
Research Article

Delay-Induced Oscillations in a
Competitor-Competitor-Mutualist Lotka-Volterra Model

Changjin Xu

Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance and Economics, Guiyang 550004, China

Correspondence should be addressed to Changjin Xu; xcj403@126.com

Received 14 January 2017; Accepted 30 March 2017; Published 26 April 2017

Academic Editor: Alicia Cordero

Copyright © 2017 Changjin Xu.	is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

	is paper deals with a competitor-competitor-mutualist Lotka-Volterra model. A series of su
cient criteria guaranteeing the
stability and the occurrence of Hopf bifurcation for the model are obtained. Several concrete formulae determine the properties of
bifurcating periodic solutions by applying the normal form theory and the center manifold principle. Computer simulations are
given to support the theoretical predictions. At last, biological meaning and a conclusion are presented.

1. Introduction

	e study of dynamical behaviors for tremendous predator-
prey models has been a hot issue in population dynamics
in the past few decades. Many results have been reported
[1–11]. In the real world, any biological or environmental
parameters are naturally subject to �uctuation in time. 	e
e�ects of a periodically varying environment are important
for evolutionary theory as the selective forces on systems
in a �uctuating environment di�er from those in a stable
environment. Meanwhile, time delay due to gestation is
common example because, generally, the consumption of
prey by the predator throughout its past history governs
the present birth rate of the predator. Based on all the
above point, Lv et al. [12] had investigated the periodic
solution of the following competitor-competitor-mutualist
Lotka-Volterra model by using Krasnoselskii’s xed point
theorem�̇1 (�) = �1 (�) [�1 (�) − �11 (�) �1 (� − 	11 (�))− �12 (�) �2 (� − 	12 (�)) + �13 (�) �3 (� − 	13 (�))] ,�̇2 (�) = �2 (�) [�2 (�) − �21 (�) �1 (� − 	21 (�))− �22 (�) �2 (� − 	22 (�)) + �23 (�) �3 (� − 	23 (�))] ,�̇3 (�) = �3 (�) [�3 (�) + �31 (�) �1 (� − 	31 (�))+ �32 (�) �2 (� − 	32 (�)) − �33 (�) �3 (� − 	33 (�))] ,

(1)

where �1(�) and �2(�) denote the densities of competing
species at time � and �3(�) denotes the density of cooperating
species at time �. ��, ��� ∈ (�, [0,∞)) and 	�� ∈ (�, �) are�-periodic functions (� > 0). 	e parameters 	��(�) ≥ 0 (� =1, 2, 3; � = 1, 2, 3) are the feedback time delay of di�erent
species. In detail, one can see [12].

It is well known that the research on theHopf bifurcation,
especially on the stability of bifurcating periodic solutions
and direction of Hopf bifurcation, is one of the most impor-
tant themes on the predator-prey dynamics. 	ere are a
great deal of papers which deal with this topic [11, 13–22].
	e purpose of this paper is to discuss the stability and the
properties of Hopf bifurcation of model (1). To simplify the
analysis for model (1), we make the following assumptions:
all biological and environmental parameters are constants in
time and only the feedback time delay of competing species�� (� = 1, 2) to the growth of the species itself and the
feedback time delay of cooperating species �3 to the growth
of the species itself exist and are the same.	en system (1) can
be described as the form�̇1 (�)= �1 (�) [�1 − �11�1 (� − 	) − �12�2 (�) + �13�3 (�)] ,�̇2 (�)= �2 (�) [�2 − �21�1 (�) − �22�2 (� − 	) + �23�3 (�)] ,�̇3 (�)= �3 (�) [�3 + �31�1 (�) + �32�2 (�) − �33�3 (� − 	)] .

(2)
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In this paper, we consider the e�ect of time delay 	 on
the dynamics of system (2). We not only give the conditions
on the stability of the positive equilibrium of (2) and the
existence of periodic solutions but also derive the formulae
for determining the properties of a Hopf bifurcation.

	e remainder of the paper is organized as follows.
In Section 2, we investigate the stability of the positive
equilibrium and the occurrence of local Hopf bifurcations.
In Section 3, the direction and stability of the local Hopf
bifurcation are established. In Section 4, numerical simula-
tions are carried out to illustrate the validity of the main
results. Biological explanations and some main conclusions
are drawn in Section 5.

2. Stability of the Positive Equilibrium and
Local Hopf Bifurcations

Consider the realistic implication and actual application of
biological system; in this section, we shall only study the
stability of the positive equilibrium and the existence of local
Hopf bifurcations. It is easy to see that system (2) has a unique
positive equilibrium �0(�∗1 , �∗2 , �∗3 ) if the condition

sign {Δ} = sign {Δ 1} = sign {Δ 2} = sign {Δ 3} (H1)
holds, where

Δ = det(�11 �12 −�13�21 �22 −�23�31 �31 −�33),
Δ 1 = det( �1 �12 −�13�2 �22 −�23−�3 �31 −�33),
Δ 2 = det(�11 �1 −�13�21 �2 −�23�31 −�3 −�33),
Δ 3 = det(�11 �12 �1�21 �22 �2�31 �31 −�3).

(3)

Let �1(�) = �1(�)−�∗1 , �2(�) = �2(�)−�∗2 , and �3(�) = �3(�)−�∗3 and still denote ��(�) (� = 1, 2, 3) by ��(�) (� = 1, 2, 3), and
then (2) takes the form

�̇1 (�) = �1�1 (� − 	) + �2�2 (�) + �3�3 (�)+ �4�1 (�) �1 (� − 	) + �5�1 (�) �2 (�)+ �6�1 (�) �3 (�) ,�̇2 (�) = �1�1 (�) + �2�2 (� − 	) + �3�3 + �4�1 (�) �2 (�)+ �5�2 (�) �2 (� − 	) + �6�2 (�) �3 (�) ,

�̇3 (�) = �1�1 (�) + �2�2 (�) + �3�3 (� − 	)+ �4�1 (�) �3 (�) + �5�2 (�) �3 (�)+ �6�3 (�) �3 (� − 	) ,
(4)

where �1 = −�11�∗1 ,�2 = −�12�∗1 ,�3 = �13�∗1 ,�4 = −�11,�5 = −�12,�6 = �13,�1 = −�21�∗2 ,�2 = −�22�∗2 ,�3 = �23�∗2 ,�4 = −�21,�5 = −�22,�6 = �23,�1 = �31�∗3 ,�2 = �32�∗3 ,�3 = −�33�∗3 ,�4 = �31,�5 = �32,�6 = −�33.

(5)

	e linearization of (6) near (0, 0, 0) is given by�̇1 (�) = �1�1 (� − 	) + �2�2 (�) + �3�3 (�) ,�̇2 (�) = �1�1 (�) + �2�2 (� − 	) + �3�3,�̇3 (�) = �1�1 (�) + �2�2 (�) + �3�3 (� − 	) , (6)

whose characteristic equation takes the form

det(� − �1�−�� −�2 −�3−�1 � − �2�−�� −�3−�1 −�2 � − �3�−��) = 0. (7)

	at is,�3 + !1� + !2 + (!3�2 + !4) �−�� + !5��−2��+ !6�−3�� = 0, (8)
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where !1 = �2�1 + �3�2 − �3�1,!2 = −�1�3�1 − �3�2�1,!3 = − (�1 + �2 + �3) ,!4 = �3�2�1 − �2�1�3 − �1�2�3,!5 = (�2 + �2) �3 + �1�2,!6 = −�1�2�3.
(9)

Multiplying ��� on both sides of (8), it is easy to obtain(�3 + !1� + !2) ��� + !3�2 + !4 + !5��−��+ !6�−2�� = 0. (10)

We need the following lemma to discuss the stability of the
positive equilibrium.

Lemma 1 (see [23]). For the transcendental equation$ (�, �−��1 , . . . , �−���)
= �� + %(0)1 ��−1 + ⋅ ⋅ ⋅ + %(0)�−1� + %(0)�+ [%(1)1 ��−1 + ⋅ ⋅ ⋅ + %(1)�−1� + %(1)� ] �−��1 + ⋅ ⋅ ⋅+ [%(�)1 ��−1 + ⋅ ⋅ ⋅ + %(�)�−1� + %(�)� ] �−��� = 0,

(11)

as (	1, 	2, 	3, . . . , 	�) vary, the sum of orders of the zeros of$(�, �−��1 , . . . , �−���) in the open right half complex plane can
change, only if a zero appears on or crosses the imaginary axis.

For 	 = 0, (10) becomes�3 + !3�2 + (!1 + !5) � + !2 + !4 + !6 = 0. (12)

Obviously, !3 > 0. By the Routh-Hurwitz criteria, it follows
that all eigenvalues of (12) have negative real parts if and only
if the condition!2 + !4 + !6 > 0,!3 (!1 + !5) > !2 + !4 + !6 (H2)
is fullled.

For � > 0, �� is a root of (10) if and only if(−�3� + �!1� + !2) ��	� + !3�2� + !4 + �!5��−�	�+ !6�−2�	� = 0. (13)

Separating the real and imaginary parts, we get!2 cos�	 − (!1� − �3) sin�	 + !4+ !5� sin�	 = −!6 cos 2�	,!2 sin�	 + (!1� − �3) cos�	 + !3�2+ !5� cos�	 = !6 sin 2�	.
(14)

It follows from (14) that

[!2 cos�	 − (!1� − �3) sin�	 + !4+ !5� sin�	]2 + [!2 sin�	 + (!1� − �3) cos�	+ !3�2 + !5� cos�	]2 = !26.
(15)

According to sin�	 = ±√1 − cos2�	, then (15) takes the
form

[!2 cos�	 − (!1� − �3) (±√1 − cos2�	) + !4
+ !5�(±√1 − cos2�	)]2 + [!2 (±√1 − cos2�	)
+ (!1� − �3) cos�	 + !3�2 + !5� cos�	]2= !26.

(16)

It is easy to see that (16) is equivalent to

81cos4�	 + 82cos3�	 + 83cos2�	 + 84 cos�	 + 85= 0, (17)

where

81 = 921 + 925,82 = 2 (9294 + 9395) ,83 = 922 + 923 − 925 − 294 (!26 − 91) ,84 = 292 (91 − !26) − 29395,85 = (!26 − 91)2 − 923,
(18)

where

91 = !22 + (!1� − �3)2 + !25�2 + !24 + !23�4,92 = 2!2!4 + 2!2!5� + 2!3!5�3+ 2!3�2 (!1� − �3) ,93 = 2!4!5� − 2!4 (!1� − �3) + 2!2!3�2,94 = 2!5� (!1� − �3) ,95 = 2!2!5�.

(19)

Let cos�	 = � and denote

: (�) = �4 + 8281 �3 + 8381 �2 + 8481 � + 8581 . (20)
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It is easy to obtain that :
(�) = 4�3 + (382/81)�2 + (283/81)� +84/81. Set
4�3 + 38281 �2 + 28381 � + 8481 = 0. (21)

Let @ = � + 82/481.	en (21) becomes

@3 + A1@ + A2 = 0, (22)

where A1 = 83/281 −3822/16821 and A2 = 832/32831 −8283/8821 +84/481.
Dene D1 = (A2/2)2 +(A1/3)3, D2 = (−1+ �√3)/2. By (22),

then we obtain

@1 = 3√−A22 + √D1 + 3√−A22 − √D1,
@2 = 3√−A22 + √D1D2 + 3√−A22 − √D1D22 ,
@3 = 3√−A22 + √D1D22 + 3√−A22 − √D1D2.

(23)

By the discussion above, we can obtain the expression of
cos�	, say

cos�	 = G1 (�) , (24)

where G1(�) is a function with respect to �. Substitute (24)
into (15); then we can easily get the expression of sin�	, say

sin�	 = G2 (�) , (25)

where G2(�) is a function with respect to �. 	us we obtain

G12 (�) + G22 (�) = 1. (26)

If all the coe
cients of system (2) are given, it is easy to use
computer to calculate the roots of (26) (say �). 	en from
(24), we derive

	� = 1� [arccosG1 (�) + 29H] (9 = 0, 1, 2, . . .) . (27)

Let �(	) = I(	) + ��(	) be a root of (10) near 	 = 	�,I(	�) = 0, and �(	�) = ��. Due to functional di�erential
equation theory, for every 	�, 9 = 0, 1, 2, 3, . . ., there existsJ > 0 such that �(	) is continuously di�erentiable in 	 for|	 − 	�| < J. Substituting �(	) into the le� hand side of (10)
and taking derivative with respect to 	, we have
[���	]−1
= − (3�2 + !1) �−�� + 2!3� + !5�−��� (�3 + !1� + !2) ��� − !5�2�−�� − 2!6��−2��− 	� .

(28)

	en

[� (Re � (	))�	 ]−1
�=�(�)�

= −Re{ (3�2 + !1) �−�� + 2!3� + !5�−��� (�3 + !1� + !2) ��� − !5�2�−�� − 2!6��−2��}�=��
= −Re{Q3 + �Q4Q1 + �Q2} = Q1Q3 + Q2Q4Q21 + Q22 ,

(29)

whereQ1 = (�4� − !1�2� + !5�2�) cos��	� − !2�� sin��	�− 2!6�� sin 2��	�,Q2 = (�4� − !1�2� − !5�2�) sin��	� + !2�� cos��	�− 2!6�� cos 2��	�,Q3 = (!1 + !5 − 3�2�) cos��	�,Q4 = (3�2� − !1 − !5) sin��	� + 2!3��.
(30)

In order to obtain themain results in this paper, it is necessary
to make the following assumption:Q1Q3 + Q2Q4 ̸= 0. (H3)
In view of Lemma 1, it is easy to obtain the following result on
stability and bifurcation of system (2).

�eorem 2. Suppose that (H1)–(H3) hold; then
(i) for system (2), its positive equilibrium �0(�∗1 , �∗2 , �∗3 ) is

asymptotically stable for 	 ∈ [0, 	0);
(ii) system (2) undergoes a Hopf bifurcation at the positive

equilibrium �0(�∗1 , �∗2 , �∗3 ) when 	 = 	� (9 = 0, 1,2, 3, . . .); that is, system (2) has a branch of periodic
solutions bifurcating from the positive equilibrium�0(�∗1 , �∗2 , �∗3 ) near 	 = 	�.

3. Direction and Stability of
the Hopf Bifurcation

In this section, we shall analyze the direction, stability,
and period of these periodic solutions bifurcating from the
positive equilibrium �0(�∗1 , �∗2 , �∗3 ) at these critical value of 	,
by using techniques from normal form and center manifold
theory [24]. 	roughout this section, we always assume
that system (2) undergoes Hopf bifurcation at the positive
equilibrium �0(�∗1 , �∗2 , �∗3 ) for 	 = 	�, 9 = 0, 1, 2, 3, . . .,
and then ±��� are corresponding purely imaginary roots
of the characteristic equation at the positive equilibrium�0(�∗1 , �∗2 , �∗3 ).

For convenience, let ��(�) = ��(	�) (� = 1, 2, 3) and 	 =	� + T, where 	� is dened by (27) and T ∈ �, drop the bar
for the simplication of notations, and then system (4) can

be written as an FDE in  = ([−1, 0]), �3) asU̇ (�) = V� (U) + W (T, U) , (31)
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where U(�) = (�1(�), �2(�), �3(�))� ∈  and U(X) = U(� + X) =(�1(� + X), �2(� + X), �3(� + X))� ∈ , and V� :  → � andW : � ×  → � are given by

V�\ = (	� + T)( 0 �2 �3�1 0 �3�1 �2 0)(
\1 (0)\2 (0)\3 (0))

+ (	(�)� + T)(�1 0 00 �2 00 0 �3)(
\1 (−1)\2 (−1)\3 (−1)) ,

(32)

G (T, \) = (	� + T)(G1 (T, \)G2 (T, \)G3 (T, \)) , (33)

respectively, where \(X) = (\1(X), \2(X), \3(X))� ∈  and

G1 (T, \) = �4\1 (0) \1 (−1) + �5\1 (0) \2 (0)+ �6\1 (0) \3 (0) ,G2 (T, \) = �4\1 (0) \2 (0) + �5\2 (0) \2 (−1)+ �6\2 (0) \3 (0) ,G3 (T, \) = �4\1 (0) \3 (0) + �5\2 (0) \3 (0)+ �6\3 (0) \3 (−1) .
(34)

From the discussion in Section 2, we know that if T = 0,
then system (31) undergoes a Hopf bifurcation at the positive
equilibrium �0(�∗1 , �∗2 , �∗3 ) and the associated characteristic
equation of system (31) has a pair of simple imaginary roots±��	�.

By the representation theorem, there is a matrix function
with bounded variation components ^(X, T), X ∈ [−1, 0],
such that

V�\ = ∫0
−1
�^ (X, T) \ (X) , for \ ∈ . (35)

In fact, we can choose

^ (X, T) = (	� + T)( 0 �2 �3�1 0 �3�1 �2 0)` (X)
− (	� + T)(�1 0 00 �2 00 0 �3)` (X + 1) ,

(36)

where ` is the Dirac delta function.

For \ ∈ ([−1, 0], �3), dene
Q (T) \ = {{{{{{{{{

�\ (X)�X , −1 ≤ X < 0,
∫0
−1
�^ (f, T) \ (f) , X = 0,

�\ = {{{
0, −1 ≤ X < 0,G (T, \) , X = 0.

(37)

	en (31) is equivalent to the abstract di�erential equationU̇ = Q (T) U + � (T) U, (38)

where U(X) = U(� + X), X ∈ [−1, 0].
For g ∈ ([0, 1], (�3)∗), dene
Q∗g (f) = {{{{{{{

−�g (f)�f , f ∈ (0, 1] ,
∫0
−1
�^� (�, 0) g (−�) , f = 0. (39)

For \ ∈ ([−1, 0], �3) and g ∈ ([0, 1], (�3)∗), dene the
bilinear form⟨g, \⟩ = g (0) \ (0)

− ∫0
−1
∫�
�=0
g� (j − X) �^ (X) \ (j) �j, (40)

where ^(X) = ^(X, 0),Q = Q(0), andQ∗ are adjoint operators.
By the discussions in Section 2, we know that ±���	� are
eigenvalues of Q(0), and they are also eigenvalues of Q∗.

Suppose that 8(X) = (1, I, D)���	���� is the eigenvector ofQ(0) corresponding to ���	�; then Q(0)8(X) = ���	�8(X). It
follows from denition Q(0) and (32) and (35) that

	�(��� − �1�
−�	��� −�2 −�3−�1 ��� − �2�−�	��� −�3−�1 −�2 ��� − �3�−�	���)(

1ID)
= (000) .

(41)

	en we can obtain

I = �3 (�1�−�	��� − ���) + �3�1�1�3 − �3 (��� − �2�−�	���) ,
D = (�1�−�	��� − ���) (��� − �2�−�	���)�1�3 − �3 (��� − �2�−�	���) . (42)

Similarly, let 8∗(f) = k(1, I∗, D∗)��	���� be the eigenvector ofQ∗ corresponding to −���	(�)� ; then Q∗8∗(X) = −���	�8∗(X).
It follows from the denition Q∗ that
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k	�(��� + �1�
−�	��� �1 �1�2 ��� + �2�−�	��� �2�3 �3 ��� + �3�−�	���)(

1I∗D∗) = (
000) . (43)

Hence

I∗ = �2�1 − �2 (��� + �1�−�	���)�1�2 − �1 (��� + �2�−�	���) ,
D∗ = −(��� + �2�−�	���) (��� + �1�−�	���) − �2�1�1�2 − �1 (��� + �2�−�	���) . (44)

In order to assure ⟨8∗(f), 8(X)⟩ = 1 and ⟨8∗(f), 8(X)⟩ = 0, we
need to determine the value ofk. From (40), we have

⟨8∗ (f) , 8 (X)⟩ = k (1, I∗, D∗) (1, I, D)�
− ∫0
−1
∫�
�=0
k(1, I∗, D∗) �−�	���(�−�)�^ (X) (1, I, D)�

⋅ ��	�����j = k{1 + II∗ + DD∗ − ∫0
−1
(1, I∗, D∗)

⋅ X��	�����^ (X) (1, I, D)�} = k{1 + II∗ + DD∗
+ 	��−�	��� (�1 + �2I∗I + �3D∗I)} .

(45)

	us we can choose

k = 11 + II∗ + DD∗ + 	���	��� (�1 + �2I∗I + �3D∗D) . (46)

Next, we use the same notations as those inHassard et al. [24]
and we rst compute the coordinates to describe the center
manifold 0 at T = 0. Let U be the solution of (31) whenT = 0.

Dene p (�) = ⟨8∗, U⟩ ,q (�, X) = U (X) − 2Re {p (�) 8 (X)} , (47)

on the center manifold 0, and we haveq(�, X) = q (p (�) , p (�) , X) , (48)

whereq(p (�) , p (�) , X) = q (p, p)
= q20 p22 +q11pp +q02 p22 + ⋅ ⋅ ⋅ , (49)

and p and p are local coordinates for center manifold 0 in
the direction of 8∗ and 8∗. Noting thatq is also real if U is

real, we consider only real solutions. For solutions U ∈ 0 of
(31) ṗ (�) = ���	�p + 8∗ (X) G (0,q (p, p, X))+ 2Re {p8 (X)} def= ���	�p + 8∗ (0) G0, (50)

which we write in abbreviated form asṗ (�) = ���	�p + r (p, p) , (51)

where

r (p, p) = r20 p22 + r11pp + r02 p22 + r21 p2p2 + ⋅ ⋅ ⋅ . (52)

Hence we haver (p, p) = 8∗ (0) G0 (p, p) = 8∗ (0) G (0, U)
= 	�k(1, I∗, D∗)( G1 (�1, �2, �3)G2 (�1, �2, �3)G3 (�1, �2, �3) )= k	� (s1 + I∗s2 + D∗s3) p2+ 2k	� ($1 + I∗$2 + D∗$3) pp+ k	� (t1 + I∗t2 + D∗t3) p2+ k	� (u1 + I∗u2 + D∗u3) p2p + h.o.t.,

(53)

whereG1 (�1, �2, �3) = �4�1 (0) �1 (−1) + �5�1 (0) �2 (0)+ �6�1 (0) �3 (0) ,G2 (�1, �2, �3) = �4�1 (0) �2 (0) + �5�2 (0) �2 (−1)+ �6�2 (0) �3 (0) ,G3 (�1, �2, �3) = �4�1 (0) �3 (0) + �5�2 (0) �3 (0)+ �6�3 (0) �3 (−1) ,s1 = �4�−�	��� + �5I + �6D,s2 = �4I + �5I�−�	��� + �6ID,s3 = �4D + �5ID + �6D2�−�	��� ,$1 = �4 Re {��	���} + �5 Re {I} + �6 Re {D} ,$2 = �4 Re {I} + �5 |I|2 Re {I} + �6 Re {ID} ,
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$3 = �4 Re {D��	���} + �5 Re {ID} + �6 vvvvDvvvv2 Re {��	���} ,t1 = �4Re {��	���} + �5 {I} + �6 {D} ,t2 = �4I + �5I2��	��� + �6 Re {ID} ,t3 = �4D + �5 {ID} + �6D2��	��� ,
u1 = �4 [q(1)11 (−1) + 12q(1)20 (−1) + q(1)11 (0) �−�	���+ 12q(1)20 (0) ��	���] + �5 [12q(2)20 (0) + 12q(1)20 (0) I+q(2)11 (0) + q(1)11 (0)] + �6 [q(3)11 (0) + 12q(3)20 (0)+ 12Dq(1)20 (0) + q(1)11 (0) D] ,u2 = �4 [q(2)11 (0) + 12q(2)20 (0) + 12Iq(1)20 (0)+ q(1)11 (0)] + �5 [Iq(2)11 (−1) + 12Iq(2)20 (−1)+ I�−�	���q(2)11 (0) + 12Iq(2)20 (0) ��	���]+ �6 [Iq(3)11 (0) + 12Iq(3)20 (0) + 12Dq(2)20 (0)+ Dq(2)11 (0)] ,
u3 = �4 [q(3)11 (0) + 12q(3)20 (0) + 12Dq(1)20 (0)+ Dq(1)20 (0)] + �5 [q(3)11 (0) I + 12q(3)20 (0) I+ 12q(2)20 (0) D + Dq(2)11 (0)] + �6 [q(3)11 (−1) D+ 12q(3)20 (−1) D + D�−�	���q(3)11 (0)+ I��	���q(3)11 (0)] .

(54)

	us we obtain

r20 = 2k	� (s1 + I∗s2 + D∗s3) ,r11 = 2k	� ($1 + I∗$2 + D∗$3) ,r02 = 2k	� (t1 + I∗t2 + D∗t3) ,r21 = 2k	�9 (u1 + I∗u2 + D∗u3) .
(55)

For unknown q(�)20 (0), q(�)11 (0), q(�)20 (−1), q(�)11 (−1), (� = 1,2, 3) in r21, we still need to compute them.

In view of (38) and (47), we have

q̇ = {{{
Qq − 2Re {8∗ (0) G8 (X)} , −1 ≤ X < 0,Qq − 2Re {8∗ (0) G8 (X)} + G, X = 0

def= Qq +s(p, p, X) ,
(56)

where

s(p, p, X) = s20 (X) p22 + s11 (X) pp + s02 (X) p22+ ⋅ ⋅ ⋅ . (57)

Comparing the coe
cients, we obtain(Q − 2�	���)q20 = −s20 (X) , (58)Qq11 (X) = −s11 (X) . (59)

We know that for X ∈ [−1, 0)s (p, p, X) = −8∗ (0) G08 (X) − 8∗ (0) G08 (X)= −r (p, p) 8 (X) − r (p, p) 8 (X) . (60)

Comparing the coe
cients of (60) with (57) gives thats20 (X) = −r208 (X) − r028 (X) , (61)s11 (X) = −r118 (X) − r118 (X) . (62)

From (58), (61), and the denition of Q, we getq̇20 (X) = 2���	�q20 (X) + r208 (X) + r02 8 (X) . (63)

Noting that 8(X) = 8(0)��	����, we have
q20 (X) = �r20��	� 8 (0) ��	���� + �r023��	� 8 (0) �−�	����+ �1�2�	����, (64)

where �1 = (�(1)1 , �(2)1 , �(3)1 )� ∈ �3 is a constant vector.
Similarly, from (59), (62), and the denition ofQ, we haveq̇11 (X) = r118 (X) + r11 8 (X) , (65)

q11 (X) = − �r11��	� 8 (0) ��	���� + �r11��	� 8 (0) �−�	����+ �2, (66)

where �2 = (�(1)2 , �(2)2 , �(3)2 )� ∈ �3 is a constant vector.
In what follows, we shall seek appropriate �1 and �2 in

(64) and (66), respectively. It follows from the denition ofQ, (61), and (62) that

∫0
−1
�^ (X)q20 (X) = 2���	�q20 (0) − s20 (0) , (67)

∫0
−1
�^ (X)q11 (X) = −s11 (0) , (68)
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where ^(X) = ^(0, X). From (58), we haves20 (0) = −r208 (0) − r02 8 (0) + 2	� (s1, s2, s3)� , (69)s11 (0) = −r118 (0) − r11 (0) 8 (0)+ 2	� ($1, $2, $3)� . (70)

Noting that

(���	�z − ∫0
−1
��	�����^ (X)) 8 (0) = 0,

(−���	�z − ∫0
−1
�−�	�����^ (X)) 8 (0) = 0, (71)

and substituting (64) and (69) into (67), we have

(2���	�z − ∫0
−1
�2�	�����^ (X))�1

= 2	(�)� (s1, s2, s3)� . (72)

	at is,

(2��� − �1�
−2�	��� −�2 −�3−�1 2��� − �2�−2�	��(�)� −�3−�1 −�2 2��� − �3�−2�	���)�1

= 2(s1s2s3).
(73)

It follows that �(1)1 = Δ 11Δ 1 ,�(2)1 = Δ 12Δ 1 ,�(3)1 = Δ 13Δ 1 ,
(74)

whereΔ 1
= det(2��� − �1�−2�	��� −�2 −�3−�1 2��� − �2�−2�	��� −�3−�1 −�2 2��� − �3�−2�	���),
Δ 11 = 2 det(s1 −�2 −�3s2 2��� − �2�−2�	��� −�3s3 −�2 2��� − �3�−2�	���),
Δ 12 = 2 det(2��� − �1�

−2�	��� s1 −�3−�1 s2 −�3−�1 s3 2��� − �3�−2�	���),
Δ 13 = 2 det(2��� − �1�

−2�	��� −�2 s1−�1 2��� − �2�−2�	��� s2−�1 −�2 s3).

(75)

Similarly, substituting (65) and (70) into (68), we have

(∫0
−1
�^ (X))�2 = 2	� ($1, $2, $3)� . (76)

	at is,

(�1 �2 �3�1 �2 �3�1 �2 �3)�2 = 2(
−$1−$2−$3). (77)

It follows that �(1)2 = Δ 21Δ 2 ,�(2)2 = Δ 22Δ 2 ,�(3)2 = Δ 23Δ 2 ,
(78)

where

Δ 2 = det(�1 �2 �3�1 �2 �3�1 �2 �3),
Δ 21 = − det($1 �2 �3$2 �2 �3$3 �2 �3),
Δ 22 = − det(�1 $1 �3�1 $2 �3�1 $3 �3),
Δ 23 = − det(�1 �2 $1�1 �2 $2�1 �2 $3).

(79)

From (64), (66), (74), and (78), we can calculate r21 and
derive the following values:

�1 (0) = �2��	� (r20r11 − 2 vvvvr11vvvv2 − vvvvr02vvvv23 ) + r212 ,
T2 = − Re {�1 (0)}

Re {�̇ (	�)} ,D2 = 2Re (�1 (0)) ,
�2 = − Im {�1 (0)} + T2 Im {�
 (	�)}��	� .

(80)

	ese formulae give a description of the Hopf bifurcation
periodic solutions of (31) at 	 = 	�, (9 = 0, 1, 2, 3, . . .) on
the center manifold. From the discussion above, we have the
following result.
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Figure 1: Dynamical behavior of system (81) with 	 = 0.26 < 	0 ≈ 0.265.	e positive equilibrium�0(1.9170, 0.9170, 2.9251) is asymptotically
stable. 	e initial value (�1(0), �2(0), �3(0)) = (1.9, 0.85, 2.3).

�eorem 3. �e direction of the Hopf bifurcation is forward
(backward) if T2 > 0 (T2 < 0); the bifurcating periodic
solutions are orbitally asymptotically stable with asymptotical
phase (unstable) if D2 < 0 (D2 > 0); the periods of the
bifurcating periodic solutions increase (decrease) if �2 >0 (�2 < 0).

4. Numerical Examples

In this section, numerical simulations are carried out to
investigate the e�ect of the time delay on dynamical behaviors
of system (2) as well as illustrate our theoretical results.
For convenience, we assume that some parametric values of
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Figure 2: Dynamical behavior of system (81) with 	 = 0.28 > 	0 ≈ 0.265. Hopf bifurcation occurs from the positive equilibrium�0(1.9170, 0.9170, 2.9251). 	e initial value (�1(0), �2(0), �3(0)) = (1.9, 0.85, 2.3).
system (2) are kept as �1 = 7, �2 = 6, �3 = 5, �11 = 3, �12 =2, �13 = 0.2, �21 = 2, �22 = 3, �23 = 0.2, �31 = 0.3, �32 =0.3, and �33 = 2. 	en system (2) takes the form�̇1 (�) = �1 (�) [7 − 3�1 (� − 	) − 2�2 (�) + 0.2�3 (�)] ,�̇2 (�) = �2 (�) [6 − 2�1 (�) − 3�2 (� − 	) + 0.2�3 (�)] ,�̇3 (�)= �3 (�) [5 + 0.3�1 (�) + 0.3�2 (�) − 2�3 (� − 	)] ,

(81)

which has a positive equilibrium �0(1.9170, 0.9170, 2.9251)
and all the conditions given in	eorem 2 are satised.When	 = 0, the positive equilibrium �0(1.9170, 0.9170, 2.9251) is
asymptotically stable. Fix 9 = 0 and by means of Matlab

7.0, we get �0 ≈ 0.9775, 	0 ≈ 0.265, and �̇(	0) ≈ 0.6505 –8.4322�. 	us we can derive the following values: �1(0) ≈−2.3628 – 4.6636�, T2 ≈ 3.6323, D2 ≈ −4.7256, and �2 ≈136.2424. Furthermore, it follows that T2 > 0 and D2 < 0.
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	us the positive equilibrium �0(1.9170, 0.9170, 2.9251) is
stable when 	 < 	0. When 	 = 0.26 < 	0 ≈ 0.265, we
can easily plot the time series of every population and phase
portrait of the system and nd that the solution of (81) with
initial value �1(0) = 1.9, �2(0) = 0.85, and �3(0) = 2.3 would
tend to a positive equilibrium �0(1.9170, 0.9170, 2.9251)
(see Figures 1(a)–1(j), in detail); that is, the positive equi-
librium �0(1.9170, 0.9170, 2.9251) is asymptotically stable.
When 	 passes through the critical value 	0 ≈ 0.265,
the positive equilibrium �0(1.9170, 0.9170, 2.9251) loses its
stability and a Hopf bifurcation occurs; that is, a family of
periodic solutions bifurcate from the positive equilibrium�0(1.9170, 0.9170, 2.9251). Figures 2(a)–2(j) are plotted by
xing the time delay 	 = 1 and initial value �1(0) =1.9, �2(0) = 0.85, and �3(0) = 2.3. It is shown that a Hopf
bifurcation occurs from the positive equilibrium �0(1.9170,0.9170, 2.9251). In view of T2 > 0 and D2 < 0, we nd
that the direction of the Hopf bifurcation is 	 > 	0 ≈ 0.265
and these bifurcating periodic solutions from �0(1.9170,0.9170, 2.9251) at 	0 ≈ 0.265 are stable.
5. Biological Meanings and Conclusions

In this paper, the dynamics including the local stability of the
positive equilibrium �0(�∗1 , �∗2 , �∗3 ) and the local Hopf bifur-
cation of a competitor-competitor-mutualist Lotka-Volterra
model are investigated. It is showed that the positive equi-
librium �0(�∗1 , �∗2 , �∗3 ) of system (2) is asymptotically stable
for all 	 ∈ [0, 	0) when the conditions (H1)–(H3) are
satised. 	is reveals that the densities of competing species�1, �2 and cooperating species �3 will tend to stabilization;
in other words, the densities of competing species �1, �2 and
cooperating species will tend to �∗1 , �∗2 , �∗3 , respectively, and
this situation does not vary with the delay 	 ∈ [0, 	0). When
the delay 	 increases, the positive equilibrium �0(�∗1 , �∗2 , �∗3 )
loses its stability and a sequence of Hopf bifurcations occur
from the positive equilibrium �0(�∗1 , �∗2 , �∗3 ); that is, a family
of periodic orbits bifurcate from the positive equilibrium�0(�∗1 , �∗2 , �∗3 ). From this we can nd that competing species�1, �2 and cooperating species �3 can coexist and keep in
periodic mode; that is, the densities of competing species�1, �2 and cooperating species �3 will oscillate in the vicinity
of �∗1 , �∗2 , and �∗3 , respectively. Finally, the direction of Hopf
bifurcation and the stability of the bifurcating periodic orbits
are discussed by applying the normal form theory and
the center manifold theorem. A numerical example is also
included to verify our theoretical ndings.
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