufficient condition via limiting fluid processedylarkov Processes and his conference and journals papers have received best papeds.

Related Fieldsvol. 1, no. 4, pp. 491-512, 1995.



