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Abstract

A novel strategy to enhance string stability of autonomous vehicles with sensor delay
and actuator lag is proposed based on a model predictive control framework. To com-
pensate sensor delay, the approach entails estimating the (unknown) system state at
the current time using the system state in a previous time, the applied control history
and a system dynamics model. The actuator lag is compensated by including the lag in
the state prediction model. The mathematical framework shows that without the antic-
ipation strategy, sensor delay leads to a worse estimate of the initial condition for the
optimal control problem and actuator lag increases the mismatch between the system
state prediction model and the actual system behaviour. Simulation verified that sensor
delay and actuator lag degrade string stability of platoons. The proposed anticipatory
control strategy shows clear benefits in improving autonomous vehicle string stability
and hence has potential to enhance traffic flow stability.

Keywords: Adaptive cruise control; string stability; system delay; model predictive
control; anticipatory control

1. Introduction

Automated vehicles take over part or all of the driving tasks, depending on the level
of automation. Based on the use of communication technology, they can be classified as
autonomous and connected/cooperative vehicle systems. Autonomous vehicles rely solely
on on-board sensors based on cyber-physical sensing technologies, such as radar and lidar
(VanderWerf et al. 2002; Kesting et al. 2008; Wang et al. 2014a). Connected/cooperative
vehicles exchange (state and control) information with each other via Vehicle-to-Vehicle
(V2V) communication or with road infrastructure via Vehicle-to-Infrastructure (V2I)
communication to improve situation awareness and/or to manoeuvre together under a
common goal (VanderWerf et al. 2002; Monteil et al. 2013; Wang et al. 2014b; Ge and
Orosz 2014; Wang et al. 2015; Milanés and Shladover 2014; Jia and Ngoduy 2016a,b). In
this paper, we focus on advanced control strategies for autonomous systems that do not
rely on wireless communications.
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Adaptive Cruise Control (ACC) is the earliest autonomous vehicle system, which specif-
ically aims at enhancing driving comfort (VanderWerf et al. 2001; Van Arem et al. 2006).
The most widely used ACC controller is a proportional-derivative controller, where the
vehicle acceleration is proportional to the gap and the derivative of the gap (relative
speed with respect to the preceding vehicle) in car-following conditions. This type of
controller has been extensively studied (VanderWerf et al. 2001; Van Arem et al. 2006;
Rajamani and Shladover 2001; Ploeg et al. 2014).
However, there is no safety mechanism in this type of controller. A separate collision

avoidance system has to be designed avoid rear-end collision (Godbole et al. 1999). Non-
linear control methods for ACC systems have been proposed as well. ACC systems with
variable time gap policies have been proposed (Wang and Rajamani 2004). Car-following
models were used as nonlinear state feedback algorithms for ACC systems, such as the
Optimal Velocity Model (Hasebe et al. 2003; Ngoduy 2015a) and the Intelligent Driver
Model (Kesting et al. 2008). Artificial intelligence (AI) techniques are also used to design
ACC systems (Bifulco et al. 2013). Model predictive control, also called receding horizon
control, is used in the design of ACC controllers (Wang et al. 2014a,b; Li et al. 2014)
recently. An advantage of the model predictive ACC controller is that it is flexible in
dealing with constraints in state and control variables and it can avoid rear-end collision
with the predecessor at safety-critical conditions even without the need of a separate
collision avoidance system (Wang et al. 2014a). A Model Predictive Full speed Range
ACC (MP-FR-ACC) controller is proposed and tested in simulation (Wang et al. 2014a).
Stability properties of autonomous systems and platoons are of great importance since

they determine the impacts of automated vehicles on traffic flow stability to a great extent
(Tampère 2004; Pueboobpaphan and van Arem 2010; Sau et al. 2014; van Hinsbergen
et al. 2015; Zheng et al. 2016; He et al. 2016). Two stability concepts are relevant to
vehicle platoons, being local stability and string stability (Treiber and Kesting 2013;
Wilson 2008). Local stability refers to the stability property of a single vehicle, whether a
disturbance in the speed profile can be attenuated. Local stability is a necessary feature
for any ACC controller. String stability involves more vehicles compared to local stability.
A vehicle platoon is string stable if an initial disturbance decays with the increase of
vehicle indices in the platoon and is said to be string unstable otherwise. String stability
is a more restrictive concept compared to local stability, i.e. even if every vehicle exhibits
locally stable behaviour, the platoon can still display string instability.
Among many influencing factors, delays in sensor and actuator play an important

role in local and string stability of automated vehicles. They deteriorate the controller
performance, particularly local and string stability (Orosz et al. 2010; Ploeg et al. 2014;
Ngoduy 2015b; Zhang and Orosz 2016; Redhu and Gupta 2015). However, much work on
controller design and performance assessment of ACC systems simplifies or ignores the
combination of sensor delay and actuator lag in the control loop, which may results in
over-optimistic evaluations of the controller performance and the impacts of automated
vehicles on traffic flow. More importantly, control strategies for autonomous ACC vehicles
to improve the stability of platoons under explicit sensor delay and actuator lag have not
been found. Such strategies, if developed, have great potential in enhancing the string
performance as well as the stability of traffic flow.
The aforementioned problems lead to the objectives of this contribution: first, to get

new insights into the negative impacts of sensor delay and actuator lag on the stability of
full range model predictive ACC vehicle platoons; second, to propose a new anticipatory
delay-compensating strategy to compensate the negative impacts of sensor delay and ac-
tuator lag. To achieve the objectives, we adopt a model predictive control framework that
is proposed in our earlier work (Wang et al. 2014a). We generalize the previous work for
MP-FR-ACC controller design by including sensor delay and actuator lag in the math-
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ematical framework. This allows us to test and compare the negative impacts of sensor
delay and actuator lag separately. An integrated strategy is proposed to compensate the
negative impacts and enhance string stability under the influence of sensor delay and
actuator lag. The sensor delay compensation strategy uses the system state in a previous
time, the control history and the system dynamics model to get a better estimate of the
current system state. The actuator lag is anticipated directly in the system state predic-
tion model. The negative impacts of sensor delay and actuator lag and the benefits of
the delay compensation strategy on platoon performance are tested systematically with
simulation and a set of indicators are used to assess the string stability performance.
It is worth mentioning that we focus on numerical investigation of delay impact on

string stability and delay compensation strategy for homogeneous platoons. Recent stud-
ies also point to flow stability of mixed traffic (Ngoduy 2012), which is beyond the scope
of this paper.
In the remainder, we first present the longitudinal control architecture for ACC sys-

tems and main assumptions, after which the mathematical framework for ACC system is
described with inclusion of sensor delay and actuator lag. Then, we formulate the antic-
ipatory control approach and show the setup of the simulation experiments. Impacts of
sensor delay and actuator lag and benefits of the anticipatory strategy on string stability
are analyzed and we complete the paper by summarizing the findings and conclusions.

2. Vehicle longitudinal control

2.1. Longitudinal control architecture

A hierarchical control architecture is usually considered for ACC systems (Fancher and
Bareket 1994; Rajamani 2011), where the upper level controller determines the desired
acceleration for an ACC vehicle based on a simplified vehicle dynamics model and the
lower level controller regulates the throttle and/or the brake commands to track the
desired acceleration of the upper level controller. Nonlinear vehicle dynamics modelling
and control techniques are usually employed at the lower level to calculate the brake and
throttle inputs for the controlled vehicle (Fancher and Bareket 1994; Rajamani 2011).
In this paper, we focus on the upper level controller design and performance assessment
under explicit sensor delay and actuator lag.

2.2. Design assumptions

We make the following assumptions regarding the operations of ACC systems.

• On-board sensors measure vehicle speed, gap (relative distance) and relative speed
with respect to the preceding vehicle on regular time intervals.

• The direct measurements from on-board sensors are prone to noise. On-board filters
are able to filter out the noise and give an accurate estimate of the system state.

• The process of sensing and filtering is subject to delay, due to the discrete sampling
of on-board sensors, the lag due to the radar or lidar filter and the bandwidth of
low pass filters used for other sensors such as wheel speed sensor (Ploeg et al. 2014;
Rajamani 2011; Xiao and Gao 2011). The overall delay in this process is referred
to as sensor delay denoted with τS hereinafter.

• The ACC controller operates at real time, i.e. there is no computational delay in
the controller. Such a delay could however be added.

• The lower level controller executes the desired acceleration command from the
upper level controller subject to time delay, which is the time delay in the generation
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of traction/brake wheel torques due to the lag of the powertrain actuator or the
lag of brake actuator when braking (Ploeg et al. 2014; Rajamani 2011; Xiao and
Gao 2011). The overall delay in this process is referred to as actuator lag denoted
by τA hereinafter.

• At each control cycle, the ACC controller knows the sensor delay and vehicle ac-
tuator lag in the current control cycle. This can be realized by adding time stamps
to the sensor measurements and actuator inputs. In practice, this is a reasonable
assumption because the actuator lag can be measured offline from real world exper-
iments in the form of a look-up table for online application or be directly estimated
online by a delay observer (Chang and Lee 1995).

The assumptions are based on the operational characteristics of real vehicles and thus
are not restrictive (Ploeg et al. 2014; Rajamani 2011; Xiao and Gao 2011).

2.3. Model predictive full speed range ACC (MP-FR-ACC)

We formulate the vehicle following control problem as a model predictive control problem,
where an open-loop optimal control problem is recursively solved online (Wang et al.
2014a). Figure 1 shows an abstract representation of an upper level model predictive
ACC controller (the gray rectangle). Let us consider the system from the perspective of
an ACC vehicle i, of which the state x can be described by the gap to the predecessor
and its own speed. At time instant t0, the controller receives the system state of a
previous time t0 − τS from on-board sensors and filters. Based on this information, the
controller estimates the current state of the system and predicts the future state in a time
horizon Tp, with the current system state as the initial condition. The optimal control
input/variable u, which is the desired acceleration of an ACC vehicle, is determined by
optimizing a performance index or cost function reflecting undesirable situations. In a
receding horizon implementation, only the first sample of the control input is realized
by the lower level controllers and actuators in a retarded time t0 + τA (Morari and Lee
1999; Mayne et al. 2000). As the vehicle manoeuvres, the system state changes, and the
optimal control signal u is recalculated with the newest information regarding the system
state at the next control cycle , e.g. t = t0 + δt with δt being the sampling step of the
controller.

3. Mathematical formulation for MP-FR-ACC

In this section, we present the mathematical formulation for autonomous vehicle-
following control systems. We first present the benchmark ACC controller without any
delay. After that, we formulate sensor delay and actuator lag in the control framework.

3.1. Benchmark MP-FR-ACC controller without delay

3.1.1. Benchmark system dynamics model

The system state from the perspective of an ACC vehicle i can be described by x =
(si, vi)

T . si denotes the (distance) gap to the preceding vehicle i−1, i.e. si = xi−1−xi− l,
with l representing the vehicle length. The longitudinal dynamics model of the system
used for predicting future evolution of the system is simplified by the following differential
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Figure 1. Abstract representation of model predictive ACC system.

equation:

d

dt
x =

d

dt

(
si
vi

)

=

(
vi−1 − vi

ui

)

=

(
∆vi
ui

)

= f̄(x,u,d) (1)

∆vi = vi−1 − vi denotes relative speed to the preceding vehicle.
Note that the benchmark system dynamics model (1) ignores the actuator lag τA

in the vehicle system. This is the first source of the mismatch between the open-loop
prediction and the closed-loop system behaviour, i.e. the mismatch between model and
plant (Morari and Lee 1999; Mayne et al. 2000).
Here, d denotes the exogenous disturbance, which is the preceding vehicle speed for

ACC controllers:

d = vi−1 (2)

The disturbance can be modelled by using constant speed heuristics (Wang et al. 2014a),
i.e. the predecessor travels at the measured speed in the predicted future. For au-
tonomous systems without V2V communication, this heuristics has been proven very
effective (Wang et al. 2014a, 2013). Constant acceleration heuristics is also possible for
autonomous ACC, but it entails differentiating the distance measurements to the sec-
ond order and will suffer from noise of on-board sensors. In the closed-loop system, the
preceding vehicle is not necessarily travelling at constant speed. The predecessor speed
variation is the second source of the mismatch between the open-loop prediction model
and the closed-loop system behaviour.
The MP-FR-ACC controller should cope with the mismatch between the model and

the system and generate locally stable behaviour. As we will show with simulation in the
ensuing, the MP-FR-ACC controller is quite robust to the mismatch due to the feedback
nature of the receding horizon process.
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3.1.2. Optimal control of the benchmark system

The MP-FR-ACC system seeks an optimal control trajectory u(·) in the finite prediction
horizon [t0, t0 + Tp) that minimizes a cost function J (Wang et al. 2014a). It can be
formulated as the following mathematical programme:

min
u[t0,t0+Tp)

J(x(t),u(t)) = min
u[t0,t0+Tp)

(∫ t0+TP

t0

L(x(t),u(t))dt+ G(x(t0 + Tp))

)

(3)

where J denotes the cost function to be minimized. L denotes the so-called running cost
and G denotes the so-called terminal cost. We set the terminal cost to be zero in this
study.
The optimization is subject to:

(1) the system dynamics model of Eq. (1)
(2) the initial condition:

x(t0) = x̂(t0) (4)

(3) the constraints on state and control variables:

x(t) ∈ X , u(t) ∈ U (5)

In Eq. (4), the hat denotes the filtered state from the sensors and filter of the benchmark
system without sensor delay.

3.1.3. Running cost specification

Here, we define the running cost function as (Wang et al. 2016):

L =
c1

s
∆v2

︸ ︷︷ ︸

safety

+ c2(v
e(s)− v)2

︸ ︷︷ ︸

equilibrium

+ c3u
2

︸︷︷︸

control

(6)

In Eq. (6), the safety cost term guarantees that the ACC vehicle will get a large penalty
when approaching the preceding vehicle at small gaps, since these situations entail high
risks of rear-end collisions. When there is no preceding vehicle detected by the on-board
sensor, the safety cost term vanishes.
The equilibrium cost implies that the vehicle tends to relax to the local equilibrium

speed determined by the distance to the predecessor. The equilibrium and safety costs
are the proximity cost terms reflecting the interaction with the preceding vehicle. The
local equilibrium speed ve is determined by gap or local density:

ve(s) =

{
vd if s > sf
s−s0

td
if s ≤ sf

(7)

td denotes the user-defined target time gap and sf = vdtd+s0 is a gap threshold defining
the change of slope in the equilibrium speed function.
The comfort cost is represented by penalizing large acceleration or deceleration. It also

reflects control efforts.
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3.1.4. Constraints specification

The constraint on the state variable X is specified as:

X :=
{
s > s0; v ∈ [0, vmax]

}
(8)

The constraint implies that the gap with respect to the preceding vehicle should be no
less than the minimum distance s0 and the controlled vehicle drives within a speed range
of [0, vmax]. The controlled inputs are limited to some admissible bounds:

U := {ui ∈ [amin, amax]} (9)

3.1.5. Derivation of optimal control input

This section shows how to solve the optimal control problem based on Pontrygain’s
Principle (Pontryagin et al. 1962; Wang et al. 2012). Without going too much into details,
the solution approach entails defining the Hamiltonian H as follows:

H(x,u,λ) = L(x,u) + λ
T · f(x,u) (10)

where λ denotes the so-called co-state or marginal cost of the state x, which reflects the
relative extra cost of J incurred due to making a small change δx on the state x.
Using the Hamiltonian, we can derive the following necessary condition for the optimal

control u∗:

u∗ = minH(x,u,λ) , s.t. u ∈ U , x ∈ X (11)

u∗ =
−λv

2c3
(12)

Equation (11) shows that the optimal control u∗ minimises the Hamiltonian in the admis-
sible range U and in the bounded set X . In nearly all cases, this requirement will enable
expressing the optimal control input u∗ as a function of the state x and the co-state λ.
The co-state are derived as:

−
dλs

dt
=

∂H

∂s
= −

c1

s2
∆v2 +

2c2
td

(ve(s)− v) (13)

−
dλv

dt
=

∂H

∂v
= −

2c1
s

∆v − 2c2(v
e(s)− v)− λs (14)

The state dynamics equation (1) and the co-state dynamics equation of (13, 14) con-
stitute a set of ordinary differential equations with initial conditions and terminal condi-
tions. An iterative solution algorithm has been proposed to solve the two-point boundary
value problem in (Wang et al. 2012) and the performance of the MP-FR-ACC has been
tested in closed-loop simulations (Wang et al. 2014a).
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3.2. Inclusion of sensor delay

A sensor delay τS changes the initial condition used by the controller for solving the
state dynamics from the state in current time t0 to the state in the previous time t0−τS:

x(t0) = x̂(t0 − τS) (15)

In other words, the controller will use the state in a previous time instant as the initial
condition to predict state evolution. Compared to the initial condition for the state
prediction in the benchmark case without sensor delay, i.e. Eq. (4), using Eq. (15) for
state prediction will increase the mismatch between the open-loop prediction and the
closed-loop behaviour of the system. This is the third source of mismatch between the
prediction model and real system in addition to the other two sources as discussed earlier
and is the mechanism of the performance deterioration of the model predictive ACC
controller due to sensor delay. When τS = 0, Eq. (15) relaxes to Eq. (4).

3.3. Inclusion of actuator lag

The very existence of the actuator lag τA implies retarded behaviour of the vehicle in ex-
ecuting the desired acceleration of the upper level controller, i.e. the desired acceleration
cannot be realized immediately, but with a delay. The system dynamics with actuator
lag is then described by the following differential equation:

d

dt
x =

d

dt





si(t)
vi(t)
ai(t)



 =





∆vi(t)
ai(t)

ui(t−τS)−ai(t)
τA



 = f(x,u,d) (16)

where ai denotes the actual acceleration while the control input (or signal) u = ui can be
interpreted as the desired acceleration of vehicle i. Note that the model (16) is based on
an exact linearization approach of a nonlinear longitudinal vehicle dynamics model. We
refer interested readers to (Sheikholeslam and Desoer 1993) for details of the linearization
approach. When τA = 0, the third order model (16) relaxes to the second order model
(1).
Note that the linear model may not adequately describe vehicle dynamics near con-

ditions of physical limits, e.g., tire force saturation due to emergency braking or severe
steering. We focus on operations at normal driving conditions and exam how disturbance
from steady-state conditions evolves in the platoon. Therefore, the linear model suffices.

3.4. Receding horizon implementation

In the receding horizon implementation of the optimal control input, only the first sample
of the optimal control input u∗(t) ∈ [t0, t0 + δt) is executed by the actuator and hence
the closed-loop system can be represented by:

u(t;x(t0)) = u∗(t;x(t0)) , t ∈ [t0, t0 + δt) (17a)

ẋ(t) = f(x(t),u(t;x(t0)), d̃(t)) (17b)

where actuator lag is included in the closed-loop evolution of the system driven by
Eqs. (16) and (17). Note that we use a different notation of the disturbance d̃ in the
closed-loop system (17b) since it may be different from the predicted d as in Eq. (1)

8
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when the preceding vehicle is accelerating or decelerating, i.e. the second source of the
model and system mismatch as discussed earlier.

4. Anticipatory control strategy to compensate delay

The receding horizon control approach entails prediction of the future evolution of the
system. This feature can be explored to compensate delay in the control loop (Morari
and Lee 1999; Mayne et al. 2000; Treiber et al. 2006). Computational delay in model
predictive control has been addressed in (Findeisen and Allgöwer 2004; Liu et al. 2006),
but the schemes do not distinguish sensor delay from actuator lag and thus are not
directly applicable to separate sensor and actuator delays. We propose an integrated
anticipatory strategy to compensate both sensor delay and actuator lag in the closed
loop. The strategy to compensate sensor delay is based on a model-based estimation of
the current system state based on the previous system state and applied control input
series, while actuator lag can be included by using the higher order system dynamics
model instead of the second order model. The strategy does not entail changes to the
derivation of the optimal control input compared to the benchmark controller and the
integrated anticipatory control strategy is formulated as an implementable algorithm,
which is presented at the end of the section.

4.1. Sensor delay compensation strategy

The key of the sensor delay compensation strategy is that with a known delay τS in
the knowledge of the system state information, the controller can estimate the current
system state x(t0) based on:

• the newest system state information from sensor and filter at the time instant
t0 − τS : x̂(t0 − τS);

• the known applied control input history from the previous time to current time
u(t) ∈ [t0 − τS, t0);

• the system dynamics model.

Mathematically, the current system state can be estimated by solving the integral:

x(t0) =

∫ t0

t0−τS

f(x(t),u(t),d(t))dt+ x(t0 − τS) (18a)

x(t0 − τS) = x̂(t0 − τS) (18b)

u(t) ∈ [t0 − τ, t0) (18c)

Note that when τS = 0, Eq. (18) relaxes to Eq. (4). The estimated system state is
expected to be more accurate compared to the simple strategy using the previous system
state as the current system state, i.e. Eq. (15). Similarly as the previous section, we use
the constant speed heuristics to estimate the disturbance d(t) in Eq. (18).

4.2. Actuator lag compensation strategy

If the actuator lag is known, we can include it in the system dynamics prediction for
each online optimal control problem, i.e. using the third order system dynamics model
(16) for prediction instead of the second order model (1). This will reduce the first source
of mismatch between the predicted system state and the realized system state. As we

9
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will show in the ensuing, this has clear benefits in improving the platoon performance.
Note that the anticipation of actuator lag mitigates the mismatch, but does not lead to
perfect prediction of the system evolution due to the presence of disturbance d.

4.3. Algorithm for the integrated delay compensation strategy

The anticipatory control strategy to compensate sensor delay and actuator lag is formu-
lated as an implementable algorithm as shown in Algorithm 1.

Data: Sensor delay τS, actuator lag τA, (delayed) system state x(t0 − τS), applied
control input history u[t0−τS,t0)

Result: Optimal control input u∗ in the horizon [t0, t0 + Tp)
initialization;
if do benchmark controller then

Solve optimal control problem of Eqs. (3, 1, 4, 5) using the iterative numerical
algorithm in (Wang et al. 2012)

end

if do simple strategy without delay compensation then
Solve optimal control problem of Eqs. (3, 1, 15, 5) using the iterative numerical
algorithm in (Wang et al. 2012)

end

if do anticipatory strategy with delay compensation then

if τA = 0 then
Solve optimal control problem of Eqs. (3, 1, 18, 5) using the iterative
numerical algorithm in (Wang et al. 2012)

else
Solve optimal control problem of Eqs. (3, 16, 18, 5) using the iterative
numerical algorithm in (Wang et al. 2012)

end

end

Algorithm 1: Integrated control algorithms with delay compensation strategy

We emphasize that the sensor delay and actuator lag need not to be constant. Stochas-
tic delays can easily be included in the algorithm as long as they are known to the con-
troller at time of solving the online optimal control problem. This can be realized by
assigning a time stamp to the measurements and applied control inputs.
Here we complete the formulation of the control problem with explicit sensor delay

and actuator lag. In the following section, we verify the impacts of sensor delay and
actuator lag on the controller performance and demonstrate the effectiveness of the delay
compensation strategy via simulation.

5. Simulation experimental design

In this section, we describe the simulation experiments that are used to test the impacts
of sensor delay and actuator lag on the platoon performance and the benefits of the
proposed delay-compensating strategy.

10
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Table 1. Simulation scenarios
τS (s) τA (s) Control strategy

0 0 Benchmark control

0.2/0.3/0.4/0.5 0 Simple strategy without delay compensation

0 0.2/0.3/0.4/0.5 Simple strategy without delay compensation

0.3 0.2 Simple strategy without delay compensation

0.2/0.3/0.4/0.5 0 Anticipatory strategy with delay compensation

0 0.2/0.3/0.4/0.5 Anticipatory strategy with delay compensation

0.3 0.2 Anticipatory strategy with delay compensation

5.1. Experimental setup

To demonstrate the influence of delay and the benefits of the anticipatory strategy on
controller stability, we conduct simulations with a platoon of 8 vehicles, of which 7
autonomous ACC vehicles follow a standard exogenous leader. A step function of ac-
celeration is imposed to the leader behaviour and all followers are homogeneous ACC
vehicles. The step function includes a decelerating phase where the leader brakes hard,
representing a situation when vehicles drive into the tail of a jam on highway, and an
accelerating phase where the leader accelerates sharply, representing a situation when
vehicles move out of a jam on highway. In a simulation period of 50 seconds, the platoon
starts from equilibrium conditions meaning they are travelling at the same speed as the
platoon leader and at their desired gaps. The step function of the leader acceleration
profile is set as follows:

• Decelerating phase: the leader starts with an initial speed of 25 m/s, decelerates
with −4 m/s2 from 3 to 5 seconds to 17 m/s and maintains this speed until the
accelerating phase starts at 40 seconds.

• Accelerating phase: the leader accelerates with 1 m/s2 from 40 to 48 seconds back
to 20 m/s and maintains this speed for the rest of the simulation.

Note that in the numerical simulation, the control inputs are sampled at discrete time
steps and there is one step delay in the control for the benchmark scenario.

5.2. Simulation scenarios and parameter setting

Literature showed that the sensor delay is between 0.1-0.3 s, and the actuator lag is
in the order of 0.1-0.2 s (Ploeg et al. 2014; Rajamani 2011; Xiao and Gao 2011). We
test different values of the time delays including those higher than the typical values to
generate string stable, meta-stable and unstable platoons and thus to gain insights into
the performance of the proposed anticipatory controllers in a wider range of conditions.
The full setting of simulation scenarios with different sensor delay and actuator lag values
and control strategies is listed below: To the working of the anticipation algorithm, the
delay values are kept constant within each simulation scenario.
Controller parameters are set as follows: td = 1 s, Tp = 5 s, s0 = 2 m, c1 = 10, c2 = 0.1,

c3 = 0.5, amax = 1.5 m/s2, amin = −8 m/s2. Simulation time step is 0.1 s. The sensor
sampling step size is set at 0.1 s, which is achievable by modern ACC sensors.
The controller parameters have been manually tuned that the controller tracks the

leader speed responsively, results in small overshoots and no oscillation in the benchmark
case without sensor delay and actuator lag (Wang et al. 2014a). An overview of tuning
methods for MPC can be found in (Garriga and Soroush 2010).
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5.3. Performance assessment indicators

The performance of different autonomous ACC platoons will be assessed by simulations.
The most important indicator for individual vehicle and collective platoon performance is
the accumulation of running cost, since it reflects the multiple objectives of the controller.
Particularly, we compare the cost of the first controlled follower and the last controlled
follower (the 7th follower) in different scenarios. The maximum absolute relative speed
and acceleration for the first and last followers in the platoon are also used as indicators
for checking attenuation or amplification of speed disturbance of the leader.
Temporal evolution of applied acceleration, speed, relative speed and gap of all vehicles

are plotted and compared. String stability and instability are (loosely) identified by the
changes in the indicators and the plots.

6. Performance comparison

6.1. Benchmark ACC controller

Figure 2(a)(b)(c) shows the temporal evolution of the actual acceleration, speed and gap
in the ideal case with τS = 0 s and τA = 0 s. Table 2 shows the main indicators of the
platoon performance. As we can see clearly in the benchmark case, the first controlled
follower of the platoon decelerates as a reaction to the platoon leader behaviour. The
subsequent followers in the platoon decelerate consecutively as a reaction to the behaviour
of their predecessors. All the controlled vehicles settle down to the new equilibrium speed
at 17 m/s after about 17 seconds. In the acceleration phase, all the controlled followers
accelerate from 17 m/s back to 25 m/s and maintain the same speed as the platoon leader
and their desired gaps. The behaviours are expected from the mathematical formulation
of the cost function, i.e. the minimum running cost is that the controlled vehicle travels
at the same speed of the predecessor and with a time gap of td.
It can be seen clearly from Table 2 and Figure 2 that the disturbance in the leader

acceleration is attenuated in the benchmark platoon, i.e. the cost, minimum relative
speed, minimum acceleration, maximum relative speed, maximum acceleration, of the
last controlled follower are all smaller than that of the first follower. The total cost for
all the controlled followers is 165.93.

6.2. Negative impacts of sensor delay

Sensor delay has negative impacts on system performance, particularly on stability (Xiao
and Gao 2011). Figure 2 shows the temporal evolution of acceleration, speed and gap of
the ACC platoon with sensor delay of τS of 0.2, 0.3, 0.4 and 0.5 s respectively. It can be
seen from the figure and Table 2 that the platoon performance deteriorates with sensor
delay, i.e. the cost of the platoon increases with the increase of delay. The performance
of the first controlled follower and that of the last follower also deteriorates with the
increase of delay.
As we can see from Figure 2, we do not see a clear difference in the speed profiles with

delay of 0.2 s compared to the benchmark case. Some local oscillations in the acceleration
profiles are observed when the delay increases to 0.3 s, but there is no overshoot in the
speed and gap profiles in deceleration and acceleration transitions. Overshoot in speed
and gap profile is observed when sensor delay increases to 0.4 s. However, the maximum
deceleration of the followers is not amplified with the increase of vehicle indices as shown
in Figure 2(j) and the overshoot in speed profile only increases marginally as shown in
Figure 2(k). The platoon settles down to the new equilibrium state in both deceleration

12
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and acceleration transitions within 20 seconds. This seems like a meta string stable state,
given the fact that the step function of the leader acceleration will be smoother in reality.
As the sensor delay increases to 0.5 s, the maximum deceleration of controlled followers

increases with the index of vehicles in the platoon. The overshoot in speed and gap profiles
increases significantly and string instability is clearly seen in the figure. As a result, the
cost of the first follower, last follower and the platoon increase substantially compared
to the reference case.

6.3. Negative impacts of actuator lag

Figure 3 shows the temporal evolution of acceleration, speed and gap under different
actuator lag values of 0.2, 0.3, 0.4 and 0.5 s. Similar to the sensor delay, the negative
impacts of actuator lag are clearly seen in Figure 3. The cost of the platoon increases
with the increase of the actuator lag. Some local oscillations in the acceleration and speed
profiles are observed when the actuator lag increases to 0.3 s, cf. Figure 3(g) and (h).
Overshoot is observed in the speed profile of Figure 3(k) when the actuator lag increases
to 0.4 s. Nevertheless, the overshoot increases marginally with the increase of vehicle
index, representing a meta string stable state for the platoon. When the delay increases
to 0.5 second, string instability is clearly seen.
Interestingly, at the same value of delay, i.e. τA = τS, platoon cost, cost of the first

follower and the last follower, maximum and minimum relative speed and acceleration of
the platoon with the actuator lag are better than that of the sensor delay, as shown in
Table 2. This is clearly visible when comparing Figure 3(m)(n)(o) with Figure 2(m)(n)(o).

6.4. Benefits of the delay-compensating strategy

Sensor delay compensation

In this section, we show the vehicle and platoon performance when we include anticipation
strategies for sensor and actuator lag in Figure 4(a)(b)(c)(d) and and Table 2. As depicted
in Figure 4(a)(b), with a 0.4 s sensor delay, the local oscillation in the acceleration and
speed profiles becomes much less when the controller employs the anticipatory control
strategy. The platoon cost, cost of the first and the last follower are smaller than that of
the scenario without delay compensation.
The benefits of sensor delay compensation become more pronounced when the platoon

is string-unstable. When the sensor delay increases to 0.5 s, the delay-compensating
strategy leads to significantly better platoon performance, i.e. the platoon cost decreases
from 678.25 to 334.15.
Actuator lag compensation

The effects of the actuator compensation strategy are shown in Figure 4(e)(f)(g)(h) and
Table 2. When employing the actuator lag compensation strategy, the platoon perfor-
mance enhanced substantially. The platoon cost goes down from 258.88 and 359.61 to
225.56 and 245.28 respective when τA = 0.4 s and τA = 0.5 s respectively.
Integrated delay compensation

In the last scenario, we tested the effectiveness of the integrated sensor and actuator lag
compensation strategy. The integrated sensor delay and actuator lag compensation strat-
egy lead to improved performance of the platoon. The platoon cost reduced substantially
from 588.89 to 286.54. This clearly shows the benefits of the delay-compensating strategy
in improving ACC controller performance and the string stability of ACC vehicles.
It is noticeable from Figure 4(c)(i) that without the delay compensation strategy,

the vehicle platoon is string unstable, i.e. the speed error is amplified in the platoon.
Figure 4 (d)(j) shows that the delay-compensating strategy brings the vehicle platoon
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Figure 2. Negative impacts of sensor delay on MP-FR-ACC performance with τA = 0 s.
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Figure 3. Negative impacts of actuator lag on MP-FR-ACC performance with τS = 0 s.
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Figure 4. Relative speed evolution of MP-FR-ACC platoons without and with delay compensation strategy

from unstable mode to stable mode, which leads to substantial improvement in platoon
performance as shown in Table 2.
The simulation experiments presented so far are based on constant sensor delay and

actuator lag. It is possible to include stochasticity in the sensor delay. Additional simula-
tion experiments show that the proposed delay anticipation strategy results in improved
platoon performance and string stability even in case of bounded stochastic sensor delay.

Table 2. Overview of MP-FR-ACC platoons performance indicators
Indicators Benchmark Simple strategy without delay compensation Anticipatory strategy with delay compensation

τS=0s
τA=0s

τS=0.4s
τA=0s

τS=0.5s
τA=0s

τS=0s
τA=0.4s

τS=0s
τA=0.5s

τS=0.3s
τA=0.2s

τS=0.4s
τA=0s

τS=0.5s
τA=0s

τS=0s
τA=0.4s

τS=0s
τA=0.5s

τS=0.3s
τA=0.2s

∑7
i=1 Ji 165.93 290.45 678.25 258.88 359.61 588.19 278.23 334.15 225.56 245.28 286.54

J1 31.36 39.12 44.50 39.18 42.99 44.36 42.85 47.10 38.50 40.63 43.75
J7 19.73 44.63 189.15 36.50 62.36 148.39 40.22 52.44 29.44 33.04 41.77

max |∆v1|
dcc

(m/s)
3.65 4.01 4.32 4.06 4.25 4.31 4.67 4.96 4.26 4.40 4.69

max |∆v7|
dcc

(m/s)
1.53 4.15 7.39 3.20 4.01 6.64 3.01 3.59 2.48 2.71 3.12

max |a1|
dcc (m/s2) 3.61 4.48 4.98 4.29 4.44 4.93 4.04 4.15 3.87 3.90 4.05

max |a7|
dcc (m/s2) 1.52 4.60 8.00 3.36 4.26 7.81 2.64 3.05 2.33 2.52 2.73

max |∆v1|
acc

(m/s)
1.02 1.02 1.09 1.03 1.08 1.09 1.20 1.28 1.09 1.12 1.20

max |∆v7|
acc

(m/s)
0.94 1.29 1.75 1.19 1.41 1.72 1.40 1.61 1.14 1.22 1.41

max |a1|
acc (m/s2) 1.00 1.14 1.25 1.11 1.16 1.24 1.05 1.07 1.03 1.04 1.05

max |a7|
acc (m/s2) 0.93 1.40 1.50 1.26 1.47 1.50 1.26 1.40 1.09 1.15 1.26

7. Concluding remarks

In this paper, we generalized previous work on receding horizon control approach for ACC
systems by including sensor delay and actuator lag in the framework. The mathematical
framework gives insights regarding the performance deterioration mechanism of delay.
Without the anticipation strategy, sensor delay leads to a reduction in the quality of
the estimate of the initial condition for the optimal control problem and actuator lag
increases the mismatch between the system state prediction model and the actual system
behaviour.
We proposed an anticipatory control strategy to compensate sensor delay and actu-

ator lag for MP-FR-ACC platoons. To compensate sensor delay, the approach entails
estimating the (unknown) system state at the current time using the system state in a
previous time, the applied control history and the system dynamics model. The actuator
lag is compensated by including the lag in the state prediction model.
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Systematic simulation experiments are carried out to test the impacts of sensor delay
and actuator lag on the ACC platoon performance. Results verify that sensor delay and
actuator lag reduce string stability of the platoon. Ignoring delay when assessing the
impacts of automated vehicles on traffic flow may lead to over-optimistic results.
Interestingly, we are able to separate the impacts of sensor delay and actuator lag in the

same framework and simulation results show that string stability deteriorates more with
sensor delay than with the same value of actuator lag. No significant string instability of
the ACC controller is observed for sensor delay and actuator lag up 0.4 s, which implies
that the model predictive ACC is fairly robust to small delays in the control loop.
The anticipatory control strategy clearly improves the platoon performance and en-

hances string stability. It has the potential to be implemented in real-time. Future re-
search is directed to the analytic analysis on the string stability criterion using Lyapunov
method with the presence of the anticipatory strategy and simulation test in combination
with lower-level vehicle controllers and nonlinear vehicle dynamic models. In the next
stage, we will investigate the human interaction with the ACC system and combine the
proposed anticipatory control strategy with data fusion methods to deal with noise in
on-board measurements.
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