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Abstract— This paper presents a design technique for
feedforward tracking control targeting predictable embedded
platforms. An embedded control implementation experiences
sensor-to-actuator delay which in turn changes the location
of the system zeros. In this work, we show that such delay
changes the number of unstable zeros which influences the
tracking performance. We propose a zero loci analysis with
respect to the delay and identify delay regions which potentially
improve tracking performance. We utilize the analysis results
to improve tracking performance of implementations targeting
modern predictable embedded architectures where the delay
can be precisely regulated. We validate our results by simulation
and hardware-in-the-loop (HIL) implementation considering a
real-life motion system.

I. INTRODUCTION

High precision motion control systems play an important

role in many domains like robotics [1], lithography [2], and

many more [3]. They perform fast and accurate tracking

of a predefined reference signal [1], e.g., motion path.

Feedforward tracking controllers are commonly used to

achieve this high precision [4]. In such control structures, a

feedback component ensures the stability of the closed loop

system, and the feedforward component enables the reference

tracking [5].

The current trend in many domains is to use embedded

platforms to realize a cost and energy effective control

implementation [6]. Such platforms usually run dedicated

applications and are a part of a larger mechanical or elec-

trical system [7]. They usually have limited computation

resources and deal with critical timing constraints [8]. It is

important to analyze these constraints and their implication

on applications. In the context of control applications, the

most important artifacts are sensor-to-actuator delay and

sampling period [9]. In the commercial-of-the-shelf (COTS)

platforms, an embedded implementation often experiences

timing-varying nature of execution which implies time-

varying delay and sampling period [10].

For the control perspective, a possible solution to deal

with the above time-variation is designing a robust controller.

These approaches are either H∞ based [11] or LMI (linear

matrix inequality) based [12] in which a controller is de-

signed to stabilize the system for a given range of sampling

periods and delays. Such robustness comes at the cost of

degraded performance which is often not acceptable in high

precision motion applications. In this paper, we propose
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an alternative approach where we consider a predictable

implementation platform with limited/no time-variation in

execution time. Such platforms offer extensive timer mecha-

nism to extract the precise knowledge of delay and sampling

period at the design time which can be exploited in the

controller design for an improved performance [13].

One of the timing constraints of embedded platforms is

sensor-to-actuator delay. It is a common conclusion in the

literature that a higher amount of delay negatively influences

the control performance [14],[15]. Consequently, the practice

is to reduce the delay for a better performance at a higher

hardware cost (e.g., higher priorities in the scheduling or a

higher processing resource usage [16]). On the contrary, we

observe that a higher delay may potentially improve the con-

trol performance. We show that the sensor-to-actuator delay

influences the systems dynamics and changes the location

of system zeros. In particular, we show that the sensor-to-

actuator delay may change the number of unstable zeros

(zeros which are outside the unit circle in Z-plane) which

in turn influences the feedforward tracking performance.

The performance of model-inversion based feedforward con-

trollers is highly dependent on the number of unstable zeros

of the system [5]. There are different approaches to design

feedforward controllers that try to deal with unstable zeros

in different teachniques, e.g., NPZ-Ignore [17], ZPETC [18]

and ZMETC [19]. Regardless of the approach, a change

in the number of unstable zeros impacts the feedforward

performance significantly. A higher number of unstable zeros

degrades the performance. Therefore, if an increase in the

delay decreases the number of unstable zeros, it improves

the performance of feedforward control. In view of this

observation, we treat sensor-to-actuator delay as a design

parameter in the controller design to find an optimal delay

value with the lowest possible number of unstable zeros.

Our contributions: Our main contributions are the follow-

ing:

• We characterize the impact of sensor-to-actuator delay

on the number of unstable zeros (and hence, the system

performance). We show that the sensor-to-actuator delay

can be used as a design parameter in the feedforward

tracking control.

• Based on the above characterization, we propose a

design method for feedforward tracking controllers tar-

geting predictable embedded platforms for an improved

performance.

• We validate our design method considering a predictable

embedded platform with an hardware-in-the-loop (HIL)

implementation.
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Fig. 1. Timing diagram of an embedded control system

II. EMBEDDED CONTROL WITH DELAY

This section illustrates impact of the sensor-to-actuator de-

lay on control systems implemented on a embedded platform.

We use a motivating case study for illustration.

A. Sensor-to-actuator delay

Let us consider a controllable linear time-invariant (LTI)

continuous system. The state-space of the system is given

by,

Ẋ(t) = AX(t) +BU(t),

Y (t) = CX(t),
(1)

where X(t) ∈ Rn are the states of the system, U(t) is

the input, Y (t) is the output of the system. A control loop

is implemented by sequentially and periodically performing

three main operations – sensing, computation and actuation.

In the sensing operation, the states of the system are read by

the sensor at the time instances tk which are defined as:

x[k] := X(tk), k ∈ N≥1 (2)

In the computation operation, the controller calculates the

next control value u[k]. In the actuation operation, the

actuator updates the control value u[k] of the system. The

time between two sensing operations is called sampling

period h.

As illustrated in Fig. 1, execution of the three operations

requires finite time on an embedded platform. We denote

execution times of the sensing, computation and actuation

operations by Ts, Tc and Ta respectively. To is the sum-

mation of communication overheads of sensor-to-controller

and controller-to-actuator. The time from the start of the

sensing operation to the end of the actuation operation is

called sensor-to-actuator delay Dc which is given by,

Dc = Ts + Tc + Ta + To. (3)

We focus on the case where delay Dc is shorter than

sampling period h,

0 ≤ Dc < h. (4)

B. Delay modeling

Considering h and Dc, the discrete-time equivalent of

system (1) is [14],

x[k + 1] = φx[k] + Γ0u[k] + Γ1u[k − 1],

y[k] = Cx[k],
(5)

where φ = eAh, and

Γ0 =

∫ h−Dc

0

eAsBds,

Γ1 =

∫ h

h−Dc

eAsBds.

To rewrite the equations in the standard state-space repre-

sentation, we augment the state with the delayed actuation

by defining ξ[k] =
[

xT [k], uT [k − 1]
]T

. With this new

augmented states we have [20],

ξ[k + 1] = φaugξ[k] + Γaugu[k],

y[k] = Caugξ[k],
(6)

where

φaug =

[

eAh Γ1

0 0

]

, Γaug =

[

Γ0

I

]

, Caug = [C 0]

From the definition of Γ0 and Γ1 it is easy to note that both

φaug and Γaug are dependent on Dc.

C. Zeros of delayed system

We find the system zero polynomial by transforming the

state space model to transfer function representation [21].

The transfer function of the discrete-time augmented state-

space (6) is given by,

G(z) =
∆(z)

P (z)
= Caug(zIn − φaug)

−1
Γaug, (7)

where G(z) is the transfer function, ∆(z) is the zero poly-

nomial and P (z) is the characteristic (or pole) polynomial.

From the definition of matrix inverse we have:

(zIn − φaug)
−1 =

adj(zIn − φaug)

det(zIn − φaug)
,

where adj(.) is the adjugate of the matrix and det(.) is its

determinant. det(.) is the characteristic polynomial P (z).
Therefore from (7), the zero polynomial is

∆(z) = Caugadj(zIn − φaug)Γaug. (8)

System discrete-time zeros are the roots of ∆(z) = 0. Since

φaug and Γaug are functions of Dc, we compute discrete-

time system zeros by solving ∆(z) = 0 for various delay

values.



D. Motivating case study: PATO system

In our work, we used a physical system called PATO as

a motivating case study [22]. This system has a fourth-order

state-space. The states of the system are the position of the

two masses θ1 and θ2 and their respective rotary speeds of

ω1 and ω2. The controller input u(t) is the current im of the

motor speed controller. The output of the system y(t) is the

position of the first mass θ1. Here, the control task is to make

θ1 follow a desired reference r(t). The identified state-space

of the system is adopted from experiments reported in [23]

and is as follows:

Ẋ(t) =

[

0 0 1 0
0 0 0 1

−7.08×104 7.08×104 −1.1×106 1.1×106

7.08×104 −7.08×104 1.1×106 −1.1×106

]

X(t)

+

[

0
0

1.173×104

1

]

im

y(t) =
[

1 0 0 0
]

X(t)
(9)

E. The Impact of the delay on system zeros

We illustrate the impact of delay on the system zeros with

the example of system (9). We consider sampling period h =
8ms and varied delay in the range 0 ≤ Dc < h. For each

delay choice, we first obtain discrete-time augmented system

(6) and next, we obtain the zero polynomial (8) for the given

h and Dc.

Fig. 2 shows the number of unstable zeros for each value

of Dc. It shows that the system has different numbers of

unstable zeros for different delays. In particular, there are

four delay regions with different number of unstable zeros.

• For 0 ≤ Dc < 0.1ms , the system has no unstable

zeros. For example, for Dc = 0.05ms the zero polyno-

mial (8) of the system is:

∆(z) = z4 + 1.7z3 + 1.71z2 + 0.93z + 7× 10−4,

from which we obtain the zeros of the system as:

z1 ≈ 0, z2 = −0.9391,

z3 = −0.3843 + 0.9186i, z4 = −0.3843− 0.9186i,

where all of them are inside the unit circle and hence

stable.

• For 0.1ms ≤ Dc < 1.1ms , the number of unstable

zeros increases to 2. For example, for Dc = 1ms the

zeros of the system are:

z1 = −0.0189, z2 = −0.9834

z3 = −0.4539 + 1i, z4 = −0.4539− 1i

where z3 and z4 are unstable.

• For 1.1ms ≤ Dc < 3.8ms , the number of unstable

zeros increases to 3.

• For 3.8ms ≤ Dc < 8ms , the number of unstable

zeros goes down to 1. For Dc = 5ms the zeros of the

system are:

z1 = −5.6, z2 = −0.6875
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Fig. 2. Number of unstable zeros of PATO system for h = 8ms and
Dc ∈ [0, h)
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Fig. 3. Zero locus of system (9) for h = 8ms and Dc ∈ [0, h)

z3 = −0.4573 + 0.6i, z4 = −0.4573− 0.6i

where z1 is the only unstable zero of the system.

Therefore, the number of unstable zeros of system (9)

may change with the value of sensor-to-actuator delay. This

further motivates us to investigate how the location of system

zeros changes with sensor-to-actuator delay Dc.

III. ZERO LOCI ANALYSIS

In this section, we obtain zero loci by computing system

zeros from zero polynomial (as described in Subsection II-E)

and their transition for 0 ≤ Dc < h for a given h. Next, we

provide a number of observations about the zero loci as well

as its behavior for first order and second order systems.

Fig. 3 and Fig. 4 show the zero loci for the system (9)

with h = 8ms and h = 10ms respectively. A zero starts

from the circle point for Dc = 0 and moves toward the star

point for Dc = h−ǫ where ǫ is an infinitesimal quantity. The

arrows shows the direction of transition of a zero location.

The dotted line represents the unit circle.

• For h = 8ms, the analysis is the same as what is

described in Section II-E. System starts with 4 stable

zeros for Dc = 0 but two of them (red and blue

lines) immediately go out of the unit circle and be-

come unstable for a small amount of delay (0.1ms ≤
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Fig. 4. Zero locus of system (9) for h = 10ms and Dc ∈ [0, h)

Dc < 1.1ms). By increasing the delay another zero

(yellow line) also becomes unstable. For a higher delay

(3.8ms ≤ Dc < 8ms), two of unstable zeros (red and

blue lines) come back to unit circle and become stable.

• For h = 10ms, the system starts with 4 stable zeros for

Dc = 0 but two of them (red and blue lines) go out of

the unit circle and become unstable for a small delay

(0 ≤ Dc < 0.3ms). The number of unstable zeros does

not change for 0.3ms ≤ Dc < 9ms. For delays close

to the sampling period (9.0ms ≤ Dc < 10ms), one

of the unstable zeros (red line) comes back to the unit

circle and becomes stable.

It can be noted, in the above examples, there is a zero

at the origin for Dc = 0 which grows with the increase

in delay. The existence of this zero can be proven by the

following lemma.

Lemma 3.1. For any controllable LTI system (1), the

delayed model of (6) has a zero at the origin of z-plane for

Dc =0.

Proof. Since Dc = 0, from (5) we observe that Γ1 is equal

to zero. This makes φaug to be a block diagonal matrix:

φaug =

[

eAh 0
0 0

]

Since φaug is block diagonal, its eigenvalues are the list of

eigenvalues of each block which are eAh and 0. Since the

eigenvalues of φaug are the poles of discrete-time transfer

function (7), the system has a pole at the origin and poles

at eigenvalues of eAh. For Dc = 0 the transfer function

should be identical to the dynamic system without delay and

therefore the pole at the origin should be canceled. This

implies that there should be a zero at the origin to cancel

the existing pole there. Therefore, there is always a zero at

the origin for Dc = 0. �

In summary:

• Zero loci show that the location of system unstable zeros

may change with sensor-to-actuator delay.

• The behavior of zero loci with delay is dependent on

sampling period.

• At Dc = 0, the system has a zero at the origin of z-

plane and it grows with the delay. Whether this zero

passes the unit circle and becomes unstable depends on

system dynamics.

We further characterize the zero loci for some specific

classes of dynamic systems – first order and second order

systems.

A. First order systems

We consider a strictly proper first order system. The

system has one state and the state vector X in (1) is a scalar.

The continuous state-space of the system is:

ẋ(t) = ax(t) + bu(t),

y(t) = cx(t), (10)

where a, b and c are scalars. The augmented state-space

based on (6) is given by:

ξ[k + 1] =

[

eah Γ1

0 0

]

ξ[k] +

[

Γ0

I

]

u[k],

y[k] =
[

c 0
]

ξ[k]. (11)

Using (8), the zero polynomial for the system (11) is given

by,

∆(z) = cΓ0z + cΓ1. (12)

Solving ∆(z) = 0, we obtain the system zero at z = −Γ1

Γ0

.

Based on the definition of Γ0 and Γ1, the following can be

observed:

• Γ0 =
∫ h−Dc

0
easbds = b

a
(eah−aDc − 1) monotonically

decreases with the increase in Dc.

• Γ1 =
∫ h

h−Dc

easbds = b
a
(eah−eah−aDc) monotonically

increases with the increase in Dc.

• |z| =
∣

∣

∣
−Γ1

Γ0

∣

∣

∣
monotonically increases with the increase

in Dc.

• The system zero will start at the origin of z-plane for

Dc = 0 and will grow with increase of delay. For

a value of Dc (near half of sampling period) it goes

outside the unit circle and becomes unstable when the

sampling period h is sufficiently small.

B. Second order systems

The general form of a second order system in continuous-

time is given by:

G(s) =
b1s+ b2

s2 + a1s+ a2
. (13)

where b1, b2, a1 and a2 are the system parameters. The

controllable canonical form equivalent of (13) is:

Ẋ(t) =

[

0 1
−a2 −a1

]

X(t) +

[

0
1

]

u[t],

y(t) =
[

b2 b1
]

X(t). (14)

The augmented discrete-time equivalent of (14) is:



ξ[k + 1] =

[

eAh Γ1

0 0

]

ξ[k] + Γ0u[k],

y[k] =
[

b2 b1
]

ξ[k]. (15)

Using the Taylor series expansion, we have:

eAh = I +Ah+A2h2. (16)

Here, we omitted the higher order elements of the series,

since they are negligible with sufficiently small sampling

periods. Using (16), Γ0 and Γ1 are given by:

Γ0 =

∫ h−Dc

0

eAsBds = [
1

2
A(h−Dc)

2 + h−Dc]B,

Γ1 =

∫ h

h−Dc

eAsBds = [
1

2
A(2h−Dc) + 1]DcB, (17)

Using (16) and (17) in (15), we obtain the zero polynomial

from (8). Next, we analyze two cases:

Case 1 with b1 = 0: The system has no internal zero. From

the zero polynomial in (8) and omitting the negligible parts,

we have:

∆0(z) = (h−Dc)
2z2 + [(h+Dc)

2 − 3Dc
2]z+Dc

2. (18)

We observe the following:

• System has two zeros and their locations depend on Dc

and h.

• With Dc = 0, we have:

∆0(z) = h2z2 + h2z,

which means the system has one zero on the unit circle

and one zero at the origin.

• The zero on the unit circle moves outside (becomes

unstable) with the increase in the delay. The zero at the

origin moves from the origin towards the unit circle.

• With Dc = h− ǫ we have:

∆0(z) = ǫz2 + h2z + h2,

where ǫ is an infinitesimal quantity. It means the stable

zero reaches close to unit circle but does not pass it and

get unstable.

Fig. 5 shows the zero locus of an example second order

system. The number of unstable zeros is one for Dc ∈ [0, h).

Case 2 with b1 6= 0: The system has one internal zero. From

the zero polynomial in (8) and omitting the negligible parts,

we have:

∆1(z) =∆0(z) + b1[(h−Dc −
1

2
a1(h−Dc)

2)z2+

[(h+Dc)2 − 3Dc
2]z +Dc

2,
(19)

which means that the zero polynomial ∆1(z) constitutes of

∆0(z) (the zero polynomial in Case 1) and more elements

with b1. We observe the following:

• System has two zeros and their locations depend on

delay Dc, sampling period h, and system dynamics.
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Fig. 5. Zero locus of a second degree system with a1 = a2 = b2 = 1,
b1 = 0, h = 10ms and Dc ∈ [0, h).
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Fig. 6. Zero loci of a second degree system with a1 = a2 = b2 = 1,
b1 = 1, h = 10ms and Dc ∈ [0, h).

• With Dc = 0, we have:

∆1(z) = (h2 + b1h−
b1a1
2

)z2 + (h2 − 2b1h
2)z,

which implies that the system has a zero at the origin

and one zero at the discrete-time equivalent of internal

zero.

• The zero at the origin grows with the increase in delay.

For a value of Dc (dependent on system dynamics), it

goes outside the unit circle and becomes unstable.

• The other zero which is at the discrete-time equivalent

of internal zero is not affected by the delay and stays

at the same point for all delay values.

Clearly, the number of unstable zeros changes depending

on Dc. The number of unstable zeros will be either 0 or

1. Fig. 6 shows the zero locus of an example second order

system.

In this section we showed that the zero placement and the

number of unstable zeros can change by varying the sensor-

to-actuator delay. This means that if the amount of delay

be known and adjustable it could be treated as a control
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Fig. 7. Predictable embedded platform under consideration

parameter to change the location of the system zeros. Such

precise regulation of delay is possible to be implemented on

predictable embedded execution platforms explained in the

next section.

IV. EMBEDDED PLATFORM PROPERTIES

For an embedded control implementation, we consider

a tile-based architecture that offers con?guration with

multi-processors (processor tiles), interconnections through

a Network-on-Chip (NoC), and memories (memory tiles)

within the same platform. An example architecture is shown

in Fig. 7. Each processor tile is mainly composed of a

MicroBlaze soft-core processor. The monitor tile is for

debugging purposes. The memory tile contains the external

memory interface and controller, and the NoC provides

interconnection between the tiles. To enable independent

implementation, verification and execution of multiple ap-

plications, the platform offers composability by virtualizing

all processors, interconnections, and memory resources [8].

First, we illustrate the platform properties and scheduling.

We then define sampling period and other timing properties

based on the platform scheduling. Finally, we define the

sensor-to-actuator as a design parameter.

A. Application scheduling

The platform uses CoMik (Composable and Predictable

Micro-kernel) to create virtual processors (VPs) that can be

used as dedicated resources [8]. Each VP’s utilization of

the underlying physical processors and their interconnections

(i.e., NoC communication) are allocated in a time-division

multiplexing (TDM) manner. Using perfectly periodic TDM

policies both in the processors and their interconnections,

the platform achieves global synchronization with a very fine

(i.e., cycle accurate) time granularity.

To achieve cycle-accurate temporal behavior, we split the

TDM frame into N CoMik slots of length ω clock cycles

and N partition slots (or VPs) of length ψ clock cycles.

The CoMik slots enable jitter-free context switching between

VPs, and the applications only execute on the VPs. An

application is executed in an allocated partition slot (or

VP) and is paused every time a new CoMik slot starts. Its

execution is only resumed in the next partition slot assigned

for the same application. The TDM frame is defined at design

time with desired execution order of the VPs. The TDM

period is N × (ω + ψ) clock cycles. In Fig. 8, we show a

. . .

ω 

TDM period= h = 4(ψ+ω)

          

ψ 

S A

Ts Tc Ta
τ

Dc

SC

Fig. 8. TDM frame with N = 4 and three tasks of S:sensing,
C:computation, A:actuation with execution times of Ts, Tc, and Ta

respectively. The black boxes are CoMik slots while white blocks are
partition slots. τ is the added delay to execution of actuation in its dedicated
slot. Sensing and computation tasks always start execution at the beginning
of their allocated slot.

TDM table with 4 partition slots that run sequentially and

periodically.

B. Control application scheduling and sampling period

We are interested in scheduling of the control application.

As described in Section II, a control application consists

sensing, computation and actuation operations. Each opera-

tion is implemented as a task. We schedule these tasks in the

partition slots in TDM table. To make sure that the execution

of each task fits in its respective partition slot, ψ is chosen

as follows:

ψ ≥Max{Ts, Tc, Ta}, (20)

where Ts, Tc, and Ta are execution times of sensing, com-

putation and actuation tasks respectively1. The calculated

Ts, Tc, and Ta on the platform are about 1000, 2000 and

1000 clock cycles respectively. ω is chosen to be as short

as possible. In the current implementation for the control

application, it is set to 4096 clock cycles.

C. Sampling period

Sampling period is defined as the time period between two

consecutive sensing tasks. With sensing task scheduled once

in the TDM table, sampling period is given by:

h =
N × (ω + ψ)

Fp

, (21)

where Fp is the frequency of the platform which is 100Mhz.

Fig. 8 illustrate an example of TDM table in which the

sampling period is equal to 4×(ω+ψ)/Fp. For this example

by choosing ψ = 245904 clock cycles, the sampling period

based on this TDM table is 10ms.

D. Sensor-to-actuator delay as a parameter

The sensor to actuator delay is computed as (3). The

minimum of Dc in our platform is achieved when control

tasks scheduled in consecutive slots and their execution start

1Although the execution of control tasks are not fixed, they are always
very close to their worst case execution time (with an error in order of clock
cycles), by the virtue of the platform predictability.



at the beginning of their allocated partition slots. In this case

the minimum possible value for overhead would be:

To,min = (ψ − Ts) + (ψ − Tc) + 2ω. (22)

Using (22) in (3), the minimum Dc is given by:

Dc,min = 2(ψ + ω) + Ta. (23)

Considering a TDM table with 4 slots, h = 10ms, ψ, ω,

and Ta are about 0.04ms, 2.46ms, 0.01ms respectively.

Therefore, Dc,min is 5.01ms. As described in Section III,

the optimal delay (denoted as as D∗
c ) is defined as the delay

which results in the minimum number of unstable zeros and

is implementable on the platform. Since Dc < Dc,min is

not implementable in the platform, D∗
c ≥ Dc,min. With

D∗
c > Dc,min, Dc can be increased either by adding partition

slots between control tasks or by adding a delay in execution

of actuation in its partition slot2. In this case Dc can be

defined as:

Dc = Dc,min +m(ψ + ω) + τ, (24)

where m is the number of added slots and τ is the added

delay to the execution of actuation. Fig. 8 is an example

where m = 1 with an added delay τ . Therefore, by choosing

the right m and τ , the delay can be adjusted to Dc = D∗
c .

Thus, this mechanism allows us to use the senor-to-actuator

as a design parameter.

V. DELAY-BASED FEEDFORWARD DESIGN

In this section, we present the proposed delay-based em-

bedded feedforward tracking controller. We use the example

of system described in Section II-D.

A. Controller architecture

The designed controller is a feedback-feedforward con-

troller. The feedback part stabilizes the system and the

feedforward part is a closed-loop model-inversion to achieve

accurate reference tracking. The feedback part is a state-

feedback with all desired poles set to 0.9 (it can be done

using any other state-of-the-art design technique). Calling the

feedback part as C(z) and plant transfer function as G(z),
The closed-loop transfer function is:

GCL =
C(z)G(z)

1 + C(z)G(z)
.

To design the feedforward part FCL, we set FCL equals (or

approximately equals) to G−1
CL. Ideally, FCL is equal to G−1

CL

which makes the transfer function between reference and

output y equals to 1. If the closed-loop system has unstable

zeros direct inversion is not possible and it yields to unstable

inversion in FCL. In this case an stable approximation inverse

is used. Here, we use Zero-Phase-Error Tracking controller

(ZPETC) stable approximation [18]. To design ZPETC, we

first rewrite GCL as:

GCL =
∆(z)

P (z)
=

∆s(z)∆u(z)

P (z)
, (25)

2The execution of sensing and computation always starts at the beginning
of their respective slots.

where ∆s(z) is the stable zero polynomial and ∆s(z) is the

unstable zero polynomial. Now, the ZPETC controller is:

FCL = G̃−1
CL(z) =

P (z)

∆s(z)∆∗
u(z)

, (26)

where G̃−1
CL(z) means approximate inverse of the closed

loop. ∆∗
u(z) which is a zero-phase approximation of the

unstable zeros is defined as:

∆∗
u(z) =

(∆u(z)|z=1)
2
zn

∆f
u(z)

=
(∆u(1))

2
zn

∆f
u(z)

, (27)

where ∆f
u(z) is defined based on ∆u(z). It means that if:

∆u(z) = bunz
n + bu(n−1)z

n−1 + ...+ bu0,

then

∆f
u(z) = bu0z

n + bu1z
n−1 + ...+ bun.

∆f
u(z) is at the same degree of ∆u(z) with its flipped

coefficients.

B. Implementation

To design the controller, we first choose the sampling

period h = 10ms. As described in previous section, the

minimum delay Dc,min on the platform for this h = 10ms
is 5.01ms. The first step is to choose the optimal delay

D∗
c which gives the minimum number of unstable zeros

and is implementable on our platform. As described in

Section III, for h = 10ms, Dc < 0.3ms region does not

have any unstable zero. However, Dc < Dc,min = 5.01
is not implementable on the platform. On the other hand,

Dc = Dc,min results in two unstable zero while the system

have only one unstable zero in the region 9ms ≤ Dc <
10ms. Therefore, we choose the optimal delay which is also

achievable in the platform as D∗
c = 9.5ms. To achieve this

delay, TDM frame is configured as Fig. 8, and we set m = 1
and τ = 4.59ms.

C. Results

Validation of the design is done through an HIL (hardware-

in-the-loop) implemnentation. Considering the platform in

Fig. 7, we implemented the discrete-time model of the

system (9) with sampling period of 100µs on processor

tile 1 and the designed controller on processor tile 2. The

performance metric is defined as P−1 where:

P =

N
∑

k=1

(r[k]− y[k])2

The reference signal is:

r(t) = sin(4πt) + sin(8πt)

Fig. 9 and Fig. 10 illustrate the results of MATLAB and HIL

simulations for Dc = Dc,min = 5.01ms and Dc = 9.6ms
respectively. Table. I presents the performance results. HIL

implementation provides results very close to the simulation

which validates the proposed method. Although for the

design with Dc = 9.6ms gives a higher transient error, it

achieves a better performance in the steady-state compared
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Fig. 9. output response and Error for Dc = 5.01ms
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Fig. 10. output response and Error for Dc = 9.6ms

TABLE I

PERFORMANCE MEASUREMENT WITH DIFFERENT DELAYS

Delay(ms) P−1(MATLAB) P−1(HIL)

5.01 0.027 0.026

9.6 0.040 0.032

to the design with Dc = 5.01. This is because the system

has one less unstable zero with Dc = 9.6ms.
Discussion: We demonstrated that sensor-to-actuator delay

could be treated as a design parameter. In some design

scenarios, an extra delay improves the performance of the

controller when the number of unstable zeros decreases.

More importantly, a higher delay tolerance in the control loop

relaxes the requirement on the embedded platform reducing

the implementation cost at the end. In embedded imple-

mentations, it is common to share platform among multiple

applications. Such relaxed timing requirement implies more

processing resource for other applications (e.g. the third

partition slot in Fig. 8 can be assigned other applications).

VI. CONCLUSION

In this paper, we proposed a delay-based embedded feed-

forward tracking controller with improved tracking perfor-

mance. We demonstrated that a higher sensor-to-actuator

delay does not necessarily implies a lower control per-

formance. We have shown that increasing delay may de-

crease the number of unstable zeros. This in turn improves

the performance for controllers using the model-inversion

feedforward component. Hence, we used sensor-to-actuator

delay as a design parameter. Considering a platform with

predictable timing behavior, we validated our approach by

HIL simulations. A possible extension of our work can be a

general design flow with delay as a design parameter.
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