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Abstract— This paper presents a packet scheduling scheme
for ensuring delay and bandwidth as a Quality of Service
(QoS) requirement. For customers, rightful service is given while
optimizing revenue of the network service provider. A gradient
and fixed point type algorithms for updating the weights of a
packet scheduler are derived from a revenue-based optimization
problem. In the linear pricing scenario, algorithms are simple to
implement. We compared algorithms with optimal brute-force
method. Especially fixed point algorithm converges very fast
to the optimal solution, typically in one iteration and about
40 operations, when number of classes is three. The weight
updating procedures are independent on the assumption of the
connections’ statistical behavior, and therefore they are robust
against erroneous estimates of statistics. Also, a Call Admission
Control (CAC) is implemented in context of our scenario.

Index Terms— Pricing, revenue optimization, delay, band-
width, Quality of Service (QoS).

I. INTRODUCTION

The next generation networks will support real-time service,
best-effort service, and other different classes of services,
which have different QoS requirements in terms of band-
width, delay, jitter, and packet loss. Due to the diversity of
performance requirements and traffic characteristics, different
classes of traffic should be treated separately according to their
respective QoS requirements. Packet schedulers should isolate
different classes of traffic and maintain fairness among them.

Several methods have been proposed in the literature for
bandwidth allocation. A scheduling algorithm, called Relaxed-
order Fair Queueing is presented in [1]. They demonstrate
that the fairness may be achieved even when the order of
packet serviced in packet switched networks is unconstrained
or slightly constrained to the order of packet serviced in the
GPS fluid model, i.e., the conditions to achieve fairness are
relaxed.

A rate based protocol, called Adaptive Bandwidth Schedul-
ing (ABS) is proposed in [2][3]. It has adaptive priority
that is based on a combination of four priority types: space

priority, time priority, loss priority and rate regulation. With the
combination of different priorities in one scheme, this protocol
can satisfy various desirable QoS properties. Thus, the serving
order of packets from different flows can be adjusted according
to the momentary needs of the individual flows.

An adaptive bandwidth allocation algorithm for determining
the bandwidth and ensuring the defined QoS policy by using
queue status and priority assignment is presented in [4].
The algorithm, called adaptive weighted fair queue (AWFQ)
scheduling, distributes the bandwidth to efficiently utilize the
network’s resources.

Reference [5] presents a scheduling scheme, which is based
on weighted packet scheduling policies, that adaptively change
the scheduling weights of behavior aggregates. The proposed
scheme is shown to achieve low loss rate, low delay and delay
jitter for the premium service in the differentiated service
(DiffServ) [6] architecture.

The maximization of the revenue has also been studied.
Reference [7] proposes a configuration scheme for the worst
case of network congestion to guarantee maximum revenue
for the service provider in networks with WFQ schedulers.
The knowledge of the topology is shown to be sufficient for
feasible optimum network configuration.

This paper extends our previous studies [8], [9], where only
delay was considered as QoS parameter. We present adaptive
algorithms for optimizing the network operator revenue and for
ensuring QoS requirements. In this paper, we add bandwidth
as another QoS parameter to be observed.

The rest of the paper is organized as follows. In section
II, packet scheduler as well as delays and bandwidth for-
mulation are presented. In section, III, pricing models and
revenue maximization is discussed. In that section, gradient
and fixed point algorithms are introduced for fair service and
revenue optimization. Section IV consists of experimental part
while the next section discusses properties of the algorithms,
experiments, implementation, and computational complexity.
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Final section concludes the study.

II. THE PACKET SCHEDULER, DELAYS, AND BANDWIDTH

In this section, we formulate expressions for delays and
bandwidth (bit rate) of the data traffic. Consider the packet
scheduler, which has for example two queues. Gold class
connections pay most of money while getting best service,
and silver class connections pay least of money.

Parameter ∆ti denotes time which passes when data is
transferred through the queue i to the output in the switch,
when wi = 1. If the queue is almost empty, delay is small,
and when the buffer is full, it is large. Variable wi is the weight
allocated for class i. Constraint for weights wi is

m∑
i=1

wi = 1, wi > 0. (1)

Variables wi give weights, how long time queues i are served
per total time. Therefore, delay di in the queue i is actually

di =
∆ti
wi

. (2)

Without loss of generality, only non-empty queues are consid-
ered, and therefore

wi �= 0, i = 1, . . . , m, (3)

where m is number of service classes. When one queue
becomes empty, m → m−1. Parameter Ni denotes the number
of such connections in the ith service class.

Bandwidth or bit rate is formulated as follows. Let the
processing time of the data be T [seconds/bit] in the packet
scheduler. There are Ni connections or packets in the class i.
Let us denote the packet size bij [bits] or [kbytes] in the class
i = 1, . . . , m and the connection j = 1, . . . , Ni. It is easy to
see that bandwidth of the packet (i, j) is

• linearly proportional to the packet size bij ,
• linearly proportional to the weight wi,
• inversely proportional to the processing time T , and
• inversely proportional to the total sum of the packet

lengths bij , j = 1, . . . , Ni, because other packets occupy
the same band in a time-divided manner.

Therefore, the expression for the bandwidth is

Bij [bits/s] =
bijwi

NiE(bi)T
=

bijwi

NiE(bi)
=

bijwi∑Nl

l=1 bil

(4)

where the processing time T can be scaled T = 1, without
loss of generality. Here

E(bi) =
1
Ni

Ni∑
j=1

bij (5)

is mean packet length in the class i.

III. PRICING MODELS AND REVENUE MAXIMIZATION

We concentrate on the pricing and fair resource allocation
from the point of view of the customers. On the other
hand, from the point of view of the service provider, we
try to maximize revenue. First, we introduce the concept of
pricing functions. In the scope of our study, there are two
QoS parameters, namely delay and bandwidth. Therefore, two
separate pricing functions are defined.

A. Delay

For delay, pricing functions are denoted by fi(d), where d
is the delay, and fi is decreasing with respect to d. In addition,
fi(d) is (strictly) convex with respect to d for ensuring revenue
more than −∞. Revenue obtained for one user in the class i is
just fi

(
∆ti

wi

)
. Because there are Ni connections in the class i

with all having the same delay, revenue corresponding to the
delays in the class i is

Rdelay
i (wi) = Nifi

(
∆ti
wi

)
. (6)

In our study, we use linear pricing function for delays. Then

fi(x) = −rix + ki, ki > 0, (7)

f ′
i(x) = −ri, (8)

f ′′
i (x) = 0. (9)

Here ki > 0 guarantees positive revenue with minimum
delay. For the classes that have better service, factors ri are
larger compared with those classes, that have service of lower
priority. In addition, for classes having better service, ki are
larger. Notice that the pricing function may be even negative,
when the delay is too large. However, Call Admission Control
(CAC) mechanism takes care that this situation is prevented.

B. Bandwidth

For bandwidth, pricing functions are denoted by gi(B),
where B is the bandwidth, and gi is positive, increasing, and
concave with respect to B. Concavity is natural feature; for
example, when images are transferred, the price may be twice
compared to the price when voice is transferred, while the
bandwidth ratio - image bandwidth/voice bandwidth - is much
more than two.

Revenue corresponding to the bandwidths in the class i is

Rbandwidth
i (wi) =

Ni∑
j=1

gi

(
bijwi∑Ni

l=1 bil

)
. (10)

In this study, we consider two kinds of pricing functions for
bandwidth, namely linear and polynomial pricing functions.
In the linear function,

gi(x) = eix, (11)

where ei is positive and larger for the classes having higher
priority. Allthogh this kind of the function is not strictly
concave with respect to x, parameter e can be selected in such
a manner that it is in "discrete" way concave with respect to
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the product eix , i = 1 . . . , m. By "discrete concavity" we
mean that

ei − ei+1 < ei+1 − ei+2, ei > ei+1. (12)

Polynomial pricing function has the form

gi(x) = six
p, 0 < p < 1, (13)

g′i(x) = psix
p−1, (14)

g′′i (x) = p(p − 1)six
p−2. (15)

Condition 0 < p < 1 implies concavity of the pricing function.
Factor si is larger in the classes that have better service.

It is worth to mention that our approach is general in the
sense that the pricing functions can be changed to other ones.

C. Revenue maximization algorithms

We consider two kinds of approaches for maxizing revenue.
Both the methods use Lagrangian constraint approach. The
first one is a gradient algorithm, while the second one is a
fixed point type algorithm. In the Lagrangian approach, we
add two subrevenues with penalty factor, and total revenue
has the form

R =
m∑

i=1

[Rdelay
i (wi) + Rbandwidth

i (wi)] + λ(1 −
m∑

i=1

wi)

=
m∑

i=1

Nifi

(
∆ti
wi

)

+
m∑

i=1

Ni∑
j=1

gi

(
bijwi∑Ni

l=1 bil

)

+ λ(1 −
m∑

i=1

wi). (16)

Taking derivative with respect to R, we get

∂R

∂wi
= −Nif

′
i

(
∆ti
wi

)
∆ti
w2

i

+
Ni∑
j=1

g′i

(
bijwi∑Ni

l=1 bil

)
bij∑Ni

l=1 bil

− λ = 0. (17)

Derivative with respect to the Lagrangian penalty term

∂R

∂λ
= 0 (18)

implies
m∑

i=1

wi = 1. (19)

Then

λ = λ
m∑

i=1

wi =
m∑

i=1

λwi

= −
m∑

i=1

Nif
′
i

(
∆ti
wi

)
∆ti
wi

+
m∑

i=1

Ni∑
j=1

g′i

(
bijwi∑Ni

l=1 bil

)
bijwi∑Ni

l=1 bil

. (20)

Therefore derivative has the form

∂R

∂wi
= −Nif

′
i

(
∆ti
wi

)
∆ti
w2

i

+
Ni∑
j=1

g′i

(
bijwi∑Ni

l=1 bil

)
bij∑Ni

l=1 bil

+
m∑

k=1

Nkf ′
k

(
∆tk
wk

)
∆tk
wk

−
m∑

k=1

Nk∑
j=1

g′k

(
bkjwk∑Nk

l=1 bkl

)
bkjwk∑Nk

l=1 bkl

. (21)

Because gradient shows the direction of largest increase of
the function R with respect to the variables wi, the weights
are updated according to the gradient algorithm. During one
iteration step, weights are updated according to the rule

1) Update weights

vi(t) = wi(t)+µ
∂R(N1(t), . . . , Nm(t), wi)

∂wi

∣∣∣∣
wi=wi(t)

.

(22)
2) Perform scaling

wi(t + 1) =
vi(t)∑m

j=1 vi(t)
. (23)

Here t denotes time, and Ni(t) shows that the number of
connections vary as a function of time. Parameter µ is a
forgetting factor, which is either constant or depend inversely
on the norm of the gradient. It ensures time-varying nature of
the weights due to the nonstationary data traffic.

Let us next examine the concavity of R. If the second order
derivative is negative, it is concave, having unique maximum.
In that condition, algorithm converges to the global optimum.
Second order derivative is examined in the interval 0 < wi ≤
1:

∂2R

∂w2
i

=
7∑

k=1

aik, (24)

where

ai1 = Nif
′′
i

(
∆ti
wi

)
∆t2i
w4

i

, (25)

ai2 = 2Nif
′
i

(
∆ti
wi

)
∆ti
w3

i

< 0, (26)

ai3 =
Ni∑
j=1

g′′i

(
bijwi∑Ni

l=1 bil

)
b2
ij(∑Ni

l=1 bil

)2 < 0, (27)

ai4 = −ai1wi, (28)

ai5 = −ai2wi, (29)

ai6 = −ai3wi, (30)

ai7 = −
Ni∑
j=1

g′i

(
bijwi∑Ni

l=1 bil

)
bij∑Ni

l=1 bil

< 0 (31)
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Notice that
ai2 + ai5 = ai2(1 − wi) < 0 (32)

and
ai3 + ai6 = ai3(1 − wi) < 0. (33)

From Eqs. (24)-(33) it is seen that it is possible to achieve
necessary conditions for concavity for many kinds of func-
tions, because almost all terms aik or their sums are negative.
However, usually ai1 ≥ 0, and therefore is is difficult so
obtain simple rule guaranteeing concavity. The factor ai4

compensates positivity of ai1, but |ai4| < |ai1|. However,
general selections for functions are

f ′
i(x) < 0, (34)

f ′′
i (x) ≥ 0, (35)

g′i(x) > 0, (36)

and
g′′i (x) < 0. (37)

If auxiliary condition

|f ′
i(x)|
x

≥ f ′′
i (x), (ai1 + ai2 ≤ 0), (38)

is used, then R is strictly concave. For example, conveniently
chosen logarithmic type function obeys this condition for
positive variable. If

fi(x) = −ailn(bix + ci), ai, bi, ci > 0, (39)

then Eq. (38) holds. In addition, f ′
i(x) < 0 and f ′′

i (x) > 0.
Consider next two special cases:

1) fi and gi are linear.
2) fi is linear, and gi is polynomial.

1) Linear functions: When both functions are linear, rev-
enue is

R =
m∑

i=1

−Niri∆ti
wi

+ Niki + eiwi + λ(1 −
m∑

i=1

wi), (40)

and derivative reduces to

∂R

∂wi
=

Niri∆ti
w2

i

+ ei

−
m∑

k=1

(
Nkrk∆tk

wk
+ ekwk

)
. (41)

Uniqueness of the optimal solution in the interval 0 < wi ≤ 1
is seen from the second order derivative

∂2R

∂w2
i

= −2Niri∆ti
w3

i

+
Niri∆ti

w2
i

< 0, (42)

when 0 < wi ≤ 1.

As shown earlier, gradient algorithm is a straightforward
approach for optimizing the weights. The other one is faster.
It is fixed point type algorithm, which equates

wi = F (wi). (43)

From derivative (41) we see that

wi =

√√√√ Niri∆ti∑m
k=1

(
Nkrk∆tk

wk
+ ekwk

)
− ei

. (44)

It is seen that

• in the numenator, larger the number of connections Ni

is, larger is the weight,
• in the numenator, larger the "penalty" factor ri is, larger

is the weight,
• in the numenator, larger the delay ∆ti is, larger is the

weight,
• in the denominator, larger the gain factor ei is, larger is

the weight.

All of these are very plausible results. Iteration is as follows:

1) Update the weight

vi(t) = F [N1(t), . . . , Nm(t), w1(t), . . . , wm(t)]. (45)

2) Perform scaling

wi(t + 1) =
vi(t)∑m

k=1 vk(t)
. (46)

2) Linear and polynomial functions: Consider next the case
where fi is linear and gi is polynomial. Now gradient is

∂R

∂wi
=

Niri∆ti
w2

i

+
si

2
√

wi

Ni∑
j=1

√
bij∑Ni

l=1 bil

−
m∑

k=1

Nkrk∆tk
wk

−
m∑

k=1

sk
√

wk

2

Nk∑
j=1

√
bkj∑Nk

l=1 bkl

, (47)

and the second order derivative

∂2R

∂w2
i

= −2Niri∆ti
w3

i

− si

4w
3
2
i

Ni∑
j=1

√
bij∑Ni

l=1 bil

+
Niri∆ti

w2
i

− si

4
√

wi

Ni∑
j=1

√
bij∑Ni

l=1 bil

< 0 (48)
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guarantees uniqueness of the solution. In this case, fixed point
iteration uses the formula

wi =

√√√√√√
Niri∆ti∑m

k=1

(
Nkrk∆tk

wk
+ sk

√
wk

2

∑Nk

j=1

√
bkj∑Nk

l=1
bkl

)
− σi

,

(49)
where

σi =
si

2
√

wi

Ni∑
j=1

√
bij∑Ni

l=1 bil

. (50)

General form of the fixed point type iterative algorithm is as
follows. Let

∂R

∂wi
= 0. (51)

We obtain

ci[w1(t), . . . , wm(t)]
wi(t + 1)2

= hi[w1(t), . . . , wm(t)], (52)

or

wi(t + 1) =

√
ci[w1(t), . . . , wm(t)]
hi[w1(t), . . . , wm(t)]

, (53)

where

ci = Nif
′
i

(
∆ti
wi

)
∆ti (54)

hi =
Ni∑
j=1

g′i

(
bijwi∑Ni

l=1 bil

)
bij∑Ni

l=1 bil

+
m∑

k=1

Nkf ′
k

(
∆tk
wk

)
∆tk
wk

−
m∑

k=1

Nk∑
j=1

g′k

(
bkjwk∑Nk

l=1 bkl

)
bkjwk∑Nk

l=1 bkl

. (55)

IV. EXPERIMENTS

A. Experiment 1

In the first experiment, we examine the performance of
the fixed point algorithm in the case, where both the pricing
functions are linear, and the data traffic is static. By this
experiment, we show how fixed point algorithm converges fast
from arbitrary initial guess of the weights wi(0), i = 1, 2, 3 to
the unique solution. In the first case, we select the parameters
as follows:

• number of connections are N1 = 10, N2 = 20, N3 = 50;
• penalty factors for delays are r1 = 10, r2 = 5, r3 = 2;
• delays are ∆t1 = 5, ∆t2 = 15, ∆t3 = 30;
• shifting factors are k1 = 500, k2 = 300, k3 = 100;
• gain factors for bandwidths are e1 = 20, e2 = 17, e3 =

10.

100 simulations were performed using random initial guesses
for weights. In all the cases, weights converge to the same
solution in one iteration step. Of course, revenue curves also
converge in the optimal way. Weights have the final values

(w1, w2, w3) = (0.193, 0.334, 0.472). Revenue has the final
value R = 2590.

We made also such an experiment, where brute-force
method tested revenue in the grid (w1, w2, 1 − w1 − w2),
where w1, w2 = 0.001, 0.002, 0.003, . . . , 0.998,

∑3
i=1 wi = 1,

w3 = 1 − w1 − w2. Brute-force method produced revenue
R = 2590, which is the same as the revenue obtained by
fixed point algorithm.

Notice the for obtaining the same revenue for fixed-point
and brute-force algorithms, only one iteration is needed in the
fixed-point rule. Thus, total number of operations in three class
case is as follows: 24 multiplications and 9 additions.

B. Experiment 2

In the second case, we changed the parameters to be

• number of connections are N1 = 15, N2 = 25, N3 = 70;
• penalty factors for delays are r1 = 30, r2 = 15; r3 = 5.
• delays are ∆t1 = 10, ∆t2 = 25; ∆t3 = 50.
• shifting factors are k1 = 10000, k2 = 5000, k3 = 3000;
• gain factors for bandwidths are e1 = 30, e2 = 25, e3 =

22.

Again, 100 simulations were performed. Again in all the
cases, weights converge to the same solution in one iter-
ation step. Weights have the final values (w1, w2, w3) =
(0.227, 0.327, 0.447), and revenue is R = 397290. Brute-force
method produced revenue R = 397290, which is the same
as the revenue produced by the fixed point method in one
iteration.

C. Experiment 3

In this experiment, we vary Ni =
exp(1), exp(2), . . . , exp(20), ∆ti =
exp(1), exp(2), . . . , exp(20). We compare fixed point
method with one iteration step with brute-force method. The
result is that the mean difference between two revenues is

|Rfixedpoint − Rbruteforce|/Rbruteforce = 0.07%. (56)

Conclusions made from this experiments are that fixed point
algorithm produces optimal weights in fast a way.

V. DISCUSSION

Here we discuss the properties of the algorithms as well
as conclusions made by the experiments. We also converse
implementation and computational complexity.

A. Algorithms and experiments

We make the following conclusions shown by algorithms
and experiments:

• In the pricing scenario, we have derived analytic form to
the revenue and gradient as well as fixed point algorithms
for updating the weights wi, which allocate data traffic
to the connections of different service classes.

• The updating procedure is deterministic and nonparamet-
ric i.e. it does not make any assumptions of the statistical
behavior of the traffic and connections. Thus it is robust
against the errors that may occur from the wrong models.
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• Algorithms are unique and optimal, which have been
proved by Lagrangian optimization method.

• Fixed point solution makes algorithm quite simple, espe-
cially in the case, where both pricing functions are linear.

• Because all penalty and gain factors are positive, all
classes obtain service in fair way.

B. Computational complexity

Consider first the general expression of the gradient (21).
We see that the dominating role is to compute the triple sum,
when Ni � m, i = 1, . . . , m.We know that the number
of classes is usually quite small - say m = 3 or m = 4.
In addition, that triple sum is same for all wi. Therefore,
computational complexity per iteration is O(

∑m
i=1 N2

i ).
Consider next the epression of the gradient (41) when both

pricing functions are linear. Now the dominating role is to
calculate the single sum. Again, it is the same for all weights.
Then the number of computations per iteration reduces in
both the gradient and fixed point algorithms to O(m), if m is
large. However, if m is small, then the role of the other terms
increases. Total number of multiplications and additions is 8m
and 3m, respectively.

When fi is linear and gi is polynomial, there is double
sum in the gradient (47). Thus computational complexity per
iteration is O(m

∑m
i=1 Ni).

VI. CONCLUSIONS

In this paper, we presented adaptive algorithms for optimiz-
ing the network operator revenue and for ensuring delay and
bandwidth as QoS requirements. We derived the algorithms
from a revenue-based optimization problem. The proposed
fixed point weight updating algorithm was found to be compu-
tationally inexpensive in our scope of study. In the experiments
we simulated the operation of the adaptive algorithm and
compared it with a brute-force method. The obtained results
show that by using the adaptive weights the revenue is the
same than with the brute-force method. Our algorithms are
deterministic and non-parametric, and thus we believe that in
practical environments it is a competitive candidate due to
its robustness. One task in the future is to prove analytically
convergence of the fixed point algorithm, as well as to derive
the speed of convergence.
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