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1 PROBLEM DESCRIPTION 

Consider a communication channel that consists of a number of tracks running from 

sender to receiver. The sender can use this channel to convey information to the receiver 

by rolling marbles along some of the tracks. The amount of time it takes a marble to 

travel from sender to receiver. however. is unknown and may even vary from track to 

track or from roll to roll. But it is nonnegative and finite. that is. marbles eventually do 

arrive after they have been rolled onto a track. The problem is to design a communication 

scheme for sender and receiver that is insensitive to variability in propagation delays. 

The above problem description has not addressed certain issues that nevertheless are 

relevant. Let us narrow it down a bit. (a) One may assume that sender and receiver are 

in agreement about the identity of the tracks: the tracks are labeled. (b) To prevent the 

smashing of marbles the sender should roll at most one marble onto each track for the 

transmission of a single message. (c) When sequences of messages are to be transmitted. 

there arises the need for acknowledgment of the reception of a message. It can be imple­

mented by a feedback track from receiver to sender. ACknowledgment is not considered to 

be part of the problem. 

An example may further clarify the problem. Suppose there is the need to communicate 

messages taken from a set of n messages. numbered 1 through n. We use a channel with 

n tracks. labeled from 1 to n. Transmission of message with number k is accomplished 

by rolling a marble over the track labeled k . and no marbles over the other tracks. The 

receiver waits till he sees a marble. notices along which track it arrived. and knows that he 

has received the complete message. since there cannot be any other marbles on their way. 

Because of its resemblance to the one-hot assignment (Hollaar 1982). this very simple 

communication scheme is called the One-Hot code. 

The One-Hot code is inefficient for large message sets. since it requires too many 

tracks. This is underscored by the following analysis. Given a channel with n tracks the 

sender has a choice of 2" marble patterns: for each track he is free to roll a marble or not. 

To use only n of these patterns seems a big waste. Can you do better? Notice. however. 

that not all patterns can be used together. For instance. the pattern in which no marbles 

are rolled is useless in the presence of other patterns. The receiver would not be able to 
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decide whether the empty pattern was sent. Initially he has received no marbles (the 

empty pattern). but some marbles may still be on their way transmitting a different pat­

tern. How long should the receiver wait before deciding that the empty pattern was sent? 

In the next section precise conditions for delay-insensitive communication are formulated. 

Originally this problem arose in the context of electronically implemented communication 

channels. A track corresponds to a signal wire that has two stable states. which will be 

called Zero and One. A marble on a track corresponds to a transition on a wire. i.e" to a 

change of state of a wire. The propagation speed of transitions is not always under com­

plete control of the designer. This is especially the case for VLSI circuits (Seitz 1980. 

Udding 1986). The current trend is toward self-timed systems. where as little as possible 

is assumed about propagation delays. Hence. the interest in delay-insensitive communica­

tion schemes. It is also from this context that the requirement of "at most one marble on 

each track" comes. Multiple transitions on a wire can influence each other adversely. caus­

ing transmission interference. 

If the One-Hot code is used on signal wires. as suggested above. then all combinations 

of wire states are feasible (as opposed to transition patterns). To limit the number of wire 

state patterns that may occur. one often resorts to Return-ta-Zero or Four-Phase signaling 

(Seitz 1980). In this scheme all wires are initially in the Zero state. and each message is 

sent twice. The sole purpose of repeating a message is to bring the wires back to their Zero 

state. The name Four-Phase signaling derives from the fact that in practice each transmis­

sion is accompanied by an additional acknowledge phase. resulting in four phases per 

effective message. 

We prefer the metaphor of marbles rolling on tracks because it avoids the possible 

confusion between transition (or marble) patterns and wire state patterns. 

2 REQUIREMENTS FOR DELAY-INSENSITIVE CODES 

In this section we formally define the notion of delay-insensitive code. It expresses pre­

cisely under what conditions a code can be used for delay-insensitive communication. We 

also introduce some additional terminology and present three code construction techniques. 
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Finally. we mention some practically desirable properties of codes. 

A code is a pair (J . C) where 

I is a finite set. 

C is a set of subsets of I 

(track indices) 

(code words) 

The size of I is called the code's length (it is the number of tracks in the channel). and the 

size of C is called the code's size (it is the number of messages in the message set that is 

coded). Notice that the code's size is at most two to the power the code's length. 

A code word is an element of C and it indicates along which tracks marbles will be 

sent for the transmission of the corresponding message. The size of a code word x is also 

called its weight (in marble units) and it is denoted by w(x ). 

Sometimes it is convenient to represent subsets of I by their characteristic function. 

The characteristic function of x. x k I. is a mapping from 1 into {O.l}. taking on the 

value I in the elements of x and 0 otherwise. If the elements of I are somehow ordered. 

then a code could be represented by a set of fixed-length bit vectors (words over {O.1}). 

There is an obvious notion of code isomorphism involved. but we shall not pursue it expli­

citly here. 

Terminology reminding of any of these representations may be used interchangeably. 

For instance. the notion of code length and code word derives from the bit vector represen­

tation. Notice that in the characteristic function and bit vector representations there is a 

slight asymmetry between 0 and 1: a 1 corresponds to a track with marble. a 0 to an 

empty track. 

A code (J . C ) is called delay-insensitive when 

(A x . y : x E C II Y E C II x k y : x = y ) . (D!) 

that is. when no code word is contained in another code word. This exactly captures the 

conditions under which the receiver is able to decide unambiguously when he has com­

pletely received the code word transmitted by the sender. If C would contain two (hence. 

distinct) code words x and y with x k y. then the receiver might (temporarily) see x 
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when either x or y was sent (viz. if the tracks y \ x are slow). But the receiver cannot 

know which is the case at the time he sees x. If the code is DI then the complete­

reception-detection strategy for the receiver is simply to wait until he sees a code word. 

since no more marbles can be on their way after that. Reception detection boils down to 

code membership test. 

The One-Hot code from Section 1 consists of all singletons over J. that is. of all 

words of unit weight. Its size equals its length and it is obviously delay-insensitive (satis­

fying DO. 

It appears that DI codes are equivalent to antichains in a partially ordered set (cf. 

Section 3) and to all unidirectional error-detecting (AUED) codes (Bose and Rao 1982. 

Theorem 5). All DI codes that we present were already known as AUED codes. although 

most of them were rediscovered independently. 

Code (J . C) is called subcode of code (J . D ) when C is a subset of D. Obviously. a sub­

code of a DI code is itself a DI code. Although this may seem to be a useless construction. 

there are situations where subcodes are preferable to their parents (see below and Section 

5). 

The complement of code (J . C) is the code (J . C). where C is defined by 

c=U\xlxEcl. (complement) 

When J is understood. J\x is sometimes written as X. Note that complementing (J. C) 

results in (J . C) again (complementation is idempotent). From 

(2.1) 

it follows that a code is DI if and only if its complement is DI. In the bit vector represen­

tation complementation corresponds to replacing all O's and l's in code words by l's and 

O's respectively. Hence. the asymmetry between 0 and 1. as emphasized above. is 

irrelevant for DI codes. 

The complemented code has the same length and size as the original code. The com­

plement of the One-Hot code might be called the One-Cold code. It consists of all words 

with a single O. 
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The concatenation (sometimes also called direct sum) of codes (J. C) and (J. D). with 

In J = 0. is the code (I U J . CD). where CD is defined by 

CD = { x U y I x E C II Y ED} . (concatenation) 

Concatenation is symmetric and associative. The length of the concatenated code is the 

sum of the lengths of the composing codes. its size is the product of the sizes of the com­

ponents. A small exercise in set calculus shows that if both codes are DI then so is their 

concatenation. 

The concatenation of n (disjoint) One-Hot codes of length two yields a Dl code of 

length 2n and size 2". This code is known as the Double-Rail code (Seitz 1980). Notice 

that all code words of the Double-Rail code have the same weight. viz. n. For n > 2 it 

gives a (substantial) size improvement over the One-Hot code of the same length. For 

instance. over a channel with 20 tracks the One-Hot code can transmit only 20 different 

messages. compared to 1024 for the Double-Rail code. There are. however. about one mil­

lion patterns available on 20 tracks. The largest or code of length 20 utilizes 184.756 of 

these patterns. it will appear below as Sperner code. 

Before presenting and analyzing some other DI codes it is important to realize that not just 

any DJ code is practically useful. The only aspect we have emphasized so far is large code 

size for a given code length. Measures for this aspect are the code's rate R and its redun­

dancy r as defined by 

R = 10gM . 
n 

r = n -logM 

(rate) 

(redundancy) 

where n is the code's length. M is the code's size. and the logarithms have base 2. Note 

that O,,",R ""' I and O,,",r ,,",n hold. Good codes have a rate close to 1 and a small red un-

dancy. 

Equally important aspects are ease of encoding (by sender). membership test. and 

decoding (the latter two by receiver). Encoding and decoding on their own are not well­

defined concepts. They heavily depend on the message space to be coded. We will con­

sider the message space to consist of all bit vectors of a certain length. because that seems 
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to be the most prevalent practical case. Ease of encoding and decoding is now reflected by 

the complexity of the mapping from message vectors to code vectors and vice versa. 

The One-Hot code is very simple as far as membership test is concerned. since all 

code words have unit weight. Encoding and decoding of One-Hot codes require somewhat 

more complicated circuitry. unless its length is very small. For the length-two One-Hot 

code simply map the message vectors 0 and 1 onto the code vectors 10 and 01 respectively. 

By the way. note that the membership test need only work under the circumstance 

that the sender transmitted a code word and not something else. Hence. for a subcode the 

same membership test can be used as for its parent. although this need not always result 

in the most efficient membership test. What makes a subcode interesting. however. is that 

it may allow a better encoding/decoding scheme than its parent code. 

The Double-Rail code has a very simple encoding/decoding scheme and membership 

test. because it is the concatenation of length-two One-Hot codes. The membership test 

consists of the conjunction of membership tests for the One-Hot components. EnCOding is 

accomplished by encoding each message bit separately via its One-Hot encoding. and decod­

ing works similarly. 

3 k -oUT-oF-n CODES AND SPERNER CODES 

A k-out-of-n code is a code of length n that consists of all words of weight k . thereby gen­

eralizing the One-Hot code (which is obtained by taking k = 1). Obviously this is a Dl 

code: if code word x is a subset of code word y then x equals y . since x and yare known 

to have the same weight. 

The size of the k -out-of-n code is the binomial coefficient n choose k = 
n! / (k! (n -k )!). The membership test is straightforward: w(x) = k. Except for k = 1 

and k = n -1. no simple encoding scheme is known. The complement of the k -out-of-n 

code is an (n -k )-out-of-n code. 

A DI code is called maximal if it cannot be extended without violating the Dr property. 

All k -out-of-n codes are maximal in this sense. A word z of length n that is not in the 

k -out-of-n code has a weight different from k. Therefore. either it contains a code word 
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(if w(z ) > k ) or is contained in one (if w(z ) < k). Hence, the word z cannot be added to 

the code without violating the DI property. Notice that the Double-Rail code of length 2n 

is a subcode of the n -out-of-2n code. This Double-Rail code is not maximal for n > 1. 

A DJ code is called optimal if there does not exist a DJ code of the same length con­

taining more code words. Sperner (1928) has completely characterized the optimal DJ 

codes. They turn out to be the (n div 2)-out-of-n codes and their complements. We 

therefore refer to these codes also as Sperner codes. The Sperner code of length 20 has size 

20 choose 10= 184,756. 

Applying Stirling's approximation. 

(Stirling) 

one obtains 

(2n )! 
2n choose n = --- -

(n !)2 
(3.1) 

This shows that the even-length Sperner codes utilize a relatively large number of the 22n 

available patterns. As is readily verified, the size of an odd-length Sperner code is half 

that of the Sperner code of length one more. The redundancy of a Sperner code of length 

n is. therefore. approximately 

Ihlogn + 'hlog1T/2 . (3.2) 

The remainder of this section will be devoted to proving that the Sperner codes are 

the optimal DJ codes. The proof we present is not completely new. but in spite of its sim­

plicity it does not seem to be well-known. We also refer the reader to Greene and Kleit­

man (1978) for alternative proofs. The proof given by Freiman (1962) is essentially the 

same as that of Sperner (1928). 

Our proof will consist of two parts. First. we show that the Sperner codes are optimal. 

Then we show that there are no other optimal codes. The proof is based on the theory of 

partially ordered sets (posets). Recall that a poset is a set together with an order relation. 

the latter being a reflexive. antisymmetric. and transitive relation. We start with some 

definitions. 
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Let J be a finite set and let P be the power set of J. that is. P consists of all subsets 

of J. The pair (P. k ) is the poset that will concern us here. Set inclusion is the order 

relation. Comparability (under this order relation) of x and y. x E P and yEP. is denoted 

byxIiy: 

xIiy=xkY VykX. (comparable) 

Code (J . C) is a Dr code. if and only if C is a subset of P and any two (distinct) ele­

ments are incomparable. Such a totally unordered set is called an anticluzin in poset ter­

minology: 

(A x.y : x E C II Y E C II x". y : ~ (x Ii y)) (antichain) 

Delay-insensitive codes and antichains in our poset are equivalent. In the study of 

antichains it is helpful to understand the totally ordered sets. or chains. of our poset. The 

set L. L k P. is called a chain (in the poset) when 

(A x . y : x E Lily E L : x Ii y ) . (chain) 

Furthermore. L is called a line (of the poset) when it is a maximal chain. that is. when L 

is a chain to which no element can be added without violating the chain condition. The 

notion of a chain also has a meaning in the original problem context. Consider the inter­

mediate results that the receiver observes. while he is waiting for the arrival of a complete 

message: these words form a chain. 

Define Lines as the set of all lines in our poset. Cone (x ) denotes the set of all lines 

through x. for x E P: 

Cone (x ) = { L E Lines I x ELl (cone) 

Let us now do some analyzing and counting. The number of elements in a set V will be 

denoted by #V. We shall. however. continue to write w(x) instead of #x if x E P. 

Define the numbers n . m. and m by 

n = #J. m = n div 2. m = n-m (3.3) 

The Sperner codes over J are the m -out-of-n and m -out-of-n codes. both have size 

n choose m. 
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Each line of our poset contains exactly one element of every weight in the range from 

o to n. Each line. therefore. has n + 1 elements and contains 0 and 1. the only elements 

of weight 0 and n respectively. The other elements. between 0 and 1. can be chosen in n! 

ways. Hence. we have 

#Lines=n!. (3.4) 

To count the number of elements in Cone (x) for some x E P . observe that one can 

choose the elements between 0 and x in w(x)! ways. and those between x and 1 in 

(n -w(x »! ways. We therefore have 

#Cone (x) = w(x)! (n -w(x »! = #Lines / (n choose w(x » . (3.5) 

By the way. notice that Cone (0) = Cone (I) = Lines. Let c denote the size of a smallest 

cone: 

c = (MIN x : x E P : #Cone (x» . (3.6) 

From (3.5) and the fact that "binomial coefficients peak in the middle." we know that 

c = #Lines/(n choosem)= m!m!. (3.7) 

Put differently: the smallest cones are exactly those for which x has weight m or m: 

(#Cone(x) = c) == (w(x)= m V w(x)= m). (3.8) 

One final observation is required before we can prove the optimality of the Sperner 

codes. If line L belongs to both Cone (x ) and Cone (y ). then both x and y lie on L. and. 

hence. they are comparable. That is. the cones of incomparable elements of P are disjoint: 

~ (x Ii y) :;> Cone (x ) n Cone (y ) = 0 . (3.9) 

Let C be an antichain in our poset. We prove that it has at most n choose m elements. 

#C 

= { counting} 

(SUM x : x E C : 1) 

Delay-Insensitive Codes-An Overview 



- 11 -

~ 1 (3.6) I 

(SUM x : x EC: #Cone(x)/ c) 

= 1 distribution) 

(SUM x: x EC: #Cone(x))/c 

= 1 (3.9). using that C is an antichain ) 

# (U x : x E C : Cone (x )) / c 

~ 1 for all x E C : Cone (x ) ~ Lines 

#Lines / c 

= 1(3.7)) 

n choose m . 

This also gives an upper bound on the size of a DI code. The Sperner codes attain this 

upper bound. Therefore. if CI . C) is a DI code. then its size is at most the size of a Sperner 

code over I. The Sperner codes are optimal. 

Because the upper bound is attained by the Sperner codes. we have only equalities in the 

above derivation for the antichain C . in the case that (1. C) is an optimal DI code. In par­

ticular this means that the two estimates are exact. Concerning the first estimate we 

derive 

(SUM x: x EC: 1) = (SUM x: x EC: #Cone(x))/c 

1 calculus) 

(A x : x E C : #Cone (x ) = c) . 

1 (3.8) ) 

(A x : x E C : w(x) = m V w(x) = m) . (3.10) 

To paraphrase: If a DI code over I is optimal then all the cones of its elements have 

minimum size. and, hence. all its words have weight m or iii. As far as we now know­

assuming only the first estimate to be exact-the weights may still be mixed. or some 

words of these weights may be missing from the code. 
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Concerning the second estimate we derive 

#(U x: x EC: Cone(x)) = #Lines 

{ calculus. using Cone (x ) k Lines 

Lines k (U x: x EC : Cone (x )) 

{ set calculus} 

(A L : L E Lines: (E x : x E C : L E Cone (x ))) . 

{ definition of Cone (x ) } 

(A L : L E Lines : (E x : x E C : x E L )) (3.11) 

{ separate proof. see below} 

(E k : O<:;k <:;n : (A x : x E P : x E A = w(x) = k )) . (3.12) 

To paraphrase: If a DJ code over I is optimal then all lines intersect it. and. hence (not 

trivially). it consists of all words of a certain weight k . 

Combining (3.10) and (3.12) immediately yields: If a DI code over I is optimal then 

it consists either of all words of weight m or of all words of weight iii. implying that it is 

a Sperner code over I. 

There is still one proof obligation to be dealt with: the equivalence of (3.11) and (3.12). It 

is obvious that (3.12) implies (3.11). since each line contains words of every possible 

weight. We now prove that (3.11) implies (3.12). 

Assume (3.11) to hold. Let y be an element of C with minimal weight. Take k 

equal to w(y). We shall show 

(A x : x EPA w(x) = k : x E C ) (3.13) 

by mathematical induction on w(y \x). From this (3.12) follows. because an antichain 

cannot contain other elements than all those of some fixed weight (recall that the k -out­

of-n codes are maxima!). 

Base: w(y \ x ) = O. Since x and y have the same weight. they are equal in this case. 

Hence. x = y E C . 
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Step: w(y\x»O. Then y\x is nonempty. Let i Ey\x. Since x and y have the same 

weight. x \y is also nonempty. Let j Ex \y. Define the words z and x' by z = x U { i} 

and x' = z \ { j}. We now have x k z and x' k z. Furthermore. we know w(z ) = k + 1 

and w(x') = k. We derive 

y\x' 

= { definition of x . } 

y\(z\{j}) 

= {j Ey on account of j Ex\y } 

y\z 

= { definition of z 

y \ (x U {i }) 

= { set calculus} 

(y\x)\{i). 

Because i E Y \ x . we now have shown w(y \x ') = w(y \ x )-1. This allows us to apply the 

induction hypothesis to x', which yields x 'E C . 

Consider a line L through z and x (such a line exists. since x Ii z). By assumption 

(3.11) L intersects C. L does not intersect C in the word z or a larger word. since x 'E C 

is a proper subset of z and C is an antichain. There are no words between z and x 

because their weights differ by one. Therefore. L intersects C in x or a smaller word. 

But all words smaller than x have weight less than k. while by the choice of k all words 

of C have weight at least k. Conclusion: x E C . 

This concludes the proof that the Sperner codes are the optimal OJ codes. 

4 BERGER CODES 

From the preceding section we know that the Sperner codes are the optimal OJ codes. It 

seems. however. that there does not exist an easy encoding scheme for them (van Overveld 

1985). The Berger codes. which we present in this section, are somewhat smaller than the 
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Sperner codes. but their encoding is very simple. They are also an example of good codes 

that are not subcodes of the k -out-ofn codes. 

Let E be an encoding scheme that maps data (or message) vectors of length m onto the 

code words of some code with length n. n ~ m. Of course. E is a one-to-one mapping. 

The encoding E is called systematic if for each data vector d . E (d ) is the concatenation of 

d and some vector s of length k. k = n -m. This is written as E(d ) = d: s (concatena­

tion is here denoted by a colon). We call d and s the data and synchronization parts 

respectively. In the case of a DI code the synchronization part must enable the receiver to 

detect the complete arrival of a message. 

A code is called separable when it allows a systematic encoding or when it is iso­

morphic to such a code. This section will deal only with separable codes. A systematic 

encoding is completely specified by the way in which the synchronization part depends on 

the data part. We denote this mapping from data to synchronization part by syru:. Data 

vector d is. thus. encoded as d: syru: (d). Notice that decoding a separable code is very 

simple. but that the complexity of encoding and membership test depends on the expres­

sion for sync . 

A mapping sync also defines a code, viz. the set of words obtained by applying the 

corresponding encoding to all data vectors of a fixed length m. We call this the code gen­

erated by sync (for data length m). As an example consider the mapping syru: (d ) = d. 

The corresponding encoding maps data vectors of length m onto code words of length 2m 

and weight m. The code generated by sync is a DI code. because it is a subcode of the 

Sperner code of length 2m. This code is isomorphic to the Double-Rail code. Hence. the 

Double-Rail code is separable. 

We now investigate the conditions that sync must satisfy in order to generate a DI code. 

Throughout this section m will be the length of data vectors and k the length of their 

sync images. Define C as the code generated by sync. it has length n = m +k . 

Let x and y be data vectors of length m. We derive 

x: syru: (x ) k y: sync(y ) ~ x: sync(x ) = y: syru: (y ) (4.1) 
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{ property of concatenation, using that x and y have the same length} 

x ,;;; Y 1\ sync (x ) ,;;; sync (y ) ~ x = Y 1\ sync (x ) = sync (y ) 

{sync is a mapping} 

x ,;;; Y 1\ sync (x ) ,;;; sync (y ) ~ x = y 

{ proposition calculus} 

x ,;;; y 1\ x;e y ~ ~ (sync(x ) ,;;; sync (y )) 

~ { set calculus I 

x ,;;; Y 1\ x;e y ~ sync (x );e sync(y ) . 

(4,2) 

So, if C is 01, then all elements in a chain (cf. Section 3) of data vectors have different 

sync images. Because the longest chains of data vectors have m + 1 elements, sync must 

produce at least m + 1 different images. Hence, 

2k~m+1 (4.3) 

is a necessary condition for C to be OJ. Notice that in the code generated by sync (d) = d 

(isomorphic to the Double-Rail code) all sync images are different. 

To obtain the largest possible 01 code (for a given length n) one should take k as small as 

possible, while still satisfying (4.3). It turns out that even for the smallest such value of 

k, many choices of sync are available that satisfy (4.2). One particularly elegant choice is 

the following. Instead of taking sync (d) = d as above, we define sync by 

sync (d) = the k -bit binary representation of wed) , (4.4) 

that is, the number of O's in d written as a k -bit binary number. It generates the Berger 

code (Berger 1961, Freiman 1962), sometimes also called sum code. Notice that wed) 

ranges from 0 to m + 1 and has a k -bit binary representation, because (4.3) holds. 

Let us first prove that the Berger code is a 01 code (x and yare data vectors): 

x: sync (x ),;;; y: sync (y ) 

{ property of concatenation, using that x and y have the same length} 

x ,;;; Y 1\ sync(x)';;; sync (y ) 
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:;> { definition of sync and property of binary representation} 

x ~ Y 1\ w(x)"'w(y) 

{ property of complementation} 

x !;; Y 1\ w(x )~w(y) 

{ set calculus} 

X=y. 

The membership test for the Berger code is also simple. The word d: s is a code word if 

and only if s = sync (d ). i.e .. if and only if s is the binary representation of the number 

of O's in d. 

Let us now consider the size of the Berger code. It is. of course. 2m . How does this 

compare to 2n ? In the best case we have m + 1 = 2k. we thus get 

2m = 2n 
-, = 2n I(m + 1) ~ 2n In . (4.5) 

The worst case occurs for m = 2'-1. yielding 2m ~2n /2n. The redundancy of the Berger 

code is k . which is approximately log n. According to (3.2) this is roughly twice that of 

the Sperner code of the same length. 

For example. the Berger code of length 19 is obtained by taking m = 15 and k = 4. so 

it has 32.768 code words. The Sperner codes of length 19 utilize 19 choose 9 = 92.378 

code words of the roughly half a million words available. 

The· complement of a Berger code is also a separable 01 code. Only for m = 2' -1 is this 

again a Berger code. In that case the code is invariant under complementation. or self­

complementary: the complement of each code word is itself a code word. Notice that. by 

their construction. the Berger codes are optimal among the separable 01 codes (Freiman 

1962). But they are not the only optimal separable 01 codes. By the way. also notice that 

the Sperner codes of length at least 3 are not separable. 
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5 KNUTH CODES 

This short section presents the main idea behind a family of DI codes recently designed by 

Knuth (1986). These codes are subcodes of the Sperner codes but they allow a relatively 

simple encoding and nevertheless are not much smaller. We describe only the least sophis­

ticated Knuth code. 

A word x of length m is called balanced when w(x ) = m div 2. To encode the data vec­

tor d of length m it is first written as x:y such that x:y is balanced (this is always pos­

sible. consider x's of increasing length). To make the encoding one-to-one. the length of x 

is separately encoded in a fixed-even-length balanced vector z. The encoding for x is dis­

cussed below. The data vector d now has encoding x: y: z . which is also balanced. The 

receiver can decode such a code word by first determining the extent of complementation 

from z . then splitting the data part accordingly. and complementing its first half. 

The extent of complementation ranges from 0 to m . thereby constituting m + 1 mes­

sages. These can. for instance. be encoded by an even-length Sperner code. That this 

encoding is not so simple does not matter too much. because the number of values to be 

encoded is relatively small. It could be done by table-lookup. 

For example. the Sperner code of length 6 has 20 code words. Hence. data vectors of 

length m. m <>19. can be encoded into code words of length m +6. Actually. this also 

holds for m = 20. because when m is even the data vector never needs to be complemented 

entirely. 

Let us briefly analyze the size of these Knuth codes. Consider the Sperner code of length 

2k. From (3.1) we know that its size is approximately 22k /-hrk . which. in the best case. 

equals m+1. For the size of the corresponding Knuth code of length n = m+2k we. 

therefore. have 

(5.1) 

Hence. the size of these Knuth codes is only slightly less than that of the Berger codes of 

the same length. The redundancy is roughly 
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log n + '/2 log log n + '/2 log rr 12 . (5.2) 

Of course. a number of variations on this encoding scheme are possible. For these we refer 

the reader to Knuth (1986). 

6 CONCLUSION 

We have formulated the problem of delay-insensitive data communication. We have given 

necessary and sufficient conditions for codes to be usable for delay-insensitive message 

transmission. It turned out that these conditions are equivalent to the ones defining 

antichains in partially ordered sets and all unidirectional error-detecting (AUED) codes. A 

number of delay-insensitive codes have been constructed and analyzed. The following 

table summarizes these DI codes (logarithms have base 2). 

DI Code Redundancy Rate 

(length n) (approximately) (n .... 00) 

One-Hot n - logn 0 

Double-Rail n12 0.5 

Knuth logn + '/2 log log n + '/2 log rr/2 1 

Berger log n 1 

Sperner '/2 logn + '/2 log rr/2 1 

Important practical aspects of codes are their size (measured. for example. by redun­

dancy or rate). encoding-decoding scheme. and membership test. The One-Hot codes are 

among the most trivial Dl codes. but they are very inefficient for larger code lengths. The 

Double-Rail and Berger codes are separable and their encoding is simple. Especially the 

Berger codes look promising for the use in delay-insensitive circuits. The Sperner codes are 

the optimal DI codes. but no easy encoding scheme is known. The Knuth codes are large 

subcodes of the Sperner codes which do allow a relatively simple encoding. 
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