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Delay-Bounded Packet Scheduling of Bursty Traffic
Over Wireless Channels

Dinesh Rajan, Member, IEEE, Ashutosh Sabharwal, Member, IEEE, and Behnaam Aazhang, Fellow, IEEE

Abstract—In this paper, we study minimal power transmission
of bursty sources over wireless channels with constraints on mean
queuing delay. The power minimizing schedulers adapt power
and rate of transmission based on the queue and channel state.
We show that packet scheduling based on queue state can be
used to trade queuing delay with transmission power, even on
additive white Gaussian noise (AWGN) channels. Our extensive
simulations show that small increases in average delay can lead
to substantial savings in transmission power, thereby providing
another avenue for mobile devices to save on battery power.
We propose a low-complexity scheduler that has near-optimal
performance. We also construct a variable-rate quadrature ampli-
tude modulation (QAM)-based transmission scheme to show the
benefits of the proposed formulation in a practical communication
system. Power optimal schedulers with absolute packet delay
constraints are also studied and their performance is evaluated
via simulations.

Index Terms—Packet scheduling, power control, queuing delay,
traffic regulation, wireless channels.

I. INTRODUCTION

T
HE current and future wireless systems will support a mul-

titude of services with a wide range of delay, rate, and re-

liability requirements. The task of delivering wide variety of

services is complicated by the hostile time-varying nature of

wireless channels. The limited battery resources at the mobile

devices add yet another dimension in the challenge of reliable

content delivery. Thus, it is imperative that methods for wire-

less transmission should be designed to achieve target delay and

throughput with minimal power consumption. Recognizing that

transmission power is one of the major battery consumers1 in

a mobile device, in this paper, we study the tradeoff between

transmission power and communication delay in wireless chan-

nels.

Delaying communication based on channel conditions

to save transmission power is commonly used in wireless

systems. The transmission scheme which maximizes long-term
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1In a typical time-division multiple-access (TDMA) phone, approximately
60% of the battery consumption can be attributed to transmission RF amplifier.

throughput transmits more power and information in good

channel states, and less in poor conditions [1]. Thus, it delays

some parts of input traffic to wait for good channel states,

buying more utility for the available power resources to achieve

the maximal long-term throughput. The information-theoretic

concept of power and rate control is reflected in the INFOS-

TATION [2] based architecture, where mobile nodes transmit

data only when they are close to base stations. By waiting

for extremely good conditions, more or less guaranteed by

the proximity to base stations, mobile devices ensure that

transmission power is most efficiently used. But the wait to

reach close to base stations (often sparsely placed) can result in

large transmission delays.

In this paper, we address the problem of scheduling trans-

mission of packet data over a time-slotted single-user wireless

link. We incorporate queuing delay2 as one of our main design

constraint. With a bound on mean queuing delay, our objective

is to minimize the average transmission power. The inclusion

of explicit delay constraint is motivated by the need to sup-

port applications with different delay sensitivities. The solution

to the proposed formulation leads to methods which perform

power and rate control, even in additive white Gaussian noise

(AWGN) channels if the traffic is bursty. Note that, much like

[1], rate and power adaptation is done based on the Gaussian

channel coding theorem [3]; the relation between instantaneous

rate and power is

The following example clarifies how the convex relation be-

tween power and rate leads to reduced power requirements as

the delay increases.

Consider the transmission of an On–Off source over an

AWGN channel with noise variance . The On–Off

source produces packets at a constant rate packets per time

slot, in the On state and no packets in the Off state. Let the

source arrivals be independent and identically distributed (i.i.d.)

across time. First, consider a scheme in which all packets in

the system are transmitted as soon as they arrive, the average

power required to guarantee error-free reception equals

2There are many components that affect the total transmission delay. In
this paper, we only consider queuing delays. The delay due to encoding,
propagation, and decoding are assumed to be small and nearly constant,
and hence neglected.
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(assuming that packets require transmission at bits per

second per hertz (bits/s/Hz)). Now, consider an alternate trans-

mission scheme which schedules packets as follows. When

there are or more packets available, of those packets are

transmitted (assuming is an even integer) and the remaining

packets are buffered for future transmission. If the queue has

less than packets, all packets are buffered. In the second

transmission scheme, the average power required to guarantee

error-free reception is , which is lower than due

to convexity of exponential function . The power savings

in the second scheme can be attributed to increased packet

delay in the system. The above simple example illustrates the

average power savings due to power and rate control combined

with queuing-based communication delay. In the sequel, we

formalize the joint power and rate control schemes, which

we generically label as schedulers, and derive minimal power

methods with delay bounds.

The power gain from additional communication delay was in-

dependently recognized in [4], and lazy packet scheduling was

proposed to reduce average power consumption. Though related

in essence, our formulation differs considerably from the work

in [4]. In [4], optimal off-line and near-optimal online sched-

ulers were proposed using both finite and infinite horizon opti-

mization. An indirect bound on packet delay was imposed by

requiring the schedulers transmit all packets arriving in time

interval to depart no later than . Thus, the scheduler

flushes the queue every seconds. The emphasis in [4] was

to demonstrate that additional delay can help save power, hence

no specific constraints on target delay were imposed. Sched-

ulers satisfying explicitly imposed packet delay bounds were

derived in [5], where the authors found minimal power transmis-

sion schemes for a two-state Gilbert–Elliot channels. Though

the work in [5] is closest to our formulation, the authors used

a more optimistic relation between power and rate—the power

was assumed to depend linearly on the rate. As will become ev-

ident from the subsequent development in this paper, the gain

due to additional delay in [5] is only due to channel time vari-

ation, and not the source burstiness. In [6], the authors pro-

pose dynamic power control policies in time-varying channels

under energy and three different delay constraints; the optimal

policies are based on thresholding received signal strength and

residual battery energy. Again, the work in [6] notes the impact

of increasing delay on energy efficiency but it differs consid-

erably from our formulation of the delay-constrained transmis-

sion. Power savings in fading channels with additional delay has

also been investigated in [7], [8].

The main contributions in this paper are as follows.

• For AWGN channels, we completely characterize the

achievable delay–power region for the set of randomized

stationary schedulers which make their transmission

decisions based on queue state. A randomized scheduler

can take one of several possible actions for a given system

state with finite probability, and generalizes determin-

istic schedulers which take the same action for a given

system state. As the first important result, we show that

for delay–power characterization, deterministic sched-

ulers form a basis of the set of randomized schedulers.

Throughout this paper, the analysis is performed for finite

buffer size systems with no permissible buffer overflow.

As another application of the proposed formulation, we

derive optimal delay-bounded schedulers for transmission

of constant-rate traffic over finite-state fading channels.

Depending on the delay constraint, the scheduling deci-

sions exhibit a mix of time water-filling [1] and outage-

minimizing power control [9]. If the delay bound is small,

the scheduler transmits packets in poor channel conditions

like the outage power control while the scheduler uses

only good channel states for large delays.

• The optimal power-minimizing scheduler requires a

dynamic programming based optimization, which is

computationally cumbersome for large systems (sources

with large bursts or systems with large buffer sizes).

Based on the empirically observed properties of the

optimal schedulers, we propose a single-parameter

scheduler, labeled log-linear scheduler, with near-optimal

performance. The empirically observed near-optimal

performance of the log-linear scheduler is used to derive

an approximate relation between mean queuing delay

and average transmit power. The approximate relation is

found to accurately predict the performance of optimal

schedulers for moderate to high delays.

• We show that similar results can be obtained if the mean

queuing delay bound is replaced by an absolute delay

bound such that no packet suffers more than a prespeci-

fied maximum delay.

• To demonstrate the practical application of the pro-

posed scheduling, we construct a convolutionally coded

variable-rate quadrature amplitude modulation (QAM)

system, and show that small additional delay can lead to

substantial power savings. In variable-rate QAM systems,

where the transmission rate and power is controlled by

the transmitter, the receiver is unaware of the transmitted

rate. We show that the transmission rate information (re-

quired for appropriate decoding) can be derived without

requiring any protocol information.

All results in this paper assume i.i.d. packet arrivals in each slot

for simplicity. The analysis can be extended to Markov arrival

processes which are more appropriate models for multimedia

applications such as video transmission.

The main results in the paper can be attributed to inclusion of

finite delay constraints along with a bursty traffic model. If delay

is not a consideration, adequate queuing delay can completely

remove all burstiness and standard information-theoretic anal-

ysis applies [10]. The importance of incorporating the traffic

model in the design of wireless communication systems has

been well recognized; for insightful reviews, see [11], [12]. The

effect of queuing delay on probability of error is studied in [13]

using a simplified Gaussian multiple-access channel model.

In this paper, we study only single-user systems and schedule

packets over time. Scheduling is more commonly referred to

selecting packets when there are multiple input flows [14]; e.g.,

first come first serve (FCFS), last come first serve (LCFS),

earliest deadline first (EDF), and weighted fair queuing (WFQ).
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There is extensive work on scheduling over wireless channels

[15]–[19]. Again, the main idea is to efficiently use system

resources, often with an aim of fair division of resources.

One of the interesting results in this paper is that efficient

scheduling of packets helps even in a single-user single flow

system. In an actual wireless network, the proposed packet

scheduler can be combined with a multiflow service discipline,

like WFQ, to achieve fairness with efficient power usage. The

single-user problem provides methods for traffic regulation in

circuit-switched TDMA systems, and the multiuser problem

forms the basis for scheduling in code-division multiple-access

(CDMA) systems. In our related work [20], we focus on the

multiuser problem.

In this paper, we focus on schedulers which do not drop or

loose packets, and seek to minimize their average power uti-

lization. If the minimal power scheduler requires more power

than available, then the transmitter is forced to drop packets. A

power-limited outage based formulation is studied in [21]–[23],

where we show that additional delay helps reduce probability of

outage.

The rest of the paper is organized as follows. In Section II, we

introduce the system model and set up the scheduling problem

of interest. We provide a technique to find power-efficient

schedulers under average delay constraints and discuss some

of their properties in Section III. Scheduling under absolute

delay constraints is addressed in Section IV. We demonstrate

scheduling gains in a simple practical system in Section V. We

conclude in Section VII.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we introduce the time-slotted system model

used in the paper. We define the queue, source, and channel

model in Section II-A. Our emphasis in this paper is on design

of schedulers which guarantee information-theoretic reliability,

discussed in Section II-B. Finally, a class of reliable schedulers,

labeled zero-outage schedulers, is presented and characterized

in Section II-C.

A. System Model

We consider a single-user time-slotted system with an input

buffer, shown in Fig. 1; the period of each time slot is assumed

to be seconds. The source produces packets at an average

rate of packets per time slot. In time slot , the source pro-

duces packets, each of size bits, where has a distribution

with a finite support , i.e., the largest number

of packets that arrive in a time slot is . The arrival process

is assumed to be i.i.d. from one time slot to another. The

arriving packets are queued in the input buffer, which can store

a maximum of packets.

The number of queued packets in the buffer at the beginning

of the th time slot are denoted by . The scheduler chooses

packets for transmission at the beginning of the time slot, and

uses power for transmission. Since the length of the time slot

is fixed, the rate of transmission is varied based on the selected

number of packets . Denoting the transmitted signal by ,

the received signal is given by

(1)

Fig. 1. Schematic of system model.

where is the complex circularly symmetric AWGN with zero

mean and variance . The channel gain is assumed to be

constant over the period of a time slot, i.e., the coherence in-

terval of the channel is the same as the length of the time slot.

Two channel models are considered: In the first model, ,

thus, the channel model (1) reduces to a Gaussian channel. In

the second model, is assumed to be a finite-state Markov

channel, i.e., forms a Markov chain. Both the transmitter and

receiver are assumed to have perfect knowledge of the channel

gain .

The transmitted signal is a function of the number of

packets transmitted , the channel coding, modulation, and

waveform used. We use information theoretically optimal

coding and modulation to obtain , which serves two pur-

poses. First, we can get closed-form relationship between

and power needed for reliable transmission. Second, the

power we obtain serves as a universal lower bound on power

required by any scheduler designed for a specific coding and

modulation scheme.

At the transmitter, the buffer update is given by

(2)

The average packet delay is related to the average buffer length

via Little’s theorem [24] as follows:

(3)

where is the average packet arrival rate. We assume

that all packets that arrive in time slot can be transmitted only

in time slot or later. A natural constraint on is that

, i.e., we cannot transmit more packets than available in

the queue. The smallest average delay in the system is achieved

when all buffered packets are transmitted in each time lot, i.e.,

, which implies that , assuming

that . In other words, the buffer is flushed at all time

instants, and all packets are transmitted in the slot immediately

after which they arrive.

A scheduler is a mapping from the current buffer state and

channel state to the number of packets transmitted. and

transmit power . (See Section II-C for more details.) We will

restrict our attention to a class of schedulers which do not drop

any packet and achieve a predetermined minimum reliability

for every transmitted packet; a scheduler which does not lose

any packets is labeled as a zero-outage scheduler. The objective

is to characterize the achievable delay–power region which is

defined as follows.

Definition 1 (Delay–Power Region): A point on the

average delay versus average transmit power plane is achiev-

able if there exists a zero-outage scheduler which achieves an

average delay no greater than and average power no greater

than .
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The delay–power region can be characterized by finding the

minimal average transmit power required for any delay over the

class of all randomized zero outage schedulers (formally de-

fined in Section II-C). Formally

(4)

where is the average packet delay bound and is the

minimum average power required to achieve average delays no

greater than . Given the solution , all points

such that belong to the delay–power region.

B. Power Control

In this paper, we restrict our attention to schedulers which

guarantee a certain level of reception reliability. Our notion of

reliability is motivated by the concept of outage proposed in

[25], where a packet is reliably received if the instantaneous

mutual information is higher than the required rate. To invoke

mutual information based reliability, we require that be suf-

ficiently long to transmit packets close to channel capacity.

If the scheduler chooses to transmit packets of length

bits in a time slot of length seconds, then the required trans-

mission rate is given by nats per second. Using the

results in [3], we define the capacity function as

packets per time slot

(5)

where, for simplicity, we have assumed that the system band-

width is 1 Hz. For simplicity, we also assume .

The quantity is the Shannon capacity of a Gaussian channel

with noise variance and an average power of , and

represents the maximum reliably achievable rate. Using (5),

the appropriate power control to ensure reliable reception of

packets follows immediately. To transmit packets, the sched-

uler selects the power such that , leading

to the following power control:

(6)

Note that is a strictly convex function of , a linear increase

in the number of packets requires an exponential increase in

required transmit power.

The convex relation between required transmit power and

rate is also evident in the nonasymptotic regime, either by

considering error exponents [26] or finite-length codes. The

error exponent for Gaussian channels varies logarithmically in

power and linearly in rate. Thus, to guarantee the same error

performance for all scheduler decisions , the required power

control will be similar to (6).

As an example of practical methods, consider a simple

uncoded system using -ary QAM modulation. For large

rectangular QAM constellations, the average power

required to achieve a certain minimum distance between

constellation points is only marginally greater than the average

power required to achieve the same minimum distance using

the best known QAM [27]. The constellation points are given

by two-tuples

for

The transmission rate is bits per symbol and the av-

erage transmit power is . The minimum dis-

tance between signal points is given by for all , hence,

these constellations achieve approximately the same bit-error

rate. Thus, increasing the total information rate by a factor of

will require an average transmit power of . Equivalently,

increasing the average power by a factor of gains us an addi-

tional bit rate of bits per symbol. Thus, the uncoded

systems also follow the exponential relationship between trans-

mission rate and transmit power.

C. Zero-Outage Schedulers

In its general form, we define a randomized scheduler

as a memoryless probabilistic mapping from the buffer

state and channel fading state to the number of

packets and transmission power , i.e.,

. Thus, a scheduler is characterized by probabilities,

. Based on the discussion in Sec-

tion II-B, the power is a function of which reduces the

mapping to a single-dimensional variable .

For the special case of AWGN channel , is further

reduced to . For the sake of clarity, all results in

this section are derived for the case of AWGN channels and can

be easily extended to finite-state fading channels.

With some abuse of notation, we use to denote the

probability of transmitting packets given that the queue has

packets, i.e.,

Thus, every scheduler can be represented by an

upper triangular matrix (since any scheduler cannot transmit

more packets than available in the buffer, thus, for

), with entries . Since are probabilities

(7)

The set of valid schedulers will be denoted by , where each

scheduler satisfies the above properties.

A scheduler is labeled deterministic if , i.e., the

scheduler takes the same action for each queue state at all times.

It follows immediately from the definition that the deterministic

schedulers form a subset of randomized schedulers. Later in this

section, we will show that the deterministic schedulers are a

basis of the set of randomized schedulers.

Since the source is assumed to be i.i.d. and the schedulers are

assumed to be memoryless, all schedulers lead to the station-

arity of . Due to the memoryless nature of the schedulers, the

queue state forms a first-order Markov chain, which we assume

to be aperiodic. Thus, we have a concise representation of the

queue state process as follows. Denote by the matrix

of transition probabilities, where is the probability of transi-

tion from buffer state to buffer state . Note that

is of size and is not a function of time index
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due to stationarity of schedulers. The stationary probability of

buffer state is denoted by where, . Let

denote the vector of stationary proba-

bilities. From the definition of and , it follows that

(8)

Note that depends on the choice of , which implies is a

function of . The average packet delay of any scheduler can be

expressed as

(9)

Similarly, the average transmission power is given by

(10)

where is the power control defined in (6). For a given arrival

process, more than one scheduler can have the same average

delay and power; the following definition of equivalence class

formalizes this.

Definition 2 (Delay–Power Equivalence Class): Two sched-

ulers are said to belong to the equivalence class if they

have the same average delay and average power. Formally

Two schedulers, are then said to be equivalent,

and represented by .

The importance of the preceding equivalence class definition

will be become apparent in the next section. The following ex-

ample illustrates that the equivalence classes of the set of all

schedulers can have more than one element.

Example 1: The following two schedulers are equivalent for

:

In this case, the two schedulers only differ in buffer state that

occurs with zero probability.

In the rest of the paper, we will restrict our attention to a spe-

cial class of schedulers which ensure a preset level of reliability,

formally defined as follows.

Definition 3 (Zero-Outage Scheduler): A scheduler is said

to be zero outage if packets are not dropped at the transmitter,

there are no buffer overflows and power is chosen to en-

sure reliable reception of the packets. The set of all zero-outage

schedulers is denoted by , i.e.,

is zero outage (11)

The following proposition completely characterizes the set of

zero-outage schedulers .

Proposition 4: Consider a queue with finite buffer size and

an input process with no more than packet arrivals in one slot.

Assume that the buffer is initially empty. A stationary stochastic

scheduler is zero outage if and only if for each state

one of the following two conditions are satisfied.

1) The stationary probability is zero for state , i.e., .

2) If denotes the minimum number

of packets transmitted in state under the given scheduler,

then .

Proof: See Appendix A

Now, we note that the set of deterministic schedulers spans

the set of all randomized schedulers, and hence a basis for .

The basis elements can be constructed column by column as

follows. Consider the th column of . The th element to

th element of the th column are zero. Hence, vectors of

dimension form the basis for the th column. The basis

vectors are

where in the last basis, the is in the th position. Taking all

possible combinations of the basis of all columns, we

get a basis for the set of all schedulers. An important property of

all schedulers in which allows us to do this basis expansion is

(7). Finally, note that the total number of deterministic policies

is and all of them are not zero outage.

The set of deterministic schedulers form a redundant basis for

the set of all randomized schedulers, , and hence any scheduler

can possibly have multiple basis expansions. Below, we give a

constructive method for finding the coefficients of the basis ex-

pansion, in terms of deterministic schedulers. This constructive

method is used in the proof of Theorem 8. Let be a given

randomized scheduler of size , and the fol-

lowing steps recursively generate the basis expansion of .

1) Set and , where the th member of

of is a two-tuple such that the first element of

the tuple is the coefficient of the expansion and the second

element of the tuple is the scheduler in the expansion. Thus,

the expansion in the first step is . The

following construction updates the number and the elements

in the set in each step, till all schedulers in the expansion

are deterministic.

2) In step , we consider each element of separately and

generate elements for . Thus,

3) For each , write it as the convex combination of

matrices that differ only in the th column. The th

column of scheduler where

has value in row and zero in all other

rows, i.e., the different columns form a basis for .

The schedulers are identical to for all columns

other than column .

The coefficients are given by
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where is the element in the th row and th column in

. Since scheduler satisfies (7), the weighted sum of the

schedulers give the scheduler and all schedulers

satisfies (7).

4) Set and repeat steps 2)–4) if .

5) The elements in give the basis expansion of

The basis expansion technique is best illustrated in the fol-

lowing simple example.

Example 2:

We end this section with two propositions, where we consider

a queue with finite buffer size and an input process with no

more than packet arrivals in one slot. Further define the set

of deterministic schedulers

and recall that the set of zero-outage schedulers is denoted by

. The following lemma shows that for every zero outage de-

terministic scheduler which satisfies Condition 1

of Proposition 4, there exists another deterministic scheduler

which satisfies Condition 2 of Proposition 4.

Proposition 5 (Equivalent Elements of ): Let

be a deterministic scheduler such that there exists a

buffer state such that . Then there exists a deterministic

scheduler such that where

Proof: See Appendix B.

In the next proposition, we show that in the basis expan-

sion of zero-outage schedulers, only zero-outage deterministic

scheduler are needed and the coefficients corresponding to the

nonzero-outage schedulers are zero.

Proposition 6 (Basis Expansion of Elements in ): Let

represent the basis set of , where for all

and is the cardinality of the set . For any stationary

randomized scheduler , let its expansion in terms of basis

vectors be

where and

Then, for all , where is the set

difference.

Proof: See Appendix C.

The following example illustrates the results of Propositions 5

and 6.

Example 3: Consider the following four schedulers (sched-

uler and are same as in Example 1, and reproduced here

for the convenience of the reader)

It is easy to see that . Now, if , then

is zero outage because it satisfies Condition 2 of Proposition

4. It is also easy to verify that and are zero outage sched-

ulers. Again, when , state has zero probability of

occurance under scheduler . However, scheduler satisfies

Condition 2 of Proposition 4 and has the same delay and power

as scheduler .

The converse to Proposition 6 is however not true, i.e., a

convex combination of two zero-outage deterministic sched-

ulers is not always a zero-outage randomized scheduler, as il-

lustrated in Example 4.

Example 4: Let and be as in Example 3. Let

and

Since for buffer state under scheduler , it is zero

outage. A convex combination of and does not guarantee

a scheduler with zero outage. The probability of being in buffer

state is nonzero under scheduler , and if we then switch to

scheduler , we will remain in buffer state indefinitely

and continue to loose packets due to buffer overflow. Instead,

a convex combination of schedulers and will result in

schedulers that have no buffer overflows. Note again that when

, and have the same average delay and power.

III. POWER-EFFICIENT SCHEDULERS

In this section, we provide a method to compute the min-

imal power scheduler in (4). Driven by the high computa-

tional complexity of solving for the optimal scheduler (using

a dynamic program), we propose two suboptimal schedulers

in Section III-B. In Section III-C, we derive a closed-form

approximation for the average power as a function of delay.
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Extension of the optimal schedulers to fading channel is briefly

discussed in Section III-D. Finally, we provide numerical results

to illustrate the savings in power with increasing delay, and

state some empirically observed properties of optimal sched-

ulers in AWGN and fading channels.

A. Optimal Packet Schedulers

We prove a lemma which is used in the proof of Theorem 8

on convexity of set of randomized schedulers.

Lemma 7 (Delay–Power of Two “Almost” Identical Sched-

ulers): Let and be two zero-outage schedulers which

are identical in all columns except the th column. The delay

and power of scheduler which is given by a convex combi-

nation of and , equals a convex combination of the de-

lays and powers of and , respectively. In other words, if

, then

and

where . Further

where and are the stationary probabilities of being

in state under schedulers and , respectively.

Proof: See Appendix D.

An application of Lemma 7 is given in the following example.

Example 5: Let schedulers , , and be as in Ex-

ample 3. For and a uniform arrival distribution, the

delay and power under scheduler equals

time slot and . Similarly,

time slots and . The stationary probabilities

for the different states under schedulers and are

and

Note again that . We find that

time slots

and

where .

By the repeated application of Lemma 7, it is easy to see that

if we have more than two schedulers which differ in the same

column, then the delay and power of the convex combination

of such schedulers is given by the convex combination of the

delays and powers of the individual schedulers.

The following theorem proves that the average power and

delay for an arbitrary zero-outage randomized scheduler can

be obtained as the convex combination of delays and power of

zero-outage deterministic schedulers.

Theorem 8 (Characterization of Delay and Power): Con-

sider a queue with finite buffer size and an input process with

no more than packet arrivals in one slot. For any randomized

scheduler , there exists

, with

such that

(12)

(13)

where is a scheduler and for all .

Proof: See Appendix E.

Thus, the average packet delay achieved by any zero-outage

randomized scheduler is given by a convex combination of

the average packet delays achieved by all possible zero-outage

deterministic schedulers. In addition, the same convex combi-

nation of the average powers of the zero-outage deterministic

schedulers gives the average power of zero-outage randomized

policy.

In Proposition 6, it was shown that every zero-outage sched-

uler in admitted an expansion using only deterministic

zero-outage schedulers. In the proof of Theorem 8, it is shown

that among the several possible basis expansion of

there is at least one which insures delay and power of is a

convex combination of delay and power of some zero-outage

deterministic schedulers. The following lemma shows a con-

verse to this result, i.e., there exists schedulers which achieve

delays and powers which are the convex combination of the

delays and powers of any two arbitrary zero-outage determin-

istic schedulers.

Lemma 9 (Converse to Theorem 8): Let and be

two zero-outage deterministic schedulers with average de-

lays and average powers

, respectively. Then, there exists a zero-outage

scheduler which achieves average delay

and average power

for all .

Proof: See Appendix F.

It should be emphasized that the convex span of is

larger than (some schedulers in convex span can be nonzero

outage). Given that the randomized scheduler performance can

be obtained by appropriate linear combination of deterministic

schedulers, the delay–power region can be characterized as

follows.

Corollary 10 (Characterization of Delay–Power Region):

The boundary of the achievable region in the delay–power plane

is piecewise linear with the vertices achieved by deterministic

schedulers.
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Fig. 2. Schedulers for achieving different average delay bounds with minimal
average power. (Buffer size L = 50, maximum arrivalM = 6, uniform arrival
distribution.)

Proof: The total number of deterministic zero-outage

schedulers is finite, and the delay–power performance of

all randomized zero-outage schedulers is given by a convex

combination of delay and power of deterministic zero-outage

schedulers. Hence, the corollary follows.

To find the achievable delay–power region, we use a dynamic

programming technique commonly known as value iteration

algorithm (VIA) [28]. The details of the VIA are given in

Appendix G.

The delay bound is reduced monotonically and the min-

imal power deterministic policy is found among for each

. Thus, instead of solving (4), we are required to solve the fol-

lowing optimization problem:

(14)

The convex hull of the resulting pairs gives the

delay–power region, using Theorem 8 and Corollary 10.

Two examples of the transmission policy obtained using VIA

are shown in Fig. 2, which achieve two different points on the

boundary of the achievable delay–power region. The figure il-

lustrates the basic nature of the scheduler actions as a func-

tion of queue state as packet delay increases. Recall that the

minimum possible average delay in our system is one, which is

achieved by a scheduler which transmits all packets it receives

as soon as possible. Thus, if schedulers start from zero buffer

state, then schedulers achieving average delay one are such that

, at least for . As the delay increases beyond

one time slot, the scheduler chooses to transmit fewer than

packets for some states, and delays some of the packets; this can

be seen in the behavior of Schedulers 1 and 2 in Fig. 2, when

. Scheduler 1 achieves a smaller delay ( 1.8 time slots)

compared to Scheduler 2 ( 7.5 time slots) with higher power

consumption (6.82 versus 5.08 units of power). Note that nei-

ther of the schedulers in Fig. 2 transmit packets for ,

i.e., they do not flush the buffer like a unit delay scheduler. Fur-

thermore, as the delay increases, the schedulers tend to transmit

close to average arrival rate 3 packets/time slot (notice the

behavior for buffer states for Scheduler 2). For

each of the schedulers, buffer overflows are avoided by trans-

mitting close to packets when is close to (see

for Scheduler 2).

The reduction in power requirements due to additional delay

can be attributed to convexity of the relation between power and

rate of transmission (6). Transmitting a large number of packets

requires an exponentially increasing amount of power, thereby

resulting in a large average transmission power for small de-

lays. As the delay deadlines become less stringent, packets can

be delayed so that the transmitter can minimize the transmis-

sion of a large number of packets, to reduce large-power spikes

and hence reduce average power consumption. As the average

delay increases unboundedly (assuming that the buffer size also

increases to infinity), the scheduler delays every packet such that

(approximately) only packets are always transmitted in every

time slot. In Section III-E, the scheduler behavior is discussed

further using spectral analysis.

Alternately, the power reduction with delay can be under-

stood using the following source coding interpretation. Note

that if we consider the information in the packet arrival times,

in addition to the contents of the packets, then our scheduler

action is analogous to that of a lossy source coder. The higher

the delay allowed, the more is the compression of information.

For example, if delay equals one then the arrival times of the

packets are exactly known at the receiver; equivalent to lossless

encoding of timing information. As the average packet delay

increases, the scheduler delays certain packets more than others

and the receiver will only have a noisy version of the packet ar-

rival times; this is similar to lossy coding. Asymptotically, as

the delay goes to infinity, the receiver will have no information

about the actual arrival times of the packets; this corresponds to

encoding timing at zero rate. The loss of information with in-

creasing delays can be attributed to the fact that the scheduler

mapping is not invertible for except when

delay equals (assuming that buffer is initially empty).

Finally, we characterize extremal source statistics, resulting

in the lowest power for any delay constraint and highest

power source for .

Proposition 11 (Extremal Power Source): Let the arrival dis-

tribution be denoted by

where is the probability that packets arrive in any time

slot. Then the input distribution that results in the least transmit

power in an AWGN channel, for any average delay is given by

else

where represents the greatest integer no larger than .
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Also, the input distribution that results in the highest transmit

power for a delay bound3 of is given by

.

Proof: See Appendix H.

B. Suboptimal Schedulers

For large buffer sizes , the number of possible states in the

VIA increase exponentially and hence computing the optimal

scheduler is computationally intensive. For the cases where the

arrival distribution is measured in real time and the optimal

scheduler is adapted over time, the implementation of VIA can

lead to an intractable design. Motivated by the high complexity

of computing the optimal scheduler, we present two suboptimal

schedulers in this section. These suboptimal schedulers are de-

terministic. To obtain randomized suboptimal schedulers, we

can again use convexity properties of randomized schedulers

(Theorem 8 and Lemma 9).

A simple method for complexity reduction is to reduce the

number of states in the VIA (see Appendix G). The following

state reduction is most useful for moderate to large delay sce-

narios. As delay increases beyond , the scheduler tends to take

the same action in several consecutive queue states. Thus, to re-

duce the state diagram size, multiple states can be morphed into

one state. For instance, for all states , the

scheduler can be constrained to take the same action , thereby

reducing the state space. It is clear that the constrained system

will be suboptimal, but the loss due to additional constraints can

be minimized by appropriate choice of the number and lengths

of constraint intervals; some guidelines for the choice of the in-

tervals can be derived from the empirical observations about the

optimal schedulers made in Section III-E.

The second suboptimal scheduler is labeled the log-linear

scheduler, described as follows. For a queuing delay of one time

slot, the optimal scheduler4 flushes the buffer at all time slots,

i.e., and the corresponding power required in each

time slot is proportional to . As the delay increases, we

observe that the optimal scheduler tends to choose so

that the power in each time slot is linearly proportional to ,

thereby “equalizing” the power penalty in large buffer states .

For equalizing the power, the scheduler picks packets

. Combined with the natural constraint that we cannot

transmit more packets than available , we propose

the following log-linear scheduler:

(15)

The parameter of the log-linear scheduler is chosen to meet

the delay bound. For buffer states greater than , the

log-linear scheduler transmits at least packets to

3It is our conjecture that for any average delay (D � 1), this is the
input distribution requiring highest average transmit power. In other words, the
On–Off arrival process requires the highest transmit power at any delay in an
AWGN channel among all arrival processes with the same average and finite
maximum arrival rate.

4Note that the optimal scheduler is not unique forM < L and if the sched-
ulers start from the zero buffer state.

prevent buffer overflows. The log-linear scheduler greatly sim-

plifies scheduler design since it requires only one parameter .

The delay and power using the log-linear scheduler is calculated

using (9) and (10), respectively. The delay–power region of the

log-linear scheduler is obtained by monotonically increasing .

In all our simulations, the log-linear performance is close to the

optimal scheduler performance; further results are given in Sec-

tion III-E.

The value of to achieve a certain average delay depends on

the arrival distribution of the source. We now propose a simple

adaptive algorithm that computes the value of dynamically to

achieve any given average delay constraint based only on the

knowledge of the mean arrival rate. In the adaptive scheduler,

is a function of time and is updated in every time slot as

follows:

(16)

where is the sample average delay given by the ratio of the

sample average buffer length and arrival rate. The performance

of the adaptive scheduler is shown to numerically converge to

the performance of a log-linear scheduler that has full knowl-

edge of arrival statistics in Section III-E.

C. Approximate Delay–Power Relation

In this section, we derive an approximate closed-form rela-

tionship between the average transmit power and the av-

erage delay in an AWGN channel. The derivation is based

on two simplifying assumptions: the packets are infinitely divis-

ible (fluid model) and the output distribution of the scheduler

is Gaussian. The fluid model allows us to divide packets arbi-

trarily, and thus avoid the discrete nature of scheduler decisions,

which is a significant reason for intractability of closed-form

analysis of the optimal scheduler.

As discussed in Section III-A, for large , the optimal

scheduler transmits at rates close to average arrival rate if

buffer overflows can be avoided. For large delays, the queue

length varies around the average queue length . The

scheduler action can thus be approximated around

by the following linear relation:

(17)

For a stable system, the average arrival rate should equal the av-

erage departure rate and hence . Taking expectations

on (17) we find . The slope of the scheduler

at is approximated by the slope of log-linear scheduler

.

The variance of the output process , denoted by , is com-

puted as follows. From (2), (17)

From stationarity of

and after algebraic manipulations, we can find as

(18)
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where is the variance of the arrival process . Using the

Gaussian approximation for the distribution of ,

the average transmit power is

(from (18))

(for large )

Thus,

(19)

The effect of random source arrivals is clearly highlighted in

(19) by the factor . Sources which exhibit large variations in

their arrivals compared to their mean rate and are “more” bursty,

have large . For more bursty sources, even small increase in

allows considerable power savings; practical examples of

such sources include web and e-mail traffic. Asymptotically, as

, the high delay approximation gives

which is the same as the Shannon limit. As , the

random arrivals of the source are completely smoothened and

hence well-known information-theoretic analysis applies.

D. Scheduling in Fading Channels

In the preceding sections, we showed that time scheduling

packets from a source that produces variable number of packets

every time-slot results in significant power reduction, even in

AWGN channels. An analogous problem to scheduling due to

source burstiness is the one where scheduling is performed due

to time-varying channel conditions. To further emphasize the

fact that channel time variations lead to a nontrivial scheduling

problem under delay constraints, we consider transmission of a

constant rate source over a fading channel.5

Note that scheduling is equivalent to power control due to

our emphasis on reliable communication, and their relation is

defined by (6). Power control in fading channels has been an

area of active interest (see [29] for a review). We illustrate, by

an example, that the proposed method of dynamically changing

the transmission rate and power, can lead to power savings in

finite-state fading channels with increasing delay. For a delay

bound, 1 time slot, packet scheduling reduces to con-

ventional power control. As the delay bound goes to infinity, the

delay-bounded scheduling leads to maximal mutual information

power control [1].

For simplicity, we consider a two-state fading channel in the

remainder of this subsection although our results are directly

applicable to any channel with finite number of states. Consider

5This parallels our previous discussion on transmission of a bursty source
over an AWGN channel. Preliminary results on bursty source-fading channel
duality can be found in [22].

a source that produces a constant number of packets every

time slot, being transmitted over a two-state channel, with

and the transition probabilities between the

two channel states given by

(20)

where is the probability of transitioning from channel state

to . The corresponding stationary probabil-

ities of being in the two channel states are and

.

At a delay of one time slot, the channel transmits 25% of

the packets when and the remaining packets when

. As the delay increases to 4.7 time slots, only 2% of

the packets are transmitted when , a savings of 9 dB in

power over case when delay equals one time slot. As the delay

tends to infinity, the average number of packets transmitted in

each state is given by the time water-filling solution, and is char-

acterized in the following proposition.

Proposition 12 (Time Water-Filling): For a two-state fading

channel, power minimizing transmission rates for the

two states, with no delay constraint, are given by

The stationary probability of being in channel state is denoted

by and

if

if

if

Proof: Follows from (6) and standard Lagrangian tech-

niques.6

Applying Proposition 12 to the channel given above suggests

that at infinite delay and . We see that these

values of are reflected in the small fraction of packets that are

transmitted in state at a delay of 4.7 time slots.

In practical systems, both the source arrival rate and channel

state are time varying; hence, scheduling becomes doubly

important. Our formulation is applicable, in a straightforward

manner, to the case where both source and channel are time

varying. The power savings consists of two components—one

due to source burstiness and the other due to channel variations.

The total gain depends on the following factors: the extent

of source burstiness , the delay bound , the amount

of channel variations , and the stationary prob-

abilities of different channel states. The larger the , the

larger is the savings in power with increasing delay because

the departure process is well smoothened out. Analogously,

the larger the , the larger difference between

the signal-to-noise ratios (SNRs) of the two states leads to

decreased average power with increasing delays.

6These values of r are derived assuming that fractionally sized packets can
be transmitted; packet integrity constraint must be imposed on top of these rate
values to find integral transmission rates.
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Fig. 3. Achievable delay–power region for AWGN channel. The points
marked by x represent the lowest average power achievable under absolute
delay bounds of one, two, and three time slots. (For all plots buffer size
L = 50, maximum arrivalM = 6, uniform arrival distribution.)

E. Numerical Results

In this subsection, we present numerical results to study the

performance of the proposed schedulers. We first compare the

performance of the optimal scheduler with the proposed subop-

timal log-linear scheduler, and the closed-form approximation

derived in Section III-C. Spectral analysis is also used to ana-

lyze the behavior of the optimal and log-linear schedulers. An

example for four-state fading channel is also presented. Finally,

we make some empirical observations about the optimal sched-

ulers based on our numerical simulations.

The plot of the minimal transmission power versus average

delay bound is shown in Fig. 3. For all delay–power pairs above

the solid curve, schedulers exists which achieve that delay and

power. Also, no scheduler can guarantee delays and powers in

the region below the solid line. Note that the required power

decreases quickly as we relax the delay constraint from one to

two time slots. The substantial reduction in power for small in-

creases in delay beyond one time slot was observed in all our

simulations.

To emphasize the importance of proposed scheduling, Fig. 3

also shows the performance of the following constant-power

scheduler:

if

if
(21)

where the value of determines the power and delay achieved.

The constant power scheduler either sends a fixed number of

packets or nothing. Note that only certain values of can guar-

antee zero outage, and hence the constant power curve in Fig. 3

has a step-like behavior. The difference between the optimal

curve and constant power curve gives an indication of the gains

in the proposed variation of the transmit power based on the

queue state.

Also shown in Fig. 3 is the minimum power required

to transmit packets with no delay constraints, indicated as

Shannon limit on the plot. For AWGN, the Shannon limit is

given by

Thus, as delay increases unboundedly, the Shannon limit is

achieved by the policy which transmits either or

packets in each transmission, with probabilities

and , respectively.

The excess power required by delay-bounded schedulers over

the Shannon limit is an indication of the loss due to finite delay

requirements. As expected, the power required by the delay-

bounded scheduling approaches the Shannon limit as the delay

increases. From Fig. 3, which is indicative of the typical per-

formance we obtained, we observe the encouraging result that

the rate of convergence to the asymptotic limit is fairly fast. We

briefly note the fact that to achieve arbitrarily large delays, the

buffer size should be increased accordingly, which directly fol-

lows from (9). However, large amount of buffering may not be

required in practical systems, to achieve significant reduction in

power consumption by traffic smoothening, because the delay

only needs to increase to around two time slots. The fourth curve

in Fig. 3 shows the average power versus average delay perfor-

mance of the scheduler with absolute delay guarantees, derived

and discussed in Section IV.

Our scheduler formulation which bounds average delays,

does not depend on the order in which packets in the buffer are

serviced. So, FCFS and LCFS have similar power requirements

for the same average-delay bounds. However, the distribution

of actual delays experienced by the packets shows completely

different characteristics in FCFS- and LCFS-based schedulers.

For example, to achieve an average delay of two time slots

using FCFS policy, the distribution of packet delays was almost

uniform and had a small range. In contrast, with LCFS, the

distribution of delay was highly skewed; a large number of

packets experienced a delay of one time slot while a few

packets experienced delays greater than 900 time slots.

The performance of the log-linear and adaptive log-linear

schedulers are compared with the optimal scheduler in Fig. 4.

The proposed log-linear scheduler performed close to the

optimal scheduler in all our simulations, thereby verifying the

“equalization” intuition behind the log-linear scheduler. For the

adaptive log-linear performance shown in Fig. 4, we choose the

parameters and initial value for as .

The power–delay performance is plotted after 10 000 time

slots. From Fig. 4, we find that the proposed adaptive log-linear

scheduler achieves near-optimal performance by using only

knowledge of average arrival rate. In most cases we found that

the adaptive reaches within 5% of the asymptotic value in

500–2000 samples depending on the average delay bound .

The traffic smoothening effect due to increasing delay can

be seen in Fig. 5. In Fig. 5, the power spectral density of the

arrival and departure processes is shown. Since

th arrival process is assumed to be i.i.d., its power spectrum is

white. The smoothening effect due to buffering is evident from

the low-pass nature of the power spectrum of the output process.
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Fig. 4. Comparison of log-linear and adaptive log-linear schedulers with
corresponding optimal scheduler. (Buffer length L = 50, maximum arrival
M = 6, uniform arrival distribution.)

Fig. 5. Power spectral density of input and output process for different delays.
(Buffer length L = 5, maximum arrivals M = 6, uniformly distributed
arrivals.) Delays of output process are 2.2 time slots (low delay) and 7.9 time
slots (high delay).

We observed that, as the delay increases, the bandwidth of the

departure process decreases. In essence, the optimal scheduler

acts like a low-pass filter. In contrast, in a fading channel, when

the arrival process is constant rate (power spectrum is a delta

function), the output process from the queue is variable and has

higher frequency components [22].

Finally, in Fig. 6, we compare the large delay approxima-

tion (19) with the performance of the optimal scheduler. The

axes in Fig. 6 are and . The arrival

distribution was assumed to be uniformly distributed between

with mean three packets per time slot. The high-delay ap-

proximation was derived with an assumption that the departure

traffic is Gaussian, an assumption which is least applicable for

low delays. For small delays, the transmitted power is dependent

on the input distribution, and hence Gaussian distribution-based

high-delay approximation has a large error in this delay regime.

But for large average delays (beyond two time slots), the optimal

scheduler follows the linear trend, as predicted by the high-delay

Fig. 6. Plot of logarithm of average power versus inverse of average delay.
(Buffer length L = 250, maximum arrivals M = 6.) The actual powers and
delays are compared to high delay approximation (19).

Fig. 7. Schedulers for fading channel. (Buffer size L = 100, maximum
arrivalM = 10, uniform arrival distribution, four-state fading A = [2 4 6 10],
transition probability between states given in (22).).

approximation. In fact, due to smoothening effect, the effect of

input distribution is minimal for moderate to large delays.

An example of the scheduler action for a four-state fading

channel with constant rate traffic is shown in Fig. 7. The channel

amplitudes in different states are . The tran-

sition probabilities between the different states are given by

(22)

The lowest curve in Fig. 7 corresponds to and the

highest to . The time water-filling nature of the sched-

uler, for finite delays, follows from the Fig. 7. The scheduler

always transmits more packets in good channel states, and less

in poor channel conditions.
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Based on our numerical study, we state some empirically ob-

served properties of the optimal deterministic schedulers.

1) In an AWGN channel, is a nondecreasing function of

, i.e., more packets are transmitted when there are more

packets in the buffer. In fading channels, conditioned on

each state , is a nondecreasing function of .

2) In an AWGN channel, the optimal scheduler is work con-

serving, i.e., . In a fading channel, we

found situations in which the scheduler was not work con-

serving. For large-delay bounds, if in the bad channel

state is much worse than in good state, was zero when

was nonzero and the channel was in the bad state.

This scheduler action in fading channels is in agreement

with the time water-filling solution obtained by maxi-

mizing mutual information [1] to achieve highest possible

long-term throughput.

3) In an AWGN channel, among all deterministic sched-

ulers, the increase in is less than or equal to increase

in . In other words, for all and

This property is reflected in the fact that only increases

in increments of for each unit increment in buffer size.

4) In an AWGN channel, the maximum number of packets

transmitted in any time slot equals the maximum number

of arrivals in one time slot, i.e., .

5) In a finite-state fading channel, for a fixed buffer state

more packets are transmitted in channel with higher ,

i.e., for a fixed , is a nondecreasing function of .

6) In an AWGN channel, we observed that the entropy of

departure process was higher, lower or equal to en-

tropy of arrival process depending on delay, power,

and arrival distribution.

• When the delay bound equals , and so

arrival and departure process have the same entropy.

• When the delay bound asymptotically goes to in-

finity, and so entropy of the departure

process is asymptotically zero which is lower than

the entropy of a bursty arrival process.

• Consider an On–Off arrival process with proba-

bility of being in the On state equal to , so its

entropy equals . We

observed that for this arrival process, and delays

slightly higher than , the departure process has

entropy higher than the arrival process. The entropy

increasing property of certain queuing systems is

investigated in [30].

The properties in AWGN channels are supported by Fig. 2.

The properties for fading channels are empirically clear from

Fig. 7 which shows the scheduler action as a function of

and .

Recall that in our system we have assumed all packets to be of

fixed size and indivisible, i.e., whole packets have to be trans-

mitted completely within one time slot. Note that if fractional

packets can be transmitted in any time slot, then the power re-

quired can be further lowered compared to the proposed limits.

The potential power reduction in transmitting fractional packets

is easily verified for large delays when the average arrival rate

is not an integer, say, 3.5 packets/time slot. If packets are

not divisible, the Shannon limit is .

In contrast, when fractional packets cane be transmitted, the

Shannon limit is given by , which is lower than

the one with no fractionalization, again due to the convexity of

the exponential function. Preliminary results on scheduling with

fractionalization are given in [22].

IV. SCHEDULERS GUARANTEEING ABSOLUTE DELAY BOUNDS

For the systems using schedulers which bound the average

packet delay, the actual delay suffered by a packet depends on

the service order, like FCFS or LCFS, and can be potentially

unbounded. Large packets delays are highly probable in fading

channels, where the scheduler is not guaranteed to be work

conserving. For delay-sensitive multimedia applications like

streaming video, bounded packet delays are essential to main-

tain appropriate quality of service. In this section, we derive

power minimizing zero-outage schedulers with a bounded

absolute packet delay.

A. Problem Formulation

Schedulers designed according to the average delay con-

straint (4) are not constrained to be work conserving. However

(as stated in Section III-E), in all our experiments, the optimal

scheduler was work conserving for Gaussian channels. Thus,

with FCFS service discipline, no packet will suffer arbitrarily

large delays in the average delay optimal scheduler, which

implies that the buffer size is a trivial bound on the absolute

packet delay. Thus, limiting the class of schedulers to the set

of FCFS work-conserving schedulers could potentially be used

to obtain schedulers with absolute delay guarantees. We study

an alternate approach, in which the system knows the arrival

time stamp of each packet and uses that information to make

its scheduling decisions.

With the knowledge of packet time stamps, the state of the

queue not only includes queue length but also complete timing

information of the queued packets. We state, without proof, that

an average power-minimizing scheduler, with bounded abso-

lute delay , does not need information about packet arrivals

or more slots prior to the current slot.7 Thus, defining

the state of the queue as a -dimensional vector suffices

(23)

where represents the number of packets that arrived during

the th slot that have not been transmitted before time slot

. We assume an FCFS service discipline and find the number

of packets to be transmitted to be a function of . Note

that the total number of queue states in the system is given by

. Similar to our treatment of average delay bounded

schedulers, all queue states might not have finite probability of

occurring depending on the scheduler action.

7Intuitively, if a scheduler guarantees all packets leave withinD time slots
of their arrivals, during any time slot n the number of buffered packets which
arrived earlier than time slot n�D � 1 equals 0.
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If the buffer length is greater than then

any scheduler which guarantees absolute delay bound

will have no buffer overflow. If , necessary

and sufficient conditions for zero buffer overflow similar

to Section II-C exist and hence are not stated here. Since

the class of zero outage schedulers is smaller for the case

than for the case , the

average power required by a scheduler with the same will

be greater in the first case as compared to the latter. We will

assume throughout the remainder of this

section.

The set of all schedulers satisfying the absolute delay bound

is denoted by . The optimization problem analo-

gous to (4) can be expressed as

(24)

where represents the maximum delay experienced among

all packets.

B. Optimal Scheduler and its Properties

As in Section III, can be a deterministic or a randomized

stationary function of . In Section III-A, we proved that the

vertices of the delay power region are achieved by deterministic

schedulers. Since packets cannot be divided and transmitted,

all possible values of have to be positive integers, i.e.,

. We show that for the case of absolute delay con-

straints, we need only deterministic schedulers since determin-

istic schedulers achieve the lowest average power for all values

of using a corollary to the following theorem. We first

show that the power required using a randomized scheduler sat-

isfying the absolute delay bound equals the convex combi-

nation of powers of deterministic schedulers satisfying the same

delay bound .

Theorem 13 (Convexity of Randomized Schedulers): Let

be the set of all zero-outage deterministic schedulers that

guarantee an absolute delay . If a zero-outage randomized

scheduler also guarantees absolute delay , then the

average power is

(25)

where and . Also, for all ,

and .

Proof: Follows readily from time-sharing arguments and

is summarized in Appendix I.

The following corollary shows that the solution of (24) is al-

ways a deterministic scheduler.

Corollary 14 (Optimal Scheduler: Absolute Delay

Bound): Among all schedulers which guarantee an abso-

lute delay bound , the one requiring least power is always

deterministic.

Proof: Follows readily from Theorem 13 and realizing

that all .

As a result of Corollary 14, the constraint set in

the optimization problem (24) can be further reduced to include

only the set of all deterministic schedulers satisfying absolute

delay bound . Now, to solve the optimization problem (24),

we again use the VIA. Notice that with the increasing value of

, the state complexity of VIA grows exponentially. Thus,

for illustration, we compute the optimal policies for

and show the minimal achieved power as a function of

their average (not absolute) delays in Fig. 3. The three points

marked by x correspond to absolute delay guarantees of one,

two, and three time slots. Beyond the third point corresponding

to , the computational complexity of VIA becomes

prohibitive. Thus, only an upper bound on required power is

shown, which is obtained by using the scheduler designed for

. As can be seen from the figure, a policy guaranteeing

an absolute delay requires more transmit power to achieve the

same average delay as the one which does not give any absolute

delay guarantees.

Note that although the queue state represented using

carries more information than , its use in Section III was

avoided for two reasons. First, the number of states increases

exponentially with and the VIA quickly becomes in-

tractable. Second, the Little’s theorem [24] gives a simple

relationship between and whereas there is no such

simple relation between and .

Having an average delay bound only fixes the mean of the

distribution of actual packet delays. In contrast, having an abso-

lute delay bound controls the support of the delay distribution.

Both mean and the support of the delay distribution can be con-

trolled by the following optimization:

(26)

Different values of yield different under the same .

For , (26) reduces to (24), which transmits least power

for a given absolute delay bound. As increases, the required

power also increases while the average delay decreases for a

fixed absolute delay bound. Eventually, as , (26) would

yield a scheduler which flushes all the packets in the buffer at

all instants, i.e., the average (and absolute) delays would equal

one. Note that we require all packets to have a delay of less than

. In practice, this maybe too stringent and delay violations

with some probability can be tolerated [31].

V. ISSUES IN IMPLEMENTING SCHEDULERS

IN PRACTICAL SYSTEMS

The proposed scheduler structure requires a physical layer

implementation which can adaptively change the transmission

rate and power from one time slot to another, a feature which can

be supported in systems [32] like EDGE (TDMA) and 1Xtreme

(CDMA). In this section, we show that the power gains pre-

dicted using information-theoretic power control (6) can be ob-

tained by using a simple multirate transmission scheme. Our aim

in this section is to show, by an example design, the tradeoff be-

tween packet delay and subsequent minimum required transmis-

sion power; no particular optimality is claimed in the example

design.
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TABLE I
THE POWER REQUIRED TO ACHIEVE AN AVERAGE PACKET ERROR OF 0:05

USING A CONVOLUTIONAL CODE WITH VARIABLE QAM.

In our system formulation, the receiver is unaware of the

chosen number of packets and hence the transmitter needs to

send this information which is referred to as protocol informa-

tion in [33] to the receiver. In Section V-B, we show how this

protocol information can be obtained from the received signal

, thus obviating the need for side information from the trans-

mitter to the receiver.

A. Simple Multirate Transmission Scheme

The information-theoretic notion of reliability, used in the

previous sections, requires coding over large time intervals to

achieve arbitrarily small probability of error. For finite-length

time slots, only a finite packet error is achievable. Thus, an ar-

bitrarily small packet error will be replaced by a target finite

packet error rate.

We assume the size of each packet to be 25 bits and the

channel bandwidth and transmit pulse shape are such that 25

symbols can be transmitted in each time slot. The transmitter

can choose to transmit zero to three packets. For every choice

of number of packets, the data bits of the all packets are

jointly encoded as a one long packet, using a convolutional

encoder of rate with constraint length and generator

matrix [27]. The output of the convolutional encoder

is modulated using a variable-rate QAM depending on

according to Table I. For example, to transmit two packets

per time slot, the scheme needs to transmit 100 coded bits

(2 packets 25 bits/packet 2 coded bits/information bit)

using 25 symbols, which implies 4 bits/symbol; hence, we

choose a simple rectangular 16-QAM constellation in this case.

For , the power required to achieve a packet error rate of

in an AWGN channel is given in Table I.8

For simulations, we use an On–Off arrival process which pro-

duces either zero or three packets in any time slot with equal

probability, thus has an average packet arrival rate .

We consider a buffer of length 25 packets. To transmit

all packets at error rate of , with an average delay of one

time slot requires an average transmit power of 19.5 dB. We

use the optimal scheduling technique introduced in Section III

to find as a function of the queue state for different de-

lays. Using the optimal scheduler to achieve an average delay

bound of two time slots, the average power required is 10.02 dB,

giving a substantial saving of almost 9.5 dB over the case of

the delay of one time slot. Again, the savings are possible due

to the strictly convex relation between the power and the rate

8An alternative is to change the coding rate assuming the modulation (number
of constellation points) is fixed, say 4-QAM. To transmit one, two, or three
packets per time slot, coding rates of 1=6; 1=3; or 1=2 could be used, respec-
tively. Alternately, different puncturing of the same code can be used. Depending
on the coding rate, the minimum distance between signal points is changed to
maintain the same packet error rate.

of transmission. A sample histogram of the number of packets

transmitted in each time slot for an average delay of two time

slots was found by calculating the number of packets transmitted

in each time slot over 50 000 time slots. The histogram reveals

that 0 packets/time slot are transmitted with probability ,

1 packet/time slot is transmitted with probability , and

2 packets/time slot are transmitted with probability . In-

terestingly, 3 packets/time slot are never transmitted in our sim-

ulations which translates into significant power savings when

compared to the delay of one time slot.

B. Power Based Detection of Transmission Rate

In a multirate system, where the rate of transmission is

controlled by the transmitter, the receiver should have the

knowledge of instantaneous transmission rate to achieve target

error rates. Following the terminology in [33], the information

regarding instantaneous rate is labeled as protocol information.9

In our formulation, the instantaneous rate information can be

extracted from the average received signal power. Since the

transmission power is chosen proportional to the transmission

rate, in an AWGN channel the received signal power is directly

related to the transmission rate. Below, we derive a rate detector

for the multirate system described in Section V-A.

Let hypothesis represent the transmission of packets

per time slot. For clarity of presentation, the subscript repre-

senting the time index is suppressed. For an AWGN channel, the

received signal is given by with and

, where and represents the th symbol

transmitted in the I and Q channels, respectively. Recall that

is assumed to be zero-mean circularly symmetric i.i.d. Gaussian

noise with variance . The number of symbols in each time slot

equals . Denote the matrix of received signal by ,

the likelihoods [34] of the different hypothesis are given by

The minimum distance between constellation points equals

and under hypothesis and , respec-

9A lower bound on the protocol information is given by the entropy of
the departure process fu g and an upper bound is given by dlog (M+1)e.
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tively. The optimum maximum-likelihood (ML) detector for

the instantaneous rate is then given by

(27)

The probability of bit error under hypothesis depends largely

on and to maintain same symbol error rate under each hy-

pothesis, we need to make . However, to main-

tain the same packet error rate, we need to choose different

for a given noise variance. We tested the performance of the

ML detector (27) with the chosen to guarantee packet error

rates of in each hypothesis. We transmitted variable number

of packets in each time slot for 100 000 time slots and the ML

detector (27) accurately detects the instantaneous rates in each

time slot. Hence, the error is lower than . The ML detector

had error rates lower than whenever (and, correspond-

ingly, transmit powers) were chosen to have packet error rates

lower than .

Thus, the complete receiver for the proposed multirate system

will first detect the number of transmitted packets, and then

use the appropriate decoder to recover the transmitted packets.

An alternate method is to encode the number of packets in the

header of the packet (using a fixed code), decode the header first,

and then appropriately choose the right decoder for the rest of

the data.10 The alternative is better suited where can range

over a large set, and hence makes (27) computationally hard.

VI. DISCUSSION

A. Timing Capacity

The idea of sending information in the arrivals times of the

packets in addition to the packet contents was introduced and

formalized in [35]. In our system, we can use the variable

number of packets in each time slot to convey extra information

in addition to packet contents. If we design a scheduler to

maximize this extra information, we would need to maximize

the entropy of while maintaining delay bounds and

buffer overflow requirements. Obviously, sending such covert

information comes at the cost of increasing the average power

of transmission.

We present a simple scheduler that can be used to send covert

information. Let represent in binary form the covert infor-

mation to be transmitted. Choose as follows:

if

if and

if and

if

(28)

The power-minimizing scheduler transmits at rates equal to

average rates (if delay and buffer requirements are satisfied)

and hence minimizes the covert information that could be

transmitted.

B. Packet Reordering

If multiple users are competing for the wireless resource,

scheduling the users becomes critical in maximizing system per-

formance. Service disciplines like FCFS, last come first serve

10Note that the header-based alternative is similar to using a preamble to train
the receiver, and the ML detector (27) is equivalent to blind channel estimation.

(LCFS), EDF, and WFQ address the problem of resource allo-

cation to different users.

Our scheduler formulation which bounds average delays,

does not depend on the order in which packets in the buffer are

serviced. So, FCFS and LCFS have similar power requirements

for the same average delay bounds. However, the distribution

of actual delays experienced by the packets shows completely

different characteristics in FCFS- and LCFS-based schedulers.

Using FCFS policy, the distribution of delays was almost

uniform and had a small range. In contrast, with LCFS, the

distribution of delay was highly skewed; a large number of

packets experienced a delay of one time slot while a few packets

experienced delays greater than 900 time slots. Consequently,

for certain types of quality of service (QoS) requirements of

the form (29), LCFS is better than FCFS.

Most schemes provide QoS guarantees of the following form:

delay (29)

For , this is the same as the absolute delay guarantees that

our scheme provides. For , this QoS guarantee is similar

but not identical to having a weighted combination of average

and absolute delay in our optimization (26).

Scheduling has been used to refer to the order in which mul-

tiple users/flows are serviced at any node [14]. Such disciplines

solve the problem of ordering the different flows, based on cer-

tain metrics, before transmission. On the other hand, our sched-

ulers solve the problem of finding the number of packets in a

given flow to be transmitted during any time slot. In an actual

wireless network, we should potentially combine the known ser-

vice disciplines like WFQ with rate- and power-adaptive sched-

ulers we introduced.

C. Source Coding Interpretation

If we consider our information to lie in the packet arrival

times, then our scheduler action is analogous to that of a lossy

source coder. The higher the delay allowed, the more is the

compression of information. For example, if delay limit is one

then the arrival timing of the packets are exactly known at the

receiver; equivalent to lossless coding. As the delay limit in-

creases, the scheduler delays certain packets more than others

and the receiver will only have a noisy version of the packet ar-

rival times; this is similar to lossy coding. Asymptotically, as

the delay goes to infinity, the receiver will only have informa-

tion on the average arrival rate of the packets and no informa-

tion about their arrival times; this case corresponds to zero-rate

coding. This loss of information with increasing delays can be

attributed to the fact that the scheduler mapping is

not invertible except when delay equals .

VII. CONCLUSION

In this paper, we presented power optimal schedulers for

transmission of bursty traffic on AWGN and fading channels

under delay constraints. A computationally simple near-optimal

scheduler, labeled log-linear scheduler, was also proposed. An

approximate closed-form relation between average power and

average delay was derived; it was shown that at large values

of delay, the logarithm of the power varies inversely with the
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delay. Power-efficient schedulers which use packet arrival

time stamps to guarantee bounds on absolute delay were also

proposed. The power savings were demonstrated in a practical

system using a simple multirate transmission scheme, which

employs a convolutional codes and multirate QAM.

The power savings can be attributed to the strictly convex

relation between power and rate. Fundamentally, if the power

versus rate relationship is strictly convex, scheduling of packets

can be used to trade delay with power, if either the source or

channel is time varying.

Our main objective in the paper was to demonstrate the utility

of packet scheduling in wireless systems. For the same reason,

we had assumed simplistic source and channel models. For in-

stance, i.i.d. source models rarely represent real sources, which

typically do have strong time correlation [36]. Thus, a challenge

in implementing the proposed schedulers in a practical system is

faced when there are errors in the model or if the model param-

eters are not known accurately. Other imperfections include the

delay and error in transmitter knowledge of the channel, which

can possibly be accounted for by using results from [37] and

[38].

APPENDIX A

PROOF OF PROPOSITION 4: CONDITIONS FOR

ZERO-OUTAGE SCHEDULERS

If then from (2), and, as a result, there

will be no buffer overflow. So a buffer overflow is possible only

for , thus we will concentrate on the case when

.

Direct (If): We will first prove that if either Condition 1 or

2 is satisfied, then the scheduler will be zero outage. If

, and Condition 2 is satisfied, then using (2) we get

Therefore, there will be no buffer overflow. On the other hand,

if Condition 1 is satisfied for state , then there is

zero probability for the buffer to be in that state. Thus, no buffer

overflow is possible. Note that we have assumed that the buffer

starts from the zero state (if the buffer was initialized

from a state such that and

then there will be a buffer overflow with finite probability).

Converse (Only If): We will prove the converse by contra-

diction, that if there exists state that does not

satisfy both Conditions 1 and 2, then the corresponding sched-

uler will not be zero outage. If state of the buffer does not

satisfy Condition 1, with finite nonzero probability the buffer

will be in state . Since state also does not satisfy Condition 2,

using (2) with finite probability

Consequently, a buffer overflow occurs.

APPENDIX B

PROOF OF PROPOSITION 5: EQUIVALENT ELEMENTS OF

If state for which is such that ,

then the proposition is trivially proved. So, assume

for some . Since is deterministic, all its en-

tries are zero or one. Using (7) implies that each column of

and contains exactly one nonzero element. Without loss

of generality, let for some . Now, if , then

and . If , choose

and .

Clearly, under scheduler for state , .

Since and

, , and give the same average delay and power (which

follows from (9) and (10)). That is, .

APPENDIX C

PROOF OF PROPOSITION 6: BASIS EXPANSION

OF ELEMENTS IN

Since , it must satisfy either Condition 1 or Condition 2

of Proposition 4. If state of satisfies Condition 1, , of

Proposition 4, then from (8), we note that

(30)

where is the th row of ; note that for clarity, we explicitly

show the dependence of the matrix on . From the definition

of it follows that if then .

Hence,

(31)

Now, from (30) and (31) we get

which implies that for all , either or

. If then is a zero-outage scheduler,

i.e., . So if is not a zero-outage scheduler, we must

have . In other words, if a certain buffer state has zero

probability under a randomized scheduler, then all deterministic

policies which cause that buffer state to have nonzero proba-

bility, have zero weight in the basis expansion of that random-

ized scheduler.

On the other hand, if state of satisfies Condition 2

of Proposition 4, then , satisfies

for all . Thus, in the

expansion in terms of its basis, such that

where

Consequently, if does not satisfy for

all . In other words, if the number of packets

transmitted in each buffer state under a given randomized sched-

uler is large enough to maintain zero buffer overflow, then all

deterministic policies which do not transmit enough packets to
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maintain zero buffer overflow have zero weight in the basis ex-

pansion of the randomized scheduler in terms of deterministic

policies.

Hence, if does not satisfy Conditions 1 or 2 of

Proposition 4, i.e., if is not zero outage. It follows that

if .

APPENDIX D

PROOF OF LEMMA 7: DELAY-POWER OF TWO “ALMOST”

IDENTICAL SCHEDULERS

Let and be the transition probability matrix and

stationary probability vector under scheduler . Define

and in a similar manner. Also define

and

Using (9), and . From

the definition of ’s it follows that and differ only in

the th column. Further, .

Let us assume and verify there

exists an to satisfy (8), i.e.,

Using simple algebraic manipulation of the matrices, we can

reduce the condition for finding to the following:

Since and differ only in the th column,

is a matrix with elements in all columns other than the th

column. Therefore, we need to choose to satisfy

(32)

Hence,

Now, we only need to show that

Using (10),

Now, equals a matrix with in all rows except the

th row and hence is a vector with in all elements

except the th row. Now using (32), we find that

APPENDIX E

PROOF OF THEOREM 8: CHARACTERIZATION

OF DELAY AND POWER

Using Proposition 6, if . Hence,

where , , with

.

In our construction of the basis expansion of scheduler in

the first step, we have a convex combination of two schedulers

which differ only in one column. Hence, using Lemma 7, the

delay of scheduler is given by a convex combination of the

delays and powers of two schedulers (which need not be deter-

ministic). Each of these matrices is further written in terms of

matrices which differ in only one column and hence its power

and delay are convex combinations of delay and power of some

matrices. Repeating this process till the submatrices are deter-

ministic, the theorem is proved.

APPENDIX F

PROOF OF LEMMA 9: CONVERSE TO THEOREM 8

Since scheduler achieves average delay and av-

erage power , it implies that for any , there exists

an such that using scheduler for time slots

gives average delay and average power satisfying

and .

Similarly, exists for .

Now, we time-share between schedulers and in the

ratio to get scheduler . Given any find

While switching from scheduler to , we additionally

flush the buffer in time slot . Now

In the limit as . Hence,
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Similarly

In the limit as . Again, if we

consider consecutive blocks of time slots, the total average

delay and power is given by the average of the delays and powers

in each block of time slots. Hence, by time-sharing between

schedulers and we can achieve all delays and powers

given by the convex combination of the delays and powers of

and .

APPENDIX G

VALUE ITERATION ALGORITHM (VIA)

Let represent the cost incurred in doing action in

state . Let be the probability of transitioning from state

to state under action . Also, let denote a predetermined state

and be a small positive number that determines the stopping

criterion. The general steps in the VIA [28] are as follows.

1) Initialize , and .

2) Evaluate .

3) Set and

.

4) Repeat steps 2) and 3) above till .

5) The optimal actions for each state are obtained as

In the above, represents the th iteration of the VIA. In the

case of schedulers which bound average delay, the different VIA

symbols have the following correspondence:

Also, depends on the arrival distribution . For

Gaussian channels, where is

the Lagrangian used in (14).

APPENDIX H

PROOF OF PROPOSITION 11: EXTREMAL POWER SOURCE

The proof follows from the convexity of the power control

function ; for simplicity, the dependence on

and is suppressed. Let the output distribution be

. Since the system is stable, .

Since is a convex function, it follows from Jensen’s

inequality [10] that

(33)

where the expectation is over the output distribution . The

lower bound in (33) is equal to and is independent of

Fig. 8. Power regions achievable for a given output distribution. Hypothetical
case of fluid packet models is also shown. This figure is used in the proof of
Proposition 11.

output distribution . The output distribution that achieves the

lower bound is

However, the equality in (33) is achieved only if .

Given the constraint on integer packet sizes (not a fluid source),

for any given output distribution and , the average achievable

power lies inside or on the boundary of the convex polygon with

vertices , shown graphically as the

shaded region in Fig. 8. Now, given a constraint on the mean of

, the achievable powers are given by the points of the polygon

with abscissa . Consequently, the minimum achievable power

(shown by in Fig. 8) is given by a convex combination of

powers achieved by transmitting or packets. Since

the time-sharing between transmitting and packets

has an average values of , it follows that the optimal output

distribution is given by

else.

(34)

It is not clear if there exists a scheduler that shapes the given

input distribution to give this distribution within a delay of .

However, if the input has distribution (34), then a simple sched-

uler that flushes the queue during every time slot achieves the

lowest possible power for all delay bounds. Hence, is

the input distribution that results in least transmit power in an

AWGN channel.

The proof for the distribution with the highest transmit power

for is similar, and is omitted.

APPENDIX I

PROOF OF THEOREM 13: CONVEXITY OF RANDOMIZED

SCHEDULERS WITH ABSOLUTE DELAY BOUND

Time sharing between schedulers in the ratios gives the

total average power . However, we



144 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 1, JANUARY 2004

need to verify that by time sharing of schedulers , we still have

a scheduler which guarantees absolute delay . The situation

is similar to our treatment of average-delay bounded schedulers

having zero outage. In this case, while switching from scheduler

to , we should not be in some state which has zero prob-

ability of occurring while operating under policy alone. If we

are in such a state , we can find a policy such

that the number of packets transmitted in state is sufficient to

meet the absolute delay bound (proof similar to Lemma 5). Fur-

ther, both and will have the same average transmit power.
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