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Abstract—In this paper, a delay-compensation-based state
estimation (DCBSE) method is given for a class of discrete time-
varying complex networks (DTVCNs) subject to network-induced
incomplete observations (NIIOs) and dynamical bias. The NIIOs
include the communication delays and fading observations,where
the fading observations are modelled by a set of mutually
independent random variables. Moreover, the possible biasis
taken into account, which is depicted by a dynamical equation.
A predictive scheme is proposed to compensate the influences
induced by the communication delays, where the predictive-
based estimation mechanism is adopted to replace the delayed
estimation transmissions. This paper focuses on the problems of
estimation method design and performance discussions for ad-
dressed DTVCNs with NIIOs and dynamical bias. In particular,
a new distributed state estimation approach is presented, where
a locally minimized upper bound is obtained for the estimation
error covariance matrix and a recursive way is designed to deter-
mine the estimator gain matrix. Furthermore, the performance
evaluation criteria regarding the monotonicity are proposed from
the analytic perspective. Finally, some experimental comparisons
are proposed to show the validity and advantages of new DCBSE
approach.

Index Terms—Time-varying stochastic complex networks;
Delay-compensation-based estimation; Communication delays;
Incomplete Observations; Dynamical bias; Monotonicity analysis.

I. I NTRODUCTION

Over the past years, the investigation of the complex net-
works (CNs) has become an emerging research topic due to
its strong advantages on modelling/analyzing the practical sys-
tems, such as biological networks, power grid, traffic networks
and technological networks [35], [40], [41]. Accordingly,a
rich body of analysis strategies has been given to understand
the structure and dynamical characteristic of CNs with a
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80761-USW-059, and the Alexander von Humboldt Foundation of Germany.
(Corresponding author: Jun Hu.)

J. Hu is with the Department of Mathematics, Harbin University of
Science and Technology, Harbin 150080, China. He is also with the School
of Engineering, University of South Wales, Pontypridd CF371DL, United
Kingdom. (Email:hujun2013@gmail.com)

Z. Wang is with the Department of Computer Science, Brunel Univer-
sity London, Uxbridge, Middlesex, UB8 3PH, United Kingdom.(Email:
Zidong.Wang@brunel.ac.uk)

G.-P. Liu is with the Department of Artificial Intelligence and
Automation, Wuhan University, Wuhan 430072, China. (Email:
guoping.liu@southwales.ac.uk)

large number of coupled nodes [10], [12], [37]. Among the
exiting results, both the state estimation and synchronization
problems have gained the primary interest and become two
important research topics for CNs [6], [27], [32]. So far,
a great number of sufficient criteria combined with certain
performance requirements have been proposed to handle the
synchronization problems for CNs with different coupling
impacts [7], [13], [14]. In comparison with the synchronization
problem, special effort has been devoted on the state estimation
problems in order to better understand the intrinsic features
of the networks by properly taking the coupling relationships
and shared information into account [11], [34]. Recently,
the dynamics behaviour analysis of CNs subject to time-
varying characteristics has received increasing attention on
the estimation of node’s state [11], [17], [18]. For example,
a new estimation scheme under the error variance constraint
has been presented in [11] based on the recursive matrix
inequality technique, where both the changeable typology
structure and quantized measurements of time-varying CNs
have been taken into consideration and examined accordingly.
In [19], the recursive estimation method under the error
covariance optimization has been developed, where both the
time-varying characteristics of concerned CNs and stochastic
impacts of the noises have been adequately reflected in the
proposed estimation strategy for the first time. Subsequently,
the estimation method in [19] has been extended to propose
the recursive estimation algorithms for time-varying CNs with
random/nonlinear coupling influences in [28], [29].

As it is well known, the practical systems are commonly
influenced by different type disturbances/inputs, which should
be properly handled during the system modelling and analysis
[9], [15], [46]. Consequently, special attention has been made
on dealing with the joint estimation problem of unknown
inputs and system states [24], [38]. For example, some optimal
estimation criteria in the minimum mean square error (MMSE)
sense have been established in [25], [44] for linear stochastic
systems, in which both unknown inputs and system states
have been well estimated within a unified framework. In [21],
as a special type of unknown inputs, the stochastic bias has
been modeled by a dynamical equation. Subsequently, the state
estimation problems have received ongoing research attention
for dynamical systems with stochastic bias [22], [23], [42].
To be more specific, the two-step estimation schemes in the
MMSE sense have been given in [20] for system with unknown
dynamical bias and in [23] to deal with the incomplete
information situation of dynamical bias via the adaptive mech-
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anism. Very recently, the state estimation problem under the
minimization consideration of the estimation error covariance
has been dealt with in [42] for two-dimensional stochastic
systems, where a locally optimized estimation criterion has
been developed against the dynamical bias and the random
parameter perturbations simultaneously. So far, the design
problem of state estimation algorithm has not been discussed
for discretetime-varying complex networks (DTVCNs) with
dynamical bias despite its practical importance, which de-
serves further investigation.

In the networked communication environment, the trans-
missions among different nodes/components may undergo the
network-enhanced complexities due to the limited capability of
communication channels [8], [33], [47], [48]. As such, accom-
panying with the increasing popularity of networked systems,
the analysis problems with respect to missing measurements
and communication delays have become active research topics
[4], [26], [39], [45]. For example, the state estimation problems
have been tackled in [31] for time-invariant neural networks
subject to multiple missing measurements and in [3] for large
and diverse road networks with missing data. To cater the
time-varying feature, new optimized estimation scheme of
the recursive manner has been proposed in [19] for discrete-
time CNs subject to missing measurements. Nevertheless, itis
noticed that most available state estimation algorithms against
the missing measurements can applicable for handling the
completely lost or successfully transferred cases only, and the
estimation methods corresponding to fading observations with
partial missing measurement are very few [16]. Apart from the
missing/fading measurements mentioned above, the existence
of the communication delays is another reason, which causes
the deterioration of the estimation accuracy [1], [43]. However,
it is worthwhile to point out that most of the existing state
estimation methods have relied on the delay information only
and the potential impacts of the communication delays among
different nodes have not been taken into account [2], [5].
For the purpose of performance improvements, the predictive-
based idea has been preliminarily introduced to deal with the
control problems subject to communication delays [30], [36].
To the best of our knowledge, few methods are available to
handle the state estimation problem for DTVCNs with fading
observations and communication delays. Consequently, there
is an urgent need to address the state estimation problem for
DTVCNs and develop a predictive compensation estimation
scheme accordingly.

Inspired by the aforementioned discussions, this paper is
concerned with the delay-compensation-based state estima-
tion (DCBSE) problem for a class of DTVCNs, where the
effects from the communication delays, fading observations
and dynamical bias disturbances are handled. Compared with
existing state estimation problems, the major challenges of
conducted DCBSE problem lie in: i) how to better characterize
the network-induced incomplete observations (NIIOs) as well
as dynamical bias disturbances and examine the corresponding
influences on the estimation performance accordingly? ii) how
to propose an efficient estimation scheme applicable for the
real-time calculation? and iii) how to develop an analysis
method with rigorous theoretical proof on the estimation

performance evaluation? To be more specific, the NIIOs in-
cluding communication delays and fading observations are
taken into account within a same framework, in which a
hybrid compensation method is proposed to attenuate the
impacts caused by NIIOs during the estimation algorithm
design. The dynamical bias disturbances are described and
estimated as a by-product when estimating the node states.
In addition, the algorithm evaluation criteria are provided
to further reveal the engineering insight via the theoretical
analysis. The major contributions can be highlighted from the
following three aspects. 1) The state estimation problem in
the variance-constrained sense is, for the first time, discussed
for DTVCNs with NIIOs and dynamical bias. 2) Both the
NIIOs and dynamical bias are well discussed, and a distributed
DCBSE algorithm is developed accordingly, which possesses
a recursive manner applicable for online implementations.In
particular, the active compensation way based on the predictive
idea is proposed and the communication delays are well exam-
ined accordingly. 3) The monotonicity analyses are provided
to discuss the impacts from the fading observations described
by different modelling ways onto the estimation performance.
Finally, some comparative experiments are made, and both the
validity and advantages of newly proposed DCBSE approach
are illustrated.

The rest of the paper is arranged as follows. In Section
II, both the problem formulation and preliminaries are briefly
introduced, where a new delay-compensation-based estimator
is designed by taking the impacts of the communication
delays and fading observations into account. In Section III,
the recursions of estimation error covariance matrix and its
related upper bound are provided, moreover, the optimized es-
timator gain matrix is presented by solving a recursive matrix
equation (RME). Subsequently, in Section IV, the performance
evaluation problems are conducted to discuss the monotonicity
analyses of the presented state estimation algorithm and the
corresponding theoretical proofs are proposed accordingly.
The simulations with comparative discussions are given in
Section V to demonstrate the effectiveness of new DCBSE
algorithm and some conclusions are pointed out in Section
VI.

Notations. Throughout this paper,Rn stands for then-
dimensional Euclidean space. For a matrixA, AT , A−1 and
A > 0 denote the transpose ofA, the inverse ofA and
A being a symmetric positive-definite matrix, respectively.
sym(A) denotesA+AT . ◦ represents the Hadamard product,
where [A ◦ B]ij = Aij · Bij . E{·} denotes the mathematical
expectation of ‘·’. Furthermore, we assume that the algebraic
calculations are compatible when the matrix dimensions are
not specified.

II. PROBLEM STATEMENT AND PRELIMINARY

In this paper, we consider the following class of DTVCNs
with dynamical bias:

xi,k+1 = Ai,kxi,k +

N
∑

j=1

ωij,kΓxj,k +Bi,kbi,k

+Di,kθi,k, (1)
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yi,k = Ψi,kCi,kxi,k + ηi,k, i = 1, 2, · · · , N (2)

where xi,k refers to thenx-dimensional state of thei-
th node, xi,0 represents the initial value with mean̄xi,0,
yi,k denotes theny-dimensional measurement vector,Ωk =
[

ωij,k

]

N×N
is the coupling strength matrix, andΓ =

diag{γ1, γ2, · · · , γn} is the inner coupling matrix.Ψi,k =
diag{ψi1,k, ψi2,k, · · · , ψiny,k} depicts the phenomena of the
fading observations, whereψit,k (t = 1, 2, · · · , ny) are the
random variables over the interval[ait, bit] with 0 ≤ ait ≤
bit ≤ 1. Moreover, the mathematical means and variances
of random variablesψit,k are ψ̄it,k and ψ̆it,k, respectively.
θi,k andηi,k represent thenθ-dimensional process noise and
ny-dimensional measurement noise, whereE{θi,k} = 0,
E{ηi,k} = 0, E{θi,kθ

T
i,k} = Qθ

i,k and E{ηi,kη
T
i,k} = Qη

i,k

with Qη
i,k > 0. The dynamics model of the random bias is

described as follows:

bi,k+1 = Fi,kbi,k + βi,k, (3)

where bi,k ∈ R
nb depicts the bias of unknown magnitude.

βi,k denotes the white noise, whereE{βi,k} = 0 and
E{βi,kβ

T
i,k} = Qβ

i,k with Qβ
i,k > 0. Ai,k, Bi,k, Ci,k, Di,k

andFi,k are known matrices of proper dimensions.
The random inner coupling matrixΓ is described by:

Γ = Γ̄ + ∆Γ̄, (4)

where Γ̄ = diag{γ̄1, γ̄2, · · · , γ̄N} is the nominal inner cou-
pling matrix, and∆Γ̄ represents the random parameter pertur-
bation satisfying

E{∆Γ̄} = 0, E{∆Γ̄∆Γ̄T } ≤ γ̄I, (5)

in which γ̄ is a known positive constant.
Remark 1: It is worth pointing out that the coupling

strengthens among the state elements are different ifγi 6= γj .
Hence, the random inner-coupling strengthens characterized
by (4)-(5) are introduced to present more flexibility of the
CNs modelling.

Subsequently, set

~xi,k =
[

xTi,k bTi,k
]T
, Ci,k =

[

Ci,k 0
]

,

Ai,k =

[

Ai,k Bi,k

0 Fi,k

]

, ~Γ =

[

Γ̄ 0
0 0

]

,

∆~Γ =

[

∆Γ̄ 0
0 0

]

, Di,k =

[

Di,k 0
0 I

]

,

ζi,k =
[

θTi,k βT
i,k

]T
. (6)

Then, it follows from the above notations that the following
compact form can be obtained:

~xi,k+1 = Ai,k~xi,k +

N
∑

j=1

ωij,k(~Γ +∆~Γ)~xj,k +Di,kζi,k, (7)

yi,k = Ψi,kCi,k~xi,k + ηi,k. (8)

In what follows, we assume thatθi,k, βi,k, ψit,k, ηi,k xi,0 and
the element of∆Γ are mutually independent ini, t andk.

Next, the time-varying state estimator in the distributed
manner is designed for each node based on the related
measurements and adjacent node’s estimation. During the

information transmission, the communication delays between
the nodej and the nodei are considered, which are denoted
by τij . As such, the estimation at the delayed instant can be
available only during the estimator design. For the purpose
of estimation accuracy improvement, the following predictive
compensation rule is employed:

x̂j,k−τij+1|k−τij = Aj,k−τij x̂j,k−τij ,

x̂j,k−τij+2|k−τij = Aj,k−τij+1x̂j,k−τij+1|k−τij ,

...

x̂j,k−1|k−τij = Aj,k−2x̂j,k−2|k−τij ,

x̂j,k|k−τij = Aj,k−1x̂j,k−1|k−τij . (9)

Define Aj,τij ,
τij
∏

t=1
Aj,k−t. According to (9), one has

x̂j,k|k−τij = Aj,τij x̂j,k−τij , then the predictive estimation
x̂j,k|k−τij at the current instant is derived based on the delayed
estimationx̂j,k−τij .

For the i-th node, the following state estimator under the
predictive compensation mechanism is constructed:

x̂i,k+1 = (Ai,k + ωii,k
~Γ)x̂i,k +

N
∑

j=1,j 6=i

ωij,k
~Γx̂j,k|k−τij

+Ki,k(yi,k − Ψ̄i,kCi,kx̂i,k), (10)

where x̂i,k represents the estimate of state~xi,k at the time
stepk, Ψ̄i,k = diag{ψ̄i1,k, ψ̄i2,k, · · · , ψ̄iny,k} andψ̄it,k is the
mathematical expectation of the random variableψit,k (t =
1, 2, · · · , ny), andKi,k is the estimator parameter matrix to
be determined later.

Remark 2: In order to improve the estimation accuracy,
there is a need to examine the network-enhanced complexities.
It should be pointed out that the hybrid compensation idea is
presented to attenuate the effects from NIIOs when designing
the new time-varying state estimator in (10). To be more
specific, the communication delays among the different nodes
are taken into account and those impacts are actively compen-
sated in (9) by employing the delayed estimation information
properly. In particular, it is worthwhile to mention that a new
predictive scheme is presented based onx̂j,k−τij at the time
stepk− τij and the desirable estimation̂xj,k|k−τij at the time
stepk can be obtained iteratively. Accordingly, this predictive-
based scheme is given to compensate the influences caused by
the communication delays during the transmissions among the
adjacent nodes. Moreover, the mathematical expectationΨ̄i,k

is also introduced in (10) to reflect the fading observations.
In this paper, such a hybrid compensation estimation man-
ner, which contains the predictive and probability-dependent
mechanisms, is developed to improve the estimation algorithm
performance and the corresponding estimation accuracy com-
parisons under different cases of NIIOs will be provided later.

Remark 3: The new state estimator in (10) under the predic-
tive compensation mechanism has the following features: i)the
communication delays among the different transmission chan-
nels and the fading observations are addressed within same
framework, where a hybrid compensation estimation manner
is provided; ii) a Kalman-type estimator is constructed based
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on the predictive estimation and the locally optimal estimation
scheme is expected, which performs an attractive advantage
in the online implementations; and iii) the dynamical bias
disturbances are discussed and estimated simultaneously.

Defineei,k+1 , ~xi,k+1 − x̂i,k+1 as the estimation error and
Pi,k+1 , E{ei,k+1e

T
i,k+1} as the estimation error covariance

matrix. Next, we are in a position to state the major objec-
tives of the DCBSE problem for DTVCNs with NIIOs and
dynamical bias, where the following three requirements are
guaranteed simultaneously.

1) Design the state estimator (10) of a recursive manner
and provide a sufficient criterion to look for an upper bound
covariance matrixPi,k+1 with respect toPi,k+1.

2) Present the expression form of the estimator parameter
matrix Ki,k+1 in order to minimizePi,k+1.

3) Provide the theoretical proofs of the monotonicity analy-
ses between the fading observations and estimation accuracy.

III. M AIN RESULTS

In this section, according to the definitions, both the state
covariance matrix and the estimation error covariance matrix
are calculated. Subsequently, a locally minimized upper bound
is given regarding the estimation error covariance and the
recursive expression form of the estimator parameter matrix
is provided accordingly.

To begin with, let Ψ̃i,k , Ψi,k − Ψ̄i,k with Ψ̃i,k =
diag{ψ̃i1,k, ψ̃i2,k, · · · , ψ̃iny,k}. Then, it is straight to testify
that E{ψ̃it,k} = 0 (t = 1, 2, · · · , ny). Next, it follows from
(7) and (10) thatei,k+1 can be given by

ei,k+1 = (Ai,k + ωii,k
~Γ−Ki,kΨ̄i,kCi,k)ei,k

−Ki,kΨ̃i,kCi,k~xi,k +
N
∑

j=1

ωij,k∆~Γ~xj,k

+

N
∑

j=1,j 6=i

ωij,k
~Γ(~xj,k − x̂j,k|k−τij )

+Di,kζi,k −Ki,kηi,k. (11)

Firstly, the recursion of the state covariance is computed.
Secondly, the recursive expressions of estimation error covari-
ance matrix and its upper bound are presented.

Theorem 1: Consider the DTVCNs (7) with the state esti-
mator (10). For the positive scalarsǫi,k, the state covariance
matrix ~Xi,k+1 = E{~xi,k+1~x

T
i,k+1} satisfies:

~Xi,k+1 ≤ (1 + ǫi,k)Ai,k
~Xi,kA

T
i,k

+N(1 + ǫ−1
i,k )

N
∑

j=1

ω2
ij,k

~Γ ~Xj,k
~ΓT

+N
N
∑

j=1

ω2
ij,kγ̄λmax( ~Xj,k)I +Di,kQ

ζ
i,kD

T
i,k

, Xi,k+1, (12)

whereQζ
i,k = diag{Qθ

i,k, Q
β
i,k}.

Proof: According to the definition of state covariance
matrix, it follows that

~Xi,k+1 = E{~xi,k+1~x
T
i,k+1}

= Ai,k
~Xi,kA

T
i,k + sym(Ei,k)

+E

{( N
∑

j=1

ωij,k
~Γ~xj,k

)( N
∑

j=1

ωij,k
~Γ~xj,k

)T}

+E

{( N
∑

j=1

ωij,k∆~Γ~xj,k

)( N
∑

j=1

ωij,k∆~Γ~xj,k

)T}

+

5
∑

r=1

sym(Fri,k) +Di,kE{ζi,kζ
T
i,k}D

T
i,k, (13)

where

Ei,k = Ai,kE

{

~xi,k

( N
∑

j=1

ωij,k
~Γ~xj,k

)T}

,

F1i,k = Ai,kE

{

~xi,k

( N
∑

j=1

ωij,k∆~Γ~xj,k

)T}

,

F2i,k = Ai,kE{~xi,kζ
T
i,k}D

T
i,k,

F3i,k = E

{( N
∑

j=1

ωij,k
~Γ~xj,k

)( N
∑

j=1

ωij,k∆~Γ~xj,k

)T}

,

F4i,k = E

{( N
∑

j=1

ωij,k
~Γ~xj,k

)

ζTi,k

}

DT
i,k,

F5i,k = E

{( N
∑

j=1

ωij,k∆~Γ~xj,k

)

ζTi,k

}

DT
i,k. (14)

Next, it can be observed that

sym(Ei,k) ≤ ǫi,kAi,k
~Xi,kA

T
i,k + ǫ−1

i,kE

{( N
∑

j=1

ωij,k
~Γ~xj,k

)

×

( N
∑

j=1

ωij,k
~Γ~xj,k

)T}

, (15)

in which ǫi,k > 0 are constant scalars. Moreover, we obtain

E

{( N
∑

j=1

ωij,k
~Γ~xj,k

)( N
∑

j=1

ωij,k
~Γ~xj,k

)T}

≤ N

N
∑

j=1

ω2
ij,k

~Γ ~Xj,k
~ΓT , (16)

E

{( N
∑

j=1

ωij,k∆~Γ~xj,k

)( N
∑

j=1

ωij,k∆~Γ~xj,k

)T}

≤ N

N
∑

j=1

ω2
ij,kγ̄λmax( ~Xj,k)I. (17)

Furthermore, we can show thatFri,k (r = 1, 2, · · · , 5) in (14)
are all zero terms. As such, it follows from (13) and (15)-(17)
that the inequality in (12) can be obtained readily.

Theorem 2: Consider the DTVCNs (7) with the state esti-
mator (10). The recursion equation ofPi,k+1 can be expressed
by:

Pi,k+1

= (Ai,k + ωii,k
~Γ−Ki,kΨ̄i,kCi,k)Pi,k(Ai,k + ωii,k

~Γ
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−Ki,kΨ̄i,kCi,k)
T +Ki,kE

{

Ψ̃i,kCi,k~xi,k~x
T
i,kC

T
i,kΨ̃

T
i,k

}

KT
i,k

+E

{( N
∑

j=1

ωij,k∆~Γ~xj,k

)( N
∑

j=1

ωij,k∆~Γ~xj,k

)T}

+E

{[ N
∑

j=1,j 6=i

ωij,k
~Γ(~xj,k − x̂j,k|k−τij )

]

×

[ N
∑

j=1,j 6=i

ωij,k
~Γ(~xj,k − x̂j,k|k−τij )

]T}

+sym(Hi,k) +Di,kQ
ζ
i,kD

T
i,k +Ki,kQ

η
i,kK

T
i,k, (18)

where

Hi,k = E

{

(Ai,k + ωii,k
~Γ−Ki,kΨ̄i,kCi,k)ei,k

×

[ N
∑

j=1,j 6=i

ωij,k
~Γ(~xj,k − x̂j,k|k−τij )

]T}

. (19)

Proof: Based on the definition ofPi,k+1, we have

Pi,k+1

= (Ai,k + ωii,k
~Γ−Ki,kΨ̄i,kCi,k)Pi,k(Ai,k + ωii,k

~Γ

−Ki,kΨ̄i,kCi,k)
T +Ki,kE

{

Ψ̃i,kCi,k~xi,k~x
T
i,kC

T
i,kΨ̃

T
i,k

}

KT
i,k

+E

{( N
∑

j=1

ωij,k∆~Γ~xj,k

)( N
∑

j=1

ωij,k∆~Γ~xj,k

)T}

+E

{[ N
∑

j=1,j 6=i

ωij,k
~Γ(~xj,k − x̂j,k|k−τij )

]

×

[ N
∑

j=1,j 6=i

ωij,k
~Γ(~xj,k − x̂j,k|k−τij )

]T}

+Di,kQ
ζ
i,kD

T
i,k +Ki,kQ

η
i,kK

T
i,k + sym(Hi,k)

−sym(G1i,k) + sym(G2i,k) + sym(G3i,k)− sym(G4i,k)

−sym(G5i,k)− sym(G6i,k)− sym(G7i,k) + sym(G8i,k)

+sym(G9i,k) + sym(G10i,k)− sym(G11i,k)

+sym(G12i,k)− sym(G13i,k)− sym(G14i,k), (20)

where

G1i,k = E{(Ai,k + ωii,k
~Γ−Ki,kΨ̄i,kCi,k)ei,k

×~xTi,kC
T
i,kΨ̃

T
i,kK

T
i,k},

G2i,k = E

{

(Ai,k + ωii,k
~Γ−Ki,kΨ̄i,kCi,k)ei,k

×

( N
∑

j=1

ωij,k∆~Γ~xj,k

)T}

,

G3i,k = E{(Ai,k + ωii,k
~Γ−Ki,kΨ̄i,kCi,k)ei,kζ

T
i,kD

T
i,k},

G4i,k = E{(Ai,k + ωii,k
~Γ−Ki,kΨ̄i,kCi,k)ei,kη

T
i,kK

T
i,k},

G5i,k = E

{

Ki,kΨ̃i,kCi,k~xi,k

( N
∑

j=1

ωij,k∆~Γ~xj,k

)T}

,

G6i,k = E

{

Ki,kΨ̃i,kCi,k~xi,k

[ N
∑

j=1,j 6=i

ωij,k
~Γ

×(~xj,k − x̂j,k|k−τij )

]T}

,

G7i,k = E{Ki,kΨ̃i,kCi,k~xi,kζ
T
i,kD

T
i,k},

G8i,k = E{Ki,kΨ̃i,kCi,k~xi,kη
T
i,kK

T
i,k},

G9i,k = E

{( N
∑

j=1

ωij,k∆~Γ~xj,k

)[ N
∑

j=1,j 6=i

ωij,k
~Γ

×(~xj,k − x̂j,k|k−τij )

]T}

,

G10i,k = E

{( N
∑

j=1

ωij,k∆~Γ~xj,k

)

ζTi,kD
T
i,k

}

,

G11i,k = E

{( N
∑

j=1

ωij,k∆~Γ~xj,k

)

ηTi,kK
T
i,k

}

,

G12i,k = E

{[ N
∑

j=1,j 6=i

ωij,k
~Γ(~xj,k − x̂j,k|k−τij )

]

ζTi,kD
T
i,k

}

,

G13i,k = E

{[ N
∑

j=1,j 6=i

ωij,k
~Γ(~xj,k − x̂j,k|k−τij )

]

ηTi,kK
T
i,k

}

,

G14i,k = Di,kE{ζi,kη
T
i,k}K

T
i,k,

andHi,k is denoted in (19). Subsequently, it is easy to derive
the recursion in (18).

Now, we are in a position to look for an upper boundQi,k+1

of Qi,k+1. Accordingly, the locally minimized upper bound is
obtained by resorting to the mathematical induction method
and completing square technique, moreover, the estimator gain
matrix Ki,k is parameterized via the solution to an RME.

Theorem 3: Consider the recursion of estimation error co-
variance matrix in (18) and letµi,k > 0 be constant scalars.
Under the initial conditionTi,0 = ~Xi,0 > 0, if the following
RME

Ti,k+1 = (1 + µi,k)(Ai,k + ωii,k
~Γ−Ki,kΨ̄i,kCi,k)Ti,k

×(Ai,k + ωii,k
~Γ−Ki,kΨ̄i,kCi,k)

T

+2(1 + µ−1
i,k )(N − 1)

N
∑

j=1,j 6=i

ω2
ij,k

×~Γ(Xj,k + x̂j,k|k−τij x̂
T
j,k|k−τij

)~ΓT

+Ki,k[Ψ̆i,k ◦ (Ci,kXi,kC
T
i,k)]K

T
i,k

+Nγ̄
N
∑

j=1

ω2
ij,kλmax(Xj,k)I

+Di,kQ
ζ
i,kD

T
i,k +Ki,kQ

η
i,kK

T
i,k (21)

has a solutionTi,k+1 > 0, then we have

Pi,k+1 ≤ Ti,k+1. (22)

Furthermore, it is shown thatTi,k+1 can be minimized ifKi,k

is designed by

Ki,k =
[

(1 + µi,k)(Ai,k + ωii,k
~Γ)Ti,kC

T
i,kΨ̄

T
i,k

]

Ξ−1
i,k (23)

with

Ξi,k = (1 + µi,k)Ψ̄i,kCi,kTi,kC
T
i,kΨ̄

T
i,k +Qη

i,k
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+Ψ̆i,k ◦ (Ci,kXi,kC
T
i,k),

Ψ̆i,k = diag{ψ̆i1,k, ψ̆i2,k, · · · , ψ̆iny,k}. (24)

Proof: The proof of this theorem includes two steps. That
is, an upper bound for the estimation error covariance is firstly
derived and a locally minimized upper bound is given in terms
of the completing square technique. In addition, the expression
form of the estimator parameter matrix is characterized based
on the solution to an RME.

Based on the property of the Hadamard product, the second
term in (18) equals to

Ki,kE
{

Ψ̃i,kCi,k~xi,k~x
T
i,kC

T
i,kΨ̃

T
i,k

}

KT
i,k

= Ki,k[Ψ̆i,k ◦ (Ci,k ~Xi,kC
T
i,k)]K

T
i,k, (25)

where Ψ̆i,k =
[

E{ψ̃is,kψ̃it,k}
]

ny × ny and ◦ is the
Hadamard product. Notice thatψit,k (t = 1, 2, · · · , ny) are
mutually independent in differents andt. Therefore, we have
Ψ̆i,k = diag{ψ̆i1,k, ψ̆i2,k, · · · , ψ̆iny,k}.

Together with (5), one has

E

{( N
∑

j=1

ωij,k∆~Γ~xj,k

)( N
∑

j=1

ωij,k∆~Γ~xj,k

)T}

≤ NE

{ N
∑

j=1

ω2
ij,k∆~Γ~xj,k~x

T
j,k∆~Γ

T

}

≤ Nγ̄

N
∑

j=1

ω2
ij,kλmax( ~Xj,k)I. (26)

Moreover, the fifth term in (18) is tackled as follows:

sym(Hi,k)

≤ µi,k(Ai,k + ωii,k
~Γ− λ̄i,kKi,kCi,k)Pi,k

×(Ai,k + ωii,k
~Γ− λ̄i,kKi,kCi,k)

T

+µ−1
i,kE

{[ N
∑

j=1,j 6=i

ωij,k
~Γ(~xj,k − x̂j,k|k−dij

)

]

×

[ N
∑

j=1,j 6=i

ωij,k
~Γ(~xj,k − x̂j,k|k−dij

)

]T}

(27)

with µi,k > 0 being constant scalars. By taking (18) and (25)-
(27) into account, we have the following inequality

Pi,k+1

≤ (1 + µi,k)(Ai,k + ωii,k
~Γ−Ki,kΨ̄i,kCi,k)Pi,k

×(Ai,k + ωii,k
~Γ−Ki,kΨ̄i,kCi,k)

T

+Ki,k[Ψ̆i,k ◦ (Ci,k ~Xi,kC
T
i,k)]K

T
i,k

+Nγ̄

N
∑

j=1

ω2
ij,kλmax( ~Xj,k)I

+(1 + µ−1
i,k )E

{[ N
∑

j=1,j 6=i

ωij,k
~Γ(~xj,k − x̂j,k|k−τij )

]

×

[ N
∑

j=1,j 6=i

ωij,k
~Γ(~xj,k − x̂j,k|k−τij )

]T}

+Di,kQ
ζ
i,kD

T
i,k +Ki,kQ

η
i,kK

T
i,k. (28)

Subsequently, the following inequality can be readily ob-
tained:

E

{[ N
∑

j=1,j 6=i

ωij,k
~Γ(~xj,k − x̂j,k|k−τij )

]

×

[ N
∑

j=1,j 6=i

ωij,k
~Γ(~xj,k − x̂j,k|k−τij )

]T
}

≤ 2(N − 1)E

{ N
∑

j=1,j 6=i

ω2
ij,k

~Γ(~xj,k~x
T
j,k

+x̂j,k|k−τij x̂
T
j,k|k−τij

)~ΓT

}

= 2(N − 1)

N
∑

j=1,j 6=i

ω2
ij,k

~Γ(Xj,k + x̂j,k|k−τij x̂
T
j,k|k−τij

)~ΓT .

(29)

Together with (28) and (29) leads to

Pi,k+1

≤ (1 + µi,k)(Ai,k + ωii,k
~Γ−Ki,kΨ̄i,kCi,k)Pi,k

×(Ai,k + ωii,k
~Γ−Ki,kΨ̄i,kCi,k)

T

+Ki,k[Ψ̆i,k ◦ (Ci,k ~Xi,kC
T
i,k)]K

T
i,k

+Nγ̄
N
∑

j=1

ω2
ij,kλmax( ~Xj,k)I + 2(1 + µ−1

i,k )(N − 1)

×

N
∑

j=1,j 6=i

ω2
ij,k

~Γ(Xj,k + x̂j,k|k−τij x̂
T
j,k|k−τij

)

+Di,kQ
ζ
i,kD

T
i,k +Ki,kQ

η
i,kK

T
i,k. (30)

After the straightforward calculations, we arrive at

Pi,k+1 ≤ Ti,k+1, (31)

whereTi,k+1 is denoted in (21).
Finally, Ti,k+1 in (21) can be reorganized as:

Ti,k+1

= (1 + µi,k)(Ai,k + ωii,k
~Γ)Ti,k(Ai,k + ωii,k

~Γ)T

+2(1 + µ−1
i,k )(N − 1)

N
∑

j=1,j 6=i

ω2
ij,k

×~Γ(Xj,k + x̂j,k|k−τij x̂
T
j,k|k−τij

)~ΓT

+Nγ̄

N
∑

j=1

ω2
ij,kλmax(Xj,k)I +Di,kQ

ζ
i,kD

T
i,k

−(1 + µi,k)(Ai,k + ωii,k
~Γ)Ti,kC

T
i,kΨ̄

T
i,kK

T
i,k

−(1 + µi,k)Ki,kΨ̄i,kCi,kTi,k(Ai,k + ωii,k
~Γ)T

+Ki,k

[

(1 + µi,k)Ψ̄i,kCi,kTi,kC
T
i,kΨ̄

T
i,k

+Ψ̆i,k ◦ (Ci,kXi,kC
T
i,k) +Qη

i,k

]

KT
i,k

= (1 + µi,k)(Ai,k + ωii,k
~Γ)Ti,k(Ai,k + ωii,k

~Γ)T

+2(1 + µ−1
i,k )(N − 1)

N
∑

j=1,j 6=i

ω2
ij,k
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×~Γ(Xj,k + x̂j,k|k−τij x̂
T
j,k|k−τij

)

+Nγ̄

N
∑

j=1

ω2
ij,kλmax(Xj,k)I +Di,kQ

ζ
i,kD

T
i,k

+
(

Ki,k − (1 + µi,k)(Ai,k + ωii,k
~Γ)Ti,kC

T
i,kΨ̄

T
i,k

×Ξ−1
i,k

)

Ξi,k

(

Ki,k − (1 + µi,k)(Ai,k + ωii,k
~Γ)

×Ti,kC
T
i,kΨ̄

T
i,kΞ

−1
i,k

)T

− (1 + µi,k)
2(Ai,k + ωii,k

~Γ)

×Ti,kC
T
i,kΨ̄

T
i,kΞ

−1
i,k Ψ̄i,kCi,kTi,k(Ai,k + ωii,k

~Γ)T ,

where

Ξi,k = (1 + µi,k)Ψ̄i,kCi,kTi,kC
T
i,kΨ̄

T
i,k +Qη

i,k

+Ψ̆i,k ◦ (Ci,kXi,kC
T
i,k).

Next, letKi,k

Ki,k ,
[

(1 + µi,k)(Ai,k + ωii,k
~Γ)Ti,kC

T
i,kΨ̄

T
i,k

]

Ξ−1
i,k .

Then, we have the locally minimized upper boundTi,k+1

denoted by

Ti,k+1

= (1 + µi,k)(Ai,k + ωii,k
~Γ)Ti,k(Ai,k + ωii,k

~Γ)T

+2(1 + µ−1
i,k )(N − 1)

N
∑

j=1,j 6=i

ω2
ij,k

×~Γ(Xj,k + x̂j,k|k−τij x̂
T
j,k|k−τij

)

+Nγ̄

N
∑

j=1

ω2
ij,kλmax(Xj,k)I +Di,kQ

ζ
i,kD

T
i,k

−(1 + µi,k)
2(Ai,k + ωii,k

~Γ)Ti,kC
T
i,kΨ̄

T
i,kΞ

−1
i,k

×Ψ̄i,kCi,kTi,k(Ai,k + ωii,k
~Γ)T , (32)

which completes the proof of this theorem.
Remark 4: So far, a new optimized estimation scheme has

been given for DTVCNs subject to NIIOs and dynamical bias.
To be more specific, both the communication delays and fading
observations have been adequately taken into account, where a
predictive-based mechanism has been proposed to compensate
the potential influences caused by the communication delays.
Subsequently, both the predictive-based estimation information
and available probability of fading observations have been
actively introduced to design a new recursive state estimator.
It should be noticed that some positive scalarsµi,k have
been introduced in Theorem 3. In the subsequent estimation
algorithm implementation, the parametersµi,k can be fixed
and then adjusted to enhance the solvability of the proposed
DCBSE algorithm. Compared with the conventional Kalman
estimation algorithm, the newly proposed DCBSE algorithm is
a locally optimal one, where a locally minimized upper bound
with regards to the estimation error covariance matrix has
been found and the desirable estimator gain matrix has been
parameterized in terms of the solution to an RME. The major
reason lies in that it is impossible to obtain the exact valueof
the estimation error covariance matrix due to the existenceof
NIIOs. As such, an alternative estimation approach has been
proposed to achieve admissible estimation requirements.

For the ease of the implementation, the following DCBSE
algorithm based on the predictive scheme is outlined, where
the parameter selection and updating way are summarized.

Algorithm 1: Delay-Compensation-Based State Estimation Algorithm
Step 1. Give the initial conditions and parameters, and setk = 0.
Step 2. Obtain the predictive term̂xj,k|k−τij

by (9) based on delayed
estimationx̂j,k−τij

.
Step 3. Design the estimator parameterKi,k by (23).
Step 4. Obtain the upper bound matricesXi,k+1 andTi,k+1 according

to the parameter update formulas (12) and (21), respectively.
Step 5. Compute the estimation̂xi,k+1 according to (10).
Step 6. Settingk = k + 1, and go toStep 2.

Remark 5: As illustrated in Algorithm 1, based on (9) and
the RME in (21), the predictive estimation term̂xj,k|k−τij and
the estimator parameterKi,k can be obtained easily. Then,
the addressed DCBSE problem for DTVCNs with NIIOs and
dynamical bias is solvable. Note that the desirable parameters
are available via testifying the feasibility of some forward ma-
trix difference equations. Consequently, the developed DCBSE
scheme within time-varying framework is satisfactory for the
requirement of online applications.

IV. PERFORMANCEANALYSIS OF ESTIMATION METHOD

In this section, the algorithm performance analysis is con-
ducted, where the monotonicity of the new DCBSE scheme is
shown.

For ease of illustration, let the random variablesψit,k

(t = 1, 2, · · · , ny) be ψi,k with E{ψi,k} = ψ̄i,k and
E{(ψi,k−ψ̄i,k)(ψi,k−ψ̄i,k)

T } = ψ̆i,k. Moreover, the relation-
ship between̄ψi,k andtr(Ti,k+1) is discussed as̆ψi,k is fixed.
To further provide the monotonicity analyses, the following
lemma is helpful.

Lemma 1: For the matricesA, B, X as well asY with
proper dimensions and the variablet ∈ R, one has

d

dt
tr(X + tY ) = tr(Y ),

d

dt
tr[BT (X + tY )−1A]

= −tr[BT (X + tY )−1Y (X + tY )−1A].

Theorem 4: If the occurrence probabilitȳψi,k increases, it
is observed thattr(Ti,k+1) is non-increasing.

Proof: Notice thatΞi,k in (24) andTi,k+1 in (32) contain
the scalarψ̄i,k. Then, it follows from 1 that

dtr{Ti,k+1}

dψ̄i,k

=
dtr

dψ̄i,k

{

(1 + µi,k)(Ai,k + ωii,k
~Γ)Ti,k(Ai,k + ωii,k

~Γ)T

+2(1 + µ−1
i,k )(N − 1)

N
∑

j=1,j 6=i

ω2
ij,k

×~Γ(Xj,k + x̂j,k|k−τij x̂
T
j,k|k−τij

)

+Nγ̄

N
∑

j=1

ω2
ij,kλmax(Xj,k)I +Di,kQ

ζ
i,kD

T
i,k

−(1 + µi,k)
2ψ̄2

i,k(Ai,k + ωii,k
~Γ)Ti,kC

T
i,kΞ

−1
i,k
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×Ci,kTi,k(Ai,k + ωii,k
~Γ)T

}

= tr
{

− 2(1 + µi,k)
2ψ̄i,k(Ai,k + ωii,k

~Γ)Ti,kC
T
i,kΞ

−1
i,k

×Ci,kTi,k(Ai,k + ωii,k
~Γ)T

+2(1 + µi,k)
2ψ̄2

i,k(Ai,k + ωii,k
~Γ)Ti,kC

T
i,kΞ

−1
i,k

×
[

(1 + µi,k)ψ̄i,kCi,kTi,kC
T
i,k

]

×Ξ−1
i,kCi,kTi,k(Ai,k + ωii,k

~Γ)T
}

.

Adding some zero terms to the above equation, one has

dtr{Ti,k+1}

dψ̄i,k

= tr
{

− 2(1 + µi,k)
2ψ̄i,k(Ai,k + ωii,k

~Γ)Ti,kC
T
i,kΞ

−1
i,k

×Ci,kTi,k(Ai,k + ωii,k
~Γ)T

+2(1 + µi,k)
2ψ̄i,k(Ai,k + ωii,k

~Γ)Ti,kC
T
i,kΞ

−1
i,k

×
[

(1 + µi,k)ψ̄
2
i,kCi,kTi,kC

T
i,k +Qη

i,k

+Ψ̆i,k ◦ (Ci,kXi,kC
T
i,k)

]

Ξ−1
i,kCi,kTi,k(Ai,k + ωii,k

~Γ)T

−2(1 + µi,k)
2ψ̄i,k(Ai,k + ωii,k

~Γ)Ti,kC
T
i,kΞ

−1
i,k

×
[

Qη
i,k + Ψ̆i,k ◦ (Ci,kXi,kC

T
i,k)

]

×Ξ−1
i,kCi,kTi,k(Ai,k + ωii,k

~Γ)T
}

.

After the simple algebraic calculation, we arrive at

dtr{Ti,k+1}

dψ̄i,k

= tr
{

− 2(1 + µi,k)
2ψ̄i,k(Ai,k + ωii,k

~Γ)Ti,kC
T
i,kΞ

−1
i,k

×
[

Qη
i,k + Ψ̆i,k ◦ (Ci,kXi,kC

T
i,k)

]

Ξ−1
i,kCi,kTi,k

×(Ai,k + ωii,k
~Γ)T

}

, (33)

which leads to

dtr{Ti,k+1}

dψ̄i,k

≤ 0.

Consequently, it is concluded thattr{Ti,k+1} is non-increasing
when ψ̄i,k increases.

As a special case, the same assertion can be obtained when
ψi,k is governed by the Bernoulli distribution, which is shown
in the following corollary.

Corollary 1: If ψi,k is a Bernoulli distributed random vari-
able and its mean̄ψi,k increases, we can also obtain the fact
that tr(Ti,k+1) is non-increasing.

Proof: In this case, we havēΨi,k = ψ̄i,kI and Ψ̆i,k =
ψ̄i,k(1− ψ̄i,k)I. Along the same line of Theorem 4, one has

dtr{Ti,k+1}

dψ̄i,k

= tr
{

− 2(1 + µi,k)
2ψ̄i,k(Ai,k + ωii,k

~Γ)Ti,kC
T
i,kΞ

−1
i,k

×Ci,kTi,k(Ai,k + ωii,k
~Γ)T

+(1 + µi,k)
2ψ̄2

i,k(Ai,k + ωii,k
~Γ)Ti,kC

T
i,kΞ

−1
i,k

×
[

2(1 + µi,k)ψ̄i,kCi,kTi,kC
T
i,k + (1− 2ψ̄i,k)I

◦(Ci,kXi,kC
T
i,k)

]

Ξ−1
i,kCi,kTi,k(Ai,k + ωii,k

~Γ)T
}

≤ tr
{

− 2(1 + µi,k)
2ψ̄i,k(Ai,k + ωii,k

~Γ)Ti,kC
T
i,kΞ

−1
i,k

×Ci,kTi,k(Ai,k + ωii,k
~Γ)T

+(1 + µi,k)
2ψ̄i,k(Ai,k + ωii,k

~Γ)Ti,kC
T
i,kΞ

−1
i,k

×
[

2(1 + µi,k)ψ̄
2
i,kCi,kTi,kC

T
i,k + 2ψ̄i,k

×(1− ψ̄i,k)I ◦ (Ci,kXi,kC
T
i,k) + 2Qη

i,k

−ψ̄i,kI ◦ (Ci,kXi,kC
T
i,k)

]

Ξ−1
i,kCi,kTi,k(Ai,k + ωii,k

~Γ)T
}

= tr
{

− (1 + µi,k)
2ψ̄i,k(Ai,k + ωii,k

~Γ)Ti,kC
T
i,kΞ

−1
i,k

×
[

ψ̄i,k ◦ (Ci,kXi,kC
T
i,k)

]

Ξ−1
i,kCi,kTi,k(Ai,k + ωii,k

~Γ)T
}

≤ 0. (34)

As such, it is concluded thattr{Ti,k+1} is non-increasing
when ψ̄i,k increases.

Remark 6: Compared with some existing estimation results,
this paper proposes a mathematical analysis method to dis-
cuss the monotonicity performance of the developed DCBSE
algorithm with regard to the fading observations. Particularly,
in Theorem 4 and Corollary 1, the theoretical proofs have
been provided to reveal the monotonicity relationship between
the fading probability and the estimation accuracy. As shown
in the above analyses, it follows that the estimation accuracy
becomes worse when the fading observations are severe. That
is to say, the estimation error is larger if less measurement
information can be utilized in the estimator side, which is
indeed consistent with the essential intuition in the practical
engineering.

V. A N ILLUSTRATIVE SIMULATION

In this section, the following simulation experiment is
conducted and the usefulness of newly DCBSE scheme is
discussed.

For the DTVCNs (1)-(2), consider the following related
matrix parameters:

A1,k =

[

0.35 + 0.35 cos(k) 0.52
−1.38 1.55

]

,

A2,k =

[

0.65 0.5
−0.05 −0.75

]

,

A3,k =

[

0.86 0.72 + 0.3 sin(k)
−0.25 0.84

]

D1,k =

[

0.31
0.32

]

, D2,k =

[

0.26
0.22

]

, D3,k =

[

0.38
0.40

]

,

B1,k =

[

1.1 0.9
0.43 −0.91

]

, B2,k =

[

0.65 0.98
0.37 0.56

]

,

B3,k =

[

0.52 −0.19
1.31 0.38

]

, C1,k =
[

1.6 1.5
]

,

C2,k =
[

1.7 1.9
]

, C3,k =
[

1.8 1.5
]

,

F1,k =

[

0.51 0.78
−0.3 0.6

]

, F2,k =

[

0.46 0.48
0.4 0.36

]

,

F3,k =

[

0.49 0.58
0.63 −0.16

]

.

Moreover, the other parameters are chose byΓ̄ =
diag{0.25, 0.25}, γ̄ = 0.01,wij,k = 0.5 (i 6= j) andwii,k = 1
(i = 1, 2, 3).
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During the simulation experiment, choose the initial con-
ditions asx̄1,0 = [2 1]

T , x̄2,0 = [3 1]
T , x̄3,0 = [1 − 4]

T ,
b̄1,0 = [1 1]T , b̄2,0 = [1 1]T , b̄3,0 = [−1 − 1]T , Ti,0 = 5I,

Xi,0 = ~̄xi,0~̄x
T
i,0 with ~̄xi,0 =

[

x̄i,0
b̄i,0

]

, ǫi,k = 0.5, µi,k = 1.5,

Qβ
i,k = 0.15I, Qθ

i,k = 0.25, Qη
i,k = 0.2 (i = 1, 2, 3),

x̂i,0 = [1 1 1 1]T , and x̂i,k = [0.2 0.2 0.2 0.2]T (k < 0)
(i = 1, 2, 3). In order to depict the estimation performance,
MSEi denotes the mean square error (MSE) for the estimation
of xi,k and is calculated by1

M

∑M
s=1(x

l(s)
i,k − x̂

l(s)
i,k )2, where

M = 1000 is the run number of the simulation test and
xli,k (l = 1, 2; i = 1, 2, 3) denotes thel-th element ofxi,k.
Moreover, the sum of the MSEi (i = 1, 2, 3) is denoted by
SMSE.

To validate the efficiency and advantages of the proposed
DCBSE algorithm, we compare the cases with/without predic-
tion compensation, i.e., Case I: the state estimation underthe
DCBSE algorithm; Case II: the state estimation without the
updating rule (9). Accordingly, the simulation results under
ait = 0.5, bit = 1 and τij = 5 are presented in Figs. 1-
5, where Figs. 1-3 plot the state trajectories of 3 nodes and
their estimations with/without prediction compensation.Fig. 4
depicts the log(MSEi) of 3 nodes and their upper bounds
under Case I. The comparisons of SMSE with/without delay
compensation under 1000 iterations are shown in Fig. 5. It is
observed from the simulations that the new DCBSE algorithm
in Case I performs well than the one as in Case II. The major
reason lies in that the predictive compensation mechanism
has been introduced to attenuate the influences induced by
the communication delays, thereby improving the estimation
accuracy.

0 10 20 30 40 50 60 70 80 90 100
 k/time step

-100

-50

0

50

0 10 20 30 40 50 60 70 80 90 100
 k/time step

-200

-100

0

100

Fig. 1. The curves ofx1,k and x̂1,k.

In order to further reveal the estimation algorithm perfor-
mance, we conduct more experiments to discuss the relation-
ship between SMSE and different situations of the fading
observations. For the comparison purpose, another three cases
are taken into account, i.e., Case a:ait = 0, bit = 1/3, Case
b: ait = 1/3, bit = 2/3, Case c:ait = 2/3, bit = 1. For
the above mentioned cases, it can be observed that the fading
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Fig. 2. The curves ofx2,k and x̂2,k.
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Fig. 3. The curves ofx3,k and x̂3,k.
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Fig. 4. log(MSEi) and upper bounds.

observations are most severe in Case a. Based on the main
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Fig. 5. log(SMSE) with/without compensation (1000 iterations).
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Fig. 6. log(SMSE) with different fading observations (1000iterations).

0 10 20 30 40 50 60 70 80 90 100

 k/time step

3

4

5

6

7

8

9

10

Fig. 7. log(SMSE) with differentQβ

i,k
(1000 iterations).

results with related parameters, the developed DCBSE strategy

in Algorithm 1 can be implemented. Accordingly, the relation-
ship between log(SMSE) and different fading observations is
plotted in Fig. 6 and the log(tr{T1,k+1}) under three cases are
listed in Tables I-III, which further show that the estimation
error becomes larger when the fading observations are severe
as in Case a. This is consistent with the practical viewpoint
because less information is available in the remote estimator
side in Case a, hence the estimation performance becomes
worse compared with those in Case b and Case c.

TABLE I
log(tr{T1,k+1}) (node 1)

time(k) · · · 65 66 67 68 69 · · ·
Case a · · · 76.358 77.267 78.354 79.627 80.994· · ·
Case b · · · 76.038 77.017 78.17 79.448 80.763· · ·
Case c · · · 75.984 76.977 78.14 79.416 80.717· · ·

TABLE II
log(tr{T2,k+1}) (node 2)

time(k) · · · 65 66 67 68 69 · · ·
Case a · · · 74.944 76.172 77.349 78.461 79.542· · ·
Case b · · · 74.767 76.018 77.189 78.281 79.347· · ·
Case c · · · 74.748 76.002 77.172 78.262 79.326· · ·

TABLE III
log(tr{T3,k+1}) (node 3)

time(k) · · · 65 66 67 68 69 · · ·
Case a · · · 74.876 76.118 77.307 78.401 79.44 · · ·
Case b · · · 74.656 75.929 77.125 78.213 79.243· · ·
Case c · · · 74.624 75.901 77.098 78.187 79.217· · ·

For the comparison purpose, the covariance matrices of
random bias withQβ

i,k = 0.15 andQβ
i,k = 0.65 are considered,

where the effect caused by the dynamical bias is discussed.
Subsequently, Fig. 7 depicts the log(SMSE) in different bias
cases under 1000 iterations, which shows that the estimation
error is relatively larger whenQβ

i,k = 0.65. That is to say, the
estimation accuracy becomes worse when the random bias is
severe. Overall, the above comparisons reflect the estimation
performance of proposed DCBSE method and further illustrate
the usefulness of main results.

VI. CONCLUSIONS

In this paper, we have made one of the first attempts to
handle the DCBSE problem for DTVCNs subject to NIIOs and
dynamical bias. By fully taking the available information of
communication delays and fading observations, a simultaneous
bias and state estimation scheme has been proposed in terms
of the delay-prediction-compensation approach. The major
features of the proposed DCBSE strategy include: 1) the
NIIOs have been actively compensated during the estimation
algorithm design by properly employing the available infor-
mation of NIIOs; 2) a new estimation method of the recursive
manner has been presented, where the expression form of
the estimator gain matrix and the illustration of the proposed
DCBSE algorithm have been given; and 3) the monotonicity
proofs with regard to the fading observations characterized by
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different probability distribution have been provided. Finally,
some simulation experiments have been proposed, where the
estimation performance comparisons with/without the predic-
tive compensation mechanism have been demonstrated and
the advantages of main results have been illustrated. Further
research extensions include the design of DCBSE method
for DTVCNs subject to communication protocols in order to
save the limited network resources. Moreover, it is interesting
to deal with the boudedness analysis issue of the proposed
estimation strategy, which can be expected in the near future.
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