
Delay Differentiation and Adaptation in Core
Stateless networks

Thyagarajan Nandagopal Narayanan Venkitaraman Raghupathy Sivakumar Vaduvur Bharghavan
Coordinated Sciences Laboratory

University zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Illinois at Urbana-Champaign
Email: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ thyagu, murali, sivakumr, bharghav) @ timely.crhc.uiuc.edu

Ahstracr-We present a core-stateless quality of service architecture for
achit:ving delay differentiation between flows. There are two key compo-
nents zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin our approach:
1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPer-class per-hop relative average delay: the average queueing delay per-
ceived by the packets in a delay class at a link is inversely proportional to
the delay weight of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAclass.
2. Per-pow end-to-end delay class adaptation. the delay class of a flow is
dynamically adjusted based on its perceived end-Wend delay in order to
maintain the desired end-to-end average delay requirement of the flow.
We show through simulations and analysis that these two components can,
in concert, support end-to-end delay differentiation between flows using
only simple mechanisms at the core routers in the network.

I. INTRODUCTION

The current Intemet provides a single service class - best ef-
fort - that requires no pre-specified quality of service (QoS) con-
tracts and provides no minimum QoS measures for packet flows.
In order to enhance this basic service, two broad paradigms for
quality of service in the future Internet have emerged: Integrated
services (Intserv), and Differentiated services (Diffserv). The
Intserv approach [11, [2] provides end-to-end guaranteed or pre-
dictive service on a per-flow basis for rate and delay, but requires
each router of the network to maintain per-flow state in order to
process per-flow signalling messages on the control plane and
to perform per-flow classification, scheduling and buffer man-
agement on the data plane. Since it may be infeasible for core
roulers to perform all of the above actions efficiently when there
are millions of flows traversing through the network simultane-
ously, the Diffserv [3], [4] approach proposes a coarser notion of
quality of service, focusing primarily on aggregates of flows in
the core routers, and intending to differentiate between service
classes rather than provide absolute per-flow QoS measures. In
particular, while the access routers process packets on the basis
of finer traffic granularity such as per-flow or per-organization,
cor(: routers do not maintain fine grain state, and process traffic
based on a small number of Per Hop Behaviors (PHB) encoded
in the packet header [SI. Diffserv is gaining popularity as the
quality of service paradigm of the future Internet, primarily be-
cause it moves the complexity of providing quality of service
out of the core and into the edges of the network, where it may
be feasible to maintain a restricted amount of per-flow state.

Different approaches exist to realize the Diffserv philosophy.
At one end of the spectrum, absolute differentiated services seek
to provide Intserv-type end-to-end absolute performance mea-
sures without per-flow state in the network core [6], [7]. At the
other end of the spectrum, relative dzfferentiated services seek to
provide per-hop, per-class relative services, wherein each router
has N service classes, and Class i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis better (or at-least zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno worse)
than Class (i - 1) for 2 5 i 5 N , in terms of service metrics for
that hop [8]. In the latter approach, there are no absolute guar-
antees due to the lack of admission control or resource reser-
vations. Consequently, the network cannot provide worst case

bounds for a service metric. Instead, each router only guaran-
tees that the service invariant is locally maintained, even though
the absolute service might vary with network conditions.

We believe that most existing and emerging real-time appli-
cations require minimum end-to-end absolute rate coiltracts in
either guaranteed or predictive modes for effective operation [9],
[lo]. On the other hand, since most of these applications are soft
real-time in nature, they are tolerant to occasional delay viola-
tions and hence do not require worst case delay bounds. Con-
sequently, we perceive the n e d for a quality of service archi-
tecture that provides end-to-end per-flow absolute rate contracts
but we believe that per-hop relative delay classes may be suffi-
cient to achieve effective delay service differentiation so long as
they are augmented with end-to-end delay class adaptation.

In order to achieve this service model, we have proposed the
Corelite QoS architecture [7] which supports the following ser-
vices: (a) per-flow end-to-end absolute rate contracts, (b) per-
flow end-to-end weighted rate fairness, (c) per-hop relative de-
lay classes and (d) per-flow end-to-end delay class adaptation,
without maintaining per-flow state in the core of the network. In
this paper, we focus only on the delay service model of Corelite.
The following are the two key aspects of our approach:

A simple packet forwarding mechanism at a router that
achieves average packet delay for a delay class inversely pro-
portional to the delay weight zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the class.

An end-to-end delay adaptation mechanism that dynamically
adjusts the delay class of apow in order to rnatch the end-to-end
delay requirements of thejlow.

Our goal is to show that it is possible to meet the average
delay requirement of all flows (so long as there exists a feasible
solution), using a very simple forwarding mechanism at the core
router, in tandem with delay adaptation at the access routers of
the connection endpoints.

The rest of the paper is organized as follows. In Section 11, we
briefly describe the high-level QoS architecture. In Section 111,
we present the router packet forwarding mechanism. In Sec-
tion IV, we describe the delay class adaptation algorithm. In
Section V, we evaluate our mechanisms through simulation. In
Section VI, we discuss some of the issues with our approach. In
Section W, we compare our approach to related work, and we
summarize our work in Section VIII.

11. HIGH-LEVEL ARCHITECTURE

For simplicity, we consider a single-cloud network with core
routers at the center and access routers at the fringes. The core
routers do not maintain any per-flow state, while the access
routers maintain some per-flow state. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQoS requirements of
a flow are provided to the access router, which provides the end-
to-end QoS management functions including delay class adapta-

IEEE INFOCOM 2000
-,P21

0-7803-5880-5/00/$10.00 (c) 2000 IEEE

http://timely.crhc.uiuc.edu

tion. With this simple network model in place, we now provide a
quick overview of the mechanisms for providing delay and rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
QoS in Corelite. Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 provides a high level overview of the
delay component of the architecture. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A /-

lower class can sustain the delay requirement of this flow, then
it jumps to the lower class.

End-to-end delay class adaptation assumes that a solution (i.e.
one that leads to all flows meeting their delay requirements) is
feasible. If such a solution is not possible, then all flows will end
up at the highest delay class. In order to alleviate this problem,
we require each flow to specify a price that it is willing to pay
for the end-to-end delay requirement, which then gets mapped
to a maximum delay class (we do not investigate the mapping
policies in this paper). Once the mapping has taken place, the
maximum delay class upper bounds the delay class to which the
flow can adapt. Section 4 describes the delay adaptation mech-
anism in detail.

I Dtlpvclarvr _ I

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Overview of the architecture

A. Delay Differentiation at a Router

Each delay class has an associated delay weight, and all
routers support the same set of delay classes. The goal of
the forwarding behavior at a router' is to ensure that the aver-
age delays perceived by packets in any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo delay classes are
in_ the inverse_ ratios of the correspo-ding delay weights, i.e.
Idi(t)A, - &(t)A21 + 0, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(t) is the average delay
of packets served by a delay class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi with delay weight Ai over a
time window of [0, t]. Since it is impossible to achieve this goal
over infinitesimal time periods in a packetized service regime,
the averages are computed over some minimum time window
tmin (the choice of tmin turns out to be non-trivial for reasons
that are briefly hinted at, but not fully explored, in this paper
due to space constraints). When many flows share the same de-
lay class, the expected average delay of a flow is equal to the
average delay of the delay class to which it belongs. Section 3
describes the forwarding mechanism in detail.

B. End-to-end Delay Class Adaptation

While delay differentiation at a router does not say much
about the absolute delay experienced by packets of a flow, this
can be augmented with end-to-end delay class adaptation. The
goal of delay class adaptation is to allocate to a flow the lowest
delay class that can satisfy its delay requirement.

Since per-hop per-class relative delay differentiation trans-
lates to consistent end-to-end flow-based relative differentia-
tion [8], the access router periodically sends special packets to
find out the end-to-end delay experienced by a flow. As there
is no bound on the absolute value of end-to-end expected aver-
age delay of a flow in a particular class, the access router tries
to jump to a higher delay class whenever it observes a violation
of the delay requirement, since a higher delay class implies a
lower delay. On the other hand, if the access router sees that the
delay observed is less than the required delay, and if the next

Throughout zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis paper, we say "forwarding at a router" when we mean "for-
warding at the output link of a router".

The advantages of our approach are that the packet forward-
ing behavior is quite simple, core routers do not maintain per-
flow state, and that applications can renegotiate their delay
requirements without involving end-to-end signalling and re-
source allocatioddeallocation. The disadvantages of our ap-
proach are that there is no guarantee on average per-flow delay,
and there is no guarantee of a feasible delay class allocation.

C. Rate Mechanisms in Corelite

It turns out that one of the key requirements for the delay
differentiation mechanism to work is that the aggregate packet
queues over all the delay classes need to be bounded. In Core-
lite, the rate allocation mechanism provides this functionality.
Since a discussion of our rate allocation mechanisms is beyond
the scope of this paper [71, we only present a brief overview of
the relevant portion of the mechanisms in this section.

The key idea is to decouple the rate and delay mechanisms.
This means that upon detection of incipient congestion, a router
must send fair feedback based on the normalized transmission
rate of the flows in the recent past, rather than on which pack-
ets are currently in the packet queues (otherwise flows belong-
ing to lower delay classes will consistently get lower rates). To

this end, the access router periodically generates special "marker
packets" for a flow, such that the rate of the marker packets re-
flects the normalized rate of the packetflow. Markers are trans-
parent to the end hosts since they are injected by ingress access
routers and not forwarded by egress access routers. When a
core router sees a marker, in addition to forwarding the marker,
it also caches the marker in a cache. Upon detection incipi-
ent congestion (when the aggregate queue sizes over all the de-
lay classes exceed a threshold), a core router randomly selects
markers from its cache and sends these markers back to the ac-
cess router that generated them. This causes the access routers
to throttle the corresponding flows for which the markers were
generated. While the details and the properties of the approach
are presented in [7], it is important to note that (a) the aggregate
queue size does not exceed the threshold significantly (because
markers are generated progressively more aggressively as the
queue size exceeds the threshold), and (b) flows are throttled in
the ratio of their normalized rates, and not depending on whicl)
packets are actually in the packet queues (or which packets ar;
rive) after incipient congestion is detected. It turns out that thes?
are critical requirements for ensuring rate-delay decoupling as
well as providing relative delay differentiation at a router.

I

111. FORWARDING BEHAVIOR AT A ROUTER
Each router has a pre-specified number of delay classes (N)

and each delay class i is assigned a delay weight A,, where

IEEE INFOCOM 2000 0-7803-5880-5/00/$10.00 (c) 2000 IEEE 422 ,

A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA2 < ... < A,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQueues of different delay classes
are served such that the average delay experienced by packets
in a delay class is inversely proportional to the delay weight
of the class. In other words, if d,(t) is the average delay for
+ass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi over _a time window of [0, t] , then the goal is to achieve
Idi(t)Ai - dj(t)AjI + 0.

A simple heuristic to achieve this is to serve the delay class
with the maximum value of di(t)Ai at any time t . This heuris-
tic points towards asymptotic convergence such that Idi(t)Ai -
dj(t)AjI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 E , for t > tmin, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtmin is a minimum time
window that is a function of E and the Ais, assuming that there
are no further arrivals in the time window under consideration.

A. Mean-Delay Proportional (MDP) Scheduler

Each delay class is served by a single first-in-first-out zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(FIFO)
packet queue2. Packets of a flow belonging to a delay class i
are queued in the corresponding queue along each router that
the flow passes through. All flows with the same delay class
specification share the same FIFO queue at the router. For each
queue with delay weight Ai, the router maintains three vari-
ables: d i* (t) - the aggregate delay experienced by all packets
that have either been served or are currently in the queue at time
t , si(t) - the number of packets served from delay class i till
time t , and qi(t) - the number of packets queued in i at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-t. Considering the simple case where time is divided into slots
and the link capacity is 1 packedslot, the variables are updated
in each time slot as follows:
(a) qi(t + 1) t q+(t) + ai(t) - I i (t) , where ai(t) is the number
of arrivals at time t , and li(t) = 1 if the queue i is selected for
transmission at time t , or 0 otherwise,
(b) s;(t + 1) t s ; (t) + &(t), and
(c) d;*(t + 1) t d i * (t) + q$). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c 1
A = l I
c2

A = 2 4

s

, 9

Hlence, if at time t we assume that no other packet will F i v e
at a queue i in the future, then the minimum average delay di(t)
for all the packets that have already arrived can be achieved
if all the packets in the queue i are transmitted back-to-back
starting at time t . It can be calculated as

1 2 3 4 5 6 7 8 9 10

1 I
1 11

Cl c2 CI a Cl U Cl c2 c1 U c1 c2 Cl c2 c1 c2 CI c2 c1 c2

0 0 0 1 0 2 0 3 1 3 2 3 2 4 2 5 3 5 4 5

2 2 3 2 5 3 5 2 4 2 3 2 3 1 3 0 2 0 1 0

where frqi(t)(l + qi(t)) is the lower bound on the cumulative
delay experienced by all packets in the queue, served from time
t.

When a router needs to select a packet for transmission at time
t , it selects a queue j for transmission such that

j c arg mazi{&(t) x Ai}

. In other words, the router selects the head-ofline packet of the
queue for which the minimum possible normalized average de-
lay at time t, based on the arrivals till the current time, is max-
imum among all backlogged queues. Since the router always
serves the backlogged queue for which the normalized average
delay is maximum, asymptotically all queues will observe the
same normalized average delay, i.e. the average delay perceived
by a delay class is inversely proportional to its delay weight.

21n the rest of the paper, we use the terms class and queue interchangeably.

I I I I I I I I I I

Fig. 2. Example. of Delay Classes

B. Properties

B. 1 Upper Bound on Queue Size

In Corelite, flows increase their rate by a = 1 packethecond
in the absence of congestion feedback, and decrease their rates
by /3 = 1 packedsecond for every congestion marker received.
At the core router, when the aggregate queue size q exceeds a
certain threshold qth, the core router sends back

markers, where C is the link capacity in packets/second and IE is
a constant [7].

Consider the situation when N flows pass through the core
router. When the aggregate queue length q exceeds the threshold
qth. the rate of change of aggregate queue size is given by

- d q = R + N - 2 M - C
dt

where R = C& is the aggregate rate of N flows (under Pois-

son assumptions).

where 17 = & and

the maximum queue size is given by

5 r] < 1. Thus,

IEEE INFOCOM 2000 0-7803-5880-5/00/$10.00 (c) 2000 IEEE 42 3

This puts a bound on the aggregate queue size over all delay
classes in our delay calculations, and we will assume a maxi-
mum bound of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB in the following discussions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.2 Average Queueing Delay

Consider a single router with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX delay classes. Absolute val-
ues of the average delay are a function of the aggregate rate of
flows through each delay class, and the delay weights of each
class. Let ri(t) be the aggregate rate of flows belonging to delay
class i with delay weight Ai, and let the expected buffer occu-
pancy of the delay class i be Bi(t) at time t. B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C_Bi(t) is the
aggregate buffer size. The average queueing delay d i (t) of class
i at time t is:

&(t) = Bi(t)/Ti(t) = k/Ai

From Equation 1 we can infer the following properties about the
dynamics of the relative delay model: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Property 1: The average delay of class i increases with the
arrival rate of each class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj .

Property2: Increasing the load of a higher class causes a
larger increase in the average delay of a class than increasing
the load of a lower class.

Property 3: When a flow leaves the system, we would expect
the average delays for all classes to decrease. However, if it
turns out that flows with higher rate weights exist in higher de-
lay classes, then most of this excess rate could be absorbed by
the higher rate weight flows3 in a higher delay class. This re-
sults in an increase in the average delays of all classes and could
offset the initial decrease in delay. This non-intuitive property is
illustrated using simulations in Section V. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Implementation

try to address three practical concerns:
1. Simplification of the computation of di (t)
In order to reduce the computation during packet forwarding,
we approximate the calculations as shown in Figure 3.- In this
algorithm (Lines 5 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS), d,(t) is updated according to di (t) e
(d : (t) + q; (t)) /s ; (t) rather than d,(t) c (d:(t) + 0.5q,(t)2 +
0.5q;(t))/(si(t) + q;(t)). This approximation turns out to be
acceptable in most of our simulations.
2. Impact of non-backlogged queues
When delay classes become non-backlogged, their &(t) does
not change over time, since the queue length qi(t) = 0. How-
ever, the average delay di (t) for backlogged classes changes ac-
cording to the instantaneous system load. When the empty de-
lay classes become freshly backlogged, then the service order is
distorted because of the newly backlogged queue. In order to
limit the impact of this problem, we consider periodically reini-
tializing the state of the classes and restarting the average delay
computations. While t4is is a crude first-cut solution, we are
investigating a more sophisticated aeproach.
3. Time window of computation of d,(t)
The reinitializing of the state variables can also help address
another issue. It can help eliminate past history (from before

31n Corelite, any excess bandwidth is distributed to flows according to their
rate weights.

In the implementation of the mechanism described above, we

the current computation period) in the computation of &(t) and
s i (t) . In absence of periodic re-initialization of the variables, as
the number of packets that are served increases, current queue
sizes start to have minimal impact on the service order. This is
an important practical issue to consider.

receive@)
qi 4- q; + 1;
enqueue in corresponding delay class;

1
2

selectpacket-to-tranmit()

transmit from delay class j;
3 j = arg ~ u ~ i { A ~ d i * (t) / ~ ~ (t) } ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4
5 Q j (t) 4- Q j (t) - 1;
6 sj(t) c sj (t) + 1;
7 foreach delay class i
8 d z (t) d: (t) + qz(t);

Fig. 3. Implementation of delay mecha"
,

In order to address the inaccuracies caused by non-
backlogged queues and accumulated history, we maintain the
values for d; (t) and s i (t) over a moving time window. The,
width of the time window is proportional to the past history
maintained-by the system, which determines how closely the
computed di (t) value follows the short term variations in delay.1
In our simulations, we use averages taken over a moving time
window of 150 packets, thus making the forwarding behavior

j

D. Decoupling of Delay Classes from Rate

The delay mechanism described here can be decoupled from:
the mechanism to provide rate, subject to certain conditions.
By decoupling we mean that (a) the end-to-end rate allocated;
to a flow is independent of the delay class to which it belongs,!
and (b) the ratio of average delays in different delay classes at a
router is independent of the rates of flows.

This implies that if two flows with the same rate belong to two
different delay classes, their expected average delays will be in
the inverse ratio of the delay weights of their respective classes.
This can be seen in Example 1.

To ensure this decoupling, the requirements on the rate mech-
anisms are
1. The core router should detect (incipient) congestion by
checking if the aggregate number of packets in all packet queues
exceeds a threshold.
2. Congestion feedback is not based on what packets are cur-
rently queued in the router, but only on the normalized trans-
mission rates of the flows.

The first requirement implies that the size of packet queues
corresponding to each delay class should not be limited, the ag-
gregate queue size alone has to be bounded. By doing so, we
eliminate the dependence of the average delay ratios of differ-
ent delay classes o n the rates of individual flows. The second
requirement ensures that a flow transmitting more than its fair
share will be selected for throttling even if it belongs to a delay
class with a large delay weight and gets served preferentially.
This effectively makes the rate of a flow independent of the de-
lay class in which it is queued in.

The Corelite rate mechanisms that we briefly described in
Section II have the above properties. It is important to note that
the absolute value of the average delay experienced by a delay

i
more responsive to current queue conditions.

1

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 424 IEEE INFOCOM 2000

class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis a function of the aggregate average rate of the flows
passing through each delay class, as well zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the delay weights
of each delay class. However, the ratio of the average delays is
independent of rate.

IV. DELAY CLASS ADAPTATION

In the previous section, we described the forwarding mech-
anism used to achieve relative delay differentiation at a router.
As the expected average delay of a flow in a class is equal to the
average delay of the class when a large number of flows share a
class, the expected end-to-end average delay of a flow is the sum
of the average delays of the flow’s delay class at each hop. As
shown in the previous section, the expected delay of a class is a
function of the rates of all the flows passing through the router.
Hence, if a flow is assigned a fixed delay class, the end-to-end
delays are subject to significant variations due to network dy-
namics (as the rates of each delay class change). Thus, in order
to meet the expected delay requirements, a flow should have the
ability to dynamically adjust its delay class.

In Corelite, in adqition to specifying the average end-to-end
delay requirement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADf, an application also specifies the maxi-
mum price it is willing to pay to get the required delay perfor-
mance. The access router maps this price to a delay class and
fixes it as the maximum delay class that this flow can attain. The
exact mapping functions are beyond the scope of discussion of
this paper. The key idea of the adaptation algorithm is to adjust
the delay class of a flow such that the current delay class of the
flow is the lowest possible class that satisfies the flow’s require-
ments (subject to the maximum delay class bound). In Corelite,
the responsibility of delay class adaptation is placed on the ac-
cess routers in order to enforce the adaptation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘. The following
properties of the delay model have to be considered in the design
of the delay class adaptation algorithm. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Property 4: If a flow moves from class i to class j with the
aggregate load remaining constant, then the average delay of
each class increases if Ai < A j , and decreases if Ai > A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj . On
the other hand, the expected average delay for the flow decreases
if A.i < A j and increases if A, > A3.

Proof: Recall from the previous section, that the average de-
lay of a flow i can be written as

- 1 B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d i p) = --

Ai cj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy
The variation in delay of flow i assuming that it is the only flow
that is adapting its delay class, and no other flcw is performing
adaptation is given by the partial derivative of di(t) with respect
to h;(t), i.e.

Note that d&,/aAi is always negative. This shows that in-
creasing the delay class of a flow always causes its delay to de-
crease.

Property 5: When a flow moves to a lower delay class, with
all other flows remaining in their delay classes, the expected
average delay for other flows will decrease.

Proof: The variation in expected average delay of flow i due
to delay class adaptation of flow I C , when flow i is not adapting

4As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa result, we only enforce edge-to-edge adaptation as opposed to hue end-
to-end adaptation.

is given by the partial derivative of di (t) with respect to Ak (t),
i.e.

Note that ddii/aAk is always positive. This shows that if a
flow decreases its delay class, it can only improve the delay ex-
pectations of other flows.

Property 6: The marginal increase in the expected average
delay with a decrease in the delay clcss is decreasing.

Proof:-It is easy to see that d2di/aA2 is always positive.
Since a2d,/dA: is always positive and ddildAi is always neg-
ative, the above property holds.

A. Adaptation algorithm

The adaptation algorithm consists of two steps. The first step
involves obtaining estimates of the end-to-end expected average
delay for a flow. The second step is to change the delay class
of the flow such that the end-to-end expected average delay is in
tune with the average delay required by the flow.

processdmarker0
select delay class i for sending next packet
if (head-of-line packet p of class i is dmarker)

1
2
3 p.estimateddelay += 2%;
4
5
6 sendgacket(p, dest) ;

if (egress access router)
dest = p + ingressaccess;

Fig. 4. Delay Measurement Algorithm

The ingress access router periodically introduces special
packets called dmarkers along the path of the flow, to probe
the end-to-end delay offered by the network for the delay
class of that flow. The contents of the marker packet iden-
tify the access router that generated it and the packet flow
uniquely within the ingress access router. The dmarkers
contain an estimateddelay field that is set to zero initially.
When the dmarkers are processed by the core routers, the
estimateddelay field is updated by adding the average per-
hop delay of the flow’s delay class as shown in Figure 4. When
an egress access router receives a dmarker, it sends it back to
the access router that generated the daarker (Lines 4-5). The
core routers or the egress access router need not maintain state
about the flows pertaining to the dmarkers they process.

Figure 5 shows the adaptation algorithm at the access router.
When the ingress access router receives the dmarker, it will
have an estimate of the end-to-end expected average delay for
packets of a flow along that path (Lines 2-4). This is the path-
specific end-to-end average delay experienced by packets be-
longing to the delay class of the flow (Lines 5-6). If this delay
is greater than the required average delay, the access router in-
creases the delay class of the flow to the next higher class, sub-
ject to the maximum delay class constraint (Lines 7-9).

However, if the estimated delay is less than the required de-
lay, the access router tries to shift the flow to a lower delay class,
if possible. To do this, the access router calculates the estimated
delay for the next lower delay class. If it is less than the required
delay, then the access router decreases the delay class of the flow
to the next lower class. However, when a number of Rows per-
ceive improved delay performance, if all flows move to a lower

IEEE INFOCOM 2000 0-7803-5880-5/00/$10.00 (c) 2000 IEEE 425

1

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6
7
8
9
10

11

12
13
14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

adapt-delay ()
on receiving daarker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp from egress access

/* get pointer to flow *I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f = get-flourCp);
f + estdelay = p + estimateddelay;
i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf + delay-class;
d, =- f -+est_delay; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
if(di > Df) I* True: delay violation *I

if (i < f -+ m a x d e l a y d a s s)
f + delaydass ++;

else /* Move to lower delay class *I
di-1 = &Ai/Ai--l;

/* True: lower delay class is sufficient */

/* probabilistic jump */
prob = ~~ndom(0,J) ;

if(ai4 5 df)

if(prob < (D, - d i - i) / d i)
f 4 delay-class - - ;

Fig. 5. Delay Class Adaptation Algorithm

delay class, they all might end up exceeding their required av-
erage delay. To compensate this they would increase again to
the next higher class. To reduce such oscillations in adaptation,
when the access router jumps to a lower delay class i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 from
a delay class i, it does so with a probability (Df - d i - l) /d t
(Lines 10-15), thereby allowing only a subset of flows whose
af - &-I is higher than the others.

Initially, a flow starts in its maximum delay class. At steady
state, all flows will settle down to the lowest delay class possible
that satisfies their delay constraints. However, if the network
state changes, unsatisfied flows will move up to the maximum
possible delay class j that gives the required average delay, from
their current class a, where i 5 j . In the event that a flow is
unable to get the required average delay from the network, it
will remain in its maximum possible delay class and that is a
function of the price it is willing to pay.

B. Delay Class Convergence

We show through a simple analysis that the delay class of a
flow converges during adaptation.

Since a flow's expected average delay at a hop is the same
as the average delay of the class it belongs to,-equation 1 can
be restated to give the expected average delay d i (t) of flow i at
time t .

1 B
$(t) = -

At(t) Cj rJ/A,(t>

where rj is the rate of flow j . Let Di be the average delay
requirement of flow i at each hop.

Property 7: Consider the case when flow i is adapting, while
the other flows do not adapt. The change in delay class of flow i
at time t is given by

5F0r simplicity of analysis, we assume the change in delay class is propor-
tional to the slack in delay. However, since this might lead to oscillations around
the stable point, in OUT implementation, we always change only to the next delay
class.

This differential equation can be solved as

1 U t)
log(- + - 1 B X (t) --

Ai(t) ri(B,ri - B) A,(t) T;

where K (t) = Ci# j r j /A j (t) .

Consider two cases:
Case (U) D, > B/r i

t 3 00, A; + 0

In this case, the required average delay is greater than the worst
case average delay that will be experienced by the flow. Hence,
the flow will tend to the class with the lowest possible delay
weight.

Case (b) Di < B/ri

Here, aclaptation occurs and the flow oscillates around the point:
where Di = B/rt. The oscillations dampen exponentially and,
hence the system converges.

0,
When the rates of flows do not change, then Equation 2 can

be written as

(4)

since weknow that Cj,~j2j((t) = B.
This results in a very interesting observation. The derivative is

constant (assuming the rates do not change with time). In other
words, for a given scenario, the set of requirements is either
feasible or not. This results in the following stability/feasibility
condition:

Cj&j _> B.

0
The feasibility condition described above is simplistic and a

detailed treatment of feasibility is not presented due to space
limitations. If the set of delay requirements is not feasible,
then each flow will converge to its maximum delay class that
is mapped from the price that the flow is willing to pay.

Property 8: From Equation 4, we can get the delay class of a
flow at equilibrium, when all the flows are simultaneously adapt-
ing.

As t + co,A,(t) -+ A:. Thus, the delay class at which thp
flow i converges is given by 1

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 426 IEEE INFOCOM 2000

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAmin and Amaz are the lowest and highest delay classes
of the system respectively. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V. SIMULATIONS

In this section, we use simulations to evaluate the algorithms
used to achieve proportional delay differentiation with a state-
less core and delay adaptation at the source (rather than the ac-
cess router). The simulations as on the ns-2.lb4a simulator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[111.
The sources are rate adaptive, decreasing their rates upon con-
gestion feedback from the routers and incrementing their rates
periodically otherwise. The topology used is shown in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.
The three links Cl-C2, C2-C3 and C3-C4 are shared by the dif-
ferent sources and observe periods of low to heavy congestion.
All the links have a bandwidth of 4Mbps and a latency of 5ms.
Also, in all the simulations, we have used a fixed packet size
of lKB, a moving window of 150 packets to update d ls , and a
period of 200ms(roughly 3 round trip times) to send dmarkers.
Though there are a total of 20 flows traversing different sets of
links, for clarity, only the three flows (8 , 9 and 10) that traverse
all the three shared links are used to show results that depict
per-flow values.

In all our examples, the marker generation algorithm is not
aggressive by design. Consequently, it allows queue sizes to
grow sharply before throttling flows aggressively. This causes
oscillations in queue sizes and observed delays; the interesting
point that we illustrate is that even under this scenario, i.e. even
if the absolute delays oscillate sharply, the relative delay invari-
ant is maintained.

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Network topology

A. Relative Delay Classes

The first set of results demonstrates the efficacy of the MDP
scheduler to achieve proportional delay classes at any given
router. There are a total of 3 delay classes 0, 1 and 2 with delay
weights 1, 2 and 4 respectively. Flow 8 belongs to delay class
1, while flows 9 and 10 belong to delay class 2. The graphs
in Figure 7 (a), (b) and (c) show respectively the average de-
lay experienced by each of the 3 delay classes at the core router
C3, the end-to-end queuing delay estimated by flows 8-10 by
sending dmarked packets and the average queue length at the
core router C3 during the course of the simulation. As explained
before, the variations in average queue size shown in Figure 7
(c) are a result of the specific congestion detection and notifi-
cation mechanisms at the core router and the rate adaptation
at the access router. The size of the window used to compute
d / s determines how closely this value follows the current queue
size. Figures 8 (a) and (b) are the zoomed in versions(l0sec) of
Figures 7 (a) and (b), and Figure 8 (c) shows the actual delay
experienced by individual packets from the 3 flows during the
corresponding 10seconds. From Figure 8 (a) it is clear that the

0-7803-5880-5/00/$10.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c) 2000 IEEE

ratio of 1:2:4 is maintained at all times. The graph in Figure 8
(b) corresponds to $ obtained by flows that belong to class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i in a given path which is the average end-to-end queuing de-
lay experienced by its packets. As both flows 9 and 10 have the
same delay weights they both have approximately overlapping
estimated delay values. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlso, for flow 8, the estimated delay is
twice the value perceived by the other 2 flows which conforms
to the ratio of their delay weights. Figure 8(c) shows that the
average delay experienced by packets of a flow, does not deviate
significantly from the average delay of the class the flow belongs
to.

B. Delay lncrease Anomaly

Figure 9 illustrates the anomaly that we observe when a few
flows leave the network. Intuitively, when some flows leave the
network the delay experienced by the remaining flows that had
shared the path with the flows that left, should either decrease
or at least remain the same. But we show that the average delay
may increase when some select flows leave the network. In this
scenario, we consider two sets of flows, say sl and s2, with de-
lay weights of l and 8 respectively. They also share the available
bandwidth in the ratio 1:5. When a bunch of flows from sl leave
the network, the average delay experienced by all the remaining
flows increases. In the simulation scenario given here, flows 8
and 10 belong to the sl and flow 9 belongs to s2. Figure 9 (a)
shows the instantaneous sending rates of these flows. At time 60
sec, a few flows in s l (f l0~8) leave the network. The network
reaches the steady state by time 70 sec. From Figures 9 (b) and
(c), it is clearly seen that the average delay experienced by the
flows is higher than before. This is because, when flows with a
lower delay class leave the system, this available bandwidth is
absorbed by the remaining flows and if these flows belong to a

higher delay class, then by equation (l), the average delay will
increase.

C. Delay Adaptation

This scenario illustrates the effect of delay adaptation. In this
case, each router has 5 delay classes. Flows 8,9 and 10, can all
move up to the maximum delay class of 4 and have a delay re-
quirement of 0.01 sec, 0.02 sec and 0.05 sec respectively. The
graphs in Figure 10 (a), (b) and (c) show respectively the cur-
rent delay class of each flow, the estimated average end-to-end
queuing delay for the class the flow is in and the actual delay
experienced by the packets of the flow, during a 10 sec interval
in the simulation. The variation in queue size was similar to that
observed in the simulations in section V-A. At time 35 sec, all
flows have their delay requirements satisfied. Flow 8 ,9 and 10
are in delay classes 4, 3 and 2 respectively. Between time 35
and 37 sec, there is a fall in the average queue sizes, resulting in
lower average delays even for the lower delay classes. As flows
are always kept in the lowest possible delay class that provides
the desired delay, flows 9 and 10 shift to delay class 0, while
flow 8 moves to delay class 1. If the delay requirement for a
flow cannot be satisfied then it remains at the maximum delay
class possible. As the estimated delay increases beyond the de-
sired limit. the flow is moved to a higher delay class if possible.
For example, by the 39th sec, the delay experienced by all of the
flows force them to be shifted to higher delay classes. Though
flow 10 can move up to delay class 4, it remains at 2, because its
delay requirement of 0.05 sec is satisfied. From Figure 10 (b), it
is clear that most of the time, the flows do manage to maintain a
delay average that is close to their desired value. Also the actual

,

42 7 IEEE INFOCOM 2000

M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m n m n r b r a h e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a) Average Delay for Delay Class (b) Estimated Delay for Flows (c) Queue length at router C3

Fig. 7. Relative Delay zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i il

(a) Average Delay for Delay Class (b) Estimated Delay for flows (c) Actual Delays for flows in (b)
'

Fig. 8. Relative Delay -over a period of 10 seconds I

(a) Rate of flows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b) Estimated Average Delay for flows (c) Actual Average Delay for flows

Fig. 9. Delay Adaptation

delay experienced by the flows, shown in Figure 10 (c) indicates
that the delay estimated using dmarkers does provide a correct
estimate of the average delay experienced.

D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASummary of Simulations

Though we have done additional simulations using different
traffic patterns and with different topologies, we have not pre-
sented them due to space constraints. In summary, our simula-
tions indicate that the MDP algorithm maintains the proportion
between the delay classes effectively for the small simulations
under consideration. We believe that the approach will scale
well with increase in the number of flows, but we need to verify
the behavior under more bursty scenarios. The delay adaptation

algorithm gracefully adapts to the dynamics of the network and
converges to a stable state fairly responsively though it will still
be too slow for very short-lived flows. Further, in all the simu-
lations shown in this section, flows obtained their fair-share of
bandwidth as determined by the rate adaptation and congestion$
indication mechanisms, independent of the current delay class '
to which they belong.

I
I

VI. DISCUSSION

In this section, we present some of the issues and limitations
of our work. Some of these are inherent to our architecture,
while the others are due to the status of our current work.

428 IEEE INFOCOM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2000 0-7803-5880-5/00/$10.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c) 2000 IEEE

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU)
”asord. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(a) Delay classes of flows

Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I

n n m U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU
Um h IoDnd.

CUQ
0.11 ,

......
b , O

Y m ..
h b l d

(b) Estimated Average Delay of flows (c) Actual Average Delay for flows

Fig. 10. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADelay Adaptation - over a period of 10 seconds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Architectural issues: We have considered a singlecloud net-

work in this paper. If all clouds in a multi-cloud network support
the same set of delay classes (with the same delay weight), then
our approach is just as applicable. Otherwise, we need a transla-
tion mechanism at the ingress router of each cloud that maps the
desired delay class to a corresponding delay class for the cloud.
While the basic ideas of relative delay differentiation and de-
lay adaptation will still work in this case, the analysis will need
to change to accommodate the delay class translation along the
path of a flow. The interaction between the clouds and a com-
parison between delay adaptation on a per-cloud basis versus
end-to-end delay adaptation by the access router are ongoing
work.

Implementation issues: At the core router, the variables of
each delay class are updated every time a packet is served. We
can reduce the computation overhead in two ways: first, as we
showed in Section 3, we can simplify the state update computa-
tion; and second, we can invoke the computation less frequently
(e.g. once every 10 packets). Neither simplification will signif-
icantly change the overall performance of the approach, though
both will increase the minimum time window over which the
delay invariant can be maintained.
Let us now investigate the packet overheads. The access router
sends d-markers periodically. The dmarker contains the id of
the ingress access router, and the estimated-delay field in ad-
dition to the regular flow identification information contained in
a data packet. The frequency of markers determines the gran-
ularity of delay estimation. The marker overhead itself is quite
small (less than 0.2% for a marker sent every 10 packets). From
an implementation perspective, this approach seems quite feasi-
ble.

Adaptation issues: There are two important issues to be ad-
dressed while doing delay class adaptation at the access router.
First is the interaction between adaptive applications and the ac-
cess router adaptation. Adaptive applications adapt their per-
formance according to the delay of the received packets. This
adaptation could happen on a finer granularity than the access
router adaptation, and hence lead to undesirable interactions. To
prevent these, the application could refrain from adaptation till
the maximum delay class is reached and the access router cannot
help sustain the required delay for the application any longer.
The second, and by far more important, issue is that of packet re-
ordering during adaptation. Specifically, when a flow is moved
to a higher delay class i from a lower delay class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj , the pack-
ets of that flow in class i might reach earlier than the packets

of the flow in class j. This will result in out-of-order delivery
of packets. Transport protocols like TCP might consider them
as lost packets and react adversely in such scenarios. There are
three possible solutions to this problem. First, the ingress ac-
cess router can hold packets (proportional to the difference in
average delay between the two classes) prior to a delay class
transition in order to “flush out” preceding packets in a lower
delay class. Second, the egress access router can buffer pack-
ets for some time (proportional to the difference in average de-
lay between the two classes) and resequence them. Third, most
soft real-time applications inherently buffer data packets for a
lookahead period, thereby smoothing the effect of out-of-order
delivery. All these approaches are feasible, though they all have
drawbacks. We are working on this problem at this time.

VII. RELATED WORK

There exists a large body of work on providing absolute end-
to-end delay bounds and relative per-hop delay differentiation.
We however know of no other approach that provides delay class
adaptation. GPS based schedulers and EDF schedulers provide
absolute guarantees using per-flow information and with com-
plex admission control mechanisms[l2], [13], [14]. Non-work
conserving disciplines also provide similar guarantees with per-
flow information [15], [16]. However, the requirement of per-
flow state and complex admission control requirements make
these approaches unviable in a Diffserv architecture.

More recently, interest has turned to providing guaranteed
per-flow delay bounds based on traffic aggregates, in tune with
the Diffserv paradigm. Jacobson et.al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3] have proposed a
premium service model that provides the equivalent of a ded-
icated link between two access routers. However, to achieve
the guarantees it seeks to provide, the fraction of bandwidth
that can be allocated to premium service has to be very low.
The X E D + algorithm proposed by Cruz [17] provides both
guaranteed and statistical rate and delay bounds, and addresses
scalability through traffic aggregation and statistical multiplex-
ing. In addition, the bounds for rate and delay are decoupled.
The X E D + algorithm has a complex admission control policy,
which may not be feasible as a practical implementation at high-
speed core routers. It also requires per-session traffic shaping at
each hop, where a session is either an individual flow or a traf-
fic aggregate. Stoica et.al. describe an architecture to provide
guaranteed services without per-flow state management using a
technique called Dynamic Packet State (DPS) [6]. DPS assures
service differentiation and performance guarantees on a per-flow

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 429 IEEE INFOCOM 2000

basis, through a distributed implementation of the Virtual Clock
algorithm. The coupling between the rate and delay bounds ex-
ists in DPS, though. Finally, both SCED+ and DPS require sig-
nificant processing overhead at the core router, as hey have to
maintain a sorted queue of packets, sorted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the basis of dead-
lines. This complexity increases with the number of flows in
the network core. It is interesting to note that most of the above
algorithms assume the presence of best-effort traffic to improve
network efficiency. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

If absolute delay differentiation lies at one end of the differ-
entiated services spectrum, relative delay differentiation is at
the other end. The former guarantees worst-case bounds on a
per-flow basis, while the latter provides service differentiation
on a per-hop basis, and only in the average case. Relative de-
lay differentiation is discussed in detail by Dovrolis et.al. [SI.
They present two packet schedulers that try to achieve propor-
tional delay differentiation at each individual hop. However, the
schedulers are not ideal, in the sense that, the average delays
experienced by different classes tend to deviate from the pro-
portional model under light traffic loads, and in certain short
time-scales. Another algorithm that seeks to provide relative
delays is the Time-Dependent Priorities algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[181, where
the service priority of a packet in queue zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p i (t) = wi(t)A,, where wi(t) is the waiting-time of the packet
at time t and At is the weight of the delay class. It differs from
our algorithm in the fact that the head-of-line packet reflects the
system load only up to the moment it arrived in the queue. In
particular, when the delay weights are equal for all classes, it
degenerates to an FCFS server. In our algorithm, the head-of-
line packet reflects the system load till the time it is served, thus
leading to better convergence to the averages under light and
heavy traffic loads, and under short time-scales too. On the con-
trary, the Time-Dependent Priorities algorithm has been shown
to fail under moderate or light loads, and with widely ranging
Ai ratios [SI.

Contemporary literature has focussed on the large class of soft
real time applications and their requirements in terms of statis-
tical bounds rather than worst-case bounds for soft real-time ap-
plications. Given such bounds, applications have three choices
regarding the service they receive: (a) they might choose to
use what they receive from the network and tolerate network-
induced service disruptions, (b) applications might adapt their
performance to suit the delay they perceive from the network, as
in a playback application 191, [lo], and (c) they might want the
adaptation to be performed in the network, and obtain consistent
performance, which we think is better than the other two since
the application can be less complex by off-loading the burden of
adaptation onto the network.

VIII. CONCLUSION

This paper contains two contributions: a mechanism to pro-
vide per-hop per-class relative average delay differentiation, and
a mechanism to perform end-to-end delay adaptation. In con-
cert, these mechanisms seek to achieve the average delay re-
quirements of soft real-time applications in a core-stateless net-
work. Through simulations and analysis, we have shown that
the adaptation algorithm is stable, scalable and feasible. Several
important issues need to be addressed: (a) we need to discuss
the feasibility constraints in more detail, (b) we need to consider
the interaction between multiple network clouds, and between
the end host adaptation and the access router adaptation, (c) we
need to understand the relationship between our work and the

larger issue of network pricing, and (d) we need to evaluate pos-
sible approaches for eliminating packet reordering during delay
adaptation. These are some of the areas of ongoing work.

We conclude with a final observation: absolute kfferentiation
and relative differentiation cater to applications with contrasting
requirements. The former offers absolute assurances to ‘unelas-
tic’ applications, while the latter is tailored towards ‘elastic’ ap-
plications. Since both types of applications are likely to co-exist
in the future Internet, absolute and relative differentiation mech-
anisms are equally important for the commercial viability of the
future inter-networks. We believe that our architecture will in-
crease the flexibility and capabilities of services that can be built
using a Diffserv-like architecture.

REFERENCES
S. Shenker, and C. Patridge. Specification of Guaranteed Quality of Ser-
vice. RFC2212, September 1997.
S. Shenker, and J. Wroclawski. Genenl Characterizatlon Parameters for
Integrated Service Network Elements. RFC 2215, September 1997.
K . Nichols, V. Jacobson and L. Zhang, “A Two-bit Differentiated Services
Architecture for the Internet,” draft-nichols-dsopdefOO.txz, Internet Drafi,
November 1997.
V. Jacobson, “An Architecture for Differential Services:’ Talk in the bit- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sew WG at the 39th IETF, Munich, Germany, August 1997.
S. Brim, B. Carpenter and F. Le Faucheur, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘Ter Hop Behavior Identifica-
tion Codes,” draft-ie~di~serv-plrbid-OO.ar, Internet Draft, October 1999. i
I. Stoica and H. Zhang, “Providing Guaranteed Services Without Per Flow
Management,” ACM SIGCOMM ’99. Cambridge, MA, September 1999. .
R. Sivakumar, T. Kim, N. Venkitaraman and V. Bharghavan. “Achieving]
Per-Flow Weighted Rate Fairness in a Core Stateless Network,” IEEE Con-
ference on Distributed Computing System 2000, Taipei, Tawan, March 1
2000.
C. Dovrolis, D. Stiliadis and P. Ramanathan, “Proportional Differentiated:
Services: Delay Differentation and Packet Scheduling,” ACM SIGCOMMi

I
D. Clark, S. Shenker and L. Zhang, “Supporting real-time applications:
in an Intemated Services Packet Network architecture and mechamsm.”i

1

’99, Cambridge, MA, September 1999.

- 1 ACM SIGEOMM ‘92, Baltimore, MD, August 1992. i
IO] S. B. Moon, J. Kurose, D. Towsley, “”Packet Audio Playout Delay Adjust-1

ment: Performance Bounds and Algorithms,” ACM/Springer Mulfiniediainf
Systems, vo1.5, pp. 17-28, January 1998.

111 UCBLBNWINT Network Simulator - us (version 2), htfprp:/%vww-:
inash. CS. Berkeley. EDU/m/.

121 A. Parekh, “A Generalized Processor Sharing Approach to Flow Control
in Integrated Services Networks;’ PhD Thesis, MIT Laboratory for Infor-
mation and Decision Systems, Technical Report LIDS-TR-2089, 1992.

131 D. Stiliadis and A. Varma, “Latency-rate servers: A general model for
analysis of traffic scheduling algorithms,”ACM SIGCOMM ’96. Stanford,
CA, September 1996.

[14] L. Georgiadis, R. Guerin and A. Parekh, “Optimal multiplexing on a single
link delay and buffer requirements,” IEEE Transactiom on It$ornlatiori
Theory, vol. 43, no. 5, pp. 1518-1535, September 1997.

[15] N. R. Figueira and J. Pasquale, “Leave-in-time: A new service decipline
for real-time communications in a packet-switching network,” ACM SZG-
COMM ’95, Cambridge, MA, September 1995.

[la] D. Verma, H. Zhang and D. Ferrari, “Delay Jitter Control for Real-Tune
Communications in a Packet-Switching Network,” In Tricorn ’91, Chapel
Hill, NC, March 1991.

[I71 R. L. Cruz, “SCED+: Efficient Management of Quality of Service Guar-

[18] L. Kleinrock, “A Delay Dependent Queueing Discipline,” Naval Research
antees,” ZEEE INFOCOM ’98, San Francisco, CA, March 1998.

Logistics Quarterly, vol. 11, no. 4, December 1964.

0-7803-5880-5/00/$10.00 (c) 2000 lEEE 430 IEEE INFOCOM 2000

