

Delay-insensitive codes : an overview

Citation for published version (APA):
Verhoeff, T. (1987). Delay-insensitive codes : an overview. (Computing science notes; Vol. 8704). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/1987

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 24. Aug. 2022

https://research.tue.nl/en/publications/67b069d7-bde8-4607-b1c0-e9c46a823f58

Delay-Insensitive Codes

An Overview

by

Tom Verhoeff

87/04

February 1987.

'-

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing

Science Section of the Department of

Mathematics and Computing Science of

Eindhoven University of Technology.

Since many of these notes are preliminary

versions or may be published elsewhere, they

have a limited distribution only and are not

for review.

Copies of these notes are available from the

author or the editor.

Eindhoven University of Technology

Department of Mathematics and Computing Science

P.O. Box 513

5600 MB EINDHOVEN

The Netherlands

All rights reserved

editor: F.A.J. van Neerven

Delay-Insensitive Codes-An Overview

TOM VERHOEFF

Department of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513. 5600 MB Eindhoven. The Netherlands
E-Mail address: mcvax. UUCP!eutrc3!wstom v

January 1987

Abstract. The problem of delay-insensitive data communication is described. The notion

of delay-insensitive code is defined. giving precise conditions under which delay-insensitive

data communication is feasible. Examples of these codes are presented and analyzed. It

appears that delay-insensitive codes are equivalent with antichains in partially ordered

sets and with all unidirectional error-detecting codes.

Keywords: Block codes - Delay-insensitive communication - Parallel data transmission

- Self -timed systems

CONTENTS

1. Problem Description

2. Requirements for Delay-Insensitive Codes

3. k -out-of-n Codes and Sperner Codes

4. Berger Codes

5. Knuth Codes

6. Conclusion

ACknowledgments

References

Delay-Insensitive Codes-An Overview

- 2 -

1 PROBLEM DESCRIPTION

Consider a communication channel that consists of a number of tracks running from

sender to receiver. The sender can use this channel to convey information to the receiver

by rolling marbles along some of the tracks. The amount of time it takes a marble to

travel from sender to receiver. however. is unknown and may even vary from track to

track or from roll to roll. But it is nonnegative and finite. that is. marbles eventually do

arrive after they have been rolled onto a track. The problem is to design a communication

scheme for sender and receiver that is insensitive to variability in propagation delays.

The above problem description has not addressed certain issues that nevertheless are

relevant. Let us narrow it down a bit. (a) One may assume that sender and receiver are

in agreement about the identity of the tracks: the tracks are labeled. (b) To prevent the

smashing of marbles the sender should roll at most one marble onto each track for the

transmission of a single message. (c) When sequences of messages are to be transmitted.

there arises the need for acknowledgment of the reception of a message. It can be imple­

mented by a feedback track from receiver to sender. ACknowledgment is not considered to

be part of the problem.

An example may further clarify the problem. Suppose there is the need to communicate

messages taken from a set of n messages. numbered 1 through n. We use a channel with

n tracks. labeled from 1 to n. Transmission of message with number k is accomplished

by rolling a marble over the track labeled k . and no marbles over the other tracks. The

receiver waits till he sees a marble. notices along which track it arrived. and knows that he

has received the complete message. since there cannot be any other marbles on their way.

Because of its resemblance to the one-hot assignment (Hollaar 1982). this very simple

communication scheme is called the One-Hot code.

The One-Hot code is inefficient for large message sets. since it requires too many

tracks. This is underscored by the following analysis. Given a channel with n tracks the

sender has a choice of 2" marble patterns: for each track he is free to roll a marble or not.

To use only n of these patterns seems a big waste. Can you do better? Notice. however.

that not all patterns can be used together. For instance. the pattern in which no marbles

are rolled is useless in the presence of other patterns. The receiver would not be able to

Dela:rlnsensitive Codes-An Overview

- 3 -

decide whether the empty pattern was sent. Initially he has received no marbles (the

empty pattern). but some marbles may still be on their way transmitting a different pat­

tern. How long should the receiver wait before deciding that the empty pattern was sent?

In the next section precise conditions for delay-insensitive communication are formulated.

Originally this problem arose in the context of electronically implemented communication

channels. A track corresponds to a signal wire that has two stable states. which will be

called Zero and One. A marble on a track corresponds to a transition on a wire. i.e" to a

change of state of a wire. The propagation speed of transitions is not always under com­

plete control of the designer. This is especially the case for VLSI circuits (Seitz 1980.

Udding 1986). The current trend is toward self-timed systems. where as little as possible

is assumed about propagation delays. Hence. the interest in delay-insensitive communica­

tion schemes. It is also from this context that the requirement of "at most one marble on

each track" comes. Multiple transitions on a wire can influence each other adversely. caus­

ing transmission interference.

If the One-Hot code is used on signal wires. as suggested above. then all combinations

of wire states are feasible (as opposed to transition patterns). To limit the number of wire

state patterns that may occur. one often resorts to Return-ta-Zero or Four-Phase signaling

(Seitz 1980). In this scheme all wires are initially in the Zero state. and each message is

sent twice. The sole purpose of repeating a message is to bring the wires back to their Zero

state. The name Four-Phase signaling derives from the fact that in practice each transmis­

sion is accompanied by an additional acknowledge phase. resulting in four phases per

effective message.

We prefer the metaphor of marbles rolling on tracks because it avoids the possible

confusion between transition (or marble) patterns and wire state patterns.

2 REQUIREMENTS FOR DELAY-INSENSITIVE CODES

In this section we formally define the notion of delay-insensitive code. It expresses pre­

cisely under what conditions a code can be used for delay-insensitive communication. We

also introduce some additional terminology and present three code construction techniques.

Dela::rlnsensitive Codes-An Overview

- 4 -

Finally. we mention some practically desirable properties of codes.

A code is a pair (J . C) where

I is a finite set.

C is a set of subsets of I

(track indices)

(code words)

The size of I is called the code's length (it is the number of tracks in the channel). and the

size of C is called the code's size (it is the number of messages in the message set that is

coded). Notice that the code's size is at most two to the power the code's length.

A code word is an element of C and it indicates along which tracks marbles will be

sent for the transmission of the corresponding message. The size of a code word x is also

called its weight (in marble units) and it is denoted by w(x).

Sometimes it is convenient to represent subsets of I by their characteristic function.

The characteristic function of x. x k I. is a mapping from 1 into {O.l}. taking on the

value I in the elements of x and 0 otherwise. If the elements of I are somehow ordered.

then a code could be represented by a set of fixed-length bit vectors (words over {O.1}).

There is an obvious notion of code isomorphism involved. but we shall not pursue it expli­

citly here.

Terminology reminding of any of these representations may be used interchangeably.

For instance. the notion of code length and code word derives from the bit vector represen­

tation. Notice that in the characteristic function and bit vector representations there is a

slight asymmetry between 0 and 1: a 1 corresponds to a track with marble. a 0 to an

empty track.

A code (J . C) is called delay-insensitive when

(A x . y : x E C II Y E C II x k y : x = y) . (D!)

that is. when no code word is contained in another code word. This exactly captures the

conditions under which the receiver is able to decide unambiguously when he has com­

pletely received the code word transmitted by the sender. If C would contain two (hence.

distinct) code words x and y with x k y. then the receiver might (temporarily) see x

Delay-Insensitive Codes-An Overview

- 5 -

when either x or y was sent (viz. if the tracks y \ x are slow). But the receiver cannot

know which is the case at the time he sees x. If the code is DI then the complete­

reception-detection strategy for the receiver is simply to wait until he sees a code word.

since no more marbles can be on their way after that. Reception detection boils down to

code membership test.

The One-Hot code from Section 1 consists of all singletons over J. that is. of all

words of unit weight. Its size equals its length and it is obviously delay-insensitive (satis­

fying DO.

It appears that DI codes are equivalent to antichains in a partially ordered set (cf.

Section 3) and to all unidirectional error-detecting (AUED) codes (Bose and Rao 1982.

Theorem 5). All DI codes that we present were already known as AUED codes. although

most of them were rediscovered independently.

Code (J . C) is called subcode of code (J . D) when C is a subset of D. Obviously. a sub­

code of a DI code is itself a DI code. Although this may seem to be a useless construction.

there are situations where subcodes are preferable to their parents (see below and Section

5).

The complement of code (J . C) is the code (J . C). where C is defined by

c=U\xlxEcl. (complement)

When J is understood. J\x is sometimes written as X. Note that complementing (J. C)

results in (J . C) again (complementation is idempotent). From

(2.1)

it follows that a code is DI if and only if its complement is DI. In the bit vector represen­

tation complementation corresponds to replacing all O's and l's in code words by l's and

O's respectively. Hence. the asymmetry between 0 and 1. as emphasized above. is

irrelevant for DI codes.

The complemented code has the same length and size as the original code. The com­

plement of the One-Hot code might be called the One-Cold code. It consists of all words

with a single O.

Dela:-rlnsensitive Codes-An Overview

- 6 -

The concatenation (sometimes also called direct sum) of codes (J. C) and (J. D). with

In J = 0. is the code (I U J . CD). where CD is defined by

CD = { x U y I x E C II Y ED} . (concatenation)

Concatenation is symmetric and associative. The length of the concatenated code is the

sum of the lengths of the composing codes. its size is the product of the sizes of the com­

ponents. A small exercise in set calculus shows that if both codes are DI then so is their

concatenation.

The concatenation of n (disjoint) One-Hot codes of length two yields a Dl code of

length 2n and size 2". This code is known as the Double-Rail code (Seitz 1980). Notice

that all code words of the Double-Rail code have the same weight. viz. n. For n > 2 it

gives a (substantial) size improvement over the One-Hot code of the same length. For

instance. over a channel with 20 tracks the One-Hot code can transmit only 20 different

messages. compared to 1024 for the Double-Rail code. There are. however. about one mil­

lion patterns available on 20 tracks. The largest or code of length 20 utilizes 184.756 of

these patterns. it will appear below as Sperner code.

Before presenting and analyzing some other DI codes it is important to realize that not just

any DJ code is practically useful. The only aspect we have emphasized so far is large code

size for a given code length. Measures for this aspect are the code's rate R and its redun­

dancy r as defined by

R = 10gM .
n

r = n -logM

(rate)

(redundancy)

where n is the code's length. M is the code's size. and the logarithms have base 2. Note

that O,,",R ""' I and O,,",r ,,",n hold. Good codes have a rate close to 1 and a small red un-

dancy.

Equally important aspects are ease of encoding (by sender). membership test. and

decoding (the latter two by receiver). Encoding and decoding on their own are not well­

defined concepts. They heavily depend on the message space to be coded. We will con­

sider the message space to consist of all bit vectors of a certain length. because that seems

Delay-Insensitive Codes-An Overview

- 7 -

to be the most prevalent practical case. Ease of encoding and decoding is now reflected by

the complexity of the mapping from message vectors to code vectors and vice versa.

The One-Hot code is very simple as far as membership test is concerned. since all

code words have unit weight. Encoding and decoding of One-Hot codes require somewhat

more complicated circuitry. unless its length is very small. For the length-two One-Hot

code simply map the message vectors 0 and 1 onto the code vectors 10 and 01 respectively.

By the way. note that the membership test need only work under the circumstance

that the sender transmitted a code word and not something else. Hence. for a subcode the

same membership test can be used as for its parent. although this need not always result

in the most efficient membership test. What makes a subcode interesting. however. is that

it may allow a better encoding/decoding scheme than its parent code.

The Double-Rail code has a very simple encoding/decoding scheme and membership

test. because it is the concatenation of length-two One-Hot codes. The membership test

consists of the conjunction of membership tests for the One-Hot components. EnCOding is

accomplished by encoding each message bit separately via its One-Hot encoding. and decod­

ing works similarly.

3 k -oUT-oF-n CODES AND SPERNER CODES

A k-out-of-n code is a code of length n that consists of all words of weight k . thereby gen­

eralizing the One-Hot code (which is obtained by taking k = 1). Obviously this is a Dl

code: if code word x is a subset of code word y then x equals y . since x and yare known

to have the same weight.

The size of the k -out-of-n code is the binomial coefficient n choose k =
n! / (k! (n -k)!). The membership test is straightforward: w(x) = k. Except for k = 1

and k = n -1. no simple encoding scheme is known. The complement of the k -out-of-n

code is an (n -k)-out-of-n code.

A DI code is called maximal if it cannot be extended without violating the Dr property.

All k -out-of-n codes are maximal in this sense. A word z of length n that is not in the

k -out-of-n code has a weight different from k. Therefore. either it contains a code word

Delay-Insensitive Codes-An Overview

- 8 -

(if w(z) > k) or is contained in one (if w(z) < k). Hence, the word z cannot be added to

the code without violating the DI property. Notice that the Double-Rail code of length 2n

is a subcode of the n -out-of-2n code. This Double-Rail code is not maximal for n > 1.

A DJ code is called optimal if there does not exist a DJ code of the same length con­

taining more code words. Sperner (1928) has completely characterized the optimal DJ

codes. They turn out to be the (n div 2)-out-of-n codes and their complements. We

therefore refer to these codes also as Sperner codes. The Sperner code of length 20 has size

20 choose 10= 184,756.

Applying Stirling's approximation.

(Stirling)

one obtains

(2n)!
2n choose n = --- -

(n !)2
(3.1)

This shows that the even-length Sperner codes utilize a relatively large number of the 22n

available patterns. As is readily verified, the size of an odd-length Sperner code is half

that of the Sperner code of length one more. The redundancy of a Sperner code of length

n is. therefore. approximately

Ihlogn + 'hlog1T/2 . (3.2)

The remainder of this section will be devoted to proving that the Sperner codes are

the optimal DJ codes. The proof we present is not completely new. but in spite of its sim­

plicity it does not seem to be well-known. We also refer the reader to Greene and Kleit­

man (1978) for alternative proofs. The proof given by Freiman (1962) is essentially the

same as that of Sperner (1928).

Our proof will consist of two parts. First. we show that the Sperner codes are optimal.

Then we show that there are no other optimal codes. The proof is based on the theory of

partially ordered sets (posets). Recall that a poset is a set together with an order relation.

the latter being a reflexive. antisymmetric. and transitive relation. We start with some

definitions.

Dela::yInsensitive Codes-An Overview

- 9 -

Let J be a finite set and let P be the power set of J. that is. P consists of all subsets

of J. The pair (P. k) is the poset that will concern us here. Set inclusion is the order

relation. Comparability (under this order relation) of x and y. x E P and yEP. is denoted

byxIiy:

xIiy=xkY VykX. (comparable)

Code (J . C) is a Dr code. if and only if C is a subset of P and any two (distinct) ele­

ments are incomparable. Such a totally unordered set is called an anticluzin in poset ter­

minology:

(A x.y : x E C II Y E C II x". y : ~ (x Ii y)) (antichain)

Delay-insensitive codes and antichains in our poset are equivalent. In the study of

antichains it is helpful to understand the totally ordered sets. or chains. of our poset. The

set L. L k P. is called a chain (in the poset) when

(A x . y : x E Lily E L : x Ii y) . (chain)

Furthermore. L is called a line (of the poset) when it is a maximal chain. that is. when L

is a chain to which no element can be added without violating the chain condition. The

notion of a chain also has a meaning in the original problem context. Consider the inter­

mediate results that the receiver observes. while he is waiting for the arrival of a complete

message: these words form a chain.

Define Lines as the set of all lines in our poset. Cone (x) denotes the set of all lines

through x. for x E P:

Cone (x) = { L E Lines I x ELl (cone)

Let us now do some analyzing and counting. The number of elements in a set V will be

denoted by #V. We shall. however. continue to write w(x) instead of #x if x E P.

Define the numbers n . m. and m by

n = #J. m = n div 2. m = n-m (3.3)

The Sperner codes over J are the m -out-of-n and m -out-of-n codes. both have size

n choose m.

Dela;rlnsensitive Codes-An Overview

- 10-

Each line of our poset contains exactly one element of every weight in the range from

o to n. Each line. therefore. has n + 1 elements and contains 0 and 1. the only elements

of weight 0 and n respectively. The other elements. between 0 and 1. can be chosen in n!

ways. Hence. we have

#Lines=n!. (3.4)

To count the number of elements in Cone (x) for some x E P . observe that one can

choose the elements between 0 and x in w(x)! ways. and those between x and 1 in

(n -w(x »! ways. We therefore have

#Cone (x) = w(x)! (n -w(x »! = #Lines / (n choose w(x » . (3.5)

By the way. notice that Cone (0) = Cone (I) = Lines. Let c denote the size of a smallest

cone:

c = (MIN x : x E P : #Cone (x» . (3.6)

From (3.5) and the fact that "binomial coefficients peak in the middle." we know that

c = #Lines/(n choosem)= m!m!. (3.7)

Put differently: the smallest cones are exactly those for which x has weight m or m:

(#Cone(x) = c) == (w(x)= m V w(x)= m). (3.8)

One final observation is required before we can prove the optimality of the Sperner

codes. If line L belongs to both Cone (x) and Cone (y). then both x and y lie on L. and.

hence. they are comparable. That is. the cones of incomparable elements of P are disjoint:

~ (x Ii y) :;> Cone (x) n Cone (y) = 0 . (3.9)

Let C be an antichain in our poset. We prove that it has at most n choose m elements.

#C

= { counting}

(SUM x : x E C : 1)

Delay-Insensitive Codes-An Overview

- 11 -

~ 1 (3.6) I

(SUM x : x EC: #Cone(x)/ c)

= 1 distribution)

(SUM x: x EC: #Cone(x))/c

= 1 (3.9). using that C is an antichain)

(U x : x E C : Cone (x)) / c

~ 1 for all x E C : Cone (x) ~ Lines

#Lines / c

= 1(3.7))

n choose m .

This also gives an upper bound on the size of a DI code. The Sperner codes attain this

upper bound. Therefore. if CI . C) is a DI code. then its size is at most the size of a Sperner

code over I. The Sperner codes are optimal.

Because the upper bound is attained by the Sperner codes. we have only equalities in the

above derivation for the antichain C . in the case that (1. C) is an optimal DI code. In par­

ticular this means that the two estimates are exact. Concerning the first estimate we

derive

(SUM x: x EC: 1) = (SUM x: x EC: #Cone(x))/c

1 calculus)

(A x : x E C : #Cone (x) = c) .

1 (3.8))

(A x : x E C : w(x) = m V w(x) = m) . (3.10)

To paraphrase: If a DI code over I is optimal then all the cones of its elements have

minimum size. and, hence. all its words have weight m or iii. As far as we now know­

assuming only the first estimate to be exact-the weights may still be mixed. or some

words of these weights may be missing from the code.

Delay-Insensitive Codes-An Overview

- 12 -

Concerning the second estimate we derive

#(U x: x EC: Cone(x)) = #Lines

{ calculus. using Cone (x) k Lines

Lines k (U x: x EC : Cone (x))

{ set calculus}

(A L : L E Lines: (E x : x E C : L E Cone (x))) .

{ definition of Cone (x) }

(A L : L E Lines : (E x : x E C : x E L)) (3.11)

{ separate proof. see below}

(E k : O<:;k <:;n : (A x : x E P : x E A = w(x) = k)) . (3.12)

To paraphrase: If a DJ code over I is optimal then all lines intersect it. and. hence (not

trivially). it consists of all words of a certain weight k .

Combining (3.10) and (3.12) immediately yields: If a DI code over I is optimal then

it consists either of all words of weight m or of all words of weight iii. implying that it is

a Sperner code over I.

There is still one proof obligation to be dealt with: the equivalence of (3.11) and (3.12). It

is obvious that (3.12) implies (3.11). since each line contains words of every possible

weight. We now prove that (3.11) implies (3.12).

Assume (3.11) to hold. Let y be an element of C with minimal weight. Take k

equal to w(y). We shall show

(A x : x EPA w(x) = k : x E C) (3.13)

by mathematical induction on w(y \x). From this (3.12) follows. because an antichain

cannot contain other elements than all those of some fixed weight (recall that the k -out­

of-n codes are maxima!).

Base: w(y \ x) = O. Since x and y have the same weight. they are equal in this case.

Hence. x = y E C .

Dela;rlnsensitive Codes-An Overview

- 13-

Step: w(y\x»O. Then y\x is nonempty. Let i Ey\x. Since x and y have the same

weight. x \y is also nonempty. Let j Ex \y. Define the words z and x' by z = x U { i}

and x' = z \ { j}. We now have x k z and x' k z. Furthermore. we know w(z) = k + 1

and w(x') = k. We derive

y\x'

= { definition of x . }

y\(z\{j})

= {j Ey on account of j Ex\y }

y\z

= { definition of z

y \ (x U {i })

= { set calculus}

(y\x)\{i).

Because i E Y \ x . we now have shown w(y \x ') = w(y \ x)-1. This allows us to apply the

induction hypothesis to x', which yields x 'E C .

Consider a line L through z and x (such a line exists. since x Ii z). By assumption

(3.11) L intersects C. L does not intersect C in the word z or a larger word. since x 'E C

is a proper subset of z and C is an antichain. There are no words between z and x

because their weights differ by one. Therefore. L intersects C in x or a smaller word.

But all words smaller than x have weight less than k. while by the choice of k all words

of C have weight at least k. Conclusion: x E C .

This concludes the proof that the Sperner codes are the optimal OJ codes.

4 BERGER CODES

From the preceding section we know that the Sperner codes are the optimal OJ codes. It

seems. however. that there does not exist an easy encoding scheme for them (van Overveld

1985). The Berger codes. which we present in this section, are somewhat smaller than the

Delay-Insensitive Codes-An Overview

- 14-

Sperner codes. but their encoding is very simple. They are also an example of good codes

that are not subcodes of the k -out-ofn codes.

Let E be an encoding scheme that maps data (or message) vectors of length m onto the

code words of some code with length n. n ~ m. Of course. E is a one-to-one mapping.

The encoding E is called systematic if for each data vector d . E (d) is the concatenation of

d and some vector s of length k. k = n -m. This is written as E(d) = d: s (concatena­

tion is here denoted by a colon). We call d and s the data and synchronization parts

respectively. In the case of a DI code the synchronization part must enable the receiver to

detect the complete arrival of a message.

A code is called separable when it allows a systematic encoding or when it is iso­

morphic to such a code. This section will deal only with separable codes. A systematic

encoding is completely specified by the way in which the synchronization part depends on

the data part. We denote this mapping from data to synchronization part by syru:. Data

vector d is. thus. encoded as d: syru: (d). Notice that decoding a separable code is very

simple. but that the complexity of encoding and membership test depends on the expres­

sion for sync .

A mapping sync also defines a code, viz. the set of words obtained by applying the

corresponding encoding to all data vectors of a fixed length m. We call this the code gen­

erated by sync (for data length m). As an example consider the mapping syru: (d) = d.

The corresponding encoding maps data vectors of length m onto code words of length 2m

and weight m. The code generated by sync is a DI code. because it is a subcode of the

Sperner code of length 2m. This code is isomorphic to the Double-Rail code. Hence. the

Double-Rail code is separable.

We now investigate the conditions that sync must satisfy in order to generate a DI code.

Throughout this section m will be the length of data vectors and k the length of their

sync images. Define C as the code generated by sync. it has length n = m +k .

Let x and y be data vectors of length m. We derive

x: syru: (x) k y: sync(y) ~ x: sync(x) = y: syru: (y) (4.1)

Delay-Insensitive Codes-An Overview

- 15 -

{ property of concatenation, using that x and y have the same length}

x ,;;; Y 1\ sync (x) ,;;; sync (y) ~ x = Y 1\ sync (x) = sync (y)

{sync is a mapping}

x ,;;; Y 1\ sync (x) ,;;; sync (y) ~ x = y

{ proposition calculus}

x ,;;; y 1\ x;e y ~ ~ (sync(x) ,;;; sync (y))

~ { set calculus I

x ,;;; Y 1\ x;e y ~ sync (x);e sync(y) .

(4,2)

So, if C is 01, then all elements in a chain (cf. Section 3) of data vectors have different

sync images. Because the longest chains of data vectors have m + 1 elements, sync must

produce at least m + 1 different images. Hence,

2k~m+1 (4.3)

is a necessary condition for C to be OJ. Notice that in the code generated by sync (d) = d

(isomorphic to the Double-Rail code) all sync images are different.

To obtain the largest possible 01 code (for a given length n) one should take k as small as

possible, while still satisfying (4.3). It turns out that even for the smallest such value of

k, many choices of sync are available that satisfy (4.2). One particularly elegant choice is

the following. Instead of taking sync (d) = d as above, we define sync by

sync (d) = the k -bit binary representation of wed) , (4.4)

that is, the number of O's in d written as a k -bit binary number. It generates the Berger

code (Berger 1961, Freiman 1962), sometimes also called sum code. Notice that wed)

ranges from 0 to m + 1 and has a k -bit binary representation, because (4.3) holds.

Let us first prove that the Berger code is a 01 code (x and yare data vectors):

x: sync (x),;;; y: sync (y)

{ property of concatenation, using that x and y have the same length}

x ,;;; Y 1\ sync(x)';;; sync (y)

Delay-Insensitive Codes-An Overview

- 16 -

:;> { definition of sync and property of binary representation}

x ~ Y 1\ w(x)"'w(y)

{ property of complementation}

x !;; Y 1\ w(x)~w(y)

{ set calculus}

X=y.

The membership test for the Berger code is also simple. The word d: s is a code word if

and only if s = sync (d). i.e .. if and only if s is the binary representation of the number

of O's in d.

Let us now consider the size of the Berger code. It is. of course. 2m . How does this

compare to 2n ? In the best case we have m + 1 = 2k. we thus get

2m = 2n
-, = 2n I(m + 1) ~ 2n In . (4.5)

The worst case occurs for m = 2'-1. yielding 2m ~2n /2n. The redundancy of the Berger

code is k . which is approximately log n. According to (3.2) this is roughly twice that of

the Sperner code of the same length.

For example. the Berger code of length 19 is obtained by taking m = 15 and k = 4. so

it has 32.768 code words. The Sperner codes of length 19 utilize 19 choose 9 = 92.378

code words of the roughly half a million words available.

The· complement of a Berger code is also a separable 01 code. Only for m = 2' -1 is this

again a Berger code. In that case the code is invariant under complementation. or self­

complementary: the complement of each code word is itself a code word. Notice that. by

their construction. the Berger codes are optimal among the separable 01 codes (Freiman

1962). But they are not the only optimal separable 01 codes. By the way. also notice that

the Sperner codes of length at least 3 are not separable.

Dela::rlnsensitive Codes-An Overview

- 17-

5 KNUTH CODES

This short section presents the main idea behind a family of DI codes recently designed by

Knuth (1986). These codes are subcodes of the Sperner codes but they allow a relatively

simple encoding and nevertheless are not much smaller. We describe only the least sophis­

ticated Knuth code.

A word x of length m is called balanced when w(x) = m div 2. To encode the data vec­

tor d of length m it is first written as x:y such that x:y is balanced (this is always pos­

sible. consider x's of increasing length). To make the encoding one-to-one. the length of x

is separately encoded in a fixed-even-length balanced vector z. The encoding for x is dis­

cussed below. The data vector d now has encoding x: y: z . which is also balanced. The

receiver can decode such a code word by first determining the extent of complementation

from z . then splitting the data part accordingly. and complementing its first half.

The extent of complementation ranges from 0 to m . thereby constituting m + 1 mes­

sages. These can. for instance. be encoded by an even-length Sperner code. That this

encoding is not so simple does not matter too much. because the number of values to be

encoded is relatively small. It could be done by table-lookup.

For example. the Sperner code of length 6 has 20 code words. Hence. data vectors of

length m. m <>19. can be encoded into code words of length m +6. Actually. this also

holds for m = 20. because when m is even the data vector never needs to be complemented

entirely.

Let us briefly analyze the size of these Knuth codes. Consider the Sperner code of length

2k. From (3.1) we know that its size is approximately 22k /-hrk . which. in the best case.

equals m+1. For the size of the corresponding Knuth code of length n = m+2k we.

therefore. have

(5.1)

Hence. the size of these Knuth codes is only slightly less than that of the Berger codes of

the same length. The redundancy is roughly

Delay-Insensitive Codes-An Overview

- 18 -

log n + '/2 log log n + '/2 log rr 12 . (5.2)

Of course. a number of variations on this encoding scheme are possible. For these we refer

the reader to Knuth (1986).

6 CONCLUSION

We have formulated the problem of delay-insensitive data communication. We have given

necessary and sufficient conditions for codes to be usable for delay-insensitive message

transmission. It turned out that these conditions are equivalent to the ones defining

antichains in partially ordered sets and all unidirectional error-detecting (AUED) codes. A

number of delay-insensitive codes have been constructed and analyzed. The following

table summarizes these DI codes (logarithms have base 2).

DI Code Redundancy Rate

(length n) (approximately) (n 00)

One-Hot n - logn 0

Double-Rail n12 0.5

Knuth logn + '/2 log log n + '/2 log rr/2 1

Berger log n 1

Sperner '/2 logn + '/2 log rr/2 1

Important practical aspects of codes are their size (measured. for example. by redun­

dancy or rate). encoding-decoding scheme. and membership test. The One-Hot codes are

among the most trivial Dl codes. but they are very inefficient for larger code lengths. The

Double-Rail and Berger codes are separable and their encoding is simple. Especially the

Berger codes look promising for the use in delay-insensitive circuits. The Sperner codes are

the optimal DI codes. but no easy encoding scheme is known. The Knuth codes are large

subcodes of the Sperner codes which do allow a relatively simple encoding.

Delas-Insensitive Codes-An Overview

- 19-

Acknowledgments. Thanks is. in the first place. due to Huub Schols for providing an

elegant characterization of the conditions for delay-insensitive communication. This has

greatly simplified many arguments. Henk van Tilborg pointed out the relation with uni­

directional error-detecting codes.

References

Berger JM (1961) A note on error detection codes for asymmetric channels. Inf Control 4:

68-73

Bose B. Rao TRN (1982) Theory of unidirectional error correcting/detecting codes. IEEE

Trans Comput C-31: 521-530

Freiman CV (1962) Optimal error detection codes for completely asymmetric binary chan­

nels. Inf Control 5: 64-71

Greene C. Kleitman DJ (1978) Proof techniques in the theory of finite sets. In: Rota G-C

(ed) Studies in combinatorics. The Mathematical Association of America. pp 22-79

Hollaar LA (1982) Direct implementation of asynchronous control units. IEEE Trans

Comput C-31: 1133c1l41
- ~ ~;".'.

Knuth DE (1986) Efficient balanced codes. IEEE Trans Inf Theory IT-32: 51-53

van Overveld WMCJ (1985) On arithmetic operations with m -out-of-n codes. Computing

Science Notes. No 85/02. Dept of Math and Comp Sci. Eindhoven University of Tech­

nology. The Netherlands

Seitz CL (1980) System timing. In: Mead CA. Conway LA. Introduction to VLSI systems.

Addison-Wesley. Reading MA. chapter 7

Sperner E (1928) Ein Satz uber Untermengen einer endlichen Menge. Math Z 27: 544-548

Udding JT (1986) A formal model for defining and classifying delay-insensitive circuits

and systems. Distributed Computing 1: 197-204

Delay-Insensitive Codes-An Overview

COMPUTING SCIENCE NOTES

In this series appeared

No.
85/01

85/02

85/03

85/04

86/01

86/02

86/03

86/04

86/05

86/06

86/07

Author(s)
R.H. Mak

W.M.C.J. van Overveld

W.J.M. Lemmens

T. Verhoeff
H.M.J.L. Schols

R. Koymans

G.A. Bussing
K.M. van Hee
M. Voorhoeve

Rob Hoogerwoord

G.J. Houben
J. Paredaens
K.M. van Hee

Jan L.G. Dietz
Kees M. van Hee

Tom Verhoeff

R. Gerth
L. Shira

Title
The formal specification and
derivation of CMOS-circuits

On arithmetic operations with
M-out-of-N-codes

Use of a computer for evaluation
of flow films

Delay insensitive directed trace
structures satisfy the foam
rubber wrapper postulate

Specifying message passing and
ceal-time systems

ELISA, A language for formal
specifications of information
systems

Some reflections on the implementation
of trace structures

The partition of an information
system in several parallel systems

A framework for the conceptual
modeling of discrete dynamic systems

Nondeterminism and d y;-ergence

created by concealment in CSP

On proving communication

closedness of distributed layers

86/08

86/09

86/10

86/11

86 / 12

86/13

86/14

87/01

87/02

87/03

87/04

R. Koymans
R.K. Shyamasundar
W.P. de Roever

R. Gerth

S. Arun Kumar

C. Huizing

R. Gerth
W.P. de Roever

J. Hooman

W.P. de Roever

A. Boucher

R. Gerth

R. Gerth

W.P. de Roever

R. Koymans

R. Gerth

Simon J. Klaver
Chris F.M. Verberne

G.J. Houben
J.Paredaens

T.Verhoeff

Compositional semantics for
real-time distributed

computing (Inf.&Control 1987)

Full abstraction of a real-time

denotational semantics for an
OCCAM-like language

A compositional proof theory

for real-time distributed
message passing

Questions to Robin Milner - A
responder's commentary (IFIP86)

A timed failure semantics for

communicating processes

Proving monitors revisited: a

first step towards verifying
object oriented systems (Fund.

Informatica IX-4)

Specifying passing systems

requires extending temporal logic

On the existence of sound and
complete axiomatizations of

the monitor concept

Federatieve Databases

A formal approach to distri­
buted information systems

Delay-insensitive codes -
An overview

	Abstract
	Contents
	1. Problem description
	2. Requirements for delay-insensitive codes
	3. k-OUT-OF-n codes and sperner codes
	4. Berger codes
	5. Knuth codes
	6. Conclusion
	References

