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Abstract—Scheduling is a critical and challenging resource
allocation mechanism for multihop wireless networks. It iswell
known that scheduling schemes that favor links with larger
queue length can achieve high throughput performance. However,
these queue-length-based schemes could potentially suffer from
large (even infinite) packet delays due to the well-knownlast
packet problem, whereby packets belonging to some flows may
be excessively delayed due to lack of subsequent packet arrivals.
Delay-based schemes have the potential to resolve this lastpacket
problem by scheduling the link based on the delay the packet
has encountered. However, characterizing throughput-optimality
of these delay-based schemes has largely been an open problem
in multihop wireless networks (except in limited cases where
the traffic is single-hop.) In this paper, we investigate delay-
based scheduling schemes for multihop traffic scenarioswith fixed
routes. We develop a scheduling scheme based on a new delay
metric, and show that the proposed scheme achieves optimal
throughput performance. Further, we conduct simulations to
support our analytical results, and show that the delay-based
scheduler successfully removes excessive packet delays, while it
achieves the same throughput region as the queue-length-based
scheme.

Index Terms—Throughput-optimal, Scheduling, Delay-based,
Back-pressure, Fluid limit, Lyapunov approach

I. I NTRODUCTION

Link scheduling is a critical resource allocation component
in multihop wireless networks, and also perhaps the most chal-
lenging.The seminal work of [1] introduces a joint adaptive
routing and scheduling algorithm, called Queue-length-based
Back-Pressure (Q-BP), that has been shown to be throughput-
optimal, i.e., it can stabilize the network under any feasible
load. This paper focuses on the settings with fixed routes,
where the Q-BP algorithm becomes a scheduling algorithm.
Since the development of Q-BP, there have been numerous
extensions that have integrated it in an overall optimal cross-
layer framework. Further, easier-to-implement queue-length-
based scheduling schemes have been developed and shown to
be throughput-efficient (see [2] and references therein). Some
recent attempts [3]–[5] focus on designing real-world wireless
protocols using the ideas behind these algorithms.

While these queue-length-based schedulers have been
shown to achieve excellent throughput performance, they are
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usually evaluated under the assumption that flows have an
infinite amount of data and keep injecting packets into the
network. However, in practice, when accounting for multiple
time scales [6]–[8], there also exist other types of flows that
have a finite number of packets to transmit, which can result
in the well-knownlast packet problem: consider a queue that
holds the last packet of a flow, then the packet does not see any
subsequent packet arrivals, and thus the queue length remains
very small and the link may be starved for a long time, since
the queue-length-based schemes give a higher priority to links
with a larger queue length. In such a scenario with flow-level
dynamics, it has also been shown in [6] that the queue-length-
based schemes may not even be throughput-optimal.

Recent works in [9]–[14] have studied the performance
of delay-based scheduling algorithms that use Head-of-Line
(HOL) delays instead of queue lengths as link weights. One
desirable property of the delay-based approach is that they
provide an intuitive way around the last packet problem. The
schedulers give a higher priority to the links with a larger
weight as before, but now the weight (i.e., the HOL delay) of
a link increases with time until the link is scheduled. Hence, if
the link with the last packet is not scheduled at this moment,it
is more likely to be scheduled in the next time. However, the
throughput of the delay-based scheduling schemes is not fully
understood, and has only been established for limited cases
with single-hop traffic.

The delay-based approach was introduced in [9] for schedul-
ing in Input-Queued switches. The results have been ex-
tended to wireless networks for single-hop traffic, providing
throughput-optimal delay-based MaxWeight scheduling algo-
rithms [11], [12], [15]. It has also been shown that delay-based
schemes with appropriately chosen weight parameters provide
good Quality of Service (QoS) [10], and can be used as an
important component in a cross-layer protocol design [14].
The performance of the delay-based MaxWeight scheduler has
been further investigated in a single-hop network with flow-
level dynamics [13]. The results show that, when flows arrive
at the base station carrying a finite amount of data, the delay-
based MaxWeight scheduler achieves optimal throughput per-
formance while its queue-length-based counterpart does not.

It should be noted that even for the multihop wireless
networks with fixed routes, the scheduling problem is both
important and challenging. There are many existing works
focusing on such scenarios with fixed routes (see [16]–[18]
for examples).However, in multihop wireless networks, the
throughput performance of these delay-based schemes has
largely been an open problem.To the best of our knowledge,
even with the assumption of fixed routes,there are no prior
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works that employ delay-based algorithms to address the
important issue of throughput-optimal scheduling in multihop
wireless networks. Indeed, the problem becomes much more
challenging in the multihop scenario. In [12], the key idea in
showing throughput-optimality of the delay-based MaxWeight
scheduler is to exploit the following property: after a finite
time, there exists a linear relation between queue lengths and
HOL delays in the fluid limits (which we formally define in
Section III-A), where the ratio is the mean arrival rate. Hence,
the delay-based MaxWeight scheme is basically equivalent
to its queue-length-based counterpart, and thus achieves the
optimal throughput. This property holds for the single-hop
traffic. Since given that the exogenous arrival processes follow
the Strong Law of Large Numbers (SLLN) and the fluid limits
exist, the arrival processes are deterministic with constant rates
in the fluid limits. However, such a linear relation does not
necessarily hold for the multihop traffic, since at a non-source
(or relay) node, the arrival process may not satisfy SLLN and
the packet arrival rate may not even be a constant, depending
on the underlying schedulers dynamics.To this end, we in-
vestigate delay-based scheduling schemes that achieve optimal
throughput performance in multihop wireless networks.

Unlike previous delay-based schemes, we view the packet
delay as a sojourn time in the network, and re-design the delay
metric of the queue as the sojourn-time difference between the
queue’s HOL packet and the HOL packet of its previous hop
(see Eq. (36) for the formal definition). Using this new metric,
we can establish a linear relation between queue lengths and
delays in the fluid limits. The linear relation then plays thekey
role in showing that the proposed Delay-based Back-Pressure
(D-BP) scheduling scheme is throughput-optimal in multihop
networks.

In summary, the main contributions of our paper are as
follows:

• We devise a new delay metric for multihop wireless
networks and develop the D-BP algorithm, under which
a linear relation between queue lengths and delays in the
fluid limits can be established. From this linear relation,
we can show that D-BP achieves optimal throughput
performance. To do this, we first re-visit throughput-
optimality of Q-BP using fluid limit techniques. Further,
we develop a simpler greedy approximation of D-BP for
practical implementation.

• We provide extensive simulation results to evaluate the
performance of the delay-based schedulers, including D-
BP. Through simulations, i) we observe that the last
packet problem can cause excessive delays for certain
flows under Q-BP, while the problem is eliminated under
D-BP. ii) We show that D-BP also achieves better fairness
and prevents the flows that lack subsequent packet arrivals
from starving. iii) Finally, we simulate the simpler greedy
approximation algorithms of Q-BP and D-BP, and show
that the delay-based approximation empirically achieves
a throughput region that is no smaller than that of its
queue-based counterpart.

The paper is organized as follows. In Section II, we present
a detailed description of our system model. In Section III,

we show throughput-optimality of Q-BP using fluid limit
techniques, and extend the analysis to D-BP in Section IV.
The discussions are further extended to the greedy algorithms
in Section V. We evaluate the performance of delay-based
schedulers through simulations in Section VI, and conclude
our paper in Section VII.

II. SYSTEM MODEL

We consider a multihop wireless network described by a
directed graphG = (V , E), where V denotes the set of
nodes andE denotes the set of links. Nodes are wireless
transmitters/receivers and links are wireless channels between
two nodes if they can directly communicate with each other.
During a single time slot, multiple links that do not interfere
with each other can be active at the same time, and each active
link transmits one packet during the time slot if its queue is
not empty. LetS denote the set of flows in the network. We
assume that each flow has a single, fixed, and loop-free route.
The route of flows has anH(s)-hop length from the source
to the destination, where eachk-th hop link is denoted by
(s, k). Let Hmax , maxs∈S H(s) < ∞ denote the length
of the longest route over all flows. Note that the assumption
of single route and unit link capacity is only for ease of
exposition, and one can readily extend the results to more
general scenarios withmultiple fixed routes and heterogeneous
link rates, applying the techniques used in this paper. To
specify wireless interference, we consider thek-th hop of each
flow s or link-flow-pair (s, k). LetP denote the set of all link-
flow-pairs, i.e.,

P , {(s, k) | s ∈ S, 1 ≤ k ≤ H(s)}.

The set of link-flow-pairs that interfere with(s, k) can be
described as

I(s, k) , {(r, j) ∈ P | (r, j) interferes with(s, k),

or (r, j) = (s, k)}.
(1)

Note that the interference model we adopt is very general,
and includes the class of theK-hop interference model1. A
schedule is a set of (active or inactive) link-flow-pairs, and
can be represented by a vector~M ∈ {0, 1}|P|, where | · |
denotes the cardinality of a set. Each elementMs,k is set
to 1 if link-flow-pair (s, k) is active, and 0 if link-flow-pair
(s, k) is inactive. Slightly abusing the notation, we also use
M to denote the set of active link-flow-pairs of~M , i.e.,M ,

{(s, k) ∈ P | Ms,k = 1}. A schedule~M is said to befeasible
if no two link-flow-pairs of ~M interfere with each other, i.e.,
(r, j) /∈ I(s, k) for all (r, j), (s, k) with Mr,j = 1 andMs,k =
1. LetMP denote the set of all feasible schedules inP , and
let Co(MP) denote its convex hull.

LetAs(t) denote the number of packet arrivals at the source
node of flows at time slott. We assume that packets are of unit

1Under theK-hop interference model, two links within aK-hop “distance”
interfere with each other and cannot be activated at the sametime [19]. When
K = 1, it is also called theprimary or node-exclusiveinterference model.
The 1-hop interference model has been known as a good representation for
Bluetooth or FH-CDMA networks [20]–[23]. WhenK = 2, it is often used to
model the ubiquitous IEEE 802.11 DCF (Distributed Coordination Function)
wireless networks [22], [24]–[26].
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length. Similar to [12], we assume that each arrival process
As(t) is a stationary and ergodic Markov chain with countable
state space, and satisfiesthe Strong Law of Large Numbers
(SLLN): That is, with probability one,

limt→∞

∑t−1

τ=0
As(τ)

t
= λs, (2)

for each flows ∈ S, whereλs denotes the mean arrival rate
of flow s. We let~λ , [λ1, λ2, · · · , λ|S|] denote the arrival rate
vector.

Let Qs,k(t) denote the number of packets at the queue
of (s, k) at the beginning of time slott. For notational
ease, we also useQs,k to denote the queue itself. We let
~Q(t) , [Qs,k(t), (s, k) ∈ P ] denote the queue length vector at
time slott, and use‖·‖ to denote theL1-norm of a vector, e.g.,
‖ ~Q(t)‖ =

∑

(s,k)∈P Qs,k(t). Let Πs,k(t) denote the service
of Qs,k at time slott, which takes a value of either 1 if link-
flow-pair (s, k) is active, or 0 otherwise, in our settings. We
let Ψs,k(t) denote the actual number of packets transmitted
from Qs,k at time slott. Clearly, we haveΨs,k(t) ≤ Πs,k(t)

for all time slotst ≥ 0. Let Ps,k(t) ,
∑k

i=1Qs,i(t) denote
the cumulative queue lengths up to thek-th hop for flow
s. By convention, we setQs,H(s)+1(t) = 0, and then we
have Ps,H(s)+1(t) = Ps,H(s)(t). The queue length evolves
according to the following equations:

Qs,k(t+ 1) = Qs,k(t) + Ψs,k−1(t)−Ψs,k(t), (3)

where we setΨs,0(t) = As(t).
Let Fs(t) be the total number of packets that arrive at the

source node of flows until time slot t ≥ 0, including those
present at time slot 0, and let̂Fs,k(t) be the total number
of packets that are served atQs,k until time slot t ≥ 0. By
convention, we set̂Fs,k(0) = 0 for all link-flow-pairs(s, k) ∈
P . We letZs,k,i(t) denote the sojourn time of thei-th packet of
Qs,k in the network at time slott, where the time is measured
from the time when the packet arrives in the network (i.e.,
when the packet arrives at the source node), and letWs,k(t) =
Zs,k,1(t) denote the sojourn time of the HOL packet ofQs,k

in the network at time slott. We setWs,0(t) = 0 for all s ∈ S.
Further, ifQs,k(t) = 0, we setWs,k(t) =Ws,k−1(t). Letting
Us,k(t) , t−Ws,k(t) denote the time when the HOL packet
of Qs,k arrives in the network, we have that

Us,k(t) = inf{τ ≤ t | Fs(τ) > F̂s,k(t)}, for all t ≥ 0. (4)

As in [27], a discrete-time queueing system is said to be
stable, if the underlying Markov chain ispositive Harris
recurrent. When the state space is countable and all states
communicate (as in the system that we consider in this paper),
this is equivalent to the Markov chain beingpositive recurrent.
The throughput regionof a scheduling policy is defined as
the set of arrival rate vectors for which the network remains
stable under this policy. Further, theoptimal throughput region
(or stability region) is defined as the union of the throughput
regions of all possible scheduling policies. We letΛ∗ denote
the optimal throughput region, which can be represented as

Λ∗ , {~λ | ∃~φ ∈ Co(MP) s.t. λs ≤ φs,k, ∀(s, k) ∈ P}. (5)

An arrival rate vector is strictly insideΛ∗, if the inequalities
above are all strict.

We summarize the notations in Appendix A for quick
reference.

III. QUEUE-LENGTH-BASED BACK-PRESSURE

ALGORITHM

It has been shown in [1] that Q-BP stabilizes the network for
any feasible arrival rate vector using stochastic Lyapunovtech-
niques. Specifically, we can use a quadratic Lyapunov function
to show that the function has a negative drift under Q-BP when
queue lengths are large enough. In this section, we re-visit
throughput-optimality of Q-BP using fluid limit techniques.
The analysis will be extended later to prove throughput-
optimality of the delay-based back-pressure algorithm.

To begin with, we define thequeue differential∆Qs,k(t) as

∆Qs,k(t) , Qs,k(t)−Qs,k+1(t), (6)

and specify the back-pressure algorithm based on queue
lengths as follows.
Queue-length-based Back-Pressure (Q-BP) algorithm:

~M∗ ∈ argmax ~M∈MP

∑

(s,k)∈P ∆Qs,k(t) ·Ms,k. (7)

The algorithm needs to solve a MaxWeight problem with
weights as queue differentials, and ties can be broken arbi-
trarily if there is more than one schedule that has the largest
weight sum.

We establish the fluid limits of the system in the following
subsection.

A. Fluid Limits

We define the process describing the behavior of the under-
lying system asX = (X (t), t = 0, 1, 2, · · · ), where

X (t) ,
(

(Zs,k,1(t), · · · , Zs,k,Qs,k(t)(t)), (s, k) ∈ P
)

.

We define the norm ofX (t) as

‖X (t)‖ , ‖ ~Q(t)‖ + ‖ ~W (t)‖. (8)

Clearly, under Q-BP, the evolution ofX forms a discrete-time
Markov chain with countable state space. LetX (x) denote a
processX with an initial configuration such that

‖X (x)(0)‖ = x. (9)

The following Lemma was derived in [28] for continuous-
time countable Markov chains, and it follows from more
general results in [29] for discrete-time countable Markov
chains.

Lemma 1 (Theorem 4 of [12]):Suppose there exist anǫ >
0 and a finite integerT > 0 such that for any sequence of
processes{ 1

x
X (x)(xT ), x = 1, 2, · · · }, we have

lim supx→∞ E
[

1
x
‖X (x)(xT )‖

]

≤ 1− ǫ. (10)

Then, the Markov processX is positive recurrent.
A stability criteria of (10) leads to a fluid limit ap-

proach [30], [31] to the stability problem of queueing sys-
tems. Hence, we start our analysis by establishing thefluid
limit model as in [12], [30]. We define the processY ,
(

A,F, F̂ , Q, P,Π,Ψ,W,U
)

, and it is clear that a sample path
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of Y(x) uniquely defines the sample path ofX (x). Then we
extend the definition ofY = A,F, F̂ , Q, P,Π,Ψ,W andU to
continuous time domain asY (t) , Y (⌊t⌋) for each continuous
time t ≥ 0.

As in [12], we extend the definition ofF (x)
s (t) to the

negative intervalt ∈ [−x, 0) by assuming that the packets
present in the initial stateX (x)(0) arrived in the past at some
of the time instants−(x − 1),−(x− 2), · · · , 0, according to
their delays in the stateX (x)(0). By this convention, we have
F

(x)
s (−x) = 0 for all s ∈ S andx, and

∑

s∈S F
(x)
s (0) ≤ x

for all x.

Then, applying the techniques used in the proof for The-
orem 4.1 of [30] or Lemma 1 of [12], we can show
that with probability one, for any sequence of processes
{ 1
xn
Y(xn)(xn·)}, where {xn} is a sequence of positive in-

tegers withxn → ∞, there exists a subsequence{xnj
} with

xnj
→ ∞ as j → ∞ such that the following convergences

hold uniformly over compact (u.o.c.)intervals:

1
xnj

∫ xnj
t

0 A
(xnj

)
s (τ)dτ → λst, (11)

1
xnj

F
(xnj

)
s (xnj

t)→ fs(t), (12)

1
xnj

F̂
(xnj

)

s,k (xnj
t)→ f̂s,k(t), (13)

1
xnj

Q
(xnj

)

s,k (xnj
t)→ qs,k(t), (14)

1
xnj

P
(xnj

)

s,k (xnj
t)→ ps,k(t), (15)

1
xnj

∫ xnj
t

0 Π
(xnj

)

s,k (τ)dτ →
∫ t

0
πs,k(τ)dτ, (16)

1
xnj

∫ xnj
t

0 Ψ
(xnj

)

s,k (τ)dτ →
∫ t

0
ψs,k(τ)dτ. (17)

Similarly, the following convergences (which are denoted by
“⇒”) hold at every continuous point of the limit function:

1
xnj

W
(xnj

)

s,k (xnj
t)⇒ ws,k(t), (18)

1
xnj

U
(xnj

)

s,k (xnj
t)⇒ us,k(t). (19)

The above convergence properties follow directly from the
Arzela-Ascoli Theorem and the structure of the model: that
the arrival process satisfies the SLLN and that the sequence
of the (scaled) departure process is uniformly bounded and
uniformly equicontinuous.

Any set of limiting functions(f, f̂ , q, p, π, ψ, w, u) is called
a fluid limit. The family of these fluid limits is associated
with our original stochastic network. The scaled sequences
{ 1
xn
Y(xn)(xn·)} and their limits are referred to as afluid

limit model[27]. Since some of the limiting functions, namely
fs, f̂s,k, qs,k, ps,k are Lipschitz continuous in[0,∞), they are
absolutely continuous. Hence, at almost all pointst ∈ [0,∞),
the derivatives of these limiting functions exist. We call such
points regular time.

We then present thefluid model equationsof the system as

follows.
∑

s∈S fs(0) ≤ 1, (20)

ps,k(t) =
∑k

i=1 qs,i(t), (21)

ps,k(t) = fs(t)− f̂s,k(t), (22)

fs(t) = fs(0) + λst, (23)

us,k(t) = t− ws,k(t), (24)

ψs,k(t) ≤ πs,k(t), (25)

∆qs,k(t) = qs,k(t)− qs,k+1(t), (26)

d
dt
qs,k(t) =

{

ψs,k−1(t)− πs,k(t), if qs,k(t) > 0,
(ψs,k−1(t)− πs,k(t))

+, otherwise,
(27)

where(z)+ , max(z, 0), and we setψs,0 = πs,0 = λs. Fluid
model equations can be thought of as belonging to a fluid
network which is the deterministic equivalence of the original
stochastic network. Any set of functions satisfying the fluid
model equations is called afluid model solutionof the system.
It is easy to check that any fluid limit is a fluid model solution.

It is clear from (7) that Q-BP will not schedule link-flow-
pair (s, k) if Qs,k(t)−Qs,k+1(t) < 0. Hence, if link-flow-pair
(s, k) is scheduled, it must satisfy thatQs,k(t)−Qs,k+1(t) ≥
0. Moreover, the length of queueQs,k can decrease by at
most one within one time slot, and the length of queueQs,k+1

can increase by at most one within one time slot, due to the
assumption of unit link capacity (a similar argument also holds
with non-unit link rates). This implies that, if

Qs,k(t) ≥ Qs,k+1(t)− 2 (28)

initially holds for all (s, k) at time slot 0, then the inequality
holds for every time slott ≥ 0. This further implies that

qs,k(t) ≥ qs,k+1(t), i.e., ∆qs,k(t) ≥ 0, (29)

for all (scaled) timet ≥ 0, from the convergence of (14).We
assume that at time slot 0, all queues on the route of each
flow are empty except for the first queue, then it follows that
(28) holds for all (scaled) timet ≥ 0, and thus,∆qs,k(t) ≥ 0
holds for all timet ≥ 0.

Remark:Note that we make the assumption of empty queues
for ease of analysis. Even without this assumption, we can
show that there exists a finite timeT > 0 such that for all
time t ≥ T , (29) holds for all(s, k) ∈ P . This can be proved
by induction. The detailed proof can be found in our online
technical report [32], but the basic idea is as follows: Consider
a flow ŝ ∈ S. We want to show that there exists a finite time
Tŝ > 0 such that for all timet ≥ Tŝ, (29) holds for all(ŝ, k)
with k ∈ {1, 2, · · · , H(ŝ)}.

1) First, we show that there exists a finite timeTŝ,1 > 0
such that for all timet ≥ Tŝ,1, (29) holds for link-flow-
pair (ŝ, 1). Suppose that (29) does not hold for(ŝ, 1).
Then Q-BP does not schedule(ŝ, 1), i.e.,qŝ,1(t) does not
decrease andqŝ,2(t) does not increase. On the other hand,
due to the exogenous arrivals at the source node of flowŝ,
qŝ,1(t) must increase with time. Hence, there must exist
a finite timeTŝ,1 such that (29) holds for(ŝ, 1) at time
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Fig. 1. Linear relation between queue lengths and delays in the fluid limits.

Tŝ,1. We can further show that (29) holds for allt ≥ Tŝ,1
under Q-BP. This can be proved by contradiction.

2) Then, we discuss the induction step: Considerk ∈
{1, 2, · · · , H(ŝ)−1}. Suppose that for all timet ≥ Tŝ,k >
0, (29) holds for(ŝ, j) and for allj ∈ {1, 2, · · · , k}, we
show that there exists a finite timeTŝ,k+1 ≥ Tŝ,k such
that for all timet ≥ Tŝ,k+1, (29) holds for(ŝ, j′) and for
all j′ ∈ {1, 2, · · · , k + 1}. For simplicity, we consider
the case for whichk = 1, and the general induction
step follows similarly. Now, suppose that (29) does not
hold for (ŝ, 2), and we prove it by contradiction. Clearly,
Q-BP will schedule only link-flow-pairs for which (29)
holds (i.e., link-flow-pair(ŝ, 1) in this case). Hence, the
fluid limit model of the subsystem that consists of link-
flow-pairs for which (29) holds must be stable, from the
throughput-optimality of Q-BP (see Proposition 2). This,
in particular, implies thatqŝ,1 is stable, which further
implies thatqŝ,2(t) must increase with time, because Q-
BP keeps forwarding packets fromqŝ,1 to qŝ,2 while
not servingqŝ,2. Hence, there must exist a finite time
Tŝ,2 ≥ Tŝ,1 such that for all timet ≥ Tŝ,2, (29) holds for
(ŝ, 2).

Hence, lettingTŝ , Tŝ,H(ŝ), we have that for all timet ≥ Tŝ,
(29) holds for all(ŝ, k) with k ∈ {1, 2, · · · , H(ŝ)}. Since the
above arguments can be applied to any flowŝ ∈ S, we can
complete the proof by settingT , maxŝ∈S Tŝ.

B. Throughput-Optimality of Q-BP

Proposition 2: Q-BP can support any traffic with arrival
rate vector that is strictly insideΛ∗.

Before giving the proof of Proposition 2, in the following
lemma, we present a linear relation between cumulative queue
length ps,k(t) and waiting timews,k(t), which is used for
proving Proposition 2.

Lemma 3:For any fixed ts,k > 0, the two conditions
us,k(ts,k) > 0 and f̂s,k(ts,k) > fs(0) are equivalent for every
link-flow-pair (s, k) ∈ P . Further, if the conditions hold, we
have

ps,k(t) = λsws,k(t), (30)

for all t ≥ ts,k, with probability one.
Fig. 1 describes the relations between the variables.

Proof: Since the first part, i.e., that the two conditions are
equivalent, is straightforward from the definition of fluid limits
and (4), we focus on the second part, i.e., iff̂s,k(ts,k) > fs(0),
then (30) follow.

Suppose that̂fs,k(ts,k) > fs(0). Then, by the definition of
us,k(t), we havef̂s,k(t) = fs(us,k(t)), for all t ≥ ts,k. From
(22), (23) and (24), we obtain that

ps,k(t) = fs(t)− f̂s,k(t)

= (fs(0) + λst)− (fs(0) + λsus,k(t))

= λs · (t− us,k(t))

= λsws,k(t).

Proof of Proposition 2: We prove stability using stan-
dard Lyapunov techniques LetV (~q(t)) denote the Lyapunov
function defined as

V (~q(t)) , 1
2

∑

(s,k)∈P (qs,k(t))
2
. (31)

From the results of Lemmas 1 and 3, to show positive
recurrence, we only need to prove that for anyζ > 0, there
exists a finite timeT1 > 0 such that for any fluid limit with
‖~q(0)‖ ≤ 1, we have

‖~q(t)‖ ≤ ζ, (32)

for all time t ≥ T1. To show the above, it is sufficient to show
that for anyζ1 > 0, there existsζ2 > 0 such thatV (~q(t)) ≥ ζ1
implies D+

dt+
V (~q(t)) ≤ −ζ2 for any regular timet ≥ 0, where

D+

dt+
V (~q(t)) = limδ↓0

V (~q(t+δ))−V (~q(t))
δ

.
Suppose~λ is strictly insideΛ∗, then there exists a vector

~φ ∈ Co(MP) such that~λ < ~φ, i.e.,λs < φs,k for all (s, k) ∈
P . Since~q(t) is differentiable, then for any regular timet ≥ 0,
we can obtain the derivative ofV (~q(t)) as

D+

dt+
V (~q(t))

(a)
=

∑

(s,k)∈P qs,k(t) · (ψs,k−1(t)− πs,k(t))

(b)

≤
∑

(s,k)∈P qs,k(t) · (πs,k−1(t)− πs,k(t))

=
∑

(s,k)∈P ∆qs,k(t) · λs

−
∑

(s,k)∈P ∆qs,k(t) · πs,k(t)

=
∑

(s,k)∈P ∆qs,k(t) · (λs − φs,k)

+
∑

(s,k)∈P ∆qs,k(t) · (φs,k − πs,k(t)),

(33)

where (a) and (b) are from (27) and (25), respectively.
Note that qs,k(t) ≤ Hmaxmax(r,j)∈P ∆qr,j(t),

for any (s, k) ∈ P . Hence, we haveV (~q(t)) ≤
1
2 |S|H

max(Hmax max(r,j)∈P ∆qr,j(t))
2. Let us choose

ζ3 =
√

2ζ1
|S|(Hmax)3 , then V (~q(t)) ≥ ζ1 implies

max(r,j)∈P ∆qr,j(t) ≥ ζ3. Since~λ < ~φ(t) and∆qs,k(t) ≥ 0
for all (s, k) ∈ P , then in the final result of (33), we can
conclude that the first term is bounded as follows:
∑

(s,k)∈P ∆qs,k(t) · (λs − φs,k) ≤ −ζ3 mins,k(φs,k − λs)

, −ζ2 < 0,
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and that the second term becomes non-positive due to the
following. Since Q-BP chooses schedules that maximize the
queue differential weight sum (7), then we have that

~π(t) ∈ argmax~φ∈Co(MP)

∑

(s,k)∈P ∆qs,k(t) · φs,k,

which implies that
∑

(s,k)∈P ∆qs,k(t) · φs,k ≤
∑

(s,k)∈P ∆qs,k(t) · πs,k(t),

for all ~φ ∈ Co(MP ). Therefore, this shows thatV (~q(t)) ≥ ζ1
implies D+

dt+
V (~q(t)) ≤ −ζ2. Then, it immediately follows that

for any ζ > 0, there exists a finite timeT1 > 0 such that for
any fluid limit with ‖~q(0)‖ ≤ 1, we have‖~q(t)‖ ≤ ζ for any
time t ≥ T1. Also, we have

ps,k(t) ≤ ‖~q(t)‖ ≤ ζ, (34)

for all (s, k) ∈ P . Let us chooseT1 large enough, then it
follows from (20), (22) and (34) that

f̂s,k(T1) = fs(T1)− ps,k(T1) > fs(0),

for all (s, k) ∈ P and for any timet ≥ T1. Hence, we have
(30) from Lemma 3, and thus, we have

‖~q(t)‖+ ‖~w‖
(a)

≤ ‖~q(t)‖+
1

mins λs
‖~p(t)‖

(b)

≤

(

1 +
|S|Hmax

mins λs

)

ζ

, ǫ1,

where (a) and (b) are from (30) and (34), respectively. We can
makeǫ1 arbitrarily small by choosing small enoughζ.

Now, consider any fixed sequence of processes
{ 1
x
X (x)(xt), x = 1, 2, · · · } (for simplicity also denoted

by {x}). Hence, for any fixedǫ1 > 0, we can always choose
a large enough integerT > 0 such that for any subsequence
{xn} of {x}, there exists a further (sub)subsequence{xnj

}
such that

limj→∞
1

xnj

‖X (xnj
)(xnj

T )‖ = ‖~q(T )‖+ ‖~w(T )‖ ≤ ǫ1

almost surely. This in turn implies (for small enoughǫ1) that

lim supx→∞
1
x
‖X (x)(xT )‖ ≤ ǫ1 , 1− ǫ < 1 (35)

almost surely. This is because there must exist a sub-
sequence of{x} that converges to the same limit as
lim supx→∞

1
x
‖X (x)(xT )‖.

One can readily show that the sequence
{ 1
x
‖X (x)(xT )‖, x = 1, 2, · · · } is uniformly integrable

using standard techniques by invoking the Dominated
Convergence Theorem and so the details are omitted here.
Then, the almost sure convergence in (35) along with uniform
integrability implies the following convergence in the mean:

lim supx→∞ E[ 1
x
‖X (x)(xT )‖] ≤ 1− ǫ.

Since the above convergence holds for any sequence of
processes{ 1

x
‖X (x)(x·), x = 1, 2, · · · }, the condition of (10)

in Lemma 1 is satisfied. This completes the proof.

IV. D ELAY-BASED BACK-PRESSUREALGORITHM

A. Algorithm Description

In this section, we develop the Delay-based Back-Pressure
(D-BP) policy, and in Section IV-B, we prove that it is through-
put optimal. A similar delay-based approach has appeared
first in [12] for single-hop networks.However, as mentioned
earlier, when packets travel multiple hops before leaving the
system, the analytical approach in [12] (i.e., using HOL delay
in the queue as the metric) cannot capture queueing dynamics
of multihop traffic and the resultant solutions cannot guarantee
the linear relation. We will carefully design link weights using
a new delay metric, and re-establish the linear relation between
queue lengths and delays in the fluid limits for multihop traffic.

Recall thatWs,k(t) denotes the sojourn time of the HOL
packet of queueQs,k(t) in the network, where the time
is measured from the time when the packet arrives in the
network. We define the delay metriĉWs,k(t) as

Ŵs,k(t) ,Ws,k(t)−Ws,k−1(t), (36)

and also definedelay differentialas

∆Ŵs,k(t) , Ŵs,k(t)− Ŵs,k+1(t). (37)

The relations between these delay metrics are illustrated in
Fig. 2. We specify the back-pressure algorithm with the new
delay metric as follows.
Delay-based Back-Pressure (D-BP) algorithm:

~M∗ ∈ argmax ~M∈MP

∑

(s,k)∈P ∆Ŵs,k(t) ·Ms,k. (38)

D-BP computes the weight of(s, k) as the delay differential
∆Ŵs,k(t) and solves the MaxWeight problem, i.e., finds a
set of non-interfering link-flow-pairs that maximizes weight
sum. Ties can be broken arbitrarily if there is more than
one schedule that has the largest weight sum. An intuitive
interpretation of the new delay metriĉWs,k(t) is as follows.
Note that the queue lengthQs,k(t) is roughly the number of
packets arriving at the source node of flows during the time
slots between[Us,k(t), Us,k(t)+Ŵs,k(t)), and from the SLLN,
Qs,k(t) is on the order ofλsŴs,k(t) when Ŵs,k(t) is large.
Hence, a largeŴs,k(t) implies a large queue lengthQs,k(t),
and similarly, a large delay differential∆Ŵs,k(t) implies a
large queue length differential∆Qs,k(t). Therefore, being
favorable to the delay weight sum in (38) is in some sense
“equivalent” to being favorable to the queue length weight
sum in (7) as Q-BP. We later formally establish the linear
relation between the fluid limits of queue lengths and delays
in Section IV-B.

We highlight here that the last packet problem can be solved
by the D-BP scheme using our proposed delay metric. Let us
focus on the source nodes first. Suppose that at the source
node of flows, there are a finite number of packets waiting to
be transmitted and there are no further packet arrivals. From
the definition of (36) and the fact thatWs,0(t) = 0, we have
Ŵs,1(t) = Ws,1(t). If some of the packets are stuck at the
source node, the delay metriĉWs,1(t) keeps increasing with
time. On the other hand,̂Ws,2(t) = Ws,2(t) − Ws,1(t) is
equal to the inter-arrival time between two packets and does
not increase with time, in particular because some packets at
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Flow s

(s,k-1) (s,k) (s,k+1)

W�����(t) W���(t) W�����(t)

Ŵ���(t) = W���(t) - W�����(t)

Ŵ�����(t) = W�����(t) - W���(t)

∆Ŵ���(t) = Ŵ���(t) - Ŵ�����(t)

Fig. 2. Delay differentials using new delay metric.

the source node are not served. Hence, the delay differential
∆Ŵs,1(t) = Ŵs,1(t)− Ŵs,2(t) also increases with time. This
implies that under DBP, the increasing delay will eventually
“push” all the packets that are waiting at the source node to the
second-hop link. After all the packets leave the source node,
we can observe similar procedure at the transmitting node of
the second-hop link: sinceQs,1(t) = 0 andWs,1(t) = 0, we
have Ŵs,2(t) = Ws,2(t). Repeating the same argument, we
can conclude that all the packets will ultimately be “pushed”
to the destination node of flows.

Recall thatUs,k(t) denotes the time when the HOL packet
of Qs,k arrives in the network (or the source node, rather than
the current node). We letU ′

s,k(t) denote the time when the
packet that arrives (in the network or the source node) imme-
diately after the HOL packet ofQs,k arrives in the network.
Let Bs,k(t) , U ′

s,k(t) − Us,k(t) denote the inter-arrival time
between the HOL packet ofQs,k and the packet that arrives
immediately after it. Clearly, D-BP will not schedule link-
flow-pair (s, k) if

Ŵs,k(t)− Ŵs,k+1(t) < 0.

Hence, if link-flow-pair (s, k) is scheduled, it must satisfy
Ŵs,k(t) − Ŵs,k+1(t) ≥ 0. Moreover, the delayŴs,k(t) can
decrease by at mostBs,k(t) within one time slot, and the delay
Ŵs,k+1(t) can increase by at mostBs,k(t) within one time
slot, due to the assumption of unit link capacity (a similar
argument also holds with non-unit link rates). Therefore, if
inequality

Ŵs,k(t) ≥ Ŵs,k+1(t)− 2Bs,k(t) (39)

initially holds for all (s, k) at time slot 0, then the inequality
holds for all time slott ≥ 0. This further leads to

ŵs,k(t) ≥ ŵs,k+1(t), i.e., ∆ŵs,k(t) ≥ 0, (40)

for all (scaled) timet ≥ 0, in the fluid limits, from the

convergence of (18)and that 1
xnj

B
(xnj

)

s,k (xnj
t) → 0, as

xnj
→ ∞ (otherwise we will arrive a contradiction with the

assumption on the arrival process, i.e., it satisfies the Strong
Law of Large Numbers). Recall that we assume that all queues
on each route are empty at time slot 0, except for the first
queue, then (39) and (40) follow.

B. Throughput-Optimality

The following lemma provides the linear relation between
queue lengths and delays in the fluid limits.

Lemma 4:For any fixedts,k > 0, if f̂s,k(ts,k) > fs(0) for
every link-flow-pair(s, k) ∈ P , then we have

qs,k(t) = λsŵs,k(t), (41)

for all t ≥ ts,k, with probability one.
Proof: It follows immediately from Lemma 3.

We emphasize the importance of (41). Lemma 4 implies that
after a finite time (i.e.,max(s,k)∈P ts,k), the queue lengths are
λs times delays in the fluid limit model. Then the schedules
of D-BP are very similar to those of Q-BP, which implies
that D-BP achieves the optimal throughput regionΛ∗. In the
following, we show that the condition of Lemma 4 indeed
holds, i.e.,such a finite time exists.

Lemma 5:Consider a system under the D-BP policy. Then
for ~λ strictly inside Λ∗, there exists a finite timeT > 0
such that the fluid limits satisfy the following property with
probability one,

f̂s,k(T ) > fs(0), (42)

for all link-flow-pairs (s, k) ∈ P .
We can prove Lemma 5 by induction following the tech-

niques described in Lemma 7 of [12]. The formal proof is pro-
vided in Appendix B. We next outline an informal discussion,
which highlights the main idea of the proof. First, we consider
the base case. D-BP chooses one of the feasible schedules in
MP (we omit the term “feasible” in the following, whenever
there is no confusion) at each time slot. Each schedule receives
a fraction of the total time and there must exist a schedule that
receives at least 1

|MP | fraction of the total time. Thus, after

a large enough timeT1 > 0, there must exist a schedule~M∗

that is chosen for at leastT1

|MP | amount of time. The number

of initial packets of ~M∗ is bounded from (20), thus, for a large
enoughT1, all initial “fluid” of at least one link-flow-pair of
~M∗ must be completely served, i.e.,̂fs,k(T1) > fs(0), for at

least one(s, k) with M∗
s,k = 1.

Next, we consider the inductive step. Suppose there exists a
Tl > 0, such that for at least one subsetSl ⊂ P of cardinality
l, we have

f̂s,k(Tl) > fs(0), (43)

for all (s, k) ∈ Sl. Then there existsTl+1 ≥ Tl such that

f̂s,k(Tl+1) > fs(0), (44)

holds for all link-flow-pairs(s, k) within at least one subset
Sl+1 ⊂ P of cardinality l + 1. Since flows travel hop-by-
hop, packets that have been served by one link must have
been served by the link at the previous hop (of the flow that
the packets belong to). Hence, if(s, k) ∈ Sl, we must have
(s, k − 1) ∈ Sl. Repeating the argument, if(s, k) ∈ Sl, we
have(s, i) ∈ Sl for 1 ≤ i ≤ k. Let

S∗
l , {(r, j) | (r, j) /∈ Sl, (r, j − 1) ∈ Sl, for j > 1;

or (r, j) /∈ Sl, for j = 1}
(45)

denote the set of link-flow-pairs(r, j) such that(r, j) ∈ P\Sl

is the closest hop to the source ofr. To avoid unnecessary
complications, we discuss the induction step forl = 1. The
generalization forl > 1 is straightforward. We show that for
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givenS1 andT1, there exists a finite timeT2 ≥ T1 such that
(44) with T2 holds for at least two different link-flow-pairs.

Let (ŝ, k̂) denote the link-flow-pair that satisfies (43) with
T1. Since(ŝ, k̂) ∈ Sl implies (ŝ, i) ∈ Sl for all 1 ≤ i ≤ k̂, we
must havêk = 1 andS1 = {(ŝ, 1)}. From (45), we have that

S∗
1 = {(r, 1) | r ∈ S\{ŝ}} ∪Nŝ, (46)

whereNŝ = {(ŝ, 2)} if H(ŝ) > 1, andNŝ = ∅ if H(ŝ) = 1.
We discuss only the case thatH(ŝ) > 1, and the other case
can be easily shown following the same line of analysis. Now
suppose that

f̂r,j(t) ≤ fr(0), for all (r, j) ∈ P\S1, and all t ≥ 0, (47)

i.e., for all the link-flow-pairs except those ofS1, the total
amount of service up to timet is no greater than the amount
of the initial fluid for all t ≥ 0. We show that this assumption
leads to a contradiction, which completes the induction step.

From the base case and Lemma 4, we haveqŝ,1(t) =
λŝŵŝ,1(t) for all t ≥ T1. We view the subset of link-flow-
pairsS1 as a generalized system, and consider the time slots
when there is at least one packet transmission from the outside
of S1, i.e.,(r, j) ∈ P\S1. For each such time slot, we say that
the time slot isunavailableto S1.

1) The number of such unavailable time slots is bounded
from the above byxnj

, since at every such time slot, at
least one initial packet will be transmitted and the total
number of initial packets is bounded by‖ ~Q(0)‖ ≤ xnj

from (9). Hence, the amount of (scaled) time unavailable
to S1 is bounded by‖~q(0)‖ ≤ 1.

2) Since the amount of (scaled) time unavailable toS1 is
bounded, there exists a sufficiently larget ≥ T1 such
that the fraction of time that is given to(r, j) ∈ P\S1

is negligible, and we must havêwr̂,ĵ(t) = Θ(1)2 and
∆ŵr̂,ĵ(t) = Θ(1) for (r̂, ĵ) ∈ P\(S1 ∪ S∗

1 ).
3) Then, we can restrict our focus on the generalized system

S1 to time t ≥ T1, and ignore the time that is unavailable
to S1. Then Q-BP and D-BP are in some sense “equiv-
alent” in the generalized systemS1 for t ≥ T1 with the
following properties: First, Q-BP will stabilize the system
if the arrival rate vector is strictly insideΛ∗. Second, since
the linear relation (41) holds for all link-flow-pairs inS1

from Lemma 4, D-BP will schedule links similar to Q-BP
and also stabilizes the generalized systemS1.

4) Now let us focus onS∗
1 . Link-flow-pairs in S∗

1 must
have some initial fluid att ≥ T1 becauseS1 ∩ S∗

1 = ∅.
On the other hand, the generalized networkS1 is stable.
This implies that the delay metrics of link-flow-pairs in
S∗
1 should increase on the same order as we increase
t, i.e., ŵr∗,j∗(t) = Θ(t) for (r∗, j∗) ∈ S∗

1 . Then we
have∆ŵr∗,j∗(t) = Θ(t), sinceŵr∗,j∗+1(t) = Θ(1) from
(r∗, j∗ + 1) ∈ P\(S1 ∪ S

∗
1 ) and 2). Since the delay

differentials∆ŵs,k(t) for all (s, k) ∈ S1 and∆ŵr̂,ĵ(t)

for all (r̂, ĵ) ∈ P\(S1 ∪ S∗
1 ) are bounded above from

stability of S1 and 2), respectively, D-BP will choose

2We use the standard order notation:g(n) = o(f(n)) implies
limn→∞(g(n)/f(n)) = 0; and g(n) = Θ(f(n)) implies c1 ≤
limn→∞(g(n)/f(n)) ≤ c2 for some constantsc1 andc2.

link-flow-pairs in the set ofS∗
1 for most of time for a

sufficiently larget. This implies that the amount of time
unavailable toS1 is Θ(t), which contradicts with our
previous statement in 1) that the fraction of time that
is given to(r, j) ∈ P\S1 is negligible.

We provide the detailed proof of Lemma 5 in Appendix B.
We then present throughput-optimality of D-BP in the

following proposition.
Proposition 6: D-BP can support any traffic with arrival

rate vector that is strictly insideΛ∗.
Proof: We show the stability using fluid limits and

standard Lyapunov techniques. From Lemmas 4 and 5, we
obtain the key property for proving throughput-optimalityof
D-BP in Eq. (41), i.e., after a finite time, there is a linear
relation between queue lengths and delays in the fluid limit
model. We start with the following quadratic-form Lyapunov
function,

V (~q(t)) , 1
2

∑

(s,k)∈P
(qs,k(t))

2

λs
. (48)

Following the line of analysis in the proof for Proposition 2,
we can show that for anyζ1 > 0, there existζ2 > 0 and a finite
time T > 0 such thatV (~q(t)) ≥ ζ1 implies D+

dt+
V (~q(t)) ≤

−ζ2 for any regular timet ≥ T , if the underlying scheduler
maximizes

∑

s,k

∆qs,k(t)
λs

·πs,k(t). Then, by applying the linear
relation (41), we can see that D-BP indeed satisfies such a
condition, and obtain the results. We omit the detailed proof
since it mirrors the derivations in Proposition 2.

V. GREEDY ALGORITHMS

It is well known that the schemes (e.g., Q-BP and D-
BP) based on the back-pressure techniques are complex to
implement because they involve computing a MaxWeight
component, which in general is NP-hard [19]. Hence, although
D-BP operates efficiently and achieves the optimal throughput
region, it could be difficult to implement in practice. Therefore,
we are interested in simpler approximations of D-BP that can
achieve a guaranteed fraction of the optimal performance. The
Delay-based Greedy Maximal Scheduling (D-GMS) algorithm
is a good candidate approximation algorithm. A Greedy Maxi-
mal Scheduling (GMS) algorithm [23], [26], [33], [34] (which
is also known as Longest Queue First (LQF)) operates (in
the scenarios with single-hop traffic) as follows: at each time
slot t, starts with an empty schedule; first picks a linkl with
the maximum weight (e.g., queue length or delay); addsl
into the schedule, and disables other links that interfere with
l; next picks a linkl′ with the maximum weight from the
remaining set of links, addsl′ into the schedule, and disables
other links that interfere withl′; and continues this process
until all links are either chosen or disabled. All chosen links
will be scheduled during time slott. Note that any schedule
obtained by GMS is maximal.

GMS has been extensively studied due to its low complexity
[23], distributed implementations [35] (or distributed approx-
imations [36]) and empirically observed good performance
[22]. It was first shown in [33] that GMS is throughput-optimal
in networks where the so-calledlocal pooling condition is
satisfied. The authors of [21], [34] generalize the idea oflocal
pooling to σ-local pooling, whereσ is a topological notion
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Algorithm 1 Greedy Maximal Scheduling (GMS) Algorithm
1: procedure GMS(P , x)
2: M ← ∅
3: P ′ ← P
4: while P ′ 6= ∅ do
5: pick a link-flow-pair(s, k) with maximum weight:
x(s, k) = max(r,j)∈P′ x(r, j)

6: M ←M ∪ {(s, k)}
7: P ′ ← P ′\I(s, k)
8: end while
9: end procedure

depending on the underlying network topology and is called
the local pooling factor. There, the authors show that GMS
can achieve aσ-fraction of the optimal throughput region.
On the other hand, in [37], [38], thelocal poolingcondition
is generalized to the scenarios with multihop traffic, i.e.,
GMS is throughput-optimal in networks where themultihop
local-poolingcondition is satisfied. Next, we will discuss the
performance limits of D-GMS.

To generalize the GMS algorithm to settings with multihop
traffic, we consider link-flow-pairs. We letx(s, k) denote
the weight of link-flow-pair(s, k) ∈ P , and conclude the
procedure of GMS in Algorithm 1. We then describe the
operations of D-GMS and its queue-length-based counterpart
(called Q-GMS) in the following.
Delay-based Greedy Maximal Scheduling (D-GMS) Algo-
rithm: At each time slott, the algorithm sets the weight of
each link-flow-pair to the delay differential, i.e.,

x(s, k)← ∆Ŵs,k(t), for all (s, k) ∈ P , (49)

and finds its schedule in decreasing order of weight conform-
ing to the underlying interference constraints, by applying
Algorithm 1.
Queue-length-based Greedy Maximal Scheduling (Q-
GMS) Algorithm: At each time slott, the algorithm sets the
weight of each link-flow-pair to the queue-length differential,
i.e.,

x(s, k)← ∆Qs,k(t), for all (s, k) ∈ P , (50)

and finds its schedule by applying Algorithm 1.
We characterize the throughput performance of D-GMS in

the following proposition.
Proposition 7: The achievable throughput region of D-

GMS is no smaller than that of Q-GMS.
We omit the proof here, since it follows the similar line

of analysis for D-BP to establish the linear relation between
queue lengths and delays in the fluid limits, and the result can
then be obtained by applying the techniques used in [37], [38].

VI. N UMERICAL RESULTS

In this section, we first highlight thelast packet problem
for the queue-length-based back-pressure algorithm. The last
packet problem implies that flows that lack packet arrivals at
subsequent time may experience excessive delays under Q-BP,
which is later confirmed in the simulations. Then, we compare
throughput and delay performance of Q-BP and D-BP in a grid
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Fig. 3. Illustration of the last packet problem under Q-BP.

network topology under the2-hopinterference model. Finally,
we compare throughput performance of Q-GMS and D-GMS
in a size-6 ring network under the1-hop interference model.

We first show the last packet problem of Q-BP through
simulations. We observe that several last packets of a short
flow (that carry a finite amount of data) may get stuck,
which could cause excessivedelays. We consider a scenario
consisting of 7 nodes and 6 links as shown in Fig. 3(a), where
nodes are represented by circles and links are represented by
dashed lines with their associated link capacities3. We assume
a time-slotted system. We establish three flows: one short
flow (2 → 4 → 6) and two long flows (1 → 2 → 3)
and (5 → 6 → 7). The short flow arrives in the network
with 10 packets at time 0. The long flows have an infinite
amount of data and keep injecting packets at the source
nodes following Poisson distribution with mean rateλ at each
time slot. Numerical calculation shows that the feasible rate
under the 2-hop interference should satisfy thatλ ≤ 4.44.
We conduct our simulation for106 time slots, and plot time
traces of HOL delay of the short flow whenλ = 3. Fig. 3(b)
illustrates the results that the delay increases linearly with time
under Q-BP, which implies that several last packets of the
short flow are excessively delayed. On the other hand, D-BP
succeeds in serving the short flow and keeps the delay close
to 0. This also implies that certain flows whose queue lengths
do not increase due to lack of future arrivals (or whose inter-
arrival times between groups of packets are very large) may
experience a large delay under Q-BP, which will be confirmed

3Unit of link capacity is packets per time slot.
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(a) Grid network topology
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Fig. 4. Performance of scheduling algorithms for multihop traffic following
Poisson distribution.

in the following simulations.
Next, we evaluate the throughput performance of different

schedulers in a grid network that consists of 16 nodes and
24 links as shown in Fig. 4(a), where nodes and links are
represented by circles and dashed lines, respectively, with link
capacity. We establish 9 multihop flows that are representedby
arrows. Letλ1 = 0.1 andλ2 = 1. At each time slot, there is a
file arrival with probabilityp = 0.01 for flow (11→ 10→ 9)
(represented by the red thick arrow in Fig. 4(a)), and the file
size follows Poisson distribution with mean rate4 ρλ1/p. Note
that flow (11→ 10→ 9) has bursty arrivals with a small mean
rate (we simply call it the bursty flow in the following part).
All the other 8 flows have packet arrivals following Poisson
distribution with mean rateρλ2 at each time slot. Although
these flows share the same stochastic property with an identical
mean arrival rateρλ2, uniform patterns of traffic are avoided
by carefully setting the link capacities and placing the flows
with different number of hops in an asymmetric manner.

We evaluate the scheduling performance by measuring
average total queue lengths in the network over time. Fig. 4(b)
illustrates average queue lengths under different offeredloads

4Note that given the network topology, it is hard to find the exact boundary
of the optimal throughput region of scheduling policies in aclosed form.
Hence, we probe the boundary by scaling the amount of traffic.After we
choose~λ, which determines the direction of traffic load vector, we run our
simulations with traffic loadρ~λ changingρ, which scales the traffic loads.

Fig. 5. Delay distribution of the bursty flow underρ = 0.2.
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Fig. 6. Mean delay,the 1st and 5th percentiledelay of the bursty flow
(11 → 10 → 9) over offered loads.

to examine the performance limits of scheduling schemes.
Each result represents an average of 10 simulation runs with
independent stochastic arrivals, where each run lasts for106

time slots. Since the optimal throughput region is defined
as the set of arrival rates under which the queue lengths
remain finite, we can consider the traffic load, under which
the queue length increases rapidly, as the boundary of the
optimal throughput region. Fig. 4(b) shows that D-BP achieves
the same throughput region as Q-BP, thus supporting the
theoretical results on throughput performance.

Although Q-BP and D-BP perform similarly in terms of the
average queue length (or average delay due to Little’s Law)
over the network, the tail of the delay distribution of Q-BP
could be substantially longer because certain flows are starved.
This could cause enormous unfairness between flows, resulting
in very poor QoS for certain flows.

Note that although a bursty flow is a long flow that has
an infinite amount of data, the arrivals occur in a dispersed
manner (i.e., the inter-arrival times between groups of packets
are very large) and we can view this bursty flow as consisting
of many short flows. Thus, we expect that the bursty flow may
experience a very large delay under Q-BP. This is because the
bursty flow lacks subsequent packet arrivals over long periods
of time, which does not allow the queue-lengths to grow,
and thus contributes to the long tail of the delay distribution.
However, this phenomenon may not manifest itself in terms
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Fig. 7. Performance comparison of Q-BP, D-BP, Q-GMS and D-GMS for
multihop traffic under the 1-hop interference model.

of a higher average delay for Q-BP, as can be observed in
Fig. 4(b), because the amount of data corresponding to the
bursty flow in the simulation is small compared to the other
flows. On the other hand, D-BP can achieve better fairness by
scheduling the links based on delays and not starving burstyor
variable flows. We confirm this in the following observations.

Fig. 5 illustrates the effectiveness of using D-BP over Q-
BP in terms of how each scheme affects the delay distribution
of bursty flows. We setρ = 0.2. The results show that the
tail of the delay distribution under D-BP vanishes much faster
than Q-BP. Further, we plot the mean delay,the 1st and 5th
percentiledelay5 of the bursty flow over offered loads in Fig. 6.
All these delays under D-BP are substantially less than under
Q-BP, which implies that D-BP successfully eliminates the
excessive packet delays. This confirms that, Q-BP causes a
substantially long tail for the delay distribution of the network
due to the starvation of the bursty flow, while D-BP overcomes
this and achieves better fairness among the flows by scheduling
the links based on delays.

Finally, we consider a size-6 ring network topology under
the1-hopinterference model as shown in Fig. 7(a), where links
have unit link capacity. We simulate two flows: flow (1→ 2→
3 → 4) and flow (4 → 5 → 6 → 1). It is known [21] that
Q-GMS is not throughput-optimal in this network, as thelocal

5Suppose there areN packets sorted by their delays from the largest to the
smallest,the X-th percentiledelay is defined as the delay of the⌊NX

100
⌋-th

packet. If NX
100

≤ 1, it means the maximum delay. For example, if the delays
are [3, 2, 1, 1, 1], the 40th percentile delay is 2.

poolingcondition is not satisfied (and thus themultihop local
pooling is not satisfied from Lemma 7 of [38]). On the other
hand, although D-GMS is at least as efficient as Q-GMS, it is
not known whether D-GMS can achieve larger throughput in
certain scenarios, e.g., in the network in Fig. 7(a).

To see these, we construct a traffic pattern using the idea in
[34]. We consider packet arrivals in a frame of 12 time slots.
Two flows have the same arrival pattern in each frame. We as-
sume two arrival patterns for each frame. Starting with empty
queues at time slot 0, in each frame, the number of exogenous
packet arrivals at the source of each flow (i.e., nodes 1 and
4) follows patternP1 = {1, 0, 5, 0, 1, 0, 5, 0, 1, 0, 5, 0} with
probabilityǫ, and patternP2 = {1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0}
with probability(1− ǫ), where0 ≤ ǫ ≤ 1. The average arrival
rate vector is then~λ = (1812 ǫ+

4
12 (1− ǫ))e= (13 +

7
6ǫ)e, where

e is a dimension-2 vector with all components equal to 1. It is
easy to check that~λ lies strictly inside the optimal throughput
region when0 ≤ ǫ < 1

7 , while Q-GMS cannot stabilize the
network under such a traffic pattern for allǫ > 0. Because
under Q-GMS, when patternP2 occurs in a frame, all the
packets arriving in this frame can be completely served and
leave the network by the end of this frame, while patternP1

occurs, none of the packets arriving in this frame leaves the
networkby the end of this frame. We evaluate the performance
of different scheduling policies under the above traffic pattern.
For each policy under a fixedǫ, we take the average over 10
independent experiments, with each run being107 time slots.
In Fig. 7(b), we can see that Q-BP and D-BP have finite aver-
age queue length for0 ≤ ǫ < 1

7 = 0.143 and thus achieve the
maximum throughput. On the other hand, the average queue
length increases linearly withǫ under Q-GMS and D-GMS
starting fromǫ = 0 and ǫ = 0.04, respectively. This implies
that neither Q-GMS nor D-GMS is throughput-optimal in this
setting, while D-GMS achieves larger throughput (ǫ < 0.04).
To fully characterize the performance limits of D-GMS is an
interesting yet challenging problem.

VII. C ONCLUSION

In this paper, we developed a throughput-optimal delay-
based back-pressure scheduling scheme for multihop wireless
networkswith fixed routes. We introduced a new delay metric
suitable for multihop traffic and established a linear relation
between queue lengths and delays in the fluid limits, which
plays a key role in the performance analysis and proof of
throughput-optimality. Delay-based schemes provide a simple
way around the well-known last packet problem that plagues
queue-based schedulers, and thus avoid flow starvation. As a
result, the excessively long delays that could be experienced
by certain flows under queue-based scheduling schemes are
eliminated without any loss of throughput.Nonetheless, in
this paper, we have only considered the scheduling problem
with fixed routes, albeit with multihop flows. The question
of whether delay-based schemes under dynamic routing can
achieve throughput-optimality is still very much open.

APPENDIX A
SUMMARY OF NOTATIONS
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Symbol Definition
V set of nodes
E set of links
S set of flows
P set of link-flow-pairs
MP set of feasible schedules
Co(MP ) convex hull ofMP

Λ∗ optimal throughput region
H(s) # of hops on the route of flows
Hmax maxs∈S H(s)
As(t) # of packet arrivals for flows at time slott
λs mean arrival rate for flows
Fs(t) cumulative # of packet arrivals for flows up to time slott
Qs,k(t) queue length ofQs,k at time slott
Πs,k(t) service atQs,k at time t
Ψs,k(t) # of packet departures atQs,k at time slott
Ps,k(t)

∑k
i=1

Qs,i(t)

F̂s,k(t) cumulative # of packets served atQs,k up to time slott
Zs,k,i(t) sojourn time (in the network) of thei-th packet ofQs,k at

time slot t
Ws,k(t) sojourn time (in the network) of the HOL packet ofQs,k

at time slott, i.e.,Zs,k,1(t)
Us,k(t) time when the HOL packet ofQs,k arrives in the network,

i.e., t −Ws,k(t)

Ŵs,k(t) Ws,k(t) −Ws,k−1(t)

∆Ŵs,k(t) Ŵs,k(t) − Ŵs,k+1(t)
∆Qs,k(t) Qs,k(t) −Qs,k+1(t)
Bs,k(t) inter-arrival time (at the system or the source node) be-

tween the HOL packet ofQs,k and the packet that arrives
immediately after it

TABLE I
SUMMARY OF NOTATIONS

APPENDIX B
PROOF OFLEMMA 5

Proof: We show that there exists a finite timeT > 0 such
that the fluid limits satisfyf̂s,k(T ) > fs(0) for all link-flow-
pairs (s, k) ∈ P . We prove this by induction. We show that
there exists a finite timeT with at least one link-flow-pair that
satisfies the condition, and for a given set of link-flow-pairs
satisfying the condition, at least one additional link-flow-pair
will satisfy the condition by increasingT .

We first fix an arbitraryǫ1 > 0 and define a constantK1 ,

maxsH(s) + (
∑

s λsH(s)) ǫ1. In the fluid limit model, we
will have

fs(ǫ1) = fs(0) + λsǫ1 > fs(0), for all s ∈ S.

Since queue lengths are no greater than the injected amount
of data, we have thatps,k(ǫ1) ≤ fs(ǫ1) for all (s, k) ∈ P , and
thus,

∑

(s,k)∈P ps,k(ǫ1) ≤
∑

(s,k)∈P fs(ǫ1)

≤
∑

sH(s) (fs(0) + λsǫ1)

≤ K1,

(51)

where the last inequality is from Eq. (20):
∑

s fs(0) ≤ 1 and
the definition ofK1. Now we show by induction that there
exists a finite timeT such that

f̂s,k(T ) > fs(0), for all link-flow-pairs (s, k).

Base Case:There existsT1 > 0 such that for at least one
link-flow-pair (s, k),

f̂s,k(T1) ≥ fs(ǫ1). (52)

Let T1 , ǫ1 + K1. Suppose that (52) does not hold, i.e.,
there exists at least one packet that arrives before time slot
⌊xnj

ǫ1⌋+1 and is not served by the end of time slot⌊xnj
T1⌋.

Hence, at each time slot between[⌊xnj
ǫ1⌋+1, ⌊xnj

T1⌋], there
exists at least one schedule that has positive summed weight.
Therefore, the schedule determined by D-BP must serve at
least one packet in the original system, otherwise the summed
weight of the schedule (that does not serve any packet) is zero,
which is not the maximum over all the feasible schedules.
Hence, we must have

∑

(s,k)∈P

(

F̂
(xnj

)

s,k (xnj
T1)− F̂

(xnj
)

s,k (xnj
ǫ1)

)

≥ ⌊xnj
T1⌋ − ⌊xnj

ǫ1⌋,

Dividing both sides of the above inequality byxnj
and letting

xnj
→∞, we obtain

∑

(s,k)∈P

(

f̂s,k(T1)− f̂s,k(ǫ1)
)

≥ K1.

Then, from (51), we have
∑

(s,k)∈P f̂s,k(T1) ≥
∑

(s,k)∈P f̂s,k(ǫ1) +
∑

(s,k)∈P ps,k(ǫ1)

=
∑

(s,k)∈P fs(ǫ1).

Therefore,f̂s,k(T1) ≥ fs(ǫ1) for at least one link-flow-pair
(s, k).
Inductive Step: Suppose that there existTl and a subsetSl ⊆
P such that for all(s, k) ∈ Sl, we have

f̂s,k(Tl) ≥ fs(ǫ1). (53)

Then thereexistsTl+1 ≥ Tl, where1 ≤ l <
∑

sH(s), and a
link-flow-pair (s̃, k̃) ∈ P\Sl such that

f̂s̃,k̃(Tl+1) ≥ fs̃(ǫ1). (54)

Further we defineSl+1 = Sl ∪ {(s̃, k̃)}.
We prove the inductive step forl = 1. The generalization

for l > 1 is straightforward. Hence, we show that for given
S1 andT1, there exists a finiteT2 > T1 such that (54) with
T2 holds for at least two different link-flow-pairs.

Let (ŝ, k̂) denote the link-flow-pair that satisfies (53) with
T1. Then, we have6 S1 = {(ŝ, 1)} and can specify the setS∗

1

of link-flow-pairs(s, k) ∈ P\S1 that is closest to the source of
each flow from (46). We illustrate the case thatH(ŝ) > 1, and
the other case thatH(ŝ) = 1 can be easily shown following
the same line of analysis. Now, we have

f̂ŝ,1(t) ≥ fŝ(ǫ1), for all t ≥ T1.

For all the other link-flow-pairs, we observe that
∑

(r,j)∈P\S1

(

fr(ǫ1)− f̂r,j(T1)
)

≤ K1. (55)

Suppose that for allt ≥ T1, we have

f̂r,j(t) < fr(ǫ1), for all (r, j) ∈ P\S1. (56)

In the following part, we provide a choice ofT2 > T1 such
that assumption (56) leads to a contradiction, which completes
the inductive step, and then the lemma follows by induction.

6Note that if(s, k) ∈ Sl, we must have(s, k−1) ∈ Sl. Hence, forl = 1,
we must have the first hop of a flow, i.e.,S1 = (ŝ, 1) for someŝ.
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We view each sample pathX(xnj
)(t) after time slot⌈xnj

T1⌉
as a generalized system with link-flow-pairs inS1 = {(ŝ, 1)}.
We say that a time slot isunavailabletoS1 when a packet from
a link-flow-pair (r, j) ∈ P\S1 is transmitted during the time
slot. LethS1

(t) denote the (scaled) amount of time unavailable
to S1 during the period of(T1, t] in the scaled system, for all
t > T1. For the scaled generalized systemS1, we obtain from
(55) and (56) that

hS1
(t) ≤

∑

(r,j)∈P\S1

(

f̂r,j(t)− f̂r,j(T1)
)

≤ K1, (57)

for all t > T1. Since the time unavailable toS1 is bounded, as
time t increases, only link-flow-pairs inS1 will be scheduled,
which implies that the weight of link-flow-pairs ofP\S1

becomes negligible. This allows us to focus onS1. Owing
to Lemma 4 and the definition ofS1, the linear relation
between queue lengths and delays holds for the link-flow-pair
in S1. Then, it can be easily shown following the same line of
analysis of Proposition 6 that link-flow-pairs inS1 are stable
under D-BP7. Hence, for all(s, k) ∈ S1, we have

qs,k(t) ≤ C1, for all t ≥ T1, (58)

and thus

ŵs,k(t) ≤
C1

λs
, for all t ≥ T1, (59)

for some constantC1, which depends onT1 andK1 and does
not depend on timet.

Recall thatS∗
1 denotes the set of link-flow-pairs that is

closest to the source of each flow out ofS1 defined in (48).
We chooset large enough such that for all(s, k) ∈ S1 and
(r∗, j∗) ∈ S∗

1 ,

C1

λs
−

(

t− ǫ1 −
C1

λs

)

<

(

t− ǫ1 −
C1

λr∗

)

− ǫ1. (60)

From (56), there are packets that arrive at the source node by
time ǫ1 and have not been served atj-th hop by timet for all
(r, j) ∈ P\S1, we obtain that

t− ǫ1 ≤ wr,j(t) ≤ t, for all (r, j) ∈ P\S1. (61)

Since(r∗, j∗), (r∗, j∗+1) ∈ P\S1 for (r∗, j∗) ∈ S∗
1 , we have

ŵr∗,j∗+1(t) = wr∗,j∗+1(t)− w(r∗,j∗)(t) ≤ ǫ1, (62)

for all (r∗, j∗) ∈ S∗
1 . From (59), (61), and that(r∗, j∗ − 1) ∈

S1, we have

ŵr∗,j∗(t) ≥ t− ǫ1 −
C1

λr∗
, (63)

for all (r∗, j∗) ∈ S∗
1 . Then, we have

∆ŵs,k(t) = ŵs,k(t)− ŵs,k+1(t)

(a)

≤ C1/λs − (t− ǫ1 − C1/λs)

(b)
< (t− ǫ1 − C1/λr∗)− ǫ1
(c)

≤ ŵr∗,j∗(t)− ŵr∗,j∗+1(t)

= ∆ŵr∗,j∗(t)

7Note that since Lemmas 4 and 5 hold for the generalized systemS1,
Proposition 6 can be applied toS1.

for all (s, k) ∈ S1 and (r∗, j∗) ∈ S∗
1 , where (a) is from (59)

and (63), (b) is from (60), and (c) is from (63) and (62). Hence,
for large t, we have that

∆ŵs,k(t) < min
(r∗,j∗)∈S∗

1

{∆ŵr∗,j∗(t)}. (64)

Also, from (61), we have that

∆ŵr̂,ĵ(t) ≤ ǫ1, (65)

for all (r̂, ĵ) ∈ P\(S1∪S∗
1 ). Since (65) holds for an arbitrarily

small ǫ1 and from (64), D-BP favors link-flow-pairs ofS∗
1 for

all larget. Note that∆ŵs,k(t) is bounded for(s, k) ∈ S1 from
(59), and∆ŵr̂,ĵ(t) is bounded for(r̂, ĵ) ∈ P\(S1 ∪S∗

1 ) from
(65), and∆ŵr∗,j∗(t) increases linearly on the order oft for
(r∗, j∗) ∈ S∗

1 from (63). Hence, there exists a largeT ′
2 such

that for all t > T ′
2, link-flow-pairs inS∗

1 will be scheduled at
all the time slots between[⌊xnj

T ′
2⌋+ 1, ⌊xnj

t⌋] under D-BP.
Then, we can chooseT2 > T ′

2 and have that

hS1
(T2) ≥ T2 − T

′
2 > K1.

However, this contradictswith (57), which shows that, the
assumption (56) is false, and there exists a largeT2 such that

f̂s̃,k̃(T2) ≥ fs̃(ǫ1), for at least one(s̃, k̃) ∈ P\S1. (66)

In fact, our choice ofT2 depends on the setS1. However,
since there are only a finite number of flows, we can always
choose a large enoughT2 so that (66) holds for some(s̃, k̃) ∈
P\S1.
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