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Abstract— In this paper, packet scheduling with maxi-

mum delay constraints is considered with the objective to

minimize average transmit power over Gaussian channels.

The main emphasis is on deriving robust schedulers which

do not rely on the knowledge of the source arrival process.

Towards that end, we first show that all schedulers (robust

or otherwise) which guarantee a maximum queuing delay

for each packet are equivalent to a time-varying linear

filter. Using the connection between filtering and schedul-

ing, we study the design of optimal power minimizing

robust schedulers. Two cases, motivated by filtering con-

nection, are studied in detail. First, a time-invariant robust

scheduler is presented and its performance is completely

characterized. Second, we present the optimal time-varying

robust scheduler, and show that it has a very intuitive

time water-filling structure. We also present upper and

lower bounds on the performance of power-minimizing

schedulers as a function of delay constraints. The new

results form an important step towards understanding of

the packet time-scale interactions between physical layer

metric of power and network layer metric of delay.

I. INTRODUCTION

Source burstiness is common in many multimedia

sources, which generate variable number of useful infor-

mation bits per unit time, and can be used to trade aver-

age queuing delay with average transmission power [1,

2, 9, 13]. In this paper, we study the relation between

average transmission power and strict delay constraints.

The motivation for this work stems from the fact

that exact channel and source probability distributions

are seldom known in practice. Thus, optimal schedulers

designed based on an assumed knowledge of probability

distributions typically incur a significant loss in the

presence of distribution mismatch. Hence, seeking robust

schedulers, we investigate the performance achievable

with no prior assumptions about the probability distribu-

tion of the source.

∗This work was partly supported by the National Science Founda-

tion Grant CCR-0311398.

In [3], we established necessary and sufficient con-

ditions on the service rates of the wireless transmitter,

needed to meet the delay deadline of every packet in the

queue. Based on the derived conditions, we had demon-

strated that any scheduler can be expressed as a linear

time-varying low-pass filter if it meets a delay guarantee

Dmax for every packet over Gaussian channels. The

result provides a proof for the intuitive explanation for

power reduction due to additional queuing delay, first

observed in [2].

Our main contributions are two-fold. First, the relation

between linear filtering and delay bounded scheduling is

used to construct robust schedulers, which do not rely

on the knowledge of source statistics. Non-reliance on

distributional assumptions makes our results significantly

different from the common information theoretic formu-

lations on power-efficient scheduling [1, 2]. We construct

both the optimal time-varying and time-invariant robust

schedulers. The optimal time-invariant robust scheduler

turns out to be simply a moving average filter of length

Dmax. Similarly, the time-varying scheduler has an ele-

gant structure and water-fills the newly arrived packets

over the next Dmax time-slots.

Second, the performance of optimal scheduler (robust

or otherwise) is characterized via an upper and a lower

bound. The upper bound is derived using Jensen’s in-

equality and the lower bound uses Hardy-Littlewood-

Polya inequality [6]. The upper bound also characterizes

the performance of the optimal time-invariant robust

scheduler. Lastly, we also derive the exact performance

of the optimal time-varying robust scheduler. To the best

of our knowledge, these are the first bounds on average

power consumption of delay-constrained scheduling, and

are most useful for the case of small delays by providing

trends of actual performance.

We note that the results in this paper are limited to

Gaussian channels, much like the works in [2, 12, 13].

We expect that the connections between filtering and
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Fig. 1. Conceptual depiction of a queuing system.

scheduling will continue to hold for time-varying fading

channels, albeit the nature of filters will change (possibly

no longer low-pass).

The rest of the paper is organized as follows. In

Section II, we formulate the problem and characterize

the set of feasible schedulers. In Section III, the rela-

tion between filtering and scheduling is clarified. Some

of the results in Sections II and III were presented

in [3] without proofs, and hence they are included here

for completeness. Motivated by the filtering property

of the schedulers, the design of optimal time-invariant

schedulers is presented in Section IV. In Section V, the

upper and lower bounds on the performance of optimal

scheduler are derived. The design of optimal robust

schedulers, designed without the knowledge of source

statistics, are presented in Section VI. Finally, we briefly

survey the related works in Section VII and we conclude

in Section VIII.

II. GUARANTEED MAXIMUM DELAY SCHEDULER

A. Problem Formulation

Consider the system in Figure 1, where the number

of input packets to the queue at time t is given by a

random process Xt. The arriving packets are queued in

a buffer whose backlog before time t is denoted by Bt.

We assume that all packets have the same size. At any

time t, a causalscheduler transmits Rt packets out of the

queue by looking at the queue size Bt, and having the

knowledge of all the previous input arrivals {Xi}
t
i=1. On

the other hand, a non-causalscheduler uses all arrivals

{Xi}
∞

i=1.

In this paper, we will consider the case when each

packet is required to be delivered within the Dmax time-

slots of its arrival. The scheduler will be designed to

adapt the transmission rate Rt such that the average

transmit power E [Pt] is minimized while meeting the

maximum queuing delay constraint for each packet.

We consider a Gaussian channel between transmitter

and receiver and assume that all transmissions occur in

packets and the length of the packet is long enough

to allow reliable communication close to the mutual

information of the channel. This is motivated by the

outage versus capacity analysis in [8], and other recent

works in scheduling problem [1, 2]. Solving the mutual

information formula for Gaussian channels shows that

the average power is exponentially related to the rate,

i.e. Pt ∝ 2Rt . By looking at the average power required

for N time slot, scheduler design based on two different

optimization criteria is defined.

Criterion 1:

min lim
N→∞

1

N

N
∑

t=1

2Rt (1)

Criterion 2:

min E

[

lim
N→∞

1

N

N
∑

t=1

2Rt

]

(2)

The above optimization problems are not necessarily

identical. It can be readily shown that a sufficient con-

dition for the above two minimization problems to be

identical is that any given time, t, the scheduler output

rate, Rt, is just a function of the past M input arrivals,

Xt, Xt−1, . . . , Xt−M+1, for some fixed value of M
which does not depend on t.

B. Set of Feasible Schedulers

We first characterize the set of all feasible schedulers

by deriving the necessary and sufficient conditions for a

scheduler to guarantee the maximum delay of Dmax, in

terms of Xi and Ri for i = 1, 2, . . . , t. The results in

this section form the basis for all the subsequent results.

Lemma 1 (Feasible Schedulers):For any scheduler,

maximum delay of each packet is less than or equal to

Dmax if and only if for all positive integer values of t
and k, the output service rates Ri and input arrival rates

Xi for i = t, t + 1, t + 2, . . . , t + k + Dmax, and queue

backlog Bt satisfy the following inequalities:

Xt+Xt+1+. . .+Xt+k ≤ Rt+Rt+1+. . .+Rt+k+Dmax−1

(3)

Rt +Rt+1 + . . .+Rt+k ≤ Bt +Xt +Xt+1 + . . .+Xt+k

(4)

Proof: First we prove the necessity of the conditions.

Condition (3) gives a lower bound for the output service

rates out of the queue based on the input arrival rates to

the queue. It shows that for any t and k the output rate

out of the queue from time t to time t + k + Dmax − 1
should be more than or equal to the input to the queue

from the time t to the time t+k. Suppose not, thus there

exist some values t and k such that the output out of the

queue from time t to the time t + k + Dmax − 1 is less

than the input to the queue from time t to the time t+k.



Therefore, even if the queue backlog at time t, is zero

(Bt = 0) the last packet of which has arrived in the time

interval of t to t + k would not be serviced until time

t + k + Dmax which makes the delay more than Dmax

for this packet. On the other hand, Condition (4) gives

an upper bound on the output of the queue based on

the input arrivals and previous backlog in the queue. It

shows that output in the time interval t to t+k cannot be

greater than sum of the input arrivals in the same time

period plus the amount of queue backlog at the time t.
This is equivalent to the condition that queue backlog

cannot be negative.

Next we prove that the mentioned conditions are

sufficient as well. For the same, we need to show that if

input arrival rates and output service rates satisfy both of

the Conditions (3) and (4), then the maximum delay for

any packet would not exceed Dmax. Consider a packet

which has arrived at arbitrary time k. Assume that Xi,

i = 1, 2, . . . , k+Dmax−1 are arbitrary input arrival rates

and the output service rates Ri, i = 1, 2, . . . , k+Dmax−1
have been chosen such that the conditions of the lemma

are satisfied. For t = 1, from the Condition (3) we have

X1 + X2 + . . . + Xt+k ≤ R1 + R2 + . . . + Rt+k+Dmax−1

(5)

Since there is no arrival to the queue before time t =
1, and the queue initially is empty, the above condition

guarantees that all packets which have arrived before

time k + 1 would be out of the queue before time t +
Dmax, which means that delay for all the packets arrived

at time k is at most Dmax. On the other hand we need

to show that the above set of output service rates Ri,

i = 1, 2, . . . , k + Dmax − 1 do not violate the queue

rule, i.e. Bi ≥ 0, for all i = 1, 2, . . . , k + Dmax − 1. By

definition

Bi = X1+X2+. . .+Xi−(R1+R2+. . .+Ri)+B0 (6)

From the condition 4, for t = 1 and k = i − 1 it is

immediate that Bi ≥ 0. ¥

III. FEASIBLE SCHEDULERS ARE LOW-PASS FILTERS

In this section, we first show that structure of any

scheduler which guarantees the maximum delay of Dmax

is equivalent to a linear time-varying filter of size no

more than Dmax. The characterization of the finite im-

pulse response filter immediately leads to the fact that it

is always a low-pass filter.

Theorem 1 (Filter Characterization):A scheduler

which guarantees the maximum delay of Dmax for any

arrived packet is a linear time variant filter of size

Dmax, denoted by:

Rt = αt
0Xt + αt

1Xt−1 + . . . + αt
Dmax−1Xt−Dmax+1, (7)

where the filter coefficients satisfy the following

Dmax−1
∑

i=0

αt+i
i = 1,∀ t, (8)

0 ≤ αt
i ≤ 1,∀ t, i. (9)

Furthermore, any time variant filter of size Dmax which

satisfies the above constraints is a valid scheduler which

guarantees the maximum delay of Dmax for any packet.

Proof: First we prove the necessary condition by

showing every scheduler which guarantees the maximum

delay of Dmax can be expressed as a linear time-variant

filter. Consider the output of the queue at time t. Since

the scheduler guarantees the maximum delay of Dmax,

all of the scheduled packet at time t are packets which

have arrived in the past Dmax time slots. Assume that

the first output packet has the delay of exactly i and

the last output packet has the delay of exactly j, where

Dmax − 1 ≥ i ≥ j ≥ 0. Thus, the output rate Rt can be

written in the form of the Equation (7) where

(i) αt
i and αt

j are the portions of packets which

have arrived at the time t − i and t − j and

are transmitted at time t, and

(ii) αt
k = 1 for any k, such that i > k > j if it

exists.

On the other hand, since packets which have arrived

at time t should be out before the time t + Dmax and

αt+i
i is the portion of it which is out at time t + i, the

summation of the Equation (8) should hold.

Now we relax the above conditions (i) and (ii) to that

of (9) and prove the sufficiency condition which means

that any scheduler that has output rate Rt satisfying

condition of the Theorem 1 will have delay of no more

than Dmax time unit for all of the packets. The proof

follows immediately by verifying that the Inequalities (3)

and (4) of Lemma 1 hold. ¥

Based on Theorem 1, whenever the scheduler is

treated as a filter, we will use the term scheduling filteras

an equivalent term for a scheduler. It is worth mentioning

that a scheduler does not have a unique representation as

a linear time varying filter. In most cases, there is more



than one possible way of representing a fixed scheduler

in the form of a linear time varying filter.

Theorem 1 turns the design of the guaranteed maxi-

mum delay scheduler into the problem of filter design

with a ‘linear’ structure. Therefore, we foresee the vast

literature on linear filtering theory as a fundamental tool

in designing power-efficient schedulers [5, 7]. Following

result follows directly from basic filtering theory.

Corollary 1: Every feasible time-invariant scheduler

is a low-pass filter.

Proof: Since all of the coefficients of the filter are

chosen in the interval [0, 1], all the zeros of the corre-

sponding z-transform of the filter are on the left hand

side of the origin which means that the filter is a low-

pass filter [11]. ¥

Remark 1 : For power-efficiency, additional delay

helps by smoothening the input arrival process via queu-

ing [2]. It is clear that by increasing the number of

filter taps (equivalently increasing maximum possible

scheduling delay), one can design better low-pass filters,

leading to transmit power reduction. The intuition behind

the fact that the optimal average power scheduler would

have smoother output sequence than the input sequence

comes from the convexity of the objective function of

the optimization problem in either of Criteria (1) or (2).

Remark 2 : It can be easily proved that the opti-

mal scheduler with guaranteed maximum delay Dmax

depends only on the distribution of the input arrivals

and the past observation of the input arrival rates Xt−i,

i = 0, 1, . . . , Dmax − 2, and the queue backlog Bt in

order to determine the optimal value of output service

rate, Rt, at time t. In other words, it does not depend on

the individual values of Xt−i for i ≥ Dmax−1. We will

use this property along with the linear filtering property

of the optimal scheduler to find the optimal robust

scheduler when the distribution of the input arrival rates

is not known. The structure of the robust scheduler even

extends to the case in which the packets have different

QoS requirements (i.e. maximum delay requirements)

while the supremum of all of the delays is still bounded

by fixed value D = Dmax.

IV. OPTIMAL TIME-INVARIANT SCHEDULING

Motivated by the filtering property of the scheduler,

we consider design of the optimal time-invariant sched-

uler for a given input arrival distribution. Theorem 2

characterizes the optimal time-invariant scheduler, and

it turns out that the optimal solution is independent of

the input arrival distribution. In other words, the optimal

time-invariant scheduler is robust to the changes of the

input arrival distribution as it will be further explored

in Section VI. Also, for any input arrival distribution the

performance of optimal time invariant scheduler provides

an upper bound on the performance of the optimal

scheduler (which is time varying in general) that would

be discussed in Section V.

Theorem 2 (Time-invariant Scheduler):Let input ar-

rival rates Xt, t = 0, 1, . . . be i.i.d. random variables with

distribution fX(x). For both cases of the optimization

problems posed in Criteria 1 and 2. the optimal time

invariant scheduling filter (scheduler) has the form

Rt =
Xt + Xt−1 + . . . + Xt−Dmax+1

Dmax
(10)

Proof : Assume that the optimal time invariant sched-

uler for a time index k is given by Rk = α0Xk +
α1Xk−1 + . . . + αDmax−1Xk−Dmax+1, where 0 ≤ αi ≤ 1
and

∑Dmax−1
i=0 αi = 1.

First we prove that in the class of time invariant sched-

ulers both of the objective functions are equivalent, and

equal to the objective function J = E[2Rk ]. The proof

is based on the property that for all t, Rt are identically

distributed and also Rt and Rt+M are independent if

M ≥ Dmax. For the first objective function, we have

J1 , lim
N→∞

1

N

N
∑

t=1

2Rt = lim
L→∞

1

LDmax

LDmax
∑

t=1

2Rt (11)

J1 =
1

Dmax

Dmax
∑

i=1

lim
L→∞

1

L

L
∑

t=1

2Ri+tDmax (12)

J1 =
1

Dmax

Dmax
∑

i=1

E[2Rk ] = E[2Rk ], (13)

where Equation (13) is derived from the law of large

numbers in probability theory. On the other hand, for

the second objective function, we have

J2 , E

[

lim
N→∞

1

N

N
∑

t=1

2Rt

]

(14)

J2 = lim
N→∞

1

N

N
∑

t=1

E[2Rk ] = E[2Rk ]. (15)

Therefore, the optimization problem can be written as:



minJ = min E[2Rk ]

= min E[2α0Xk+α1Xk−1+...+αDmax−1Xk−Dmax+1 ]

= min E[2α0Xk ]E[2α1Xk−1 ] . . .

. . . E[2αDmax−1Xk−Dmax+1 ]

= min E[2α0Xk ]E[2α1Xk ] . . . E[2αDmax−1Xk ]

(16)

It can be easily shown that f(α) = ln E[2αXk ] is a

convex function of α for any distribution of Xk. The

second derivative of f(α) is given by:

∂2f(α)

∂α2
=

E[(Xk ln 2)22αXk ]E[2αXk ] − (E[(Xk ln 2)2αXk ])2

(E[2αXk ])2

(17)

The numerator is positive by using the Cauchy-

Schwartz inequality in the form E[f2]E[g2] ≥ E
2[fg] ,

and the denominator is obviously positive. Thus the sec-

ond derivative of f(α) is always positive and therefore

it is a convex function. By applying Jensen’s inequality

and considering that
∑Dmax−1

i=0 αi = 1, we have

1

Dmax

Dmax−1
∑

i=0

f(αi) ≥ f

(

1

Dmax

Dmax−1
∑

i=0

αi

)

Dmax−1
∑

i=0

f(αi) ≥ Dmaxf

(

1

Dmax

)

Dmax−1
∑

i=0

ln E[2αiXk−i ] ≥ Dmax ln E[2
Xk

Dmax ]

Dmax−1
∏

i=0

E[2αiXk−i ] ≥ E
Dmax [2

Xk

Dmax ]

(18)

Thus, J ≥ E
Dmax [2

Xk

Dmax ] with equality if and only if

αi = 1/Dmax for all i = 0, 1, . . . , Dmax − 1. ¥

V. BOUNDS ON SCHEDULER PERFORMANCE

An upper and lower bound on the optimal scheduler

performance (robust or otherwise) are presented in this

section. The upper bound is, in fact, the performance

of the robust time-invariant scheduler presented in the

previous section. Also, the bounds apply to both opti-

mization Criteria 1 and 2.

Corollary 2 (Upper Bound):An upper bound on the

optimal scheduler guaranteeing maximum delay of Dmax

is given by:

Pavg ≤ E
Dmax [2

X

Dmax ], (19)

where input arrival rates are i.i.d. random variables with

distribution fX(x).
Proof : Follows directly from the existence of the

scheduler in Theorem 2 which requires the power av-

erage of E
Dmax [2

X

Dmax ]. ¥

It is easy to prove that this upper bound is a decreasing

function of Dmax for any distribution of the input process

Xt, fX(x) (Jensen’s inequality). It again shows that as

the maximum delay increases, the number of scheduling

filter (scheduler) taps Dmax increases, and the required

average transmit power is lower.

By using Jensen’s inequality it is fairly easy to see

that 2E[X] is a lower bound on the average power of any

scheduler which satisfies conditions of the Lemma 1.

In order to establish stronger lower bound, we will use

Hardy-Littlewood-Polya inequality [6] which captures

the effect of permutation and ordering, and is funda-

mentally different from the class of inequalities (such

as Jensen’s inequality) that are based on the property of

convex functions.

Theorem 3 (Lower Bound):Let input arrival rates Xt,

t = 0, 1, . . . be i.i.d. random variable with distribution

fX(x). For both cases of the optimization problems

posed in Criteria 1 and 2, a lower bound on the required

average transmission power for any scheduler which

guarantees the maximum delay of Dmax is given by:

Pave ≥ E
l+1

[

2
X

l+Dmax

]

(20)

for any value of parameter l.
Proof: Consider Criterion 1 of the objective function.

We have

lim
N→∞

1

N

N
∑

t=1

2Rt

≥ lim
N→∞

1

N

N
∑

t=1

(

2
Rt

l+Dmax

)l+Dmax

≥ lim
N→∞

1

N

N
∑

t=1

2
Rt+Rt+1+...+Rt+l+Dmax−1

l+Dmax (21)

≥ lim
N→∞

1

N

N
∑

t=1

2
Xt+Xt+1+...+Xt+l

l+Dmax

≥
1

l + 1

l+1
∑

i=1

lim
L→∞

1

L

L
∑

t=1

2
X

t(l+1)+i
+...+X

t(l+1)+i+l

l+Dmax



≥
1

l + 1

l+1
∑

i=1

E

[

2
X

t(l+1)+i
+X

t(l+1)+i+1+...+X
t(l+1)+i+l

l+Dmax

]

≥
1

l + 1

l+1
∑

i=1

E
l+1

[

2
X

l+Dmax

]

(22)

≥ E
l+1

[

2
X

l+Dmax

]

where (21) is from the application of Hardy-Littlewood-

Polya inequality and (22) is derived from the law of

large numbers in probability theory. Similarly, for the

Criterion 2 of the objective function, we have

E

[

lim
N→∞

1

N

N
∑

t=1

2Rt

]

≥ lim
N→∞

1

N

N
∑

t=1

(

2
Rt

l+Dmax

)l+Dmax

≥ lim
N→∞

1

N

N
∑

t=1

E

[

2
Rt+Rt+1+...+Rt+l+Dmax−1

l+Dmax

]

(23)

≥ lim
N→∞

1

N

N
∑

t=1

E

[

2
Xt+Xt+1+...+Xt+l

l+Dmax

]

≥ lim
N→∞

1

N

N
∑

i=1

E
l+1

[

2
X

l+Dmax

]

≥ E
l+1

[

2
X

l+Dmax

]

where (23) is from the application of Hardy-Littlewood-

Polya inequality. ¥

Remark 1: The bound of the Theorem 3 gives the

trivial lower bound of 2E[X] as l → ∞. A special case

of this lower bound is given by letting l = Dmax − 1

as Pave ≥ E
Dmax [2

X

2Dmax−1 ] which is tight only in the

case of Dmax = 1. The derived upper and lower bounds

are trivially equal in the case of Dmax = 1 which

corresponds to transmission of the entire packets in the

queue at each time instant. On the other hand, it is

possible to prove that the upper bound of the Corollary 2

converges to the lower bound 2E[X] as Dmax −→ ∞,

thus, the lower and upper bound asymptotically converge

together.

Theorem 4:The upper bound E
Dmax [2

X

Dmax ] con-

verges to the lower bound 2E[X] as Dmax −→ ∞.

Proof: For simplicity we assume that the random

variable X is discrete, and we expand the upper bound

as:

E
Dmax [2

X

Dmax ] =

(w1(2
x1)

1

Dmax + w2(2
x2)

1

Dmax + . . . + wn(2xn)
1

Dmax )Dmax

which is the weighted power mean of 2xi’s. It can

be easily shown that as Dmax −→ ∞ this quantity

converges to the weighted geometric mean as: [6]

lim
Dmax−→∞

E
Dmax [2

X

Dmax ] = (2x1)w1(2x2)w2 . . . (2xn)wn

= 2x1w1+x2w2+...+xnwn

= 2E[X]

(24)

which completes the proof. ¥

Remark 2: The bounds on the performance of the

scheduler is depicted in the Figure 2 for the Bernoulli

input arrivals distribution. Usually, we need to design a

scheduler which performs well for low maximum packet

delay, while design of an scheduler which performs

well for relatively high maximum delay constraint is not

difficult. In fact, the performance of the derived robust

time invariant scheduler asymptotically is optimal for

large maximum delay constraint. Although the lower

bound of 2E[X] is asymptotically tight, it is a loose lower

bound for small values of the maximum delay (Figure 2),

which are of more interest. The previous works on the

power optimal packet scheduling [1, 2] are also deficient

in providing a good lower bounds for small values of the

average delay. On the other hand, the family of the lower

bounds given by Theorem 3 as
{

E
l+1

[

2
X

l+Dmax

]}∞

l=1
provide useful lower bounds for the required average

power. For any value of Dmax, the supremum of this

family of bounds is the best lower bound which is

illustrated as the envelope of lower-bound curves.

VI. OPTIMAL ROBUST SCHEDULING

In practice, the exact knowledge of the input arrival

distribution may not be available or it may change

from time to time. Also, The scheduler might perform

poorly when there is a mismatch between the actual

source distribution and the assumed distribution by the

scheduler. We discuss the design of a Robust scheduler
which performs well regardless of the choice of source

distribution. In Section IV, we derived the optimal time-

invariant scheduler and also showed that it is independent

of the distribution of the input arrival rates to the queue.

Thus, it is in fact the optimal time-invariant Robust

scheduler when the distribution of the input arrival rates

is not known.

In this section, we present the optimal robust sched-

uler (which is time varying in general) for guaranteed

maximum delay. The robustness of this scheduler comes

from the fact that the scheduled output rate Rt at
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Fig. 2. Performance of the optimal time-varying robust scheduler

and the bounds on performance. Note that performance of the optimal

time-invariant robust scheduler matches the upper bound.

time t is chosen without the knowledge of the future

input arrival statistics. The scheduler is based on the

previously observed arrivals to the queue and the amount

of queue backlog. On the other hand, the optimality of

this scheduler guarantees that there is no scheduler which

can outperform this scheduler for all possible source

distributions.

We also find the exact distribution of the output

service rates for the optimal time varying robust sched-

uler, which is then used to find the average transmis-

sion power. The average power of optimal time-varying

scheduler is generally lower than that of the optimal

time-invariant robust scheduler which provides a better

bound than the one presented in Corollary 2.

A. Optimal Time-varying Robust Scheduler

First, we extend the problem of finding the optimal

robust scheduler for guaranteed maximum delay to a

more general case, where there are different maximum

delays associated to different arrived packets. Then, we

consider the case where the maximum delay constraint

for all the packets is the same.

1) Different delay constraints for each packet:
We find the optimal scheduler for the general delay-

constrained scheduling problem when knowledge of in-

put distribution is not available. Solving the general case

of the problem would be of more interest in practice

where different packets have different maximum delay
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water-levels 

Water-filling window of the i th queue 

… 
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Fig. 3. Representation of the successive water-filling at time t for

the i
th queue.

constraints associated with different QoS requirements.

We assume that the supremum of the delay constraints

for all arrived packets is equal to Dmax. In this case we

need to make Dmax separate FIFO queues, one for each

set of packets with delay requirement of 1, 2, . . . , Dmax,

while in the simpler problem where there is only one

maximum delay associated with each packet, only one

FIFO queue is needed.

Assume that the scheduler does not know the distribu-

tion of future input arrivals. Thus, the only information

available to the scheduler at time t would be the past

observed values of input arrival rates and the delay

associated with each packet. Furthermore, assume that

the maximum delay bound of all the packets is no more

than Dmax. We make a circle consisting of Dmax queues

and label them from 1 to Dmax in the clockwise order.

At each time t, queue i consists of the packets that have

delay constraint i. So we push all the arrived packet with

the same delay constraint i into this queue. After we have

serviced all of the scheduled packets out of the queues in

time t, we go to the time t + 1 and we rotate the queue

labels clockwise by one position. In other words, the

queue which has delay constraint i at the time t would

have delay constraint i − 1 in the time t + 1. Also, the

queue 1 would be empty after this queue is serviced at

time t, and its label will change to Dmax to accommodate

the newly arrived packets at time t + 1 which have an

associated delay constraint of Dmax.

Theorem 5:At any given time t, let Ai denote the

backlog of the queue i for all i, i = 1, 2, . . . , Dmax.

The optimal output service rate out of the ith queue is

given by X0
Dmax−i, where this value is obtained through

successive water-filling of the Equations (41)-(43) in

Lemma 2 by letting D = Dmax.

Proof: It is clear that there is no difference between



any two different packet in the same queue in terms of

our scheduling problem. Thus, at any given time t all the

observed information about the input arrival rates would

reduce to the size of the backlog in each of the queues,

which is assumed to be At
i for all i = 1, 2, . . . , Dmax.

Let φ(x) = 2x which is a convex function of x, and

Ai = At
i for all i = 1, 2, . . . , Dmax . Using Lemma 2

from the Appendix I, successive water-filling over the

next Dmax time slot gives the optimal solution for the

values of Xj
i for all {(i, j) : 0 ≤ j ≤ Dmax−1, and 0 ≤

i ≤ Dmax−1−j}. Thus, we find the optimal service rates

out of the present queue which is given by X0
Dmax−i for

the ith queue (Figure 3). Successive water-filling means

that the water-filling for different queues is performed

sequentially, and that the water-filling process for the

ith queue treats all the other queue yet to be water-filled

as an empty queue.

Going to the next time t + 1 we need to push new

packets to the queues by considering their maximum

tolerable packet delays. Thus, the new queue backlog

would be At+1
i = At

i − X0
Dmax−i + N t

i for all i =
1, 2, . . . , Dmax, where Ni is the number of arrived pack-

ets with maximum delay constraint i at time t. Therefore,

in the next time t + 1 we need to perform successive

water-filling of Lemma 2 again to find the optimal values

of service rates out of the queues. Clearly, this process

is optimal at each time instant t based on the known

information at the time t. ¥

Note that the successive water-filling gives a nice

practical way of finding the current transmission rates

out of each queue. From Lemma 2, one would notice

that at any time instant t, successive water-filling gives

the optimal values of the output service rates not only for

the present time t but also for the Dmax − 1 future time

instants. But, we would like to emphasize that the entire

process of successive water-filling should be redone at

each time instant. The reason is that at the new time

instant t+1, new input packet arrivals change the backlog

of the entire set of queues, thus, the known information

has been changed. With this new information, it is not

hard to show that the optimal values of the output service

rates out of the queues at the time t + 1 would not

necessarily match with the anticipated values at the time

t for this time slot (Figure 4).

2) The same delay constraints for all packets:For

the case that all packets have the same maximum delay

constraint Dmax, the solution is fairly easy. Basically

there are two main differences which make it simpler:

First is the fact that a single FIFO queue is enough to

perform scheduling. It is interesting to note that due
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rate 

Time 

Fig. 4. Water-filling solution for the time slot t− 1 and subsequent

time slot t.

to the scheduling, there are still different packets with

different delay constraints remaining in the queue at

any given time t, and the water-filling solution involves

finding the optimal scheduled service rate for each of

them. Still, the sum of the scheduled output service rates

is enough to be considered as an optimal service rate out

of the single FIFO queue to guarantee the maximum

delay constraint. Second, the water-filling solution is

much simpler due to the fact that at each step we just

need to do water-filling for the currently arrived packets

on top of the old solution. In other words, instead of

making Dmax queues, all we need is to keep track of

Dmax numbers at each time which show the water-filling

solution of the previous time slot. We specifically have

the following corollary based on Theorem 5.

Corollary 3: At any given time slot t, let

(St
0, S

t
1, . . . , S

t
Dmax−1) denote the vector of the

scheduled output service rates out of the queue

from the previous time slot t − 1, and let Xt be the

new arrival which needs to be scheduled. The optimal

output service rate for the current time t, Rt, and the

new vector of the scheduled service rate for the time

t + 1, (St+1
0 , St+1

1 , . . . , St+1
Dmax−1), are determined by the

water-filling solution as:

Rt = (µ − St
0)

+

St+1
i = (µ − St

i+1)
+ ∀ 0 ≤ i ≤ Dmax − 2

St+1
Dmax−1 = 0

Rt +

Dmax−1
∑

i=0

St+1
i = Xt (25)

Therefore, the coefficients of the optimal robust time



variant scheduling filter (scheduler) are given by:

αt
i =

(µ − St
i+1)

+

Xt
∀ 0 ≤ i ≤ Dmax − 1 (26)

The above discussion provides an extremely simple

solution to the problem of robust scheduling for delay

constrained inputs to a queue. There are some important

observations which come out of above solution. First,

to find the optimal robust scheduler in Theorem 5,

and Corollary 3, although we did not use the filtering

property of the scheduler, the optimal solution turns of

to be exactly a linear time-variant filter of size Dmax,

which is not surprising due to the Theorem 1. Second, the

optimal values of filter coefficient are exactly function of

the past Dmax − 2 values of the input arrivals and the

queue backlog, which is expected as we discussed earlier.

Third, as we mentioned earlier, the optimal scheduler

intuitively should try to make the output service rate

as smooth as possible, which corresponds to the low-

pass property of the scheduler. Indeed, the water filling

solution is the best verification of this intuition. Fourth,

the water-filling solution and the Proposition 1 reveal that

the optimal solution always tries to push the scheduled

time of the packets as far as possible and near the

maximum value of the tolerable delay.

In summary, Theorem 2 gives the best time-invariant

robust scheduler, while Theorem 5 gives the best time

variant robust scheduler, or simply the optimal robust

scheduler. The performance of the optimal time varying

robust scheduler is depicted in Figure 2. It can be ob-

served that the performance of the optimal time varying

robust scheduler is much better than the performance of

the time invariant scheduler which is depicted as upper

bound in Figure 2. In fact, the performance of the optimal

robust scheduler follows the trend of the envelope of the

lower bound curves.

B. Performance Analysis

In this section we first derive the distribution of the

output service rates, fR(r), for the time-varying robust

scheduler when the input arrival rates are iid with the

known distribution fX(x). The derived distribution can

be used to evaluate the performance of the robust time

varying scheduler when the input distribution is known.

In fact, it is possible to find an analytic expression for the

performance of the robust time-varying scheduler which

provides a better upper-bound for the performance of the

optimal scheduler (which is not necessarily robust). Al-

though this upper bound is lower than that of Corollary 2,

the upper bound of Corollary 2 is still useful because of

the simplicity of the expression and for the purpose of

the numerical calculation.

We assume that the input arrival rate is a stationary and

ergodic random process. In this case, the output service

rate is an ergodic and stationary random process and it

can be found by recursive solution. First, we consider the

case of Dmax = 2 to show how the recursive solution

works to find the distribution of the output arrival rates.

Then, we drive the distribution of the output arrival rates

for the general case. Although, the solution in this case

is more involved, the same approach like the simple case

of Dmax = 2 is used.

Suppose that f1(.) and f2(.) denote the output service

rate distributions of the current and the next time interval,

respectively, after water-filling process is performed. Let

Y be the random variable showing the value of queue

backlog and y be the actual backlog of the queue at

time i before performing water-filling. Since, Y is in

fact the scheduled service rate for the next time slot at

time i − 1, its distribution is given by f2(y). Suppose

that the input arrival at time i is given by the random

variable X . If X < Y then the scheduled rate for the

next time slot would be the same as random variable X ,

but if X ≥ Y , then the scheduled rate for the next time

slot would be equal to X+Y
2 . Therefore, at any given

time, for the stationary distribution of the next time slot

conditioned on the queue backlog Y = y we have

f2(z|Y = y) =

{

fX(z) if z < y
2fX(2z − y) if z > y

(27)

Thus, considering the distribution of the random variable

Y , we have

f2(z) =

∫ z

0
2fX(2z − y)f2(y)dy+

∫

∞

z

fX(z)f2(y)dy (28)

which can be written in the form of the homogeneous

Fredholm integral equation of the second kind

f2(z) =

∫

∞

0
f2(y)[fX(z)U(y − z)+

2fX(2z − y)(1 − U(y − z))]dy (29)

Therefore, for any input distribution of fX(x), f2(.)
can be obtained by solving the above integral equation,

where the kernel is a given function of the input distri-

bution.

Also, if X < Y then the scheduled rate for the current

time slot would be the same as random variable Y , but

if X ≥ Y , then the scheduled rate for the current time



slot would be equal to X+Y
2 . Therefore, at any given

time, for the stationary distribution of the current time

slot conditioned on the queue backlog Y = y we have

f1(z|Y = y) =







0 if z < y
∫ z

0 fX(x)dx if z = y
2fX(2z − y) if z > y

(30)

Therefore, considering the distribution of the random

variable Y , we have

f1(z) =

∫ z

0
fX(x)dx f2(z)+

∫

∞

z

2fX(2z − y)f2(y)dy (31)

Thus, after some manipulation the distribution of the

output service rate, fR(r), which is equal to f1(r) is

given by:

fR(r) =

∫ r

0
fX(γ)[f2(r) + f2(2r − γ)]dγ (32)

This result is easily extendable to the case of arbitrary

time delay constraint of Dmax for Dmax > 2. Although

the solution is more involved for the case of Dmax > 2,

it has the same nature of first finding the solution of

a homogenous Fredholm equation of the second kind

and then plugging in the answer in a definite multiple

integral. We use the same approach to find the distribu-

tion of the output service rate in general for an arbitrary

Dmax. let ~Y denote the vector of the random variables

(Y0, Y1, . . . , YDmax−1 which are the scheduled service

rates for the current and next Dmax−1 time slots. To find

the stationary distribution, we use the recursive equation

which relates the values of these random variable at time

i to the previous time slot i − 1. It should be pointed

out that in the case of Dmax = 2 we do not need to

consider the joint distribution of the random variables

Y0, Y1, but in the case of Dmax ≥ 3 it is essential.

Let (y0, y1, . . . , yDmax−1) be the actual values of the

scheduled service rates for the current and next Dmax−1
time slots at time i− 1. If X denotes the input arrival at

time i, then the vector of the scheduled service rate ~Z
would be equal to (y1, y2, . . . , yDmax−k, z, . . . , z) if and

only if k ∈ {1, 2, . . . , Dmax} is the minimum value for

which X + yDmax−1 + yDmax−2 + . . . + yDmax−k+1 <
kyDmax−k. We define this minimum value k , θ(~y, X)
as a function of the value of X and vector ~y. Therefore,

at any given time i, for the stationary distribution of the

joint scheduled service times ~Z conditioned on the queue

backlog ~Y = ~y, we have

f~Y
(~Z = (y1, y2, . . . , yDmax−k, z, . . . , z)|~Y = ~y) =



















fX(z) if z < yDmax−1

2fX(2z − yDmax−1) if yDmax−1 ≤ z < y
...

DmaxfX(Dmaxz −
∑Dmax−1

j=1 yi) if y1 ≤ z

(33)

Using the defined function k = θ(~y, X), it can be

simplified to

f~Y
(~Z = (y1, y2, . . . , yDmax−k, z, . . . , z)|~Y = ~y) =

kfX(kz −

Dmax−1
∑

j=1

yi) if k = θ(~y, X)

(34)

Therefore, the problem of finding the distribution of

the joint output scheduled rates of the current and next

Dmax−1 time slots reduces to the solving the following

integral equation.

f~Y
(~z) =

∫

(R+)Dmax+1

f~Y
(~z|~y)f~Y

(~y)d~ydx (35)

=

∫

(R+)Dmax+1

θ(~y, X) . . .

. . . fX



θ(~y,X)z −

Dmax−1
∑

j=1

yi



 f~Y
(~y)d~ydx

where R+ is the set of nonnegative real numbers. Thus,

the stationary distribution of the output service rate is

given by:

fR(y0) =

∫

(R+)Dmax−1

f~Y
(~y)dy1dy2 . . . dyDmax−1 (36)

Therefore, the average required power would be

Pave = Er[2
r] =

∫

∞

0
2rfR(r)dr (37)

which gives an upper bound lower than that of Corol-

lary 2 obtained with the assumption of a time-invariant

scheduler. As we mentioned earlier, although the value of

Pave in Equation (37) gives a better upper bound on the

Pave for the optimal scheduler with the maximum delay

constraint Dmax, because of its ease of computation, the

simple upper-bound of Corollary 2 is still more useful

in most of the cases.



VII. RELATED WORK

It is well known that the required power for reliable

communication between any two points is exponen-

tially related to the rate of the information which is

coded for transmission [1, 2]. Thus, by lowering the

transmission power and transmitting over a longer pe-

riod of time the energy required to transmit a packet

can be significantly reduced [4, 9, 10, 12]. On the other

hand, the information is usually delay-sensitive, thus,

the transmission time cannot be made arbitrarily long,

motivating power optimal transmission with different

packet delay constraints. In [9], the off-line energy

optimal solution has been found for the case that packets

arrive in some time interval [0, T ), and they have to

be delivered by time T . This is a deadline constraint

for the arrived packets, thus, the delay corresponding

to different packets varies with the arrival time of the

packets in the queue. Therefore, the packets arrived

at later time have smaller delay constraints than those

that arrived earlier. The off-line optimal scheduler [9]

assumes noncausal knowledge of all arrival time of

the packets in this interval. Although optimality of the

causal on-line scheduler is not proved, it has been shown

through simulation that it is energy efficient much like

its off-line counterpart. The extension of this work for

the case of multiple user has been studied in [4] which

is solved by proposing two algorithms, the MoveRight

and the MoveRightExpress algorithms corresponding to

noncausal and causal schedulers, respectively. In [10],

authors combined the energy efficiency by lowering the

transmission rate and increasing the transmission time

with the recovery of the batteries due to the electro-

chemical mechanism. The authors also considered both

the deadline and average delay constraint for the packets.

In [1, 2], minimization of the average transmission power

with the average delay constraint have been considered.

This minimization problem can be turned into a convex

optimization problem and the mentioned work have

proposed dynamic programming formulation to find the

optimal solution.

In this work, we consider strict maximum delay con-

straint for each arrived packet instead of the average

delay [1, 2] or deadline constraint [4, 9, 12] for a group

of packets. We also consider a more general case where

each packet has different strict delay constraint. In [9],

off-line scheduler assumes prior knowledge of the packet

arrival time (noncausal scheduler), while we consider

the causal scheduler that looks at the previous time and

number of packet arrivals and has no prior knowledge

of the time or number of packets which will arrive

later. We introduce a robust scheduler that performs well

regardless of the choice of the input distribution. The off-

line scheduler (which is noncausal) in [9] also follows

a distribution free approach, but the online version of

the scheduler (which is causal) was not proved to be

optimal. The robust scheduler which is presented in

this paper is proved to be optimal in a sense that if

the knowledge of the input arrival distribution is not

available, then it is the best possible scheduler which

minimizes the average power based on just the past

observation of the input arrivals. The nice property of the

derived analytic solution for the optimal robust scheduler

is that the solution follows a simple water-filling in time,

which leads to the design of a scheduler with very low-

complexity in comparison to the design of schedulers

in [1, 2] that require a dynamic programming based

solution.

In addition, we build upon the connectiona between

the filtering and scheduling [3]. We use the filtering

connection to establish new lower and upper bounds on

the performance of the optimal scheduler and provide

the scheduling schemes which achieve the upper bounds.

The new lower bounds are especially useful for low

values of the maximum delay constraint where no prior

good bound is known. The proof technique in deriving

the lower bounds in this paper might be of independent

interest. Finding a lower bound by using inequalities that

rely on the property of convex functions usually reduces

to Jensen’s lower bound which is asymptotically optimal

but does not provide a good bound for low values of the

delay constraint. On the other, we use Hardy-Littlewood-

Polya inequality which is inherently different from the

class of inequalities which rely on convex function and

it captures the effect of ordering.

VIII. CONCLUSION

In this paper, we presented several fundamental results

pertaining to scheduling with maximum delay constraints

for Gaussian channels. We established a connection

between low-pass filtering and scheduling, and derived

both time-invariant and time-varying optimal schedulers

which do not rely on the knowledge of source distri-

bution. New bounds on the average power consumption

were presented, which are most useful for the case of

small delays.
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APPENDIX I

Lemma 2:Consider the constrained optimization

problem

J = min
D−1
∑

i=0

φ





D−1−i
∑

j=0

Xi
j



 (38)

subject to the constraints

∀ 0 ≤ i, j ≤ D − 1 : Xi
j ≥ 0 (39)

∀ 0 ≤ j ≤ D − 1 :

D−1−j
∑

i=0

Xi
j = Aj (40)

where φ(.) is a convex function and Aj’s are some

nonnegative real values. The successive water-filling

defined in Equations (41)-(43) is the optimal solution.

X0
D−1 = AD−1 (41)

X0
D−2 = (µD−2 − X0

D−1)
+

X1
D−2 = µD−2

X0
D−2 + X1

D−2 = AD−2 (42)

and successively water-fill for all i = 3, 4, . . . , D − 1
according to,

Xj
D−i = (µD−i −

i−1
∑

k=j+1

Xj
D−k)

+ ∀ 0 ≤ j ≤ (i − 1)

Xi−1
D−i = µD−i

i−1
∑

j=1

Xj
D−i = AD−i. (43)

Sketch of the proof: Since it is a convex optimiza-

tion problem with it is easy to find the necessary and

sufficient condition for the optimal solution based on

Lagrange multiplier technique. After finding the gradient

and applying KKT conditions the solution turns of to be,

Xj
D−i = (µD−i −

i−1
∑

k=j+1

Xj
D−k −

i−1
∑

k=0

Xj
k)+

∀ 0 ≤ j ≤ (i − 1)

Xi−1
D−i = (µD−i −

i−1
∑

k=0

Xj
k)+

i−1
∑

j=1

Xj
D−i = AD−i. (44)

Since determining Xj
k depends on for both prior (i < k)

and subsequent (i > k) values of Xj
i the solution of the

above simultaneous set of equations is not easy to see.

The successive water-filling Equations (41)-(43) remove

the dependency in determining the value of Xj
k to the

prior values of Xj
i for the (i < k). Therefore, first we use

the successive water-filling Equations (41)-(43) to find

the values of Xj
i for all {(i, j) : 0 ≤ j ≤ D−1, and 0 ≤

i ≤ D − 1 − j}, and µi for all 0 ≤ i ≤ D − 1. Then,

we prove that there exist some other value of µ′
i such

that the together with the same values of Xj
i satisfy the

KKT conditions of the Equation (44). ¥

It should be pointed out that the optimal solution to

the above optimization problem is not necessarily unique

and once we get one solution (for example successive

water-filling) it is easy to generate other solutions. Also,

it is easy to prove the following interesting property for

the water-filling solution:

Proposition 1: The argument of the function φ in the

objective function J ,
∑D−1−i

j=0 Xi
j , is a non-increasing

function of i for i = 0, 1, . . . , D − 1.




