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Abstract

In this paper the asymptotic behaviour of the maximum likelihood
and Bayesian estimators of a delay parameter is studied. The observed
process is supposed to be the solution of a linear stochastic differential
equation with one time delay term. It is shown that these estimators
are consistent and their limit distributions are described. The be-
haviour of the estimators is similar to the behaviour of corresponding
estimators in change-point problems. The question of asymptotical
efficiency is also discussed.
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1 Introduction and Auxiliary Results

In this paper we deal with the linear stochastic differential equation
dXt - bXt_ﬂ dt + th, 0 S t S T (1)

where b is a known negative parameter and the delay parameter 19 is unknown
to the observer. We have to estimate ¥ by the observation {X;,0 <t < T},
The properties of estimators will be studied in the situation of large samples:
T — oo. The integral representation of the observed process

t
X, = X, +/ bX, yds+ W,
0

shows that the process X; is as smooth with respect to time ¢ as the Wiener
process W; therefore the trend coefficient b X;_y is not differentiable with
respect to v, even the first derivative of the trend with respect to unknown
parameter does not exist and the usual regularity conditions in this problem
are not satisfied. The similar model of delay estimation was considered in [7]
(see also [9], section 2.4, and [8]) for the observations

dX, = bX,  dt +c dW (2),
X(s)=x9p>0, se[-K,0], forsome K >0 0<t<T (2)

but in asymptotics of small noise: ¢ — 0, T is fixed. In that problems
the maximum likelihood ¥, and the Bayesian estimators are consistent and
asymptotically normal

et (0. —0)} = N(0,1)
with the usual “regular” rate £~! and both are asymptotically efficient. The

limit variance was "
—2 2
o= /0 Ty_gy dt

where x;,0 <t < T is the solution of the observed equation (2) with £ = 0.

In the present work we consider the same process and the same estima-
tors but in another asymptotics and it is in certain sense surprising that the
properties of the estimators are entirely different. The maximum likelihood
and Bayesian estimators have different limit distributions, the rate of conver-
gence is T (not VT as in regular problems) and asymptotically efficient are



the Bayesian estimators only. These results are similar to one of change-point
problems see, e.g. [3], section 7.2 or [9], chapter 5. The proofs are carried
out by a method of Ibragimov-Khasminski [3].

We are interested in stationary solutions of the equation (1). Their exis-
tence is given by the following

Lemma 1.1 If b < 0 then a stationary solution of (1) exists if and only if
v € (0,—7/(20)).

Proof see e.g. [5], Lemma 2.9.

2 Definitions and Results

We observe the trajectory X7 = {X;, 0 < t < T} of the diffusion-type
process (X;) given by

dXt == bXt_gdt + th, Xs == Xo(S), S S S 0, t Z 0, (3)

&=

where b is a negative constant, ¥ is an unknown parameter from the set
O = [0,—(eb)™!] (we denote as well Oy = (0, —(eb)™')) and Xy(s) is a
known continuous function. We are interested in asymptotic properties of
the maximum likelihood and Bayes estimator of the parameter 9 as T" — oo.

Let us denote P,gT) the measure induced in the measurable space of con-
tinuous on [0, 7] functions (C[0, 7], B[0,T]) by the solution of the equation
(3). (Here B[0,T] denotes the o-algebra of Borel-subset of C[0,7] endowed
with the supremum-norm.) The solutions of (3) corresponding to different
values of ¥ € © are continuous, thus all the measures {PéT),ﬁ € v} are
equivalent and the likelihood ratio process

ap\?

L(9,9,, X1 =

(X1, YeoO

is given by the formula

L(9, 91, XT)
2

T b2 I
= exp {b /0 (X9 — Xi_g,) dX; — 0} /0 (X2, — Xf_ﬁl)dt} :
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where ¥, is some fixed value (see [10]).
The maximum likelihood estimator (MLE) 97 is defined as a solution of
the equation
L(d7,91, XT) = sup L(9, 91, X7T). (4)
9eO
Below we suppose that the true value ¥ is an interior point of ©, i.e., ¥ € Oy.
We will see later that the function L(J,9;, XT), 9 € © is continuous with
probability one. Hence the MLE Uy exists and belongs to ©. If the equation
(4) has more than one solution than we take any one as MLE.
To introduce the Bayesian estimator we suppose that ¢ is a random vari-
able with a prior density 7(y),y € © and the loss function is quadratic. Then

the Bayes estimator (BE) 0, is a posterior mean

Oy = /yp(leT)dy,
9

where the posterior density p(y|XT) is given by

m(y)L(y, V1, X7)
7(v)L(v, 91, XT) dv’

p(y|XT) = i
[

The limit distributions of these estimators can be expressed through the
following stochastic process

—~ 1
Z(u) = exp {bW(u) - 5|u|b2} . weR,

where W(u) = W(u) for u > 0 and W(u) = W_(—u) for u < 0 and
Wi(u), W_(u),u > 0 are two independent standard Wiener processes. Let
us introduce two random variables:

¢ = argsupZ(u)
| uZ(u)dy
_Z Z(u)du

The first result allows to define the asymptotically efficient estimators in this
problem.



Theorem 2.1 For any 9y € (0, (e b))

lim lim inf sup T?%Ey (95— 9)* > EC?

0207500 U7 |9—09|<d

Proof of this theorem follows from the theorem 1.9.1 of [3] and the prop-
erties of likelihood ratio L(-) described below.

Therefore we can define the asymptotically efficient estimator ¢, as such
an estimator, that for all ¥ € ©

lim lim  sup T?Ey(v; —0)° = B

0=0 T 00 |9—0g| <5

Let K below be an arbitrary compact set in ©y. The asymptotics of MLE
is given for this more narrow parameter set by the

Theorem 2.2 The MLE O of parameter ¥ € Oq is uniformly in 9 € K
consistent, the normed difference T'(9r — ) converges uniformly (in 9 € K)
in distribution to the random variable & and for any p > 0 it holds

: 9 P _ P
lim Ey|T(Jr — )" = Bl¢]

The asymptotic behavior of the BE is better than MLE as it follows
from the

Theorem 2.3 Let the prior density w(y), y € © be a positive, continuous
function, then the BE Uy is consistent in K uniformly , the normed difference
T (9 — 9) converges uniformly (in 9 € K) in distribution to the random
variable ¢ and for any p > 0 it holds

lim E|T(Jy — )" = B|C].
T—o0
Moreover the BE is asymptotically efficient.

The proofs of theorems 2 and 3 is based on the general results of Ibrag-
imov, Khasminski [3], (Theorems 1.10.1, 1.10.2) concerning the asymptotic
behavior of MLE and BE and is given in the next section.



3 Proofs

Let as introduce the normalized likelihood ratio

(T)
APy} u

~ ap"

Zr(u) (XT), where u € Uy p = (— IT, ((—e b) ! — 19)T)

and define Z;(u) on the intervals [—971 — 1, =97 and [(eb)™! — V)T,
(—(eb)™' — 9T + 1] as linearly decreasing to zero. Outside the interval
(=0T +1,(—(eb) ™t = 9T + 1) we put Zy(u) = 0. So the function Zr(u),
is defined for all v € IR and it can be shown with the help of the lemmas
3.2 and 3.4 that it belongs to the space Cy of continuous on IR functions
decreasing to zero at infinity. Note, that

Ty —9) = Gy = arg max Zy(u).

Denote v; the measure induced in the space (Cy, By) by the process
{Zy(u), u € R} and v the measure corresponding to the process {Z(u), u €
R}.

If we prove that

vy =V (5)

then the distributions of all continuous functionals of Z;-(-) will also converge.
Therefore for the functional ®(2) = sup,,, 2(u) — sup,>, 2(u) we have

PéT){@T <z} = Pﬁ(lT) {sup Zr(u) > sup ZT(u)} =

u<T u>T

= P{"{sup Zr(u) — sup Zp(u) > 0} =
u<x

u>T
= Py {@(Zr) > 0} — Py {®(Z) > 0} =
= Py{sup Z(u) > sup Z(u)} = Py{& < z}.
u<x u>T
To prove the convergence (5) we establish the convergence of finite-
dimentional distributions and two estimates on the increments of Z;(-) and

on the tails of Z,(-) then according to [3], Theorems 1.10.1 and 1.10.2 we
will have the desired properties of the MLE and BE.
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Lemma 3.1 The marginal distributions of Zp(u),u € R converge to the
marginal distributions of Z(u) and this convergence is uniform over the com-
pacts K.

Proof. The likelihood ratio Z;(-) with PéT)— probability one admits the
representation

T b2 I
In Zs(u) = b /0 (Ximg—g = Xomo) AWy = o [ (Ximgg = Xoo)?d.
At first we show that uniformly in ¥ € K
. T 2
Py — lim | (Xe-g-3 — Xe—o)"dt = [u, (6)

i.e., for any 6 > 0

. a ||t 2
lim sup Py / (Xip-z — Xy )"dt — |uf
0

T—00 YeK

>5}:0.

Let u > 0. The difference Y;(u) = Xi—9—» — Xy—p can be written as

t—

Viw = b [
b
T

Sl

Xo—pds + Wi_y_p — Wiy =

o~

9—
9
U

Xiop (14 0(1)) + —=A(u).

5=

Here
Ay(u) = T? (Wt—ﬂ—% - Wt—ﬁ)

is a Wiener process with respect to u > 0:
EA(u) =0, EA(u)?=u, EA(u)Ai(v) = min(u,v).

Therefore

Yi(u) = —7=Au(u) (1 + o(1))

3~



because the process X, is Gaussian ergodic and T-/2X, — 0 as well as
T~12Ey| Xy P — 0, p> 0 as T — oo. We can write

sup B, (/OTYt(u)2 dt — |u|>2 _
— sup Ey (% /OT [Au()? = Jul] dt>2 (1+0(1)) <

ﬂeK
< / / sup Ey At (u)? Ay(u)? — u2) (14 0(1))dsdt.
T2 0 9¥eK

For the values s,t such that |t — s| > |u|/T these increments of the Wiener
process are independent and we have

EoAy(u)? Ay(u)? = u®.

In the case |t — s| < |u|/T, say, t < s we have s — u/T < t and using
independence of the increments W, — Wy, Wi_yr — Wy, Wi_yr — We_wr
we can write

EyAs(u)? Ay(u)? — u? < 6 u

Therefore
T T u?
sup [ [ By ([Yi(w)? — |ul/T] [Vo(w)? — |ul/T]) dtds < O
veo Jo Jo T
The similar arguments allow to prove the uniform convergence
T
Py — lim [ Yi(u) Yi(v) dt = |u| A |v]. (7)

T—00 J(

The central limit theorem for stochastic integrals ([6], Theorem 3.3.7) and
convergence (6) provide the uniform asymptotic normality

L {/TYt(u) th} — N0, |ul).

0

The same theorem and condition (7) provide the convergence of the finite-
dimensional distributions of the process

T
ar(w) = [ Yilw) dW;
to the finite dimensional distributions of the process W (u), u € IR.

8



Lemma 3.2 There exists a constant Cy such that for any R > 0

1 1
sup sup  |u—v[Ey|Zf (u) — Z} (v)[* < Co(1 + R)
YEK |[v|<R,|u|<R

Proof is similar to the proof of the Lemma 2.6 in [9]. Let us denote

1
dP7(9T)u T !
V(T) = ((%)WXT)

dPﬂ—I—v/T
Then by Ito’s formula with P1(9 +)u Ut -probability one
3 5 (T 2
V() = 1- b / V(t) [Xt oop — Xig_g] dt +
+ / oy = Xigog] AW,
Therefore denoting Y;(u,v) = Xy 2 — X; y 2 we can write

Eo|ZE (1) — Z3(0)[* = By Zo(0)|V(T) — 1 =

—?;)i;/OTV( 1Yy (u, v)? dit + ° / 1) Y (u, v) dW,

4

= Eﬂ—l—v/T <

T
<O BT / By porV (815 (u, 0)® dt +
0
T
YO BT / EyoyrV (£)Y(u,v)" dt =
0
T T
o T3/ By a2 Yi(u, 0)® dt + Cy b4T/ EyuyrY(u,v) dt.
0 0

The moments of the process Y;(u,v) can be estimated as follows

Eﬂ—l—u/T)/t(uJ U)S =

t—9—u/T 8
= Egsur (b / Xy gy ds + Wi_g—yz — Wt_ﬂ_u/T> <

t—9—v/T
u—uvl|l pi=d—u/T u—uvlt
< Oyl / Eyg 0 X° ds + C
=3 T t—9—v/T Otu/T R s—g—u/T 45 4 -
—v|8 u—uvlt
< Cs + Cs T




For the second integral similar calculations provide

4
+ Cy

u—v u—uvl|?

T

EyurYi(u,v)' < C;

Therefore we have

Eg|Z2(u) — ZE ()] < Co lu—v]* + Cho lu — v|* + Chy Ju — v <
< Co (1+ R°) u— o

where the constant Cy > 0 does not depend on R and 9.
We shall need the following estimate.

Lemma 3.3 Let Y;,0 <t < T be a mean square integrable zero mean Gaus-
sian process with covariance R(t,s) then

Eexp{—/oTYt2 dt}ﬁexp{—#ﬁ%”} (8)

tr(R) :/OTR(t,t) dt, ||R||2:/0T/0TR(t, 5)? dt ds.

Proof see Kallianpur and Selukar [4], Lemma 3.1.

where

Lemma 3.4 There exist constants k = k(K) > 0 and C, such that

3161112 EﬂZ% (u) < Cle_“(lu\A|2bu|l/z) (9)

Proof. First we obtain the estimate

LT 1/2
EgZ%/Q(u) < {E,y exp <—§/ Y, (u)? dt)}
0

(see [6], Lemma 3.4.3, or [4], Lemma 3.4) and then using (8) write the in-

equality )
1 tr(R
EyZ;*(u) < exp {— 161+ 2R }

10



where Y;(u) = Xy 9w — Xi—9. The process X;, t > 0 can be written in
the following form

Xo = aoft) Xo(0) +b [ ot s — ) Xo(s) ds + /Ot vt — ) AW,

where z4(.) the fundamental solution of the corresponding to (1) determin-
istic equation

Zo (t)
dt

=bxy(t —0), zo(s) = Ijoy(s), s <0 (10)

(see Kiichler, Mensch [5], Proposition 2.2). Moreover for some v > 0 the
estimate
|.’L’0(t)| S KO €,7t7 t Z 0

is valid. The stochastic process X;, t > 0 admits as well the representation
Xy =U+ Ry, t > 0 where Uy, t > 0 is the stationary part, i.e., zero mean
stationary Gaussian process with the covariance

K(t—s) = /0°° zo(lt — 5| + v) wo(v) dv

and ER? < K; e (see [5], (2.19)). Therefore in the estimates below it
is sufficient to consider the stationary part only. Indeed we have for the
function R, (t,s) = EyY;(u)Y;(u) the estimate

IR, (t,s) —2K(t —s)+ K(t —s+u/T)+ K(t —s —u/T)| < K e 79,

Note that for b < 0 and ¥ < —(eb) ! the solution of the equation (10) is
positive for all t > 0 see, e.g., [2] or [5], Lemma 3.3. Therefore

tr(Ry) = 2T {K(O) _ K(%)] .
Introduce the function
Gla) = [ [ro(s)? = wo(s) wo(s + )] ds
The derivative of this function is

Gla) = — /Ooo:ro(s)a'co(s +a)ds =—b /OOO zo(s)xo(s +a—19)ds >0

11



because the function zy(s) is positive for all s > 0 and the set © is compact.
Therefore there exist constants «; > 0,a > 0 such that
tr(Ry) > k1 |u| — a.
Further, the function K (t) satisfies the same equation as x¢(s) (see [5], (2.23))
therefore for this function by Lemma 2.5 of [5] we have the estimates
(K1) < Koe ™, |K(t)] < Kie

where Ky, K7 and v = (K) some positive constants which can be chosen
not depending on delay v € K.
We have for |u| > 1 and for some ¢ > 0

T T
/ / R,(t,s)* dtds <
0 0

S/OT/OT [2K(t—s)—K(t—s—%)—K(t—s—i—%)rdtds-i-c:
— 9T /OT {2K(t)—K(t—%)—K(t+%)]2dt+c§
/:K(t-%f dt +c < C?

U,2

4T

8u?
< _

Therefore
Clu|

2VT
and we obtain the estimate
tr(Ry) K1 |ul
L4+ 2|R,|| — 14+ C T2 |ul

If |u| < VT then we have

[l <

K1 |ul S M »
1+4CT2 | —14+C "
If |u| > /T then we can write
k1 |u _ Ko T2 S
14+ C T2 |u| C Cl+CTY2ul) —
s Mg TV
- C C(1+0)
_ K1 1/2 K1 1/2 1/2
= T > ———~ (—be u
(1+0) - (1+0) (=be)™™ Jul

12



because for all u we have the obvious estimate |u| < T(—(eb)™").

Hence we obtained (9) with corresponding x > 0 and C;.

The properties of the likelihood ratio established above allow to use the
Theorems 1.10.1 and 1.10.2 of [3] to finish the proofs of the Theorems 2.2
and 2.3 above.

The proof of the Theorem 2.1 follows from the properties of the Bayes
estimators established above and the Theorem 1.9.1 in [3].
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