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Abstract—In this paper, a delay-compensation-based state
estimation (DCBSE) method is given for a class of discretertie-
varying complex networks (DTVCNS) subject to network-induced
incomplete observations (NI10Os) and dynamical bias. The NDs
include the communication delays and fading observationsyhere
the fading observations are modelled by a set of mutually
independent random variables. Moreover, the possible biass
taken into account, which is depicted by a dynamical equatio.

A predictive scheme is proposed to compensate the influences

induced by the communication delays, where the predictive-
based estimation mechanism is adopted to replace the delaye
estimation transmissions. This paper focuses on the prohies of
estimation method design and performance discussions forda
dressed DTVCNs with NIlIOs and dynamical bias. In particular,
a new distributed state estimation approach is presented, ere
a locally minimized upper bound is obtained for the estimaton
error covariance matrix and a recursive way is designed to deer-
mine the estimator gain matrix. Furthermore, the performance
evaluation criteria regarding the monotonicity are proposed from
the analytic perspective. Finally, some experimental congrisons
are proposed to show the validity and advantages of new DCBSE
approach.

Index Terms—Time-varying stochastic complex networks;
Delay-compensation-based estimation; Communication days;
Incomplete Observations; Dynamical bias; Monotonicity aralysis.

I. INTRODUCTION

large number of coupled nodes [10], [12], [37]. Among the
exiting results, both the state estimation and synchraoioiza
problems have gained the primary interest and become two
important research topics for CNs [6], [27], [32]. So far,
a great number of sufficient criteria combined with certain
performance requirements have been proposed to handle the
synchronization problems for CNs with different coupling
impacts [7], [13], [14]. In comparison with the synchroriina
problem, special effort has been devoted on the state dgiima
problems in order to better understand the intrinsic fesgtur

of the networks by properly taking the coupling relatiomshi
and shared information into account [11], [34]. Recently,
the dynamics behaviour analysis of CNs subject to time-
varying characteristics has received increasing attentin

the estimation of node’s state [11], [17], [18]. For example

a new estimation scheme under the error variance constraint
has been presented in [11] based on the recursive matrix
inequality technique, where both the changeable typology
structure and quantized measurements of time-varying CNs
have been taken into consideration and examined accoydingl
In [19], the recursive estimation method under the error
covariance optimization has been developed, where both the
time-varying characteristics of concerned CNs and stdithas
impacts of the noises have been adequately reflected in the
proposed estimation strategy for the first time. Subsedyent

Over the past years, the investigation of the complex ngfie estimation method in [19] has been extended to propose
works (CNs) has become an emerging research topic due@ yecursive estimation algorithms for time-varying CNthw

its strong advantages on modelling/analyzing the pradics
tems, such as biological networks, power grid, traffic nekso
and technological networks [35], [40], [41]. Accordingly,

random/nonlinear coupling influences in [28], [29].
As it is well known, the practical systems are commonly
influenced by different type disturbances/inputs, whichuth

rich body of analysis strategies has been given to understag, properly handled during the system modelling and armlysi

the structure and dynamical characteristic of CNs with
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[9], [15], [46]. Consequently, special attention has beeren

on dealing with the joint estimation problem of unknown
inputs and system states [24], [38]. For example, some @ptim
estimation criteria in the minimum mean square error (MMSE)
sense have been established in [25], [44] for linear stdithas
systems, in which both unknown inputs and system states
have been well estimated within a unified framework. In [21],
as a special type of unknown inputs, the stochastic bias has
been modeled by a dynamical equation. Subsequently, ttee sta
estimation problems have received ongoing research iitent
for dynamical systems with stochastic bias [22], [23], [42]
To be more specific, the two-step estimation schemes in the
MMSE sense have been given in [20] for system with unknown
dynamical bias and in [23] to deal with the incomplete
information situation of dynamical bias via the adaptivechme
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anism. Very recently, the state estimation problem under therformance evaluation? To be more specific, the NIIOs in-
minimization consideration of the estimation error coaade cluding communication delays and fading observations are
has been dealt with in [42] for two-dimensional stochasti@ken into account within a same framework, in which a
systems, where a locally optimized estimation criteriois hduwybrid compensation method is proposed to attenuate the
been developed against the dynamical bias and the randiompacts caused by NIIOs during the estimation algorithm
parameter perturbations simultaneously. So far, the desidesign. The dynamical bias disturbances are described and
problem of state estimation algorithm has not been discussestimated as a by-product when estimating the node states.
for discretetime-varying complex networks (DTVCNSs) with In addition, the algorithm evaluation criteria are provde
dynamical bias despite its practical importance, which dé further reveal the engineering insight via the theogdtic
serves further investigation. analysis. The major contributions can be highlighted fromm t

In the networked communication environment, the tran$sllowing three aspects. 1) The state estimation problem in
missions among different nodes/components may undergo the variance-constrained sense is, for the first time, disml
network-enhanced complexities due to the limited capgtofi for DTVCNs with NIIOs and dynamical bias. 2) Both the
communication channels [8], [33], [47], [48]. As such, acco NIIOs and dynamical bias are well discussed, and a dist&rtbut
panying with the increasing popularity of networked syssemDCBSE algorithm is developed accordingly, which possesses
the analysis problems with respect to missing measuremeatsecursive manner applicable for online implementatidms.
and communication delays have become active researctstomarticular, the active compensation way based on the gieglic
[4], [26], [39], [45]. For example, the state estimationiplems idea is proposed and the communication delays are well exam-
have been tackled in [31] for time-invariant neural netvgorkined accordingly. 3) The monotonicity analyses are pravide
subject to multiple missing measurements and in [3] fordardo discuss the impacts from the fading observations destrib
and diverse road networks with missing data. To cater thg different modelling ways onto the estimation performanc
time-varying feature, new optimized estimation scheme &inally, some comparative experiments are made, and beth th
the recursive manner has been proposed in [19] for discretedidity and advantages of newly proposed DCBSE approach
time CNs subject to missing measurements. Nevertheless, iare illustrated.
noticed that most available state estimation algorithnasres The rest of the paper is arranged as follows. In Section
the missing measurements can applicable for handling theboth the problem formulation and preliminaries are fhyie
completely lost or successfully transferred cases onlg,the introduced, where a new delay-compensation-based estimat
estimation methods corresponding to fading observatiatis wis designed by taking the impacts of the communication
partial missing measurement are very few [16]. Apart from tidelays and fading observations into account. In Section IlI
missing/fading measurements mentioned above, the egéstethe recursions of estimation error covariance matrix asd it
of the communication delays is another reason, which causekted upper bound are provided, moreover, the optimized e
the deterioration of the estimation accuracy [1], [43]. Hoer, timator gain matrix is presented by solving a recursive matr
it is worthwhile to point out that most of the existing statequation (RME). Subsequently, in Section 1V, the perforagan
estimation methods have relied on the delay informatioly onévaluation problems are conducted to discuss the mondipnic
and the potential impacts of the communication delays amoagalyses of the presented state estimation algorithm amd th
different nodes have not been taken into account [2], [Horresponding theoretical proofs are proposed accongingl
For the purpose of performance improvements, the predictivThe simulations with comparative discussions are given in
based idea has been preliminarily introduced to deal wigh tisection V to demonstrate the effectiveness of new DCBSE
control problems subject to communication delays [30]][36algorithm and some conclusions are pointed out in Section
To the best of our knowledge, few methods are available 4.
handle the state estimation problem for DTVCNs with fading Notations. Throughout this paperR™ stands for then-
observations and communication delays. Consequentlse thdimensional Euclidean space. For a matdix A7, A~ and
is an urgent need to address the state estimation problem for> 0 denote the transpose of, the inverse ofA and
DTVCNs and develop a predictive compensation estimatioh being a symmetric positive-definite matrix, respectively.
scheme accordingly. sym(A4) denotesA + AT, o represents the Hadamard product,

Inspired by the aforementioned discussions, this papervidiere[A o B];; = A;; - B;;. E{-} denotes the mathematical
concerned with the delay-compensation-based state estimegpectation of *. Furthermore, we assume that the algebraic
tion (DCBSE) problem for a class of DTVCNs, where thealculations are compatible when the matrix dimensions are
effects from the communication delays, fading observationot specified.
and dynamical bias disturbances are handled. Compared with
existing state estimation problems, the major challendes o Il. PROBLEM STATEMENT AND PRELIMINARY
conducted DCBSE problem lie in: i) how to better characteriz
the network-induced incomplete observations (NI1Os) al we 1 _
as dynamical bias disturbances and examine the corresmpndith dynamical bias:

In this paper, we consider the following class of DTVCNs

influences on the estimation performance accordingly-oiy h N
to propose an efficient estimation scheme applicable for the Ti k1 = Ak Ti g + ij,kl“xm + B kb i
real-time calculation? and iii) how to develop an analysis j=1

method with rigorous theoretical proof on the estimation +D; 1.0; k., (1)
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Yik = VirCixxigp +mik, 1=1,2,--- N (2) information transmission, the communication delays betwe
the nodej and the nodé are considered, which are denoted
by 7;;. As such, the estimation at the delayed instant can be
available only during the estimator design. For the purpose
of estimation accuracy improvement, the following preidet
compensation rule is employed:

where z; ;, refers to then,-dimensional state of the-
th node, z; o represents the initial value with mean o,
yi, denotes then,-dimensional measurement vectér, =
[ wijk |y y IS the coupling strength matrix, anfl =
diag{y1,7y2, -+ .} is the inner coupling matrix¥, , =
diag{ti1,k, Yo,k - Yin, k} depicts the phenomena of the B kg 1lh—ri; = Ajkmri; Tj ks
fading observations, wherg;; , (¢t = 1,2,--- ,n,) are the
random variables over the interval;;, b;;] with 0 < a;; <

b,y < 1. Moreover, the mathematical means and variances
of random variables);;  are zﬁit,k and @t,k, respectively.
6, andmn; ; represent thep-dimensional process noise and

Tj k—rij+2|k—1i; = g k—7i; 41T 5 k—1;;+1|k—7i; 5

Tjp-1lk—r; = Ajk—2Tjk—20k—7;>

ny-dimensional measurement noise, whéi¢d, ,} = 0, T klk—i; = Aj =184 k—1lk—r; - ©)
E{nix} = 0, E{0; k9 K= Qek and E{n;, kmk} = Qn A Tid

with Q7, > 0. The dynamlcs model of the random bias iefine Ajr;, = tHI Aj k-t According to (9), one has
described as follows: & kik—ry; = Ajr,2jk—r,, then the predictive estimation

biss1 = Fiubis + Bi, 3) % kk—r,, atthe currentinstantis derived based on the delayed
estlmauon:vj,k_m.
where b;, € R™ depicts the bias of unknown magnitude. For thei-th node, the following state estimator under the
Bir denotes the white noise, whef€{3;} = 0 and predictive compensation mechanism is constructed:
E{Bi 1Bl = Qf,k with Qf,k > 0. Aik, Bik, Ciky Dig N
and F; ;, are known matrices of proper dimensions. . i Pva R
The random inner coupling m%tr§< is described by: Bigrr = (Ai F win Dk + Z wig kL k=,

J=1.j#i
I' =T+ AT, (4) +Kik(Yik — Vi kCikTi k), (10)
whereT = diag{%1,72,--- ,9~} is the nominal inner cou- where #; ; represents the estimate of statg; at the time
pling matrix, andAT" represents the random parameter pertustepk, W, ;, = diag{ti1 x, Viz k- - - ,d_imy,k} and;, 1. is the
bation satisfying mathematical expectation of the random variable, (¢t =
= = = _ 1,2,--+,n,), and K; i is the estimator parameter matrix to
E{AT} =0, E{ATATT} <ArI 5y ook b
{al} o B b=AL ©) be determined later.
in which % is a known positive constant. Remark 2: In order to improve the estimation accuracy,

Remark 1. It is worth pointing out that the couplingthere is a need to examine the network-enhanced compkexitie
strengthens among the state elements are differepts# ~;. It should be pointed out that the hybrid compensation idea is
Hence, the random inner-coupling strengthens charaeteripresented to attenuate the effects from NIIOs when degignin
by (4)-(5) are introduced to present more flexibility of thehe new time-varying state estimator in (10). To be more

CNs modelling. specific, the communication delays among the different sode
Subsequently, set are taken into account and those impacts are actively compen
_ T _— sated in (9) by employing the delayed estimation infornratio
Lik = [ Tik ik ] » Cik = [7 Cig 0 ] ’ properly. In particular, it is worthwhile to mention that aw
A = [ Air Bk } I [ r o ] predictive scheme is presented basedigp ., at the time
" 0 Fu |’ 0 0]’ stepk — 7;; and the desirable estimatidn) .., at the time
- AT 0 Dix 0 stepk can be obtained iteratively. Accordingly, this predictive
Al = [ 0 0 ] , Dig= [ 0o I ] ) based scheme is given to compensate the influences caused by
T s the communication delays during the transmissions amosg th
Gik = [ ik Bin } (6) adjacent nodes. Moreover, the mathematical expectatign

Then, it follows from the above notations that the followinds also introduced in (10) to reflect the fading observations
compact form can be obtained: In this paper, such a hybrid compensation estimation man-

ner, which contains the predictive and probability-depard

N
- - = SN mechanisms, is developed to improve the estimation algarit
. = A, . (T + ADZ: DiwCin, (7 ’ ) . )
Tik+1 ik ik + ;w”’k( + ATk + DikGins (7) performance and the corresponding estimation accuracy com
L arisons under different cases of NI1Os will be provideédat
Yik = VikCikTik + Mik- (8) P P

Remark 3: The new state estimator in (10) under the predic-

In what follows, we assume théy i, 5; «, Vit.k, 7.k Ti0 and tive compensation mechanism has the following featurekei)

the element ofAT" are mutually independent iy ¢t and k. communication delays among the different transmissiom-cha
Next, the time-varying state estimator in the distributedels and the fading observations are addressed within same

manner is designed for each node based on the relafemimework, where a hybrid compensation estimation manner

measurements and adjacent node’s estimation. During theprovided; ii) a Kalman-type estimator is constructeddoas
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on the predictive estimation and the locally optimal estiora = Ai,kfi,kAZk +sym(&; 1)
scheme is expected, which performs an attractive advantage N N T
in the online implementations; and iii) the dynamical bias +E{(ZWij,kffj,k) (Zwij,kf@k) }
disturbances are discussed and estimated simultaneously. j j

Definee; k1 £ Zik+1 — Ti k41 as the estimation error and N N T
P12 E{eixiae],,,} as the estimation error covariance {(Zwij,kAffj,k> (Zwij,kAffj,k) }
matrix. Next, we are in a position to state the major objec- j=1 j=1

tives of the DCBSE problem for DTVCNs with NIIOs and
dynamical bias, where the following three requirements are —i-Zsym Frik) + Di kE{G 1¢; k}Dl k> (13)
guaranteed simultaneously. r=1
1) Design the state estimator (10) of a recursive manngpere
and provide a sufficient criterion to look for an upper bound
covariance matrix?; ;41 with respect toP; ;4 1. & .= E 'z
2) Present the expression form of the estimator parameter " Aik Zw” kL Lok ’
matrix /C; 41 in order to minimizeP; 1. .
3) Provide the theoretical proofs of the monotonicity analy F A EJ i =
; . o ik = A T wij kAT ;
ses between the fading observations and estimation agcurac ok - " ; b b

[1l. M AIN RESULTS Faig = ikE{fikCiTk}DT ks

In this section, according to the definitions, both the state Pz N ARz r
covariance matrix and the estimation error covarianceiratr F3ik = Z“” kL Lk Z“”»k Ljk '
are calculated. Subsequently, a locally minimized uppendo

is given regarding the estimation error covariance and the
9 9 9 F41k E{(Zwmerjk)gk}

J=1

recursive expression form of the estimator parameter ratri
is provided accordingly. N

To begin with, let®,;, 2 U, — ¥, with ¥, =
diag{®i1 &, Vin,ks +* +WPin, k- Then, it is straight to testify Foie =E Z“” RATZ; )Gt DY (14)

that E{¢is s} = 0 (t = 1,2,---,n,). Next, it follows from
(7) and (10) that; ;.1 can be given by Next, it can be observed that

- _ N
eikt1 = (Aig +wii kT — Ki Vi rkCik)eik sym(Eir) < €i,kAi,kXi,kAZk " 61-_111['3{ <Zwij,kffj,k>
i—1

N
—Ki 1 Vi kCi kT g + Zwij,kAFfj,k N -
=1 X <Z wij_,kfijk) }, (15)

i=1

+ ) wiikD @k — & kfp—r;)

=1, in which ¢; , > 0 are constant scalars. Moreover, we obtain
+D; 1 Cik — Ko ki k- (11) N N T
Firstly, the recursion of the state covariance is computed. E{ (Zwij-,krijk) (Zwij,krfj,k) }
=1 =1

Secondly, the recursive expressions of estimation ernegairto

ance matrix and its upper bound are presented. N 9 =3 =7
Theorem 1. Consider the DTVCNSs (7) with the state esti- < Nzwij,kFXj,kF g (16)
mator (10) For the positive scalatgy, the state covariance =1
matrix X; 1.1 = E{%; satisfies: N . N . T
k41 = {7 k+1$z k+1} E{ (Zwij,kAFfj,k) (Zwij,kArfj,k> }
Xipy1 < (14 €i,k)Ai,kXi,kAi7k j=1 j=1
N N
AN+ e )Y wh  TX; I SN Wl A max (Xjx)1. (17)
j=1 i=1
N Furthermore, we can show tha},; ;, (r = 1,2,---,5) in (14)
+N Z“u W)‘max( 1)+ D, sz kD are all zero terms. As such, it follows from (13) and (15))(17
J=1 that the inequality in (12) can be obtained readily. [ |
£ Xkt (12) Theorem 2: Consider the DTVCNSs (7) with the state esti-
whereQS, — diag{Q? ., ka}. mator (10). The recursion equation Bf ., can be expressed

Proof: According to the definition of state covariancé)y:

matrix, it follows that P k11

Xipr1 = B{Zi k118 1} = (Aig +wii il = Ki kWi 1Cik) Pri(Ai g + wi i T
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_ T
— K 1V, 1Ci + K:l E \IJZ CZ xz xl C IC - A
k ; W' RV CokT T . k) X(Zjk — T ki TU)] },
+E{ (ZWij,kAPfj,k) (ZWij,kAPfj,k> } Grie = B{Ki 1 Vi 1Ci i k¢ DY
j=1 j=1

Gsie = E{K kWi 1Ci kT kKT 1}

N
+E{ [ wij kD (T — g1 o )} a . al L

N ’ j=1 . j=1,j#i
X Wi kD@5 — & bl . .
{ ._Z. . g,k ( J.k 5,k|k u)} } X(Zj,k — & b )] },
j=1,j#i
+sym(Hi k) + Di,ngkDg:k + KinQ7 Kl (18) N
101 k — szj kAFIJ k <1 kD’L k
where
. - N
Hik = E{(Ai,k + wii kI — Ki kWi kCik)eik Gk = E{ (Zw” kAI‘a:J k>771 W k}
N T N
X ik D(Z e — B bl b . (19 ~
|: -72- _w g,k (Ij,k Lj K|k ij )} } ( ) 9121 = E{ [ Z Wi F(:Z?J k— x] klk—7i; )} CTkDijjk}’
=L j= 1#1
Proof: Based on the definition aP; ;11, we have
Gi3ik { [ Z Wij, kF(IJ E— x],klk Tij )} nTkICg:k}’
Fikt1 J=1,5#
= (A g + wii kel — Ki Vi 1Cik) Pige (Ai ke + wii 1T Giaig = ’Di,kE{Q,km,k}Kg:ka

K T 1 C )T , U, C; nits w2l CE T VT : . o ;
KinWikCik)" + Ko fB{W: kCi i 1 75, Cip Wi g 0 and#,; . is denoted in (19). Subsequently, it is easy to derive

N . N . \7* the recursion in (18). n
+E ZWU&AF%’C ZMNAF%’JC Now, we are in a position to look for an upper boudgy 1
J_l J=1 of Q; r+1. Accordingly, the locally minimized upper bound is

obtained by resorting to the mathematical induction method
+E{ { Z wij, ’“F(% k= Zjkle-r, } and completing square technique, moreover, the estimator g
]\J[ Lizi matrix &C; 5, is parameterized via the solution to an RME.
" { Z wis kE (s — ] } Theoran 3 _an5|der the recursion of estimation error co-
e s 5 Jklk=7i;) variance matrix in (18) and lgt; , > 0 be constant scalars.

¢ T - Under the initial condition; o = Xi,o > 0, if the following
+D; in kDi pt IC; kQ?k’C’L kT sym(Hi,k) RME

- [ + + 7 - 1, = T
sym(Gix) + sym(Gzik) + sym(Gaie) = sym(Gusi) Tikrr = (14 pir) (Aix +wis kD = Ki o Wi kCik) Tik
—sym(Gsi,r) — sym(Gei,i) — sym(Gri k) + sym(Gsi k) = - 7
X (Aj i+ wii kI — Ko 5V 1Cik)
+sym(Goi x) + sym(Gioik) — sym(Giuik) N
+sym(Gioik) — sym(Gizi k) — sym(Giai k), (20) +2(1+ u;,i)(N -1 Z wl-zjyk
where = N AjT:L#i AT
- ) XU( Xk + gkl k—ri; B pofo—r,, )T
Grige = E{(Aik + wii k' — Ki Wi kCik)eik Wik o (ConinCh)]
Xkacgk‘I’Zk’CZk}v N
o _ N7 2 Amax (Xj) T
Goik = E{(Ai,k + wii ol = Ki kUi kCik)eik + szzgw”’k (Xx)
N T +D; Q¢ . DF . + Kok Q1 KT (21)
X (Zwij,kAFfj,k> }, )
e has a solutior; 1+ > 0, then we have
Gaip = E{(Aix +wii T — Kin@inCin)einC, DI}, P g1 < Tk (22)
Gaie = B{(Aix + wiixl — Kix Wi kCix)ei w13 i} Furthermore, it is shown th&F ., can be minimized ifC; .
~ N ~ T is designed by
Gsik = E{/Ci,k\l’i,kci,kfi,k( w; ‘,kAFf‘,k> }, - o
j; ! ! Kir=[(1+ pie)(Aix + wii,kr)ﬁ,kcgk\l’zk}:iﬁ (23)
N with

Gei ke = E{/Ci,k\i’i,kci,kfi,k[ Z Wij,kf _ _
j=1,j#i Ez‘,k = (1 + Ni,k)wi,kci,kﬁ,kczr)szk + Q?,k
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+\fli7k o (Cikai,kCiT)k), Subsequently, the following inequality can be readily ob-
U = diag{Wit ks Yines - > Viny ke }- (24) tained:

N
Proof: The proof of this theorem includes two steps. That IE{ [ Z wi-kf(f- K — &kl .,)]
is, an upper bound for the estimation error covariance igyfirs ’ » ST
derived and a locally minimized upper bound is given in terms N T
of the completing square technique. In addition, the e)gioes =, .
. .. . X ii kD (T — X5 P

form of the estimator parameter matrix is characterize@das _ﬂz:#w 3L (& = Tj k)
on the solution to an RME. = N

Based on the property of the Hadamard product, the second N—1E 2 Pz 7l
term in (18) equals to 2 ) D Wil (@i

j=15#i

J=1,5#i
Ko kB, 1 Cin @ CEOT AT X A =
k { k k kL kY k *q k} i,k +xj,k\k77ijx3jk|kfrij)FT
- ’C’L k[ 1ko (C’L sz kcz k)]lcz k> (25) N
where W, = [ B{tystus} Jny, x n, and o is the  =2(N—-1) > w? T(X;k + & ury, 1 gpr, I
Hadamard product. Notice that, , (¢t = 1,2,---,n,) are j=1,j7i
mutually independent in differestandt. Therefore, we have (29)
U, x = diag{i1 k. Yio ks s Viny, k- )
Together with (5), one has Together with (28) and (29) leads to
N . N . T P 1
E{ <;wij’kAFIj’k) (;wij’kAFIj’k> } < (T4 pige)(Ai g + wii,kf — KixWi kCix)Pik
N X (Aig + wii kL — Kip Wi xCig)"
< NE{ waj,kAFfj,kfkaFT} i k[ Wik 0 (Coe Xk CL)IK T,
j=1 N
N = 2 v —1
- +NT )Y wij g Amax (Xj k)L +2(1 + g, )(N = 1)
<NTY W Amax(Xj )L (26) ; ! ’
j=1
Moreover, the fifth term in (18) is tackled as follows: X Z wij, kl“ ikt Zj kk—7,, :ﬁfk‘k_m)
sym(Hs 1) Jj=1,j#1
i, o +D; 1 QS DF, + K 1 Q7 KT, 30
< i i (Aige + wis kT — N 1K 16Ci k) Pike #akDu R (30)
< (Ag e+ wii kT — XipKikCik) " After the straightforward calculations, we arrive at
N
. . Py < Tigyr,s (31)
+,LL1 éE{[ Z wij_,kl“(:cjyk — Ij,kk—dij)] k41 k41

G=1,j%i whereT; ;41 is denoted in (21).

Finally, 7; »+1 in (21) can be reorganized as:

N T
X{ Z wij,kr(fj,k—ij,mk—d”-)} } (27)

j=1,5#i Tik+1
with . > 0 being constant scalars. By taking (18) and (25)- = (1 + si) (Aik + wii s I) Tor(Aik + wiin )"
(27) into account, we have the following inequality N
+2(1+ (B
Pi,kJrl Jj=1,5#1
<1+ Mz',k)(Az‘,kj— wu‘,kli— Ki Vi kCi k)P xT(X 1 + Ij,k\k—nﬂj,mkfnj)fT
x (A + wii kLT — Ky x0; xCig) " N
Kk [k 0 (Con Kok CEOVCE, +NT Y i i Amax (X0 + Dy Qs Dl
N =1
HNT D Wl Amax (X )] (14 i) (Ai e + wis kD) Tk CL 0T KT,
=t N — (L4 i) Ki U5 1 Ci e Tiie (A g + wii 1 )T
- . . Jr . . - T 1,7
+(1+ Mz‘,%)E{ [ > wii kT (&k — fj.,kkm)] Rk [+ i) Wi CoaTin i Wi
ot +Wi g0 (CinXinCly) + Q71K
N T = o
= . = (1 + pire) (Aike + wii k1) Ti 1 (Ai e + wii 1 1)
X { | Z .wij,kl—‘(xj,k - wj,k|knj):| } N
e F2AL+ ) (V= 1) Y

+Di,kQ§7sz:k + /Ci,kQZk’CiT,k- (28) J=1,j#i
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xT (X5 + T bk, fgrk\k—m) For the ease of the implementation, the following DCBSE

N algorithm based on the predictive scheme is outlined, where
+N’72wfj,k/\max(?(j,k)1 + Di,ka,kDiT,k the parameter selection and updating way are summarized.

j=1

. B Algorithm 1: Delay-Compensation-Based State Estimation Agorithm
+(/Ci7k — (1 + pig)(Aig 4+ wi kD) T xCL UL, Step 1. Give the initial conditions and parameters, and/set 0.
o Step 2. Obtain the predictive ternt; 15, by (9) based on delayed

XEZ&)Ei,k (’Ci,k = (L4 ) (Aik + wii k1) estimationd; .,

Step 3. Design the estimator paramet€r; 5, by (23).

— _\T = Step 4. Obtain the upper bound matrices; and7; accordin
T -1 2 D pp &S k11 i k+1 g
Xﬁ,kci,k\lli,k:‘i,k) - (1 + #i,k) (Ai,k + Wii-,kr) to the parameter update formulas (12) and (21), respegtivel
T =7 —— 1= o7 Step 5. Compute the estimation; ., according to (10).
Xﬂ,kci_,k\l’iyk:iyk ‘I’i,kci,kﬂ,k(v‘li,k + Wii,kr) ) Step 6. Settingk = k + 1, and go toStep 2.
where _ ) )
_ _ S , Remark 5: As illustrated in Algorithm 1, based on (9) and
Eik = (1 + pi) VirCikTinCip Vi + Qi g the RME in (21), the predictive estimation tetiny, ., and
4+, 0 (ConXinCh). the estimator parametéc; , can be obtained easily. Then,
’ the addressed DCBSE problem for DTVCNs with NIIOs and
Next, let ;

dynamical bias is solvable. Note that the desirable parammet
Kir = [(1 + i) (Aig + wii’kﬁ)ﬁ_’kcfkquk}gi—,;, are ayailable via tes.tifying the feasibility of some fordiana-
trix difference equations. Consequently, the develope8SE

Then, we have the locally minimized upper boufifl+1  gcheme within time-varying framework is satisfactory foe t

denoted by requirement of online applications.
Tik+1
= (1 + pi)(Aip + wis o D) T (Aige + wii 1 T)T IV. PERFORMANCEANALYSIS OF ESTIMATION METHOD
N In this section, the algorithm performance analysis is con-
+2(1+ py (N = 1) Z wfj_’k ducted, where the monotonicity of the new DCBSE scheme is
j=1,j#i shown.
xT( Xk + 2 T ) For ease of illustration, let the random variablég ;.
J.k .77k3|k3_7—1ijxj,k}|k}—T1,j . - ’
N (t = 1,2,---,ny) be ¢, with E{yp;x} = tx and
- E{(vir—1i ik — i k)T } = ;1. Moreover, the relation-
+N72w?j,k)\maX(Xj-,k)I =+ Di,inkDZk {(w ” w kz(w » dj 7k) } w o

ship between); ,, andtr(7; x+1) is discussed aéi,k is fixed.

j=1 . -~ .
. - To further provide the monotonicity analyses, the follogvin
. 2 . .. - T T =—1 . ]
_(1 + /Lz,k) (Ahk + Wu,kr)ﬁ7kci,kqji,k*~i,k lemma is helpful.
XU, 1Ci x Tik(Aig +wii k)T, (32) Lemma 1: For the matricesd, B, X as well asY with

which completes the proof of this theorem. proper dimensions and the varialile R, one has

Remark 4: So far, a new optimized estimation scheme has

d
—tr(X +tY) =tr(Y
been given for DTVCNSs subject to NIIOs and dynamical bias. dt (X +1Y) = tr(Y),

To be more specific, both the communicatic_)n delays and fading itr[BT(X L tY) LA
observations have been adequately taken into accountewher dt
predictive-based mechanism has been proposed to compensat = —tr[BT(X +tY)'Y(X +tY) LAl

the potential influences caused by the communication delays . deo= .
e . L Theorem 4. If the occurrence probability; ;. increases, it
Subsequently, both the predictive-based estimationnmébion . . . LT
is observed thatr(7; ;+1) is non-increasing.

anq ava_llable probability _of fading observ_at|ons have_ been Proof: Notice thatZ,  in (24) andT; ..., in (32) contain
actively introduced to design a new recursive state estimat, - e :

. o the scalan); . Then, it follows from 1 that
It should be noticed that some positive scalass, have '
been introduced in Theorem 3. In the subsequent estimation  dtr{7;r1}
algorithm implementation, the parameters; can be fixed dop; i
and then adjusted to enhance the solvability of the proposed dtr . 4
DCBSE algorithm. Compared with the conventional Kalman ~— —dih' f {(1 + i) (Ai ke £ wii k1) Ti gk (Ai g + wis 1 T)
estimation algorithm, the newly proposed DCBSE algoritem i ' N
allocally optimal one, Where a locally m|n|m|;ed upper t?ound +2(1 + /Li_;i)(N ~1) Z ij i
with regards to the estimation error covariance matrix has ' ’
been found and the desirable estimator gain matrix has been F(x, . T
parameterized in terms of the solution to an RME. The major XD( Xy + &5k, xﬂ'vklk*m)

J=1,j#i

reason lies in that it is impossible to obtain the exact vaiue = ) ¢ T
the estimation error covariance matrix due to the existarice +Ny Zwij,k)‘max(xj,k)l +DikQ; 1 Di
NIIOs. As such, an alternative estimation approach has been j=1

proposed to achieve admissible estimation requirements. —(1+4 ui,k)QzZZk(Ai,k + wii_,kf)ﬁkcka;;
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XCi kTir(Aig + Wii,kf)T}
= tr{ —2(1 + pi )i g (A + wii,kr)ﬂ T=: ;i
¥ Ci ik To(Aig + wis 1 T)7
2(1+ p4,0) 202 4 (A o + wis i D) Tk CL S}
x[(1+ Ni,k)i)i,kci,klri,kcgk}
XE;;iCi,kTi,k(Ai,k + wii,kf)T}-
Adding some zero terms to the above equation, one has
dtr{Tiks1}
d;
= tr{ —2(1 4 pip) 2 i (Ai g + wis kD) T, kClLE; k
xCix Tik(Aig +wiz k)T
+2(1 + i) *Pi g (Ai g + wii,kf)ﬁ,kcng;;
x[(1+ ui,k)lﬁzkci,kﬁkcgk + Q7
+, 50 (Clszkcsz)]E:]iczk,Ek(Alk + wii kD)7
—2(1 4 i )i i (Ai g + wn,kf)ﬁ,kcng;;
x| ikt W, 10 (Ci,kXi,kCZk)}
XE;,icz‘,kTi,k(Ai,k + wukf)T}
After the simple algebraic calculation, we arrive at
dtr{Ti gy}
d; i
= tr{ =21+ pig) Vi g (Ai g + wii,kf)ﬁ,kcng;;i
x| ieT U, p 0 (Ci,kXi,kcgk)]Egéci,kﬁ,k
x (Aik + wii,kf)T}v

which leads to

(33)

dtr{T;, k+1}
dd}z k

Consequently, it is concluded tha{ 7; 1.1 } is non-increasing
whenv); ;, increases. [ ]

<0.

As a special case, the same assertion can be obtained when
;.1 IS governed by the Bernoulli distribution, which is shown

in the following corollary.

Corollary 1: If 4, ;. is a Bernoulli distributed random vari-
able and its meany; ;, increases, we can also obtain the fact

that tr(7; r+1) IS non-increasing.
~ Proof: In this case, we havé;; = il and W, =
i k(1
dtr{Tik41}
d;
= ‘51"{ —2(1 + pi )2 i g (Ai g + wii,kf)ﬁ,kCEkEZ;i
¥ Ci ik Tok (Aig + wig 1 T)7
(1 + i) 207 1 (Ai e + wis, WD)T, kClTk:l ;
[2(1 + g, k)?ﬁz kCikTi, kCZ et (11— 2¢i,k)
O(Ci,kXi,kCi,k)]E;;ici,k'ﬁ,k(fb,k + wii,kf)T}

- 1/31-7,6)]. Along the same line of Theorem 4, one has

< tr{ — 2(1 4 i p)* i g (Ai e + wii kD) T nClLE
¥ Ci ik To(Aig + wis x T)F
(14 i) Pik (Ai g + wis kT T kCHE
x [2(1 + ui,k)&zkci,k'ﬁ,kcm + 29 k
(1= i) o (Cind;kCly) +20Q7,

—tipl o (Ci,kXi,kCZk)]E;;ici,kﬁ,k(v‘lz‘,k + wu‘,kf)T}
tr{ — (14 pige) i k(A g + Wukf),];kclTkE;;i

[P 0 (Ci,kXi,kCZk)]E;;ici,k'ﬁ,k(flz‘,k + wn‘,lj)T}
<0. (34)

As such, it is concluded thatr{7; r+1} IS non-increasing
when; ;. increases. ]
Remark 6: Compared with some existing estimation results,
this paper proposes a mathematical analysis method to dis-
cuss the monotonicity performance of the developed DCBSE
algorithm with regard to the fading observations. Partidyl
in Theorem 4 and Corollary 1, the theoretical proofs have
been provided to reveal the monotonicity relationship leetw
the fading probability and the estimation accuracy. As ghow
in the above analyses, it follows that the estimation aayura
becomes worse when the fading observations are severe. That
is to say, the estimation error is larger if less measurement
information can be utilized in the estimator side, which is
indeed consistent with the essential intuition in the pcatt
engineering.

V. AN ILLUSTRATIVE SIMULATION

In this section, the following simulation experiment is
conducted and the usefulness of newly DCBSE scheme is
discussed.

For the DTVCNSs (1)-(2), consider the following related
matrix parameters:

A [ 0:35+0.35cos(k) 0.52
| ~1.38 1.55
[ 065 0.5
Az = | —0.05 —0.75 } ’
Ao, — | 086 0.72+0.3sin(k)
ST -0.25 0.84
[ 0.31 0.26 0.38
D= | 0.32 } Do = { 0.22 } Do = { 0.40 }
(11 09 0.65 0.98
Bue= | 043 —0.91 }  Bei = [ 0.37 0.56 }
[ 052 —0.19
Bsk=| 131 0.3 } Cre=[16 15 ],
Cop=1[17 19],C5p,=[18 15],
0.51 0.78 0.46 0.48
Fue= [ -0.3 0.6 ]’FM B [ 0.4 0.36 }
049  0.58
Fo = [ 0.63 —0.16 }
Moreover, the other parameters are chose By =

diag{0.25,0.25},5 = 0.01, w; x = 0.5 (i # j) andwy j, = 1
(i=1,2,3).
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During the simulation experiment, choose the initial cor
ditions asrio = [2 1]T, Too = [3 1]T, T30 = [1 —4]T,
bro = (117, oo = [11]7, bso = [-1 —1]", Tip = 51,
5,0

40 . . . .

Typ === @}, (Case I) — — — &}, (Case II)‘

20 [ - b

x3,, and its estimation

Xi,O = fi,Oi'?o with fi)o = b y ik = 0.5, Wik = 1.5,
’ 7,0
Q). = 0151, Q¢ = 025 Q! = 02 (i = 1,2,3), S
di0 = 11117, andd;, = [02020202" (k < 0) o 0 W 0 W ® 0 ® 0w
(i = 1,2,3). In order to depict the estimation performance Hime step
40 T T T T

MSE: denotes the mean square error (MSE) for the estimati
of z;, and is calculated by Zsj\il(xﬁfz) - iﬁfz))z, where
M = 1000 is the run number of the simulation test ant
al, (I =1,2;i = 1,2,3) denotes the-th element ofz; .
Moreover, the sum of the MSH: = 1,2, 3) is denoted by
S M S E " 0 0 l‘O 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 I;O 9‘0 100
To validate the efficiency and advantages of the propos kitime step
DCBSE algorithm, we compare the cases with/without predic-
tion compensation, i.e., Case I: the state estimation uttaer Fig. 2. The curves ok3 , and @ .
DCBSE algorithm; Case IlI: the state estimation without the
updating rule (9). Accordingly, the simulation results and
aiy = 0.5, by = 1 and7;; = 5 are presented in Figs. 1-
5, where Figs. 1-3 plot the state trajectories of 3 nodes a
their estimations with/without prediction compensatibiy. 4
depicts the log(MSE of 3 nodes and their upper bounds
under Case |. The comparisons of SMSE with/without del¢
compensation under 1000 iterations are shown in Fig. 5. It
observed from the simulations that the new DCBSE algorith
in Case | performs well than the one as in Case Il. The maj
reason lies in that the predictive compensation mechani:
has been introduced to attenuate the influences induced
the communication delays, thereby improving the estinmatic
accuracy.

%, and its estimation

x} ;. and its estimation

x2, and its estimation

40 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

kltime step

a
o

o

Fig. 3. The curves of3 j; andis j.

1, and its estimation

-50
100 . . . . . . . . . 200 T T T
0 10 20 30 40 50 60 70 80 90 100 L log(MSE1) —-—-— Upperbound 1 4
kitime step 100 T
100 I : 0 === ‘ ‘ ‘ ‘ ‘ ‘ ‘ .

0 100 20 30 40 50 60 70 80 90 100
kltime step (node 1)

2%, and its estimation

200 ‘ ‘ ‘ ‘
X log(MSE2) —- —-— Upper bound 2 ‘ ______
-100 7l ————— @1, (Case I) — — — 2}, (Case II)‘ V o S
(1) e — ‘ ‘ ‘ : ‘ ‘ ‘ .
200 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 8 90 100 o 1 20 30 L /?_0 tso eg 5 70 8 90 100
kltime step ime step (node 2)
200 ‘ ‘ ‘ ‘
log(MSE3) —-—-— Upper bound 3 ‘ ______
Fig. 1. The curves ofy ; andq . e S S il
0 e ———— - ‘ ‘ ‘ ‘ ‘
. . . 0O 10 20 30 40 5 60 70 8 90 100
In order to further reveal the estimation algorithm perfol

. . . k/time step (node 3)
mance, we conduct more experiments to discuss the relati

ship between SMSE and different situations of the fading

observations. For the comparison purpose, another thess cdrig. 4. 10g(MSE) and upper bounds.

are taken into account, i.e., Caseaa: = 0, b;; = 1/3, Case

b: a;y = 1/3, biy = 2/3, Case ca; = 2/3, by = 1. For

the above mentioned cases, it can be observed that the fadibgervations are most severe in Case a. Based on the main
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Fig. 5.

Fig. 6.

Fig. 7.

9 T T T T T
log(SMISE) (Case T) — — — log(SMSE) (Case )|

3 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90

kltime step

log(SMSE) with/without compensation (1000 itevas).

100

8 T T
log(SMSE) (Case a)
— — —1og(SMSE) (Case b)
[ P— log(SMSE) (Case c)

A \
A N’-‘\ﬂ,/v H

\ )
o

N

T .-
o —"

~

1 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90

kltime step

log(SMSE) with different fading observations (10€€rations).

100

10 T T T T . .
log(SMSE) (Q/, = 0.15) — — — log(SMSE) (Q7, :0.65)‘ L

3 I I I I I I I I I
20 30 40 50 60 70 80 90

kitime step

log(SMSE) with differean & (1000 iterations).

100

10

in Algorithm 1 can be implemented. Accordingly, the relatio
ship between log(SMSE) and different fading observatiens i
plotted in Fig. 6 and the log{f71 1+1}) under three cases are
listed in Tables I-Ill, which further show that the estinuati
error becomes larger when the fading observations areesever
as in Case a. This is consistent with the practical viewpoint
because less information is available in the remote estimat
side in Case a, hence the estimation performance becomes
worse compared with those in Case b and Case c.

TABLE |
log(tr{71,x+1}) (node 1)

tme®@) - 65 66 67 68 69 -

Casea - 76.358 77.267 78.354 79.627 80.994 -

Case b 76.038 77.017 78.17 79.448 80.763 -

Case ¢ 75984 76977 78.14 79.416 80.717 -
TABLE II

log(tr{72,x+1}) (node 2)

tme®@) - 65 66 67 68 69 -

Case a 74944 76172 77349 78.461 79.542 -

Case b 74767 76018 77.180 78.281 79.347 -

Case ¢ 74748 76002 77.172 78.262 79.326 --
TABLE Ill

log(tr{75,k+11}) (node 3)

tme®@) - 65 66 67 68 69 -
Case a 74876 76118 77.307 78.401  79.44 .-
Case b 74656 75020 77.125 78.213 79.243 -
Case ¢ 74624 75001 77.098 78.187 79.217 -

For the comparison purpose, the covariance matrices of
random bias withQ?, = 0.15 andek = 0.65 are considered,
where the effect caused by the dynamical bias is discussed.
Subsequently, Fig. 7 depicts the log(SMSE) in differensbia
cases under 1000 iterations, which shows that the estimatio
error is relatively larger Wheljyf,C = 0.65. That is to say, the
estimation accuracy becomes worse when the random bias is
severe. Overall, the above comparisons reflect the estimati
performance of proposed DCBSE method and further illustrat
the usefulness of main results.

VI. CONCLUSIONS

In this paper, we have made one of the first attempts to
handle the DCBSE problem for DTVCNSs subject to NIIOs and
dynamical bias. By fully taking the available informatioh o
communication delays and fading observations, a simutiase
bias and state estimation scheme has been proposed in terms
of the delay-prediction-compensation approach. The major
features of the proposed DCBSE strategy include: 1) the
NIIOs have been actively compensated during the estimation
algorithm design by properly employing the available infor
mation of NIIOs; 2) a new estimation method of the recursive
manner has been presented, where the expression form of
the estimator gain matrix and the illustration of the pragmbs
DCBSE algorithm have been given; and 3) the monotonicity

results with related parameters, the developed DCBSEeglrat proofs with regard to the fading observations charactdrine
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different probability distribution have been providednéily,
some simulation experiments have been proposed, where
estimation performance comparisons with/without the jored

[16]

11

J. Hu, Z. Wang, F. E. Alsaadi, and T. Hayat, Event-baskerifig for

the time-varying nonlinear systems subject to multiple migsineasure-

ments with uncertain missing probabilitidsformation Fusion, vol. 38,
no. 74-83, 2017.

tive compensation mechanism have been demonstrated ang J. Hu, Z. Wang, G.-P. Liu, C. Jia, and J. Williams, Evérggered recur-
the advantages of main results have been illustrated. &urth

research extensions include the design of DCBSE method
for DTVCNS subject to communication protocols in order tis)

save the limited network resources. Moreover, it is intiéngs

to deal with the boudedness analysis issue of the proposed

estimation strategy, which can be expected in the neardutur
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