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Differential CPM Detection
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Abstract—The conventional non-coherent differential detection
of continuous phase modulation (CPM) is quite robust to channel
impairments such as phase and Doppler shifts. Its implemen-
tation is on top of that simple. It consists in multiplying the
received baseband signal by its conjugate and delayed version
of one symbol period. However it suffers from a signal-to-noise
ratio gap compared to the optimum coherent detection. In this
paper, we improve the error rate performance of the conventional
differential detection by using a delay higher than one symbol
period. We derive the trellis description as well as the branch and
cumulative metric that take into account a delay of K symbol
periods. We then derive an optimization criterion of K based on
the minimum Euclidean distance between two differential signals.
We finally determine optimized delays for some popular CPM
formats whose values are confirmed by error rate simulations.

Index Terms—CPM, differential detection, Doppler shift, phase
shift

I. INTRODUCTION

C
ONTINUOUS PHASE MODULATIONS (CPM) are a

class of non-linear constant-envelope modulations with

limited spectral occupancy. The constant envelope is interest-

ing when the channel includes a strong non-linearity like e.g.

in satellite communications. Moreover, non-coherent CPM de-

tection enables to face the possible phase distortion introduced

by the channel, by doing without any phase synchronisation.

Combined with the energy efficiency of CPM, these properties

make this kind of waveform a good candidate for Internet of

Things (IoT) [1], [2]. Non-coherent CPM detectors can be

grouped into two families depending on the criterion they

are based on. The first one is derived from the generalized

maximum-likelihood criterion [3]–[5] and only requires the

knowledge of the phase distribution. Algorithms proposed

either in [6] or in [7] with an uniformly-distributed phase

assumption belong to it. The second one preprocesses the

received signal to neutralize the phase contribution making

possible the application of the maximum-likelihood criterion

for coherent detection on the resulting signal.

Numerous papers based on differentially-preprocessed sig-

nals can be found in the state-of-the-art. The common feature

is the use of the product of the received baseband signal and a
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conjugate time-delayed version of it, yielding a signal that we

will refer to as differential signal in the remaining of the paper.

Different algorithms are proposed and apply either on time-

discrete differential signals (see e.g. [8]) or on time-continuous

differential signals (see e.g. [9]–[12]). In [9] applied to tamed

frequency modulation (TFM) and in [12] extended to CPM

signals, a detection metric is defined from a set of multiple

differential signal versions of the original one (differing from

the delay value). Simulations are used to compare different

set definitions (with a maximum delay equal to three symbol

periods) for the TFM and the Gaussian minimum shift keying

(GMSK). However, the most used representative of the second

class is the conventional differential detection as defined in

[10], [11] and applied with one symbol period as the delay

value. The latter is on top of that insensitive to Doppler shifts,

which motivated us to focus on this kind of receiver given

our interest for SAT-IoT. Its main drawback is the signal to

noise ratio (SNR) gap as compared to the optimum coherent

detection. In this paper, for the purpose of reducing the SNR

gap, we propose to modify the differential detection as defined

in [10]. Our contributions are threefold, (i) the extension of

the usual differential detection algorithm to consider a delay

higher than one symbol period (including the definition of

the phase trellis and of the branch and cumulative metric),

(ii) the proposition of an optimization criterion of the delay

value based on the minimum Euclidean distance between two

differential signals and, (iii) the optimized delay values for

different CPM formats (modulation index, phase shaping pulse

length, frequency pulse).

The remainder of this article is organized as follows: in

Section II, the system model is presented and the notations

are introduced. In Section III, the differential detection using

a delay of K symbol periods is exposed, followed by the

optimization criterion of K in Section IV. The simulations and

the resulting tables for different CPM formats are presented in

Section V. A conclusion is drawn in Section VI which ends

the paper.

II. SYSTEM MODEL AND NOTATIONS

We consider a sequence of N independent and identically

distributed (i.i.d.) information symbols a = {ai}0≤i≤N−1 to

be transmitted. Given M an even positive integer, ai takes on

values in the M -ary alphabet M = {±1,±3, ..± (M − 1)}
with equal probabilities. The complex envelope of the

CPM-modulated signal is given by:

s(t, a) =

√

Es
Ts

ejθ(t,a), (1)
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where Es is the average symbol energy, Ts is the symbol

period and θ(t, a) is the signal phase which depends on the

information symbols. It is defined by:

θ(t, a) = 2πh
N−1
∑

i=0

aiq(t− iTs), (2)

where h is the modulation index and q(t) is the phase shaping

pulse whose expression is q(t) =
∫ t

−∞ g(u)du with g(t) the

frequency waveform. In practice, g(t) has a finite duration

LTs and it must satisfy the following conditions:

{

g(t) = g(LTs − t), 0 ≤ t < LTs
∫ t

−∞ g(τ)dτ = q(LTs) =
1
2 , ∀t ≥ LTs

(3)

We assume that the modulated signal is transmitted over a

Gaussian channel. The equivalent baseband received signal,

denoted by r(t), is given by:

r(t) = s(t, a)ejψ + n(t), (4)

where ψ is an arbitrary phase introduced by the channel

supposed to be uniformly distributed in [0, 2π) and n(t) is

the realization of a zero-mean wide-sense stationary complex

circularly symmetric Gaussian noise, independent of the sig-

nal, and with double-sided PSD N0

2 .

III. DIFFERENTIAL DETECTION OF CPM

A. K-delay based differential receiver

At the receiver side, a differential signal denoted by RK(t)
is generated using the received signal r(t) and its K−symbol

periods delayed version r(t − KTs) and is expressed as the

sum of two signals:

RK(t) =
1

2
r(t)r∗(t−KTs) = SK(t, a) +NK(t), (5)

where the first term does not include any noise part:

SK(t, a)
1

2
s(t, a)s∗(t−KTs, a) =

Es
2Ts

ejΘK(t,a) (6)

with ΘK(t, a) = θ(t, a)− θ(t−KTs, a).

The second term which includes noise-dependent compo-

nent NK(t) is decomposed as NK(t) = UK(t)+WK(t) with

UK(t) =
1

2
(s(t, a)n∗(t−KTs) + n(t)s∗(t−KTs, a)) ,

WK(t) =
1

2
(n(t)n∗(t−KTs)) . (7)

The noise component autocorrelation can be written as:

E[NK(t)N∗
K(t− τ)] =

1

4
(N2

0 + 2A2N0)δ(τ) (8)

with A2 = |s(t, a)| =
√

Es

Ts
and δ(t) the delta function. The

noise process NK(t) is wide-sense stationary with zero mean

and constant PSD equal to 1
4 (N

2
0 +2A2N0). From now on, it

will be assumed to follow a Gaussian distribution as in [12].

B. Phase trellis description

Let t = τ + nTs, with 0 ≤ τ < Ts. Taking into account

the properties of the frequency pulse given in (3), the phase

introduced in (6) can be decomposed as the sum of a time-

independent term and a time-dependent term:

ΘK(τ + nTs, a) = φn + 2πhanq(τ) + ϕn(τ), (9)

with φn = πh

K−1
∑

i=0

an−L−i and

ϕn(τ) = 2πh

(

L−1
∑

i=1

(an−i − an−K−i)q(τ + iTs)− an−Kq(τ)

)

.

(10)

ϕn(τ) represents the time-dependent contribution which cor-

responds to the last L memory symbols of both the signal

and its delayed version. The term φn represents the time-

independent part. ϕn(τ) and φn are completely determined

by the set of symbols (an−i)1≤i≤L+K−1. We can thus define

the state Σn = [an−L−K+1, ..., an−1] of the CPM encoder.

Note that there are MK+L−1 different possible states. The

symbol modulation corresponds to a path representing ΘK in

the trellis made of states Σn.

C. Maximum likelihood (ML)-based detection

The ML criterion is applied to detect the information sym-

bols from RK(t). Given the constant amplitude property of

CPM, it consists in maximizing the correlation between RK(t)
and all possible realizations of SK(t). The inner product

between RK(t) and SK(t), denoted by ΓN ã), is defined as

ΓN (ã) =

∫ NTs

−∞
RK(t)SK(t, ã)dt, (11)

which can be recursively computed:

Γn(ã) = Γn−1(ã) + Λn(ã) (12)

with

Λn(ã) =

∫ (n+1)Ts

nTs

RK(t)SK(t, ã)dt. (13)

The Viterbi algorithm is applied on the trellis. At the n−th

section, it computes for each state the maximum cumulative

metric (12) among all the paths arriving at this state.

IV. PROPOSED DELAY OPTIMIZATION BASED ON THE

MINIMUM EUCLIDEAN DISTANCE CRITERION

In this Section, we aim at tuning K to improve the detection

error probability. Let us consider the following error event

when s(t, a) is transmitted and s(t, ã) is detected and a 6= ã.

Given the ML-based detection criterion and the independence

between RK and NK , it means that:
∫ NTs

0

|RK(t)−SK(t, ã)|2dt ≤

∫ NTs

0

|RK(t)−SK(t, a)|2dt

(14)

which can be reformulated as:

ZK ≥
1

2
∆2
K(a, ã), (15)
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where ZK =
∫ NTs

0
Re [(SK(t, a)− SK(t, ã))N∗

K(t)] dt.

∆K(a, ã) =

√

∫ NTs

0 |SK(t, a) − SK(t, ã)|
2
dt is the Eu-

clidean distance between the two differential signals SK(t, a)
and SK(t, ã) corresponding to the symbol sequences a and

ã. ZK has zero mean. Assuming that ZK is Gaussian, the

probability of an error event is given by

Pe(a; ã) = Q

(√

4εb
N2

0 + 2A2N0
d2K(a, ã)

)

(16)

where Q is the Q−function and where dK(a, ã) = ∆K(a,ã)√
2εb

is the normalized Euclidean distance, εb denoting the average

energy per information bit in the differential symbol sequence.

Proceeding as in [13] (Chapter 2, Paragraph 2.1.2), a union

bound on the probability of error is obtained at reasonably

high SNR. The error probability is thus approximated by

Pe ∝ Q

(√

4εb
N2

0 + 2A2N0
d2min(K)

)

(17)

where dmin(K) denotes the minimum Euclidean distance

between two differential signals:

d2min(K) = min
a,ã

a0 6=ã0

(

d2K(a, ã)
)

(18)

By applying the same reasoning as in [13], we obtain another

formulation of the Euclidean distance:

d2K(a, ã) =
log2(M)

Ts

∫ NTs

0

[1− cos (ΘK(t, e))]dt (19)

where e = a− ã is the so-called difference symbol sequence.

Finding the minimum Euclidean distance is done by search-

ing over all possible pairs of sequences a and ã. In practice,

these pairs are those whose respective paths on a phase tree

diverge at time 0 and merge again as soon as possible.

Proceeding as in [13], the phase difference tree is a good

method to determine the difference symbol sequences to be

considered and the corresponding pairs of symbol sequences.

For each value of the delay, a corresponding value of the

minimum Euclidean distance dmin is obtained. Since we are

looking for minimizing the error probability, the best choice

of the delay is the value that yields the highest dmin.

V. NUMERICAL RESULTS

In this Section, we study different CPM formats. In all cases,

we consider short frames communications (symbol sequence

length N = 120) and a symbol duration Ts = 10−4 s.

A. Influence of K on the detection performance

We first illustrate the influence of K on the detection

performance. We consider a CPM format with rectangular

frequency pulse, L = 3 and h = 0.75. The delay K takes

on values in {1,2,3,4}. The Bit Error Rate (BER) is plotted

as a function of Eb/N0 in Fig. 1. We observe that K = 3
is the delay that yields the best BER. A gain of 3 dB is

obtained compared to the receiver with K = 1 and almost

1 dB compared to the receiver with K = 2 while the receiver

with K = 4 exhibits a slight degradation of performance.
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Fig. 1. BER of differential detection for the CPM scheme 3REC with
modulation modulation index h = 0.75 for different values of delay K

TABLE I
OPTIMIZED VALUES OF K FOR RC CPM

Freq. pulse Modulation index
length L h = 1/3 h = 1/2 h = 3/4

1 K = 2 K = 2 K = 3
3 K = 3 K = 3 K = 3
5 K = 4 K = 4 K = 4

B. Optimization of K from the minimum Euclidean distance

criterion

The optimization overK of the Euclidean distance in (19) is

run by Monte-Carlo simulations by considering several possi-

ble pairs of sequences yielding different possible realizations

of e for several CPM families and several parameters. The

optimized value of K is provided in Tables I,II,III for Raised

Cosine, rectangular and Gaussian frequency shaping pulses

respectively, for several modulation indices and several pulse

lengths. The coherence of these optimized delays has also been

checked by BER simulations, but the curves are omitted in this

article due to space limitations. Note that when several values

of K provide the best error rate, then the displayed value is

simply the lowest one to reduce the complexity of the decoder.

C. Comparison with some state-of-the-art receivers

In Fig. 2, we show a comparison between the optimized

differential receiver, the K = 1 differential receiver, and also

the coherent receiver. This comparison is performed for 2

different CPM families: GMSK with BT=0.3, and 5RC with

h = 0.5. For GMSK, there is almost 4dB between the coherent

BER and the K = 1 differential detection. Using the optimized

K = 3 reduces this gap by almost 2dB. For the 5RC CPM,

using the optimized K = 4 delay reduces the gap to coherent

BER from around 6dB down to 2dB. Note that the curves

for the coherent and the optimized differential receivers are

quasi-parallel which means that the diversity gain is almost
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TABLE II
OPTIMIZED VALUES OF K FOR REC CPM

Freq. pulse Modulation index
length L h = 1/3 h = 1/2 h = 3/4

1 K = 2 K = 2 K = 4
3 K = 4 K = 4 K = 3
5 K = 5 K = 5 K = 5

TABLE III
OPTIMIZED VALUES OF K FOR GFSK (BT = 0.3)

Freq. pulse Modulation index
length L h = 1/3 h = 1/2 h = 3/4

3 K = 3 K = 3 K = 4
5 K = 3 K = 3 K = 4

the same and the difference between the two is mainly in the

noise variance which is higher for the differential receiver.

D. Comparison in presence of Doppler shift

The differential detector is especially interesting in appli-

cations where the Doppler shift affects the communication.

In Fig. 3, a performance comparison between the differential

detector and the coherent one in terms of BER is illustrated

for the rectangular pulse with h = 0.5 and L = 5 in presence

of a small Doppler shift. We see a huge degradation of

performances for the coherent detector whereas the differential

detector is not affected, whatever the Doppler shift value.

VI. CONCLUSION

In this article, the increase of the delay used in the conven-

tional non-coherent differential detection of CPM is shown

to have an impact on the error rate. We therefore propose

an optimization criterion of this delay based on the minimum

Euclidean distance between two differential signals. This opti-

mized delay ranges from 2 to 5 symbol periods depending on

the considered CPM format. Simulations confirm the choice

of the optimized delay value which offers a gain from 2 to 4

dB on the error rate performance compared to a single symbol

duration delay. CPM with optimized differential detection may

be an alternative candidate waveform in the perspective of

limited-power Satellite IoT where Doppler shift is an issue.
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