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Delay-Dependent Control for Time-Delayed T-S Fuzzy Systems 

Using Descriptor Representation 
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Abstract: This paper presents a design method of delay-dependent control for T-S fuzzy sys-
tems with time delays. Based on parallel distributed compensation (PDC) and a descriptor 
model transformation of the system, a delay-dependent control is utilized. An appropriate 
Lyapunov-Krasovskii functional is chosen for delay-dependent stability analysis. A sufficient 
condition for delay-dependent control is represented in terms of linear matrix inequalities 
(LMIs). 
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1. INTRODUCTION 

Since most physical systems and control systems 
are represented by nonlinear differential equations, the 
stability analysis and stabilizing controller design of 
nonlinear systems are very important. A typical 
approach for the analysis and synthesis of nonlinear 
control systems is to utilize local linearization. The 
possibility of analysis and synthesis of nonlinear 
control systems began to be realized with the 
publication of the T-S fuzzy model introduced by 
Takagi and Sugeno [1]. Recently, Wang et al. [2,3] 
proposed an efficient method for designing fuzzy 
controller for T-S fuzzy systems using the concept of 
PDC. The idea is to design linear feedback control 
gain for each local linear model. Therefore, the design 
method of the PDC-type fuzzy controller is similar to 
that of the linear controller. 

Time-delay often occurs in the state, the control 
input, and the measurement output of numerous 
systems such as transportation systems, communi-
cation systems, chemical processing systems, environ-
mental systems, and power systems [4]. Since time-
delay is frequently a source of instability, the stability 

problems related to time-delay systems have received 
considerable attention over the last 3 decades (see [4-
6] and the references therein). It is well known that the 
choice of a Lyapunov-Krasovskii functional is 
decisive for showing stability. There are two stability 
criteria. One is delay-independent, the other is (less 
conservative) delay-dependent. A few papers [7,8] for 
nonlinear systems with time delay using the T-S fuzzy 
model have been written, but these are only for delay-
independent control. There are no publications yet for 
delay-dependent control for time-delayed T-S fuzzy 
systems. 

In the current paper, we present a method of 
designing delay-dependent control for time-delayed T-
S fuzzy control systems using the concept of PDC. 
We also use the equivalent descriptor model transfor-
mation proposed by Fridman [9]. An appropriate 
Lyapunov-Krasovskii functional is chosen for delay-
dependent stability analysis. A sufficient condition for 
the existence of a PDC-type controller is represented 
in terms of LMIs.  

 
 2. A DESCRIPTOR MODEL TRANSFOR-

MATION OF T-S FUZZY SYSTEMS 

The T-S fuzzy model is an effective way to 
represent a nonlinear dynamic system. It uses a linear 
state-variable description as its consequence of 
individual plant rules. A time-delayed T-S fuzzy 
model is composed of r  plant rules that can be 
represented as follows: 

 
Plant Rule i : 
IF 1( )z t  is 1iM  and … and ( )pz t  is ipM  

THEN ( ) ( ) ( ) ( )i i ix t A x t D x t B u tτ= + − +�  (1) 

  ( ) ( ), [ ,0]x t t tφ τ= ∈ − , 

__________  
 Manuscript received July 31, 2003; revised February 2, 
2004; accepted February 10, 2004. Recommended by Editorial 
Board member Jin Young Choi under the direction of Editor 
Jin Bae Park. This research was financially supported by 
Changwon National University in 2003. 
 Eun Tae Jeung is with the Department of Control and In-
strumentation Engineering, Changwon National University, 9 
Sarim-dong, Changwon, Kyungnam 641-773, Korea (e-mail: 
jet26@sarim.changwon.ac.kr). 
 Do Chang Oh is with the Department of Electronics and 
Information, Konyang University, 26 Nae-dong, Nonsan, 
Chungnam 320-711, Korea (e-mail: docoh@konyang.ac.kr).  
 Hong Bae Park is with the School of Electronic and Electri-
cal Engineering, Kyungpook National University, Daegu 702-
701, Korea (e-mail: hbpark@ee.knu.ac.kr).   



International Journal of Control, Automation, and Systems Vol. 2, No. 2, June 2004 183

where 1,2, ,i r= " . ijM  is the fuzzy set and r  is 
the number of rules. ( )x t ∈Rn is the state, ( )u t ∈Rm 
is the control input, 0τ >  is the time delay of the 
system, ( )φ ⋅ is a vector-valued initial continuous 
function, ,iA ,iD  and iB are constant matrices with 
appropriate dimensions, and 1 2( ) [ ( ) ( )  ( )]pz t z t z t z t= "  
are known premise variables, which may be functions 
of the states, external disturbances, and/or time. Given 
a pair of [ ( ), ( ), ( )]x t u t z t , by using the center of 
gravity for defuzzification, the final state of the T-S 
fuzzy system is inferred as follows: 

1
( ) ( ( ))[ ( ) ( ) ( )],

r

i i i i
i

x t h z t A x t D x t B u tτ
=

= + − +∑�  
(2)

 

where 

 

1
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i r

j
j

w z t
h z t

w z t
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∑
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1

( ( )) ( ( ))
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i ij j
j

w z t M z t
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( ( ))ij jM z t  is the grade of membership of ( )jz t  in 

ijM , and it is assumed that 

 ( ( )) 0, 1, 2, ,iw z t i r≥ = "  

 
1

( ( )) 0
r

i
i

w z t
=

>∑  

for all t . Therefore 

 ( ( )) 0, 1, 2, ,ih z t i r≥ = "  

 
1

( ( )) 1
r

i
i

h z t
=

=∑  

for all t . From [9], we represent (3) in the equivalent 
descriptor form: 

1

( ) ( )

0 ( ) ( ( ))[ ( ) ( ) ( )]
r

i i i i
i

x t y t

y t h z t A x t D x t B u tτ
=

=

= − + + − +∑
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10
1
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i i i i
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= + − +∑� ,(4) 

where 
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x t
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η

 
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0 0
I
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 
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A I
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0

i
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0
i

i
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B
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=  
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In the next section, we will present a sufficient 

condition of delay-dependent stability and an 
existence condition of stabilizing state feedback gain 
for T-S fuzzy time-delayed systems. Before closing 
this section, we recall Park’s inequality, which will be 
used to prove the main results. 

Lemma 1[10]: Assume that ( ) na α ∈R  and 

( ) mb α ∈R  are given for α ∈Ω . Then, for any 
matrices 0X >  and M , the following holds: 

 

2 ( ) ( )

( ) ( )
,

( ) ( )(2,2)

T

T

T

b a d

X XMa a
d

b bM X

α α α

α α
α

α α

Ω

Ω

−

    
≤     

     

∫

∫
 (5) 

where (2,2) denotes 1( ) ( )TM X I X XM I−+ + . 
 

3. MAIN RESULTS 

In the sequel, we present our main results on delay-
dependent stability analysis and stabilization for time-
delayed T-S fuzzy systems based on the LMI method. 

 
3.1. Stability analysis 

First we derive the stability condition of unforced 
time-delayed systems as follows: 

10
1

( ) ( ( ))[ ( ) ( )]
r

i i i
i

E t h z t A t D E tη η η τ
=

= + −∑� . (6) 

Since ( ) ( ) ( )
t

t
t t s ds

τ
η τ η η

−
− = − ∫ � , (6) can be 

rewritten as 

10
1

( ) ( ( ))[( ) ( )

                      ( ) ].

r

i i i
i

t
i t

E t h z t A D E t

D y s ds
τ

η η
=

−

= +

−

∑

∫

�

     (7) 

Consider a Lyapunov-Krasovskii functional for the 
system (6) as 

 1 2 3( ( )) ( ( )) ( ( )) ( ( ))V t V t V t V tη η η η= + + ,  

 1( ( )) ( ) ( )TV t t EP tη η η= , 

1
2 ( ( )) ( ) ( )

t T
t

V t x Rx d
τ

η τ θ θ θ−
−

= ∫ ,         
(8)

 

 
0

3( ( )) ( ) ( )
t T
t

V t y s Ry s dsd
τ θ

η θ
− +

= ∫ ∫ , 

where 

 
1

2 3

0P
P

P P
 

=  
  , 1 0P > , 0R > .        (9) 

Theorem 1: For a given 0τ > , the equilibrium of 
the system (6) is asymptotically stable in the large if 
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there exist matrices 1 0Q > , 2Q , 3Q , 0U >  that 
satisfy the following LMIs. 

[ ]
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where 
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 (11) 

Proof: The proof will be completed by showing 
( ( )) 0V tη <� . The time derivative of 1( ( ))V tη  is 
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where 
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From lemma 1, we have 
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Since the last term in the right-hand side of (14) is 
less than or equal to 

1

1
( ( )) ( ) [ ] [ ] ( )

r
T T T

i i i
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+ +∑ , 

the left-hand side of (14) has an upper bound as 
shown below: 
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The time derivatives of 2 ( ( ))V tη  and 3( ( ))V tη  are 

1
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From (12), (16), and (17), 
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For simplicity, define 
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then (10) and (11) are represented by 
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respectively, where * denotes the transposed terms for 
symmetric positions. From Schur complements [11], 
(20) is equivalent to 
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because the sum of the third and forth terms in the 
left-hand side of (21) are equal to 
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By the pre- and post-multiplying of TP and P , 
respectively, to (22), we get 

 0T T T
i i iP D M RMD PτΨ + < .  (23) 

From (19), (23) implies ( ( )) 0V tη <� .  □ 
 
3.2. Delay-dependent stabilization of time-delayed  

T-S fuzzy systems 
Our goal in this subsection is to stabilize time 

delayed T-S fuzzy systems using the PDC approach [2, 
3]. That is, we present a sufficient condition of 
existence of the PDC-type delay-dependent controller. 
The PDC-type controller shares the same fuzzy sets 
with the time-delayed T-S fuzzy system (1). The PDC-
type controller after defuzzification is  
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Substituting this controller into (4), we obtain the 
closed-loop system 
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where 
10ij i i jA A B K E= +�

. 
Theorem 2: Assume that the number of rules that 

fire for all t  is less than or equal to s  where 
1 s r< ≤ . For a given 0τ > , the equilibrium of the 
closed-loop system (25) is asymptotically stable in the 
large if there exist matrices 1 0Q > , 2Q , 3Q , 0U > , 

0Z ≥ , M , iN  that satisfy the following LMIs. 
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Furthermore, state feedback gains for each rule of the 
time-delayed T-S fuzzy system (4) are 

1
1i iK N Q−= , 1,2, ,i r= " .  (28) 

Proof: For the closed-loop system (25), the time 
derivative of Lyapunov-Krasovskii functional (8) 
satisfies the following inequality: 
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From corollary 4 and theorem 5 in [12], the right-
hand side of (29) is less than zero if there exist 0P >  
and 0Z ≥  such that 
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Now the proof will be completed if (30) and (31) 
are equivalent, respectively, to (26) and (27). By the 
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manipulating their matrix inequalities using Schur 
complements, and letting 1i iN K Q= , (30) and (31) 
can be rewritten as (26) and (27), respectively.    □ 

 
4. AN EXAMPLE 

We will design a PDC-type controller for the 
following time-delayed nonlinear system: 
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It is assumed that 1( )x t  is measurable and 

1( ) [ 2, 2]x t ∈ − . 
An equivalent T-S fuzzy model to (32) is 

represented by 
 Rule 1: 

 IF 1( )x t  is 1M  
 THEN 

 
0 1 0.4 0 0

( ) ( ) ( ) ( )
2 1 4 0 1

x t x t x t u tτ
−     

= + − +     −     
�  

Rule 2: 
  IF 1( )x t  is 2M  
 THEN 

 
0 1 0.4 0 0

( ) ( ) ( ) ( )
2 1 4 0 1

x t x t x t u tτ
     

= + − +     − −     
�  

where [ ]1 2( ) ( ) ( ) Tx t x t x t=  and 
1

1
2

4
x

M
−

= , 

2 11M M= − . For 2τ = , all parameters Q , U , Z , 

M , 1N , 2N  satisfying (26) and (27) are 

 

1

2 3

0

2.0953 -3.9822 0 0
-3.9822 9.8517 0 0

,
-1.8090 2.9352 3.5188 2.6533
1.4688 -83.9144 -6.3201 218.8701

Q
Q

Q Q
 

=  
 
 
 
 =
 
 
 

 

 

0.4415 -0.9955 0.3761 1.9218
-0.9955 32.9423 -3.0847 -15.7938
0.3761 -3.0847 1.6691 8.5740
1.9218 -15.7938 8.5740 77.0615

Z

 
 
 =
 
 
 

, 

 
7.1768 -3.2729
-3.2729 455.4994

U
 

=  
  , 

-3.2185 0
0.2910 0

M
 

=  
  , 

Fig. 1. The simulation results for 2τ = . 
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 [ ]1 -16.3316 -176.0110N = , 

 [ ]2 -10.2798 -282.3263N = . 
The control gains of each rule are 

 [ ]1 -180.1349 -90.6800K = , 

 [ ]2 -256.1661 -132.2049K = . 
Fig. 1 shows the simulation results for 2τ =  with 

the initial value conditions of 
 1( ) 1( 0)x t t= ≤  and 2 (0) 1x = − . 
We obtain a maximum time delay τ  of 2.705 with 

corresponding state-feedback gains of 6
1 10K =  

[ ]-3.2505 -0.7307× and [6
2 10 -3.4545K = ×  

]-0.7765  for each rule. 
 

5. CONCLUSIONS 

By choosing an appropriate Lyapunov-Krasovskii 
functional, we have designed a delay-dependent PDC-
type controller for time-delayed T-S fuzzy control 
systems. We have also used equivalent descriptor 
model transformation of the system. A sufficient 
condition for existence of the PDC-type controller has 
been represented in terms of LMIs and state feedback 
gains for each rule have been obtained from solutions 
of the LMIs. An illustrated example has been given to 
demonstrate our results. 
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