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Delay-Induced Chaos in Catalytic Surface Reactions: NO Reduction on Pt(100)
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Deterministic chaos has been observed in the NO + CO and NO + H2 reactions on Pt(100). A
mathematical model is proposed that explains the origin as being due to delays in the response of a
population of reacting adsorbate islands globally coupled via the gas phase. The dynamical equations
of this model yield a sequence of period-doubling bifurcations resulting in chaos.
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Due to the conceptual simplicity of single crystal ex-
periments, catalytic oscillatory chemical reactions on such
surfaces have been intensively studied, and mathematical
models which successfully reproduce most of the essen-
tial experimental facts have been constructed [1]. It may
therefore appear as a surprise that, so far, no model ex-
plaining the occurrence of deterministic chaos found in
several reaction systems, such as Pt(110)/CO + 02 [2],
Pt(100)/NO + H2 [3], and Pt(100)/NO + CO [4], has
been developed [5]. This failure simply reflects the fact
that the origin of chaos in these surface reactions has not
been well understood.

Most of the difficulties can be attributed to the fact that
the role of the spatial degrees of freedom is unclear. For
this reason we chose to investigate a system which has
been shown to react spatially uniformly on a macroscopic
scale ()1 p, m). This is the case for the rate oscillations we
observe in the NO + CO and NO + H2 reactions on the
hex-reconstructed Pt(100) surface, e.g. , on Pt(100)-hex [4].

In this paper we present a model that links the existence
of chaotic behavior in the NO + CO and the NO + H2
reactions on Pt(100) to delays in the response of a
population of microscopic adsorbate islands to partial
pressure variations in the gas phase. These variations
control the nucleation rate of 1 X 1 islands in the hex ~
1 X 1 phase transition, thus providing a very efficient
synchronization mechanism for the oscillating surface
which forms the basis of the model discussed below.
The NO reducing reactions on Pt(100) have been studied
mechanistically in quite some detail [1,6], but the idea we
followed here was to incorporate only those mechanistic
steps that are essential for the synchronization process and
that are based on experimental facts.

The clean Pt(100) surface in its stable state exhibits
a quasihexagonal reconstruction ("hex"), which can be
reversibly lifted by an adsorbate like CO or NO, thus
constituting an adsorbate-induced surface phase transi-
tion 1 X 1 ~ hex [7]. Isothermal rate oscillations and
deterministic chaos have been found in both reaction
systems under very similar conditions at low pressure
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FIG. 1. Experimental bifurcation diagram for the rate oscil-
lations in the NO + CO reaction on Pt(100)-hex [4]. Filled
squares mark a stationary CO2 production rate rco„while the
open squares mark the upper and lower turning points of the
rate oscillations. Pl„, P2, P4, and Pq represent the periodici-
ties that were identified in the experiment; C marks the region
where chaotic oscillations were found.

(10 —10 mbar) [3,4]. In a T-cycle experiment, os-
cillations occur on the cooling branch in the region of
the phase transition as the increase in coverage with de-
creasing T causes a lifting of the hex reconstruction. The
rate oscillations proceed on a largely hex reconstructed
surface. They are coupled to the 1 X 1 ~ hex phase
transition which modulates the catalytic activity, because
only the 1 X 1 phase dissociates NO, whereas the hex
phase is inactive [4,6]. As demonstrated by the bifurca-
tion diagram in Fig. 1, in the NO + CO reaction the rate
oscillations develop via small amplitude chaotic oscilla-
tions which then transform with decreasing T into regular
period-1 oscillations, going through a Feigenbaum cas-
cade in the reverse direction [4].

Although spatially resolved measurements with photo-
emission electron microscopy (PEEM) revealed that the
surface in the NO + CO reaction is oscillating spatially
uniformly on a macroscopic scale ()I p, m) [4], this

3564 0031-9007/95/75(19)/3564(4)$06. 00 1995 The American Physical Society



VOLUME 75, NUMBER 19 PHYSICAL REVIEW LETTERS 6 NovEMBER 1995

c = —yc + np(1 —c),
I = —1(S —So) —kJ e ~

pg +

(1)

(2)

(3)

Equation (1) represents the adsorption and desorption of
NO/CO on the hex phase with y denoting the desorp-
tion constant. Equation (2) is a reactor equation of the
continuously stirred tank reactor (CSTR) type, in which

homogeneity no longer exists on a microscopic scale.
As shown by studies with LEED and scanning tunneling
microscopy (STM) the adsorbate in the hex ~ 1 X 1

phase transition is forced into 1 X 1 islands with a
local coverage of 0.5, while the surrounding hex area is
largely adsorbate free [7—9]. Molecular beam studies
of the CO-induced lifting of the hex reconstruction by
King et al. demonstrated that the growth rate for the
1 X 1 —CO islands, r'„', obeys a power law of the form

rg„,
' —(Oco)', in which Hco denotes the CO coverage

on the hex phase [10,11]. A value of v = 4.5 was deter-
mined for T = 400 K. One consequence of this power
law is that small variations of pco can very strongly mod-
ulate the 1 X 1 growth rate. Since mass balance in the
reaction generates such small partial pressure variations
(typically 1% of pep and pNo) a global coupling mode
is present in a gradient-free flow reactor, which can very
efhciently synchronize the oscillating surface via this
critical dependence.

Coadsorbed NO and CO on the 1 X 1 phase have
been observed to react in an "explosive" way upon
heating, yielding the products CO2 and N2 [6,12]. The
"explosive" character was traced back to an autocatalytic
reaction, which is ignited when the combined NO-CO
coverage falls below the inhibition coverage of 0.5 for
NO dissociation. Since the growth of the 1 X 1 islands
proceeds with the same local coverage of 0.5, the stability
of the mixed 1 X 1—CO,NO island will be on a critical
borderline, and we can construct the following life cycle
for these islands. Starting with the bare hex phase, 1 X
1—NO, CO islands nucleate, and then grow as unreactive
islands with a constant rate until they reach a certain
critical size, where they become reactive. The adsorbate
is reacted away, and, since the bare 1 X 1 surface is no
longer stabilized by the adsorbate, the structure relaxes
back into the hex reconstructed surface.

If we futhermore assume that the individual islands,
which initially nucleate randomly and grow isolated from
each other, have to synchronize in order to produce
macroscopic variations of the reaction rate, all essential
parts of our model for the occurrence of chaos are
present. Neglecting differences between NO and CO,
which behave very similarly with respect to the phase
transition, we arrive at a set of three differential equations
describing the variations in the CO-NO pressure, p, the
NO-CO coverage on the hex phase, c, and the reactive
1 X 1area, q:

the reactor is characterized by the inverse of the reactor
residence time, I, and the reaction rate is given by the
product kpq. Equation (3) describes the variation in the
reactive 1 X 1 area. The first term represents the acti-
vated relaxation of the reactive 1 X 1 area into the hex
phase. The second term ~ denotes the rate of appearance
of new reactive 1 X 1 area:

w(t) = Ac(t —r)'p(t —7)q(t —r). (4)

Since the adsorbate islands become reactive only when
they reach a critical size corresponding to a critical
age r, the growth rate for the reactive 1 X 1 area is
proportional to the nucleation rate for 1 X 1 islands at
the delayed time moment t —7.. In the expression for w,
the experimentally determined power law dependence c'
for the 1 X 1 growth rate has been incorporated [10,11].
Since it is known that the NO + CO-reaction leads to a
significant roughening of the Pt(100) surface, we assume
that heterogeneous nucleation is dominant and set the
mean nucleation rate proportional to the reaction rate
kpq [13]; the remaining coefficient A combines several
proportionality factors.

Under the conditions of our experiment the desorption
rate y is much larger than the adsorption rate, and the
coverage c remains small (c « 1). The coverage then
adiabatically adjusts to the partial pressure variations and
Eq. (1) yields c = (n/y)p. Introducing dimensionless
variables x = p/po and y = kq/I and measuring the
time t in units of the delay r, we reduce (1)—(4) to a
system of two equations:

6 'x+x=1 —xy,

g 'y + y = a[x(» —I))"y(t —1),

(5)

(6)

where the coefficients are 6 = I r, g = p, r, r = v + 1,
and a = An'po+ /p, y".

Some insight into the dynamical properties of this
model can be obtained by considering the singular limit
6 ~ oo, g ~ ~ where the equations reduce to the itera-
tive map

ay(t)
[I + y(t)]"

(7)

This map exhibits a transition to chaos through a sequence
of period-doubling bifurcations [14]. The previous analy-
sis of other dynamical systems with time delays, describ-
ing complex physiological oscillations [15] and the effects
of optical bistability [14,17], has shown that the behavior
of such a system could be very close to that found in the
singular limit for a respective discrete map. A similar be-
havior might thus be expected in our case.

We have performed numerical simulations of the system
(5) and (6). Using data from the literature, the exponent
r was estimated to be =10 at T = 480 K [10]. The
delay time r, which could not be directly measured,
has been chosen in such a way that the experimental
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FIG. 2. Oscillations in the dimensionless reaction rate xy
obtained by numerical integration of Eqs. (5) and (6) with
the parameters G = 16, r = 10, and (a) a = 240, g = 3,
(b) a = 160, g = 7, (c) a = 52, g = 8, (d) a = 100, g = 10.
Time is measured in units of the delay time ~.
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oscillation period is reproduced. Figure 2 shows the time
dependence of the quantity xy, which is proportional to
the reaction time kpq for different parameter values a
and g. We see that the system demonstrates simple
limit-cycle oscillations [Fig. 2(a)], stable oscillations with
higher periods [Figs. 2(b) and 2(c)], and complex irregular
oscillations [Fig. 2(d)]. The computation of the maximal
Lyapunov exponent for such complex oscillations shows
that the exponent is positive (A = 0.2), and therefore
they can be described as chaotic.

By repeating the simulations for various choices of
the parameters, we have constructed an approximate
bifurcation diagram for the dynamical system (5) and (6)
in the (a, g) plane, which is displayed in Fig. 3. Inside
the grey region in Fig. 3, complex oscillations with high
periods and chaotic oscillations are observed (the fine

structure of this region has not been fully resolved in our
simulations).

In order to establish a correspondence between Fig. 3
and the experimental bifurcation sequence in Fig. 1,
we notice that, when the temperature grows, both the
desorption rate y and the rate of the 1 X 1 ~ hex
phase transition p, increase. Since the parameter a in

(5) is proportional to p, 'y ' with v = 9, it has to
decrease rapidly with temperature. On the other hand,
the parameter g is proportional to p, and therefore slowly
grows with temperature. Hence, as the temperature is
gradually increased, the bifurcation diagram in the plane
(a, g) is traversed in the direction schematically indicated
by the dashed line in Fig. 3.

We see that, in agreement with the experimental data,
simple period-1 oscillations occupy a relatively wide in-
terval. Undergoing period doublings, they are trans-
formed into chaotic oscillations. The inverse sequence of
bifurcations leading to a stable steady state occurs rapidly
when the system leaves the chaotic region. In the experi-
ment, the transition to a steady state above the chaotic
window could not be resolved, which we attribute to the
smallness of the parameter region and the low amplitude
of the chaotic oscillations. Although the model presented
here is a skeleton model and neglects all details of the
reaction, it reproduces the dynamical behavior found in
the NO + CO and the NO + H2 reaction on Pt(100)-
hex [3,4]. The fact that both systems exhibit similar
dynamical behavior already demonstrates that details of
the chemistry cannot be important for creating chaotic
behavior. Also note that experiments with two different
Pt(100) single crystals yielded exactly the same sequence
of period doublings in the NO + CO reaction, thus ruling
out a possible influence of macroscopic defects or other
irregularities [18].

In conclusion, we have shown that deterministic chaos
in catalytic surface reactions can have its origin in
a failure of the synchronization process as the delay
between global coupling and the response of the surface
reactions begins to dominate the dynamics. Since this can
occur in many other synchronized reaction systems, such
a mechanism leading to chaos will be also relevant there.
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FIG. 3. Approximate bifurcation diagram for the dynamical
system (5) and (6) for G = 16 and r = 10; (I) stable steady
state, (2) period-1 oscillations, (3) period-2 oscillations, (4)
period-4 oscillations. Complex oscillations and chaotic regimes
are found inside the grey region. The dashed line with the
arrow schematically shows how this diagram is traversed with
increasing temperature.
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