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Abstract—In this paper, we show that packet blocking prob-
ability at the transmitter can be traded off with average queue
delay for fading channels in environmentally powered wireless
networks with bursty packet arrivals. Varying the size of the
energy storage unit as well as that of the transmit buffer queue
aids in the trade off. We cast the problem into a Markov
Decision Process (MDP) and use Dynamic Programming to obtain
the optimal scheduler. Further, we develop two different low
complexity schedulers that achieve near optimal performance in
different system settings.

I. INTRODUCTION

Harvesting ambient energy from the environment to power

communicating nodes is increasingly feasible today due to

rapid improvements in micro power electronics. Renewable

forms of energy such as solar energy, mechanical energy and

thermal energy have started finding use in wireless sensor

networks [1]. With on board energy harvesters, the wireless

node can no longer be reckoned as a device whose energy

reserves will last for fixed duration of time after which its life

is permanently over, nor can it be thought of as a device with

infinite energy reserves.

We consider a wireless node that harvests energy from the

environment in which it is deployed. This ambient energy

serves as the source of power to run the node. The wireless

node in such environmentally powered networks has an energy

harvesting front end, followed by an energy storage unit. The

energy harvested by the front end is stored in the storage unit.

As in [2] we assume a linear model for the storage unit without

considering the leakage effects or recharge inefficiencies.

Stochastic models are typically used to describe the un-

predictable nature of energy harvesters. In [3] solar energy

was modeled as a Markov process after analysis of years of

observed data. Such models can be used to characterize other

types of energy harvesters such as vibration based harvesters.

Outage in wireless communication, with a queue at the

transmitter, can occur either by the packet not being transmit-

ted by the transmitter or due to the packet being transmitted

but not recoverable at the receiver. The former is commonly

referred to as packet blocking probability and the latter is

commonly referred to as outage due to the channel. The focus

of this paper is a deterministic scheduler at the transmitter

that can allocate communication resources (power and rate)

based on the transmit buffer occupancy, the arrival process,

the knowledge of the channel as well as the state of the energy

storage device. This context aware scheduler can trade off

packet blocking probability with delay or size of the energy

storage unit.

We solve the optimal rate and power control allocation

problem using numerical techniques. Having obtained the

optimal scheduler in this way, we characterize it’s performance

in both fading channels with bursty packet arrivals and in

AWGN with constant packet arrivals. We assume finite length

for the packet buffer and finite size for the energy storage unit.

We find that varying the transmit buffer length has a greater

impact in reducing packet blocking probability (up to 50% in

some instances) in the fading case, where as varying the size

of the energy storage unit has a similar impact in the AWGN

case. We develop two low complexity schedulers in the spirit

of the optimal scheduler and characterize their performance in

AWGN and fading channels. Interestingly we find that each

of the two low complexity schedulers achieve near optimal

performance in different scenarios.

The rest of this paper is organized as follows. Section II

describes the problem setup. Section III provides numerical

results on the optimal scheduler and two low complexity

schedulers. Related Work is presented in IV. Section V con-

cludes the paper.

II. PROBLEM SETUP

A. Queue and packet arrival process

We consider discrete time, slotted, single user system with

bursty packet arrivals. The packet arrivals are modeled as

a doubly stochastic process, which is common in queuing

literature [4]. The first stochastic process represents whether

there are packet arrivals (On state) in a given time-slot or if

there are no packet arrivals (Off state). A simple two-state

discrete time Markov chain (DTMC) is used to model the

transition between the On and Off states (In general there

could be A states). Further, for the On state we consider an-

other underlying stochastic process. For instance, the arrivals

in the On state can be modeled as a Poisson or long-range

dependent process. We assume packet arrivals are bounded

and only up to M packets can arrive in a given time slot. In

this paper we consider two types of packet arrivals - either

constant or uniformly distributed between 1 and M in the

On state. The arrival process is generic enough to capture
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different scenarios one may encounter in a sensor network.

Constant arrivals could represent the sensing process. Bursty

packet arrivals could represent a packet forwarding scenario.

Packets arriving into the queue at time n are denoted by

an and are scheduled for transmission only from the next

slot onwards. The average arrival rate of the packets is λ
packets/slot. We denote by un the packets transmitted at time

n. We consider finite length queues with queue size L to store

the packets between arrival and departure. We let xn denote

the number of packets in the queue at time n. Fragmenting

a packet into smaller pieces for transmission or combining

multiple packets into a single bigger packet is not allowed.

We assume that the size of each individual packet to be the

same and large enough to invoke information theoretic notion

of capacity [5]. This assumption is used in (3).

B. Harvesting unit and storage unit

We model the energy harvesting process as a DTMC. The

energy harvested in each state is stored in a storage unit such

as a capacitor or battery. We denote by B the maximum

capacity of the energy storage unit and by H the maximum

number of states for the harvester. We denote by hn the energy

harvested by the harvesting unit at time n and by bn the energy

available from the energy storing unit at time n. The energy

harvested and the energy stored is assumed to be in integer

units with the granularity of the energy units proportional to

the energy harvested. Throughout this paper we assume energy

neutral operation, a concept introduced in [6], which means

the average energy expended is always less than or equal to

the average energy harvested. Since we assume finite energy

storage size, any energy harvested above B units is lost.

C. Channel

We consider transmission over a Block Fading Additive

White Gaussian Noise (BF-AWGN) channel. Finite state

Markov chains have been extensively used to describe fading

channels [7]. We adopt discrete time Markov chain to model

the channel behavior and let F denote the maximum number

of fading states. Further, the transmitter is assumed to have

knowledge of the fading state.

D. Mathematical preliminaries

The received signal Yn is given by

Yn = AnXn + ǫn (1)

where An is the channel gain, Xn is the transmitted signal

and ǫn is the receiver noise. The channel gain stays constant

for the duration of the time slot due to our Block Fading

assumption and can take on different values from from time

slot to time slot, according to the underlying DTMC process.

At the transmitter, the scheduler determines the number of

packets to transmit and the transmission power in each state

of the system. Further, in this paper, we only consider the

case that there is no outage in the channel. Zero outage is

achieved by appropriate selection of the transmission power

as discussed below.

The capacity ρ of the Block Fading AWGN in each fading

state is given by [5]

ρ(Ptx,n, An, σ2) = Tslog(1 +
Pn|An|

2

σ2
) (2)

where Ptx,n is the transmitted power, An represents the time

varying short term channel fading gain in time-slot n and σ2

is the noise variance. For simplicity, we select Ts the duration

of each time slot as Ts = Slog2(e) where S bits is the size

of one arriving packet.

Given un packets are transmitted in time-slot n, the trans-

mitter has to select the transmission power to ensure that

there is no outage in the channel. This received power can

be obtained by inverting the capacity formula in (2) and using

the fact that

Sun = ρ, (3)

which gives the following relation for the required power at

the receiver:

Pn(un, An, σ2) =
σ2

|A2
n|

(eun − 1) (4)

Consequently, the power required at the transmitter is given

by

Ptx,n =







⌈

σ2

|A2
n|

(eun − 1)

⌉

, bn ≥ Ptx,n (5a)

0, otherwise (5b)

where ⌈ ⌉ in (5a) represents the ceiling function due to our

assumption of operating in integer units of power.

The energy storage unit’s state is updated by the formula

bn+1 = min(bn + hn − TsPtx,n, B) (6)

The average energy harvested is given by

Eavg = Hv.s
′

h (7)

where Hv is the harvester profile (amount of energy available

from the harvester in the steady state) and sh is the stationary

probability of the harvester states.

The average arrival rate is given by

λ = sa

M
∑

i=1

iqi (8)

where qi is the packet arrival probability of i packets and sa

is the steady state probability of the On state of the packet

arrival process.

The packets in the queue are updated by the formula

xn+1 = min(xn + an − un, L) (9)

We now focus our attention to the scheduler. The scheduler

developed in this paper is deterministic which means it takes

the same action for each queue state at all times [5]. Since we

have assumed the fading channel An, the arrival process an,

the harvester hn, the energy storage unit bn to all be first order

Markov, the queue state process is also a Markov chain and can

be represented by a transition probability matrix P = [Pj,i]

370



where Pj,i is the probability of transition from buffer state

xn = i to buffer state xn+1 = j. This matrix P is of size

T xT where T = FAH(B + 1)(L + 1). Let s = [sji] denote

the FAH(B + 1)x(L + 1) matrix of stationary probabilities

such that

Ps = s (10)

The average packet delay at the transmitter is given by

Little’s theorem [8] and can be expressed by

Davg =
1

λ
E[xn] =

1

λ

(FAH(B+1)
∑

j=1

L
∑

i=0

isji

)

(11)

The average power consumed by the scheduler is given by

Pavg =

FAH(B+1)
∑

j=1

L
∑

i=0

sjiPtx,ji (12)

where Ptx,ji is given by (5a),(5b).

The packet blocking probability can be expressed by

πb =
1

λ

(FAH(B+1)
∑

j=1

L
∑

i=0

M
∑

m=1

max(i+am−L−uji, 0)qmsji

)

(13)

The optimization problem we solve in this paper is

minπb,

Pavg < P0

Davg < D0

(14)

The optimal scheduler is obtained by solving (14) using a

dynamic programming method commonly known as Value

Iteration Algorithm (VIA). See Appendix for details on the

VIA.

A lower bound on the packet blocking probability is calcu-

lated based on the average energy that can be harvested, the

average arrival rate and the channel gain An and is given by

1 − min
(ρ(Eavg/Ts, An, σ2)

λ
, 1
)

. (15)

Since we assume energy neutral operation in this paper,

asymptotically for large energy storage sizes and large buffer

lengths, the packet blocking probability reaches the lower

bound of zero.

III. NUMERICAL RESULTS

A two state DTMC is selected to model the packet arrival

process with the following transition probabilities Pa =
[

0.9 0.1
0.2 0.8

]

The resulting stationary probabilities of being in

the On and Off arrival states are 2/3 and 1/3 respectively.

We considered both bursty and constant packet arrivals in our

simulation.

A three state DTMC was selected to model the energy

harvester with the following transition probabilities Ph =




0.9 0.1 0
0.3 0.3 0.4
0 0.2 0.8



. The corresponding stationary probabilities

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
A

C
K

E
T

 B
L
O

C
K

IN
G

 P
R

O
B

A
B

IL
IT

Y

ENERGY STORAGE UNIT SIZE

 

 

OPTIMAL

Fig. 1. πb versus B. AWGN with constant packet arrivals. M=1, L=6 and
Harvester profile is Hv3.

of being in the three harvester states are 1/2, 1/6 and 1/3.

Different harvester profiles Hv1 = [1 2 5] and Hv2 =
[2 5 10] and Hv3 = [0 1 5] are selected for the per-

formance evaluation. The three state model is rich enough to

capture a variety of energy harvesting processes. For instance,

in the solar energy harvesting case the first state can be used

to represent the Off state or the night time where no energy

from the sun can be harvested, the second state can be used

to represent the Low state where a small charge becomes

available from the sun, say during cloudy periods and a High
state which can be used to represent high solar radiation energy

during periods of bright sunlight. Another example could be

one of a vibration based harvester monitoring traffic over a

bridge. Here the three different states could represent Low,

Medium and High traffic flow scenarios.

A two state DTMC is selected to model the fading channel

with the following transition probabilities Pf =

[

0.7 0.3
0.1 0.9

]

The corresponding stationary probabilities of being in the two

channel states are 1/4 (An = 1.414, lowfade) and 3/4 (An =
2.5, highfade).

All numerical evaluation of performance are carried out in

Matlab. Delay bounded rate and power control was studied

for constant as well as bursty packet arrivals. Performance

was evaluated for both AWGN and fading channels. Packet

blocking probability πb, average queue delay Davg , average

transmit power Pavg are the metrics used in performance

evaluation.

Fig. 1 shows the variation of the packet blocking probability

πb against size of the energy storage unit B for AWGN with

constant packet arrivals. For small B, a doubling of storage

size results in about 50% reduction in πb. Asymptotically for

large energy storage sizes, the packet blocking probability

reaches the lower bound of 0.

Fig. 2 depicts the variation of packet blocking probability

πb with increasing transmit buffer length L. For small L, a

doubling of buffer length results in about 50% reduction in πb.

Again, for large buffer lengths, the packet blocking probability

equals the lower bound which in this case also equals 0.

It is observed that more gains (faster fall off of πb) can
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OPTIMAL

Fig. 2. πb versus L. Fading channel with uniform packet arrivals. B=30.
Harvester profile is Hv1.
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B=25

B=50

B=75

Fig. 3. πb versus Davg Fading channel with uniform packet arrivals for
different energy storage unit sizes B. Harvester profile is Hv1. L varied
from 3 to 42.
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L=24

Fig. 4. πb versus B. Fading channel with uniform packet arrivals for different
transmit buffer lengths L. Harvester profile is Hv1.

be achieved by increasing storage size than transmit buffer

length in AWGN with constant arrivals. In contrast, in fading

channels with bursty packet arrivals, πb reduces more rapidly

with increased transmit buffer length rather than increased

storage size.

Figs. 3 shows variation of πb with average packet delay

Davg in fading channels with bursty packet arrivals for differ-

ent storage sizes. As the storage size increases from B=25 to

B=75, lower πb and Davg points are achieved.

Fig. 4 shows variation of πb with storage unit sizes in fading

channels with bursty packet arrivals. For a given transmit

buffer length, increasing the storage unit size causes πb to

reduce at a slower rate. As an example of this, in Fig. 4 when

L=24, an approximately seven-fold increase in the storage unit

size, causes πb to reduce from 6.7% to 3.8%. However the

same approximate seven-fold increase in the transmit buffer

length causes πb to reduce from 14% to 2.7%, which was

observed for B=75 in Fig. 3.

One disadvantage of the proposed formulation is the com-

putational complexity of the dynamic program which makes

real-time implementation challenging. We now provide two

examples of low complexity schedulers which achieve near

optimal performance in different scenarios.

A. Low Complexity Scheduler A

We propose the following Low Complexity Scheduler:

PA
tx,n =











f(u
′

n), bn ≥ PA
tx,n (16a)

u
′

n = max(umax
n , xn) (16b)

0, otherwise (16c)

where f(u∗

n) is given by (18). The basic idea behind this

scheduler is to send out all the packets xn in the queue or

as many packets as possible (as indicated by umax
n ) given the

current bn (16b).

B. Low Complexity Scheduler B

Another low complexity scheduler is:

PB
tx,n =



















































f(u
′

n), bn ≥ PB
tx,n (17a)

u
′

n ≤ uTh (17b)

xn + M − u
′

n ≤ L (17c)

f(u
′′

n), bn ≥ PB
tx,n (17d)

u
′′

n = max(umax
n , xn) (17e)

xn + M − u
′′

n > L (17f)

0, otherwise (17g)

where

f(u∗

n) =

⌈

σ2

|A2
n|

(eu∗

n − 1)

⌉

(18)

The basic idea behind this scheduler is to transmit fewer

packets when the transmit buffer cannot overflow by new

packet arrivals, which is possible to predict due to the bounded

packet arrival assumption. Note that in the states where

buffer overflow is possible, Scheduler B behaves identical to

Scheduler A. However, the overall average performance of the

two schedulers are different.

The performance of the two low complexity schedulers was

characterized in AWGN with constant packet arrivals and in

Fading Channels with bursty packet arrivals and compared to

the optimal scheduler obtained from VIA. Figs. 5 and 6 shows

the performance of schedulers A, B and the optimal scheduler

372



in an AWGN with constant packet arrivals. Scheduler B

consumes less average transmit power than the other two

schedulers for the same πb as can be seen from Fig. 5.

However as can be seen from Fig. 6, with increase in storage

unit size, schedulers A and the optimal scheduler outperform

scheduler B. Scheduler A performs almost identically to the

optimal scheduler.
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SCHEDULER B
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Fig. 5. Comparison of the low complexity schedulers with the optimal one in
AWGN with constant packet arrivals. L=12. M=2. Harvester profile=Hv2. The
optimal scheduler is the one that minimizes the packet blocking probability
and uses more average power than Scheduler B. However, in this case using
lower power is not necessarily ideal since the energy that is not used will be
wasted due to the finite energy storage capacity.
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Fig. 6. Comparison of the low complexity schedulers with the optimal one
in AWGN with constant packet arrivals. L=12. M=2. Harvester profile=Hv2.

In the fading channel with bursty arrivals scenario however,

a different result was observed. Interestingly, scheduler B

outperformed scheduler A in terms of achieving lower πb for

the same Davg . Figs. 7 and 8 show the performance of the

three schedulers in the fading scenario. Scheduler B and the

optimal scheduler consume lower Pavg for a given πb than

Scheduler A. Scheduler A consumes more Pavg for the same

πb as the power control it adopts is to simply send out as many

packets as allowed by the energy available from the storage

unit. This strategy that worked well in the AWGN case with

constant arrivals failed to perform well in the fading case with

bursty arrivals. Scheduler B however tries to mimic the optimal

scheduler by delaying packets whenever it is possible, and

hence achieves better performance. To further illustrate this,

Fig. 8 shows how scheduler B performed almost identically

to the optimal scheduler. Scheduler A’s performance is worse

and it achieves higher πb for same Davg .
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Fig. 7. Comparison of the low complexity schedulers with the optimal one in
Fading Chanel with bursty packet arrivals. Harvester profile=Hv1,M=3,L=42
and B=25.
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Fig. 8. Comparison of the low complexity schedulers with the optimal one
in Fading Chanel with bursty packet arrivals. Harvester profile=Hv1,M=3,L
varied from 3 to 42 and B=25

IV. RELATED WORK

Dynamic programming (DP) was used in [9] [10] [11] [12]

to solve problems in energy harvesting networks. Although

the system model in [9] is similar to ours, packet delay was

not taken into consideration. The effects of finite queue length

and finite energy storage size was not discussed. In [10] the

authors consider a similar stochastic model for the energy

harvester but uses DP to optimize a completely different metric

- quality of coverage and minimize dropped events. Similar

stochastic models for energy harvester and arrival process was

used in [13] however Game theory was used to solve for

optimal sleep and wake up strategies. The tradeoff between

packet blocking probability and average queue delay was not

considered. Non-linear effects of the energy storage unit was

373



considered in [14] and algorithms were developed to determine

energy spending rates. Scheduler design that ensure queue

stability with energy harvesting nodes is discussed in [11].

Their objective was to develop throughput optimal policies

with lower mean delay. However delay versus buffer overflow

trade off was not exploited. The work in [11] was extended in

[12] to include sleep and wake up modes.

V. CONCLUSIONS

In this paper we showed that packet blocking probability

in fading channels with bursty packet arrivals can be traded

with queuing delay in energy harvesting wireless networks. By

observing the behavior of the optimal scheduler, we introduced

practically viable low complexity schedulers that can achieve

similar trade off. We characterized the performance of the low

complexity schedulers in AWGN with constant packet arrivals

and fading channels with bursty packet arrivals. We found the

performance of the low complexity schedulers was different

in each of those scenarios.

Future work needs to consider the total energy consumed

in the processing as well as receiver in the optimization

framework. Further, in practical coded systems, there is always

a finite packet error rate in the channel which can be quantified

by the information theoretic concept of outage. Thus, the

scheduler design should consider the total packet loss due to

buffer overflows as well as channel outages.
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APPENDIX

VALUE ITERATION ALGORITHM

Let C(i, a) represent the cost incurred in doing action a in

state i. Let Pj,i(a) be the probability of transitioning from state

i to state j under action a. Also, let x denote a predetermined

state and ǫ denote a small positive number that determines

the stopping criterion. The general steps in the Value Iteration

Algorithm (VIA) [5] are,

1. Initialize v0 = 0, δ = 1 and k = 0.

2. Evaluate wk(i) = min

{

C(i, a) +
∑

j Pij(a)vk(j)

}

.

3. Set δ =
∣

∣wk(x)−wk−1(x)
∣

∣ and vk+1(i) = wk(i)−wk(x).
4. Repeat steps 2 and 3 above till δ < ǫ.

5. The optimal actions for each state i are obtained as

a∗(i) = arg

(

min

{

C(i, a) +
∑

j

Pij(a)vk(j)

}

)

.

In the above k represents the kth iteration of the VIA.

In this paper, the various VIA symbols have the following

correspondence, i ≡ xn, a ≡ un. Pij(a) depends on the arrival

distribution p(an). For the BF-AWGN channel

C(i, a) = xn + λ1

(

max(xn + an − un − L, 0)
)

+ λ2Pn(un, An, σ2)

where λ1 and λ2 are the Lagrangians used in (14). Here Pn(.)
is the power required to to transmit a ≡ un packets under the

specific channel condition. Also, there is a separate state i for

all different xn and fading states, arrival states, harvester states

and energy storage unit states.
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