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The dynamics of wheel shimmy is studied when the self-excited vibrations are related to the elasticity of

the tyre. The tyre is described by a classical stretched string model, so the tyre-ground contact patch

is approximated by a contact line. The lateral deformation of this line is given via a nonholonomic

constraint, namely, the contact points stick to the ground, i.e., they have zero velocities. The mathematical

form of this constraint is a partial differential equation (PDE) with boundary conditions provided by

the relaxation of deformation outside the contact region. This PDE is coupled to an integro-differential

equation (IDE), which governs the lateral motion of the wheel. Although the conventional stationary

creep force idea is not used here, the coupled PDE-IDE system can still be handled analytically. It can be

rewritten as a delay differential equation (DDE) by assuming travelling wave solutions for the deformation

of the contact line. This DDE expresses the intrinsic memory effect of the elastic tyre. The linear stability

charts and the corresponding numerical simulations of the nonlinear system reveal periodic and quasi-

periodic self-excited oscillations that are also confirmed by simple laboratory experiments. The observed

quasi-periodic vibrations cannot be explained in single degree-of-freedom wheel models subject to a

creep force.

 2008 Elsevier Masson SAS. All rights reserved.

1. Introduction

The lateral vibration of towed wheels, called shimmy, may

appear on airplane landing gears, motorcycle wheels, caravans,

rear wheels of semi-trailers and articulated buses, and it usually

presents a safety hazard. The terminology ‘shimmy’ appeared in

the 1920’s when it was the name of a popular dance. The shimmy

of towed wheels may be caused either by the elasticities of the

towing bar suspension and the attached vehicle structure, or by

the elasticity of the tyre on the wheel, or by a combination of the

two cases. There are two important reasons why the shimmy phe-

nomenon has not been fully explored yet. One part of the problem

is that the vehicle itself is a complex dynamical system serving

several low-frequency vibration modes which may all be impor-

tant components of the dynamical behaviour at different running

speeds and conditions. This part of the problem is mainly resolved

by the development of multibody dynamics and commercial com-

puter codes (Schiehlen, 2006). The other part of the problem is

originated in the wheel-ground contact. Advanced finite element
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calculations need long computation times even in stationary cases;

see Kalker (1991) for railway wheels and Böhm (1989), Chang et

al. (2004) for tyres. Even nowadays, the dynamic contact problems

usually require special codes, large computational power, and still,

there are no analytical results available to check these calculations.

One of the first scientific reports on shimmy was presented

by von Schlippe and Dietrich (1941), where they analysed a sim-

ple low degree-of-freedom (DoF) model. In this so-called stretched

string model the tyre-ground contact was considered as a contact

line that becomes deformed due to the lateral displacement of

the wheel (see the curve between the points L and R in Fig. 1),

while the longitudinal deformation was neglected. Furthermore, it

was considered that each contact point P sticks to the ground.

Note that the tyre becomes deformed not only along the con-

tact line but also in front of the leading point L and behind the

rear point R as represented by the deformed central line of the

tyre in Fig. 1. It was assumed that outside the contact patch the

deformation decays exponentially, which was also confirmed by

measurements. Because the resulting equations were too compli-

cated to be analysed with the available mathematical tools at that

time, they introduced a severe simplification, namely, the contact

line was straight between the points L and R . This way, the resul-

tant lateral force and torque induced by the elastic tyre deforma-

tion were calculated, leading to a delay differential equation (DDE)

with a discrete delay. Using this equation the linear stability of the

stationary rolling motion was analysed (with some further simpli-

fications since the mathematical theory of DDEs was not available
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at that time). The discrete delay was equal to the time period of

a tyre point while in contact with the ground between L and R .

Since then, several versions of the stretched string model have

been developed and analysed. For example, in Segel (1966) fre-

quency response functions were calculated for the stretched string

model without any restriction to the shape of the contact line. This

so-called exact stretched string model has become a basic reference

for later studies. This approach results in a DDE with a distributed

delay as explained in details in Section 3.

A different approach was taken by Pacejka (1966) who intro-

duced different straight and curved contact line approximations by

using stationary shape functions for the lateral tyre deformation

calculated at constant drift angles. The resultant lateral creep force

and torque are calculated from these ‘quasi-stationary’ deforma-

tions by the semi-empirical ‘Magic Formula’ (Pacejka, 2002). This

way, the delay effects are completely eliminated. In the resulting

simplified models only the caster angle and the lateral deforma-

tion of the leading point L were used as state variables, leading

to an ordinary differential equation (ODE) that made it very popu-

lar and easy-to-analyse. In the middle range of the towing speeds,

the quasi-stationary deformation idea gives reasonable agreement

with experiments. Several research reports prove the success of

this approach in engineering (see Troger and Zeman, 1984, on

tractor-semi-trailers systems, Sharp et al., 2004, on motorcycles or

Fratila and Darling, 1996 on caravans). Nonlinearities were also in-

troduced and their importance were emphasised by the existence

of unstable periodic motions in Pacejka (1966). The model was also

generalised by considering the effect of the width of the contact

area, that of sliding at the rear part of the contact patch, and that

of the gyroscopic effects appearing when the wheel is allowed to

be tilted from its vertical plane. Pacejka’s wisdom about tyres has

accumulated in his book (Pacejka, 2002) that also includes a sepa-

rate chapter for shimmy with an extensive reference list.

Considering the exact stretched string model with simplified

boundary conditions, Stépán (1998) has introduced nonlinearities

into the system. He also investigated the linear stability with

mathematical rigour leading to the possibilities of quasi-periodic

oscillations, which recently has been confirmed experimentally in

Takács (2005), Takács and Stépán (2007).

The elasticity of the tyre was also considered in a point con-

tact model by Moreland (1954). The contact line was shrunk into

a point where the force, induced by the elastic tyre, acts. A relax-

ation time was also introduced for the force to model its ‘delayed

action’ and a torque coefficient was defined to relate the force and

the torque. It was proven by Collins (1971) that the point contact

model is equivalent to the stretched string model when the latter

is restricted to the case of straight contact line. However, in the

point contact model the relaxation time and a torque coefficient

has to be estimated or measured, while the stretched string model

provides the corresponding constants via its geometry.

If there is elasticity in the suspension system, even a point

contact model with rigid tyre can exhibit shimmy and compli-

cated nonlinear (sometimes even chaotic) behaviour (Goodwine

and Stépán, 2000; Le Saux et al., 2005; Schwab and Meijaard,

1999; Stépán, 1991, 2002; Takács et al., 2008). However, feed-back

linearisation based controllers can be constructed for these non-

linear systems to suppress the vibrations (Goodwine and Zefran,

2002).

In this study, we consider the case when the wheel is pulled by

a caster fixed to a cart of constant velocity. The lateral deforma-

tions of the tyre are modelled by the exact stretched string model.

The tyre-ground contact is described by a contact line. We assume

that each contact point sticks to the ground that results in a non-

holonomic constraint expressed by a first-order partial differential

equation (PDE). We also assume that the deformation decays expo-

nentially outside the contact region with a characteristic relaxation

Fig. 1. Model of a towed wheel with elastic tyre. Panel (a) shows the 3-dimensional

view of the wheel while panel (b) depicts the side and top view of the wheel. The

deformed central line of the tyre is shown in both panels. This forms the contact

line between the points L and R where the tyre is connected to the ground. The

(x, y, z) coordinate system is fixed to the caster while the (X, Y , Z) coordinate sys-

tem is fixed to the ground.

length. With the appropriate choice of the boundary conditions,

the relaxation length of the tyre is taken into account among other

conventional tyre parameters like the specific stiffness and damp-

ing. The Newtonian equation of motion becomes a second order

integro differential equation (IDE). Assuming travelling wave so-

lutions of the deformation allows us to transform the PDE-IDE

system into a delay differential equation (DDE) with distributed de-

lay. Here, the delay is the time needed for the leading point L of

the contact line to travel backward (relative to the caster) to the

actual contact point P (see Fig. 1). The linear stability investiga-

tion of the DDE shows that the stationary rolling motion may lose

its stability via co-dimension one or co-dimension two Hopf bifur-

cations as the parameters (like the towing speed and the caster

length) are varied. Consequently, self-excited periodic and quasi-

periodic oscillations can appear. The stability chart in the plane of

the above parameters is determined analytically and checked by

numerical simulations and laboratory experiments.

2. Mechanical model

Consider the simple model of a towed wheel with elastic tyre in

Fig. 1. The wheel is pulled by a caster, and the suspension point A

of the caster is towed with a constant velocity v . The length of the

caster is l and the tyre-ground contact length is 2a. We consider

the suspension system to be rigid and use the exact stretched string

model of the tyre.



518 D. Takács et al. / European Journal of Mechanics A/Solids 28 (2009) 516–525

Fig. 2. Stretched string tyre model. The deformation of the central line of the tyre

is shown in 3 dimension in panel (a) and projected to the ground, i.e., to the

(x, y)-plane in panel (b). The relaxation length σ is identified corresponding to for-

mula (1).

One of the chosen state variables is clearly the caster angle ψ of

rotation about the vertical axis. In accordance with the stretched

string model, the tyre-ground contact patch is approximated by

the contact line, i.e., by the deformed central line of the tyre be-

tween the leading point L and the rear point R (see Fig. 1). Note

that the deformation of the tyre outside the contact line is also

described by the deformation of its central line. The lateral de-

formation q(x, ·) of the central line is described in the coordinate

system (x, y, z) fixed to the caster as shown in Figs. 1 and 2. This

is a state variable distributed along the contact line x ∈ [−a,+a],

while it is defined by the exponentially decaying functions

q(x, t) =

{

q(a, t)e−(x−a)/σ , if x ∈ [a,∞),

q(−a, t)e(x+a)/σ , if x ∈ (−∞,−a],
(1)

before the leading point L and behind the rear point R . The tyre

parameter σ is called the relaxation length (see Fig. 2(b)). This

is considered to be small relative to the wheel diameter, so the

theoretical extension x ∈ (−∞,+∞) is an acceptable standard

approximation (Pacejka, 2002; von Schlippe and Dietrich, 1941;

Segel, 1966). For general theory of deformation of strings see

Kármán and von Biot (1940), and for derivation of the equations

of motion for moving continua see Wickert and Mote (1990).

Rolling without sliding means a nonholonomic constraint with

respect to the state variables ψ and q(x, ·) which is formulated as

follows. In the ground-fixed coordinate system (X, Y , Z), the posi-

tion vector of a contact point P is given as

[

X(x, t)

Y (x, t)

]

=

[

vt − (l − x) cosψ(t) − q(x, t) sinψ(t)

−(l − x) sinψ(t) + q(x, t) cosψ(t)

]

(2)

for x ∈ [−a,a]. (The trivial condition Z(x, t) ≡ 0 is not spelled

out here since the vertical dynamics are neglected.) Since point

P sticks to the ground, its velocity col[ dX
dt

dY
dt

] is zero, that yields

{

d
dt
q(x, t) = v sinψ(t) + (l − x)ψ̇(t),

ẋ = −v cosψ(t) + q(x, t)ψ̇(t),
(3)

with

d

dt
q(x, t) = q̇(x, t) + q′(x, t)ẋ, (4)

for x ∈ [−a,a]. Here d
dt

refers to total differentiation with respect

to time t while dot and prime refer to partial differentiation with

respect to time t and space x. By eliminating ẋ, we obtain the

constraining equation for the state variables in the form of a first-

order scalar partial differential equation (PDE)

q̇(x, t) = v sinψ(t) + (l − x)ψ̇(t)

+ q′(x, t)
(

v cosψ(t) − q(x, t)ψ̇(t)
)

, x ∈ [−a,a]. (5)

We assume that the deformation q(x, t) is continuously differen-

tiable at the leading point L which is often referred to as ‘no kink

at L’ condition (Pacejka, 1966). This provides the mixed boundary

condition

q′(a, t) = −
q(a, t)

σ
(6)

for the PDE (5) in accordance with the exponential decay of defor-

mation in (1) in front of the leading point L.

The equation of motion of the wheel can be given as an integro-

differential equation (IDE)

JAψ̈(t) = −k

∞
∫

−∞

(l − x)q(x, t)dx − b

∞
∫

−∞

(l − x)
d

dt
q(x, t)dx, (7)

where JA is the mass moment of inertia of the wheel and the

caster together with respect to the z axis at the king pin A, while

k and b stand for the lateral stiffness and damping of the tyre per

unit length, respectively. To simplify the model, the quantities k

and b are considered to be constant even outside the contact re-

gion where the deformation of the wheel central line is projected

to the ground as in Fig. 2 (even though these are constant rather

along the circumference). Thus, the towed wheel model is given by

the coupled PDE-IDE system (5), (7) when considering the approx-

imation (1) and the boundary condition (6).

3. Travelling wave solutions and time delay

Let τ (x) denote the time needed for a tyre particle located at

the leading point L to travel backward (relative to the caster) to the

actual point P characterised by the coordinate x. With this delay,

we can describe a travelling wave solution as
[

X(x, t)

Y (x, t)

]

=

[

X(a, t − τ (x))

Y (a, t − τ (x))

]

, (8)

which simply expresses the fact that the tyre particles once fixed

to the ground remain fixed there, while the caster travels ahead

above them. With the help of (2), the travelling wave (8) can be

transformed into the form
⎧

⎪

⎨

⎪

⎩

l − x = vτ cosψ(t) + (l − a) cos(ψ(t) − ψ(t − τ ))

− q(a, t − τ ) sin(ψ(t) − ψ(t − τ )),

q(x, t) = vτ sinψ(t) + (l − a) sin(ψ(t) − ψ(t − τ ))

+ q(a, t − τ ) cos(ψ(t) − ψ(t − τ )),

(9)

which is still implicit due to the fact that τ (x) cannot be expressed

in closed form. However, differentiating the first equation in (9)

with respect to τ , we obtain

dx

dτ
= −v cosψ(t) + (l − a)ψ̇(t − τ ) sin

(

ψ(t) − ψ(t − τ )
)

− q̇(a, t − τ ) sin
(

ψ(t) − ψ(t − τ )
)

+ q(a, t − τ )ψ̇(t − τ ) cos
(

ψ(t) − ψ(t − τ )
)

. (10)
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Now, one may substitute (1), (3), (9) into (7) and use the change

of variables x and τ (integration by substitution) based on (10).

The resulting retarded functional differential equation (RFDE) con-

tains the time dependent caster angle ψ(t) and its delayed values

ψ(t−τ ), and the time dependent leading point lateral deformation

q(a, t) and its delayed values q(a, t − τ ). The constraining equation

(5) with its boundary condition (6) provides an ordinary differen-

tial equation (ODE) for the leading point lateral deformation:

q̇(a, t) = v sinψ(t) + (l − a)ψ̇(t) −
v

σ
q(a, t) cosψ(t)

+
1

σ
q2(a, t)ψ̇(t). (11)

The above described nonlinear RFDE-ODE system was given explic-

itly for the special case of zero relaxation length (σ = 0) and zero

damping (b = 0) in Stépán (1998). For nonzero σ and b the explicit

linearised equations are given in the next section.

Pacejka’s creep force/moment model also uses the leading point

lateral deformation as state variable, but instead of the travel-

ling wave solution along the contact line, it uses the stationary

lateral deformation obtained at constant drift angle ψ (Pacejka,

1966). This way, one obtains a three dimensional nonlinear ODE

instead of the infinite dimensional nonlinear RFDE-ODE, but loses

the dynamics within the contact region, which may be important

in certain parameter domains as identified later.

4. Small oscillations around stationary rolling

The stationary rolling motion of the wheel is described by the

trivial solution

ψ(t) ≡ 0, q(x, t) ≡ 0, x ∈ (−∞,+∞). (12)

Small shimmy oscillations around the stationary rolling can be

described by the linearisation of the governing equations (7), (9)–

(11):

JAψ̈(t) = −k

a
∫

−a

(l − x)

(

q(x, t) +
b

k

d

dt
q(x, t)

)

dx

− kσ (l − a − σ )

(

q(a, t) +
b

k

(

q̇(a, t) +
v

σ
q(a, t)

))

− kσ (l + a + σ )

(

q(−a, t)

+
b

k

(

q̇(−a, t) −
v

σ
q(−a, t)

))

, (13)

{

l − x = vτ + l − a ⇒ τ (x) = a−x
v

,

q(x, t) = (vτ + l − a)ψ(t) − (l − a)ψ(t − τ ) + q(a, t − τ ),
(14)

dx

dτ
= −v, (15)

q̇(a, t) = vψ(t) + (l − a)ψ̇(t) −
v

σ
q(a, t). (16)

In (13) the integrals over the intervals (−∞,−a], and [a,∞) are

calculated in closed form by using the exponential decay functions

in (1), while the remaining d
dt
q(x, t) can be obtained from the lin-

earisation of (3). The second equation in (14) means that the lateral

deformation q(x, t) can be expressed by the present and delayed

values of the caster angle ψ and the leading point lateral deforma-

tion q(a, ·).

In particular, considering the first equation in (14) at the rear

point R , we obtain

x = −a ⇒ τ (−a) =
2a

v
. (17)

and so the second equation in (14) at the rear point R gives

q(−a, t) = (l + a)ψ(t) − (l − a)ψ

(

t −
2a

v

)

+ q

(

a, t −
2a

v

)

. (18)

After substituting (14), (15), (17), (18) into the IDE (13) and

dividing the equation with the mass moment of inertia JA , we ob-

tain the form

ψ̈(t) + 2ζωnψ̇(t) + ω2
nψ(t)

=
kv

JA

2a/v
∫

0

(l − a + vτ )p(t − τ )dτ

+
kσ

JA
(l − a − σ )

(

p(t) +
2ζ

ωn

(

ṗ(t) +
v

σ
p(t)

))

+
kσ

JA
(l + a + σ )

(

p

(

t −
2a

v

)

+
2ζ

ωn

(

ṗ

(

t −
2a

v

)

−
v

σ
p

(

t −
2a

v

)))

+
bv

JA
2l(a + σ )ψ(t), (19)

where we temporarily introduced the new notation

p(t) = (l − a)ψ(t) − q(a, t) (20)

for the absolute position Y of the leading point L to shorten the

expression. The constants

ωn =

√

2k

JA

(

a
(

l2 + a2/3
)

+ σ
(

l2 + a2 + aσ
))

and

ζ =
ωn

2

b

k
(21)

are the undamped natural angular frequency and the damping ra-

tio of the steady wheel (v = 0), respectively.

5. Rescaling

Let us rescale the time as

T :=
v

2a
t, (22)

define the new integration variable by

ϑ := −
v

2a
τ , (23)

and the dimensionless leading point lateral deformation by

Q (T ) :=
1

a
q(a, T ). (24)

Now, using dot as partial differentiation with respect to the

rescaled time T , we can define the dimensionless angular velocity

as

Ω(T ) := ψ̇(T ). (25)

Furthermore, the dimensionless towing speed V , the dimension-

less caster length L and the dimensionless relaxation length Σ are

given by

V :=
1

ωn

v

2a
, L :=

l

a
, Σ :=

σ

a
, (26)

respectively.

Using definitions (22)–(26), the ODE (16) and the IDE (19), (20)

provide a 3-dimensional system of first-order DDEs:
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[

ψ̇(T )

Ω̇(T )

Q̇ (T )

]

=

⎡

⎣

0 1 0

− 1
V 2 + c1c2 −

2ζ
V

−c2
Σ
2

(L − 1− Σ)

2 L − 1 − 2
Σ

⎤

⎦

[

ψ(T )

Ω(T )

Q (T )

]

+ c2

0
∫

−1

(L − 1− 2ϑ)

[

0 0 0

L − 1 0 −1

0 0 0

][

ψ(T + ϑ)

Ω(T + ϑ)

Q (T + ϑ)

]

dϑ

+
c2

2
(L + 1+ Σ)

×

[

0 0 0

(Σ − 4ζ V )(L − 1) − 4Σζ V 0 8ζ V − Σ

0 0 0

]

×

[

ψ(T − 1)

Ω(T − 1)

Q (T − 1)

]

, (27)

where

c1 =
Σ

2
(L − 1− Σ)(L − 1) + 2ζ V

(

L2 + (1 + Σ)2
)

,

c2 =
1

V 2

1

L2 + 1/3+ Σ(L2 + 1+ Σ)
. (28)

6. Stability investigation

The stationary rolling motion (12) is now represented by the

trivial solution
[

ψ(T )

Ω(T )

Q (T )

]

≡ 0 (29)

of the linearised equation of motion (27). The Laplace transforma-

tion of (27) or the substitution of the trial solution

[

ψ(T )

Ω(T )

Q (T )

]

= KeλT , K ∈ C
3, λ ∈ C (30)

leads to the characteristic function

D(λ;µ) = ΣV 2λ3 + 2V (V + Σζ)λ2 + (Σ + 4ζ V )λ + 2

−
L − 1− Σ

L2 + 1/3 + Σ(L2 + 1+ Σ)

×

{

2

λ2

(

(L − 1)λ + 2−
(

(L + 1)λ + 2
)

e−λ
)

+
4ζ V L(1+ Σ)(2+ Σλ)

L − 1− Σ

+ (L − 1− Σ)(2Σζ V λ + Σ + 4ζ V )

+ (L + 1+ Σ)(2Σζ V λ + Σ − 4ζ V )e−λ

}

, (31)

where µ ∈ R
4 represents the dimensionless parameters ordered in

a vector

µ = col[V L Σ ζ ]. (32)

Generally, Eq. (31) has infinitely many complex zeros for the

characteristic exponents (characteristic roots) λ, but only a finite

number of these may be situated in the right-half complex plane.

The stationary rolling (12), (29) is asymptotically stable if and only

if all the infinitely many characteristic exponents are situated in

the left-half complex plane (Stépán, 1989).

At the limit of stability, bifurcation can take place in the cor-

responding nonlinear system when characteristic roots are located

at the imaginary axis for some critical values µcr of the parameter

vector. It is easy to see, that the critical characteristic root cannot

be the zero since it does not satisfy the characteristic equation for

any parameter values, i.e., D(0,µ) �= 0. This means that only Hopf

bifurcation can occur at µcr when a pair of pure imaginary com-

plex conjugate characteristic exponents

λ1,2(µcr) = ±iω, ω ∈ R
+, (33)

satisfy (31) with the dimensionless angular frequency ω. Due to

this bifurcation, self-excited vibrations may appear in the cor-

responding nonlinear system around the stationary rolling mo-

tion with dimensional frequency f = ωv/(4aπ) = ωVωn/(2π) in

Hertz. Consequently, travelling waves propagate backward along

the contact line with dimensional wave length v/ f = 4aπ/ω.

The stability boundaries are determined in the parameter space

by the substitution of the characteristic exponent λ1 = iω into (31)

and by the separation of the real and imaginary parts:

Re D(iω;µcr) = 0, Im D(iω;µcr) = 0. (34)

In the 4-dimensional parameter space µ ∈ R
4 , these formulae de-

scribe stability boundaries (3-dimensional hypersurfaces) parame-

terised by the dimensionless angular frequency ω ∈ R
+ . Fixing 2

of the 4 parameters, we obtain stability boundary curves in a pa-

rameter plane. In particular, we fix the dimensionless relaxation

length Σ and the damping ratio ζ for different values, and con-

struct stability boundary curves in the plane of the dimensionless

towing speed V and the dimensionless caster length L. To decide

whether a certain region bounded by the intricate structure of sta-

bility curves is stable or not, we use the stability criteria derived

in Stépán (1989). The stable parameter domains are shaded in the

stability charts plotted in the (V , L)-plane in Fig. 3 for different

values of Σ for the undamped system (ζ = 0). Notice that there

exists a boundary at L = 1+Σ for any Σ , and for large V the sys-

tem is stable above this boundary and unstable below. Fig. 4 shows

the stability charts in the (V , L)-plane for a measured value of Σ

(see Fig. 7 later) when ζ is increased. It can be observed that the

unstable ‘lenses’ gradually shrink and disappear as the damping is

increased and only the monotone increasing stability curve persist

for large damping (ζ > 0.035). This curve saturates at L = 1 + Σ

for large V .

Where the stability boundary curves intersect each other, two

pairs of pure imaginary characteristic exponents ±iω1 and ±iω2

co-exist with two dimensionless angular frequencies ω1 and ω2 .

This is a co-dimension two (or double) Hopf bifurcation which

also arises in a similar delayed robot dynamics problem (Stépán

and Haller, 1995). Due to this bifurcation quasi-periodic self-

excited oscillations appear around the stationary rolling motion

with dimensional frequencies f1 = ω1v/(4aπ) = ω1Vωn/(2π)

and f2 = ω2v/(4aπ) = ω2Vωn/(2π). The corresponding ‘quasi-

periodic travelling waves’ in the contact region possess the dimen-

sional wave lengths v/ f1 = 4aπ/ω1 and v/ f2 = 4aπ/ω2 .

Instead of carrying out the analytical study of co-dimension one

and two Hopf bifurcations that would require the reduction of the

dynamics from the infinite-dimensional state space to 2- and 4-

dimensional centre manifolds, we identified typical periodic and

quasi-periodic vibrations in the system by numerical simulations.

These provide enough information at this stage of the research for

the validation of our model by experiments.

7. Simulation of the nonlinear equations

In order to demonstrate the stability properties determined

above we study the original PDE-IDE system (5), (7) with condi-

tions (1), (6) by numerical simulation. On one hand we wish to

verify that the obtained linear stability diagrams are correct. On

the other hand we would like to obtain information about the ap-

pearing nonlinear oscillations when the stationary rolling motion

is linearly unstable.

We fix the dimensional parameters a, σ , k and b as in Table 1

and vary v , l and JA such that ωn is kept constant (see (21)).
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Fig. 3. Stability charts in the (V , L)-plane for the undamped system (ζ = 0) for different values of the dimensionless relaxation length Σ . Stable regions are shaded. The

stability boundary curves refer to Hopf bifurcations, their intersections refer to co-dimension two Hopf bifurcations.

Table 1

The experimentally identified dimensional parameters and their dimensionless

counterparts; see formulae (21) and (26).

Dimensional parameters Dimensionless parameters

a = 0.04 [m] Σ = 1.8

σ = 0.072 [m]

k = 53506 [N/m2] ζ = 0.02

b = 140 [Ns/m2]

ωn = 15.29 [rad/s]

fn = 2.43 [Hz]

Consequently, the dimensionless parameters Σ and ζ keep their

values shown in Table 1 while V and L are varied (see (26)). This

means that we consider the stability diagram in Fig. 4(c) where

the points A–D are marked by crosses. We run the simulations us-

ing the parameters at these points. In each of the pairs A–C and

B–D the points are separated by a Hopf curve such that one point

lies in the stable (shaded) regime while the other in the unsta-

ble (white) regime. Consequently, qualitatively different behaviour

is expected for the two points of each pair.

To integrate the PDE-IDE system (5), (7) we use the Lax–

Wendroff method (Lax and Wendroff, 1960) which provides sec-

ond order accuracy in time. Note that for the IDE component

this method is effectively the same as the 2nd order Runge–Kutta

method. The number of spatial mesh points was 400. Furthermore,

we consider the initial condition

ψ(0) = 0, ψ̇(0) = w,

q(0, x) ≡ 0, q̇(0, x) = (l − x)w, x ∈ [−a,a], (35)

with constant w = 1 [rad/s]. This corresponds to applying a lateral

impact to the stationary rolling wheel at t = 0.

The obtained results are shown in Fig. 5. In each panel the time

history for the caster angle ψ(t) is shown together with the spatial

distribution of the lateral deformation q∗(x) = q(x, t∗) at the cho-

sen time t∗ . Fig. 5 (a) and (b) show the cases A and B where the

stationary rolling motion is linearly stable, that is, small perturba-

tions around this motion decay in time. Observe that the small am-

plitude oscillations/waves are very close to harmonic. Fig. 5 (c) and

(d) show the cases C and D where the stationary rolling motion is

linearly unstable, that is, small perturbations grow in time and the

system approaches large-amplitude oscillations as time progresses.

In case C the approached motion is periodic corresponding to a

limit cycle in phase space while in case D quasi-periodic oscilla-

tions are observed which correspond to a torus in phase space.

The large amplitude oscillations/waves are not harmonic anymore,

but these are not realistic physically due to the large caster angles

reaching even π/2. This will be further discussed in Section 8 on

comparison to experimental observations.

Considering cases A and C the appearing dimensional fre-

quency and wavelength are close to f = ωVωn/(2π) = 0.93 fn
and 4aπ/ω = 3.22(2a), respectively, where the dimensionless an-

gular frequency ω = 1.95 is obtained from the neighbouring Hopf

curve. Similarly, in cases B and D the appearing dimensional angu-

lar frequencies are close to f1 = ω1Vωn/(2π) = 0.27 fn and f2 =

ω2Vωn/(2π) = 1.03 fn , and the appearing wavelengths are close

4aπ/ω1 = 3.85(2a) and 4aπ/ω2 = 1.01(2a), respectively. Here the

dimensionless angular frequencies ω1 = 1.63 and ω2 = 6.20 be-

long to the neighbouring co-dimension two Hopf point.

8. Experimental validation

An experimental rig has been designed and constructed to test

the above time-delayed model of shimmy motion of a towed wheel
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Fig. 4. Stability charts in the (V , L)-plane for different values of the damping ratio ζ with fixed dimensionless relaxation length Σ = 1.8. Stable regions are shaded. The

stability boundary curves refer to Hopf bifurcations, their intersections refer to co-dimension two Hopf bifurcations. Thin curves correspond to the stability boundaries of the

undamped system (ζ = 0) for the same Σ = 1.8 (see Fig. 3(d)). In panel (c) the crosses A–D show the parameter values used for the numerical simulations in Fig. 5.

with elastic tyre (Takács, 2005; Takács and Stépán, 2007). The

wheel was placed on a conveyor belt of variable speed as shown

in Fig. 6. In order to avoid oscillations due to the elasticity of the

conveyor belt, it was stiffened laterally by a steel frame which

also kept the possible lateral buckling of the conveyor belt un-

der control. The caster length and the mass moment of inertia of

the structure with respect to the vertical axis at the king pin A

were also adjustable. In this way, we were able to tune the natural

angular frequency ωn and the damping ratio ζ to desired values

(see (21), (26)). Thus, all the necessary parameters were controlled

within certain limits to identify an experimental stability chart

in the plane of dimensionless towing speed V and dimensionless

caster length L (for fixed dimensionless relaxation length Σ and

damping ratio ζ ). Since all dimensionless parameters depend on

the caster length l and the contact length 2a, the proper variation

of the system parameters requires special attention.

In order to identify the numerical values of parameters, first,

we fixed a certain air pressure in the pneumatic tyre, placed the

wheel in a rigid frame as in Fig. 7(a) and pulled its centre point in

lateral direction. Fig. 7(b) shows the enlarged (and distorted) pic-

ture of the deformed tyre in and around the contact region when

a transparent plastic plate was placed at one side of the frame

and the central line of the tyre was marked. This picture perfectly

follows the approximation (1) of the stretched string model used

in the literature (Pacejka, 2002; von Schlippe and Dietrich, 1941;

Segel, 1966). We identified the contact length 2a and the relax-

ation length σ , and the obtained results are shown in Table 1.

Then the standing wheel was placed to the conveyor belt as in

Fig. 6 and its centre was slightly hit in lateral direction. The time

history of the acceleration of a chosen caster point was recorded.

From the frequency and logarithmic decrement of the vibration

signal the natural angular frequency ωn and the damping ratio ζ

can be determined. Using (21) the lateral stiffness k and lateral

damping b per unit length can be calculated. The obtained results

are also given in Table 1.

During the experiments, for a chosen caster length l, we in-

creased the towing speed v step-by-step and identified the loss of

stability of stationary rolling by detecting the appearance of self-

excited vibrations, i.e., the shimmy. Then we repeated the same

experiment for several different values of the caster length l. We

managed to keep the constant value for the natural frequency fn
when the caster length l was varied: we varied the mass at the end

of the caster and the mass moment of inertia JA changed accord-

ingly. Consequently, the damping ratio ζ and the dimensionless

relaxation length Σ were also kept constant (see (21), (26)).

The experimental stability chart was transformed to the (V , L)-

plane of dimensionless parameters. Fig. 8 compares this measured

stability chart with the corresponding theoretical stability chart

calculated from the time-delayed model for the experimentally

identified parameters in Table 1 (see also the bottom part of

Fig. 4(c)). This shows relatively good agreement between theory

and experiment. Recall that the theoretical stability boundary sat-

urates at L = 1+Σ for large V . Fig. 8 shows that the experimental

stability boundary saturates to a slightly higher value of L. This

suggests that one may obtain a better fit for large V by consider-

ing slightly higher value of Σ than the measured one.

In Fig. 8 we marked by a cross the point D on the experimen-

tal stability boundary which is located close to the double Hopf

point (the intersection of the theoretical stability curves). This is

the same point as point D in Fig. 4(c) where quasi-periodic oscil-
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Fig. 5. Numerical simulation results for the points marked by red crosses in Fig. 4(c). In each panel the time profile for the caster angle ψ(t) is shown and the spatial

distribution of the lateral deformation q∗(x) = q(x, t∗) is depicted at time t∗ . In panels (a) and (c) the stationary rolling motion is linearly stable, while in panels (b) and (d)

this motion is unstable and stable oscillating (shimmy) motions can be observed. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

Fig. 6. The experimental rig on the stiffened conveyor belt.

lations were found by numerical simulation as shown in Fig. 5(d).

Our measurements confirm these observations as quasi-periodic

vibrations appear in the experiments, too. However, we found that

the amplitude of oscillations in the experiments is lower than sug-

gested by simulations. These deviations are due to the shortcoming

of our model that the tyre sticks to the ground even for very large

lateral deformations, while in reality sliding usually occurs at the

rear part of the contact region. Involving this dissipative effect one

might be able to obtain better agreement between simulations and

measurements. More details about this analysis can be found in

Takács and Stépán (2007).

9. Conclusion and discussions

A low degree-of-freedom model of the shimmying wheel with

elastic tyre was investigated. The no-slip kinematic constraint

along tyre-ground contact region was described by a nonlinear par-

tial differential equation (PDE) which was coupled to an integro-

differential equation (IDE) of wheel motion. Considering the relax-

ation of tyre deformation around the contact region provided a

boundary condition for the coupled nonlinear PDE-IDE system.

The equations were linearised about the stationary rolling mo-

tion. Using travelling wave solutions the linearised PDE-IDE was

transformed into a 3-dimensional linear system of delay differ-

ential equations (DDEs). In this way, stability charts were con-

structed analytically in the plane of the towing speed and caster

length for certain damping ratio and relaxation length parame-

ters. Crossing the stability boundaries in the stability chart, Hopf

bifurcations take place leading to self-excited vibrations in the cor-

responding nonlinear PDE-IDE system. The appearing periodic and

quasi-periodic oscillations were found by numerical simulations
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Fig. 7. Measuring tyre parameters. Panel (a) shows the static lateral load on the

framed wheel. Panel (b) shows the measurements of contact length 2a and relax-

ation length σ of the tyre contacting a transparent plastic plate.

Fig. 8. Figure compares the experimentally identified stability boundary (piecewise

smooth line with circles) with the theoretical stability boundaries (smooth lines) on

the (V , L)-plane. The experimentally identified stable region is shaded. For param-

eter values at the point D (marked by cross) quasi-periodic oscillations were found

by numerical simulation and by experiment, too.

and the stability chart was confirmed numerically. A constructed

experimental rig allowed to detect the periodic and quasi-periodic

oscillations experimentally and to determine an experimental sta-

bility chart having a reasonable good match to the theoretical one.

The experimental stability chart confirmed the importance of

the nonzero relaxation length. In previous experimental stud-

ies where zero relaxation length was considered (Takács, 2005;

Takács and Stépán, 2007), the results showed large deviation from

theoretical predictions for large towing speed and long caster. The

appearance of quasi-periodic self-excited oscillations at low towing

speed and short caster also validates the delayed shimmy model.

To explain these oscillations it is essential to describe appropriately

the ‘motion of the contact line’. Single degree-of-freedom models

with creep force approximation cannot predict quasi-periodic be-

haviour because they omit the dynamics within the contact region.

Nevertheless, whether a towing speed is considered to be large or

small depends on the natural frequency of the system, and also on

the length of the contact patch as it is expressed by the dimen-

sionless towing speed.

Note that the proper bifurcation analysis of the nonlinear sys-

tem has not been carried out yet. This can be very complicated in

the studied infinite dimensional system in particular in the vicin-

ity of the double Hopf bifurcation points. In order to resolve this

problem one needs to consider the nonlinear terms and use either

normal form calculations (Campbell and Bélair, 1995; Orosz, 2004)

or numerical continuation techniques (Engelborghs et al., 2001;

Szalai et al., 2006). For example, carrying out these calculations for

nonlinear point contact models with rigid tyre, strong subcritical

behaviour was found (Stépán, 1991; Takács et al., 2008). Subcrit-

icality results in small-amplitude unstable oscillations around the

stable stationary rolling and also predicts bistability between sta-

tionary rolling and large-amplitude oscillations.

Further development of our model is possible by involving slid-

ing of the tyre at the rear part of the contact region. The appearing

friction force dissipates energy and may allow us to have a better

match between simulations and experiments (Takács and Stépán,

2007). However, allowing the wheel to slide may also lead to very

complicated (e.g., chaotic) large-amplitude vibrations in some pa-

rameter regimes (Stépán, 1991; Takács et al., 2008). We consider

these problems for future research directions.
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