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Abstract Modeling the application of train operation

adjustment actions to recover from delays is of great

importance to supporting the decision-making of dis-

patchers. In this study, the effects of two train operation

adjustment actions on train delay recovery were explored

using train operation records from scheduled and actual

train timetables. First, the modeling data were sorted to

extract the possible influencing factors under two typical

train operation adjustment actions, namely the compression

of the train dwell time at stations and the compression of

the train running time in sections. Stepwise regression

methods were then employed to determine the importance

of the influencing factors corresponding to the train delay

recovery time, namely the delay time, the scheduled sup-

plement time, the running interval, the occurrence time,

and the place where the delay occurred, under the two train

operation adjustment actions. Finally, the gradient-boosted

regression tree (GBRT) algorithm was applied to construct

a delay recovery model to predict the delay recovery

effects of the train operation adjustment actions. A com-

parison of the prediction results of the GBRT model with

those of a random forest model confirmed the better per-

formance of the GBRT prediction model.

Keywords High-speed train � Delay recovery � Train
operation adjustment actions � Gradient-boosted regression

tree

1 Introduction

High-speed trains encounter many random disturbances

during operation that can cause train delays. The anti-in-

terference ability of the train timetable and the ability to

recover from delays after being affected by disturbances

are among the most critical concerns that affect the service

quality of high-speed railways. Delay recovery refers to the

reduction of the delay time, and effective train delay

recovery is a top priority in the daily work of dispatchers.

When a train is delayed, the dispatcher should select an

appropriate train operation adjustment action to coordinate

with the operation situation and transport needs; this

decision is made on the basis of the dispatcher’s own

experience and, of course, the dispatching rules. There are

three widely used train adjustment actions, namely com-

pressing the train dwell time at stations, compressing the

train running time in sections, and changing the travel

interval. Different train recovery effects will occur under

different transportation situations and train operation

adjustment actions. It is often difficult to quantify and

model the dispatcher’s decision-making process as the

effects of different train operation adjustment actions.

Real-world train operation records, e.g., actual train

timetables, records of delay causes, and equipment uti-

lization statuses, have been well preserved. These records

include a wealth of useful information, such as the trains’
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arrival and departure times, delays, and the relationships

between trains. The establishment of models that can

quantify the delay recovery effects under different train

operation adjustment actions will be of considerable sig-

nificance to support the development of intelligent dis-

patching for high-speed rail systems.

Based on the operation performance of a high-speed

train, the decision-making process and rules used by dis-

patchers are determined in this study based on existing

data. Then, taking the delay recovery time as the evaluation

criterion for the effects of train operation adjustment

actions, the gradient-boosted regression tree (GBRT)

machine learning model is used to establish delay recovery

models under different operation adjustment actions. First,

the characteristic factors that affect delay recovery under

different dispatching actions are extracted from actual train

operation data, and stepwise regression is then used to

select the characteristic parameters from the multivariate

variables based on their degrees of influence. Finally, an

algorithm is used to establish models that consider these

influencing factors in the delay recovery process when

employing the compression of the train dwell time at sta-

tions and the compression of the train running time in

sections, and the relationships between the factors and their

degrees of impact on delay recovery are analyzed.

Models are constructed to reflect the mechanisms by

which delay is recovered using different train operation

actions, the most common of which are changing the

running time or dwell time. Trains that arrive before the

scheduled time can usually be easily addressed, and there

are very few cases in which dispatchers need to adopt

actions to recover the delays. Commonly, trains with pos-

itive arrival delays will not depart from the station before

the scheduled departure time.

The presented delay recovery model can better learn the

delay recovery effect of each scheduling action under dif-

ferent train delay conditions, operation diagram structural

parameters, and redundant time layouts. The model can

elaborate the delay recovery effects of different train

operation adjustment actions according to the parameters,

and can provide decision-making assistance to the dis-

patcher; i.e., the dispatcher can make decisions according

to the real-time prediction of relevant parameters. Knowing

the possible effect of a train operation adjustment action

can subsequently realize auxiliary scheduling decisions.

2 Literature review

The delay of a high-speed train not only leads to the change

of the established train schedule and the unreasonable

allocation of resources, but also causes the entire trans-

portation system to fluctuate and reduces the quality of

transportation service due to the transmission characteris-

tics of train delay. Train delays are caused by a variety of

unpredictable interference factors. According to the dif-

ferent types of interference, the causes of delay can be

categorized as either internal or external factors. According

to statistical analysis, equipment failure, vehicle failure,

pantograph signaling network failure, and line failure are

the main factors that lead to delay. Errors in dispatchers’

scheduling commands and the reception and dispatching of

train operation information by the station staff may lead to

train conflicts and delays due to resource competition.

Moreover, the large passenger flow in the station during

peak periods will extend the established boarding and

landing times and interfere with the normal operation

process, ultimately resulting in the late departure of the

train from the station.

Traditional mathematical model-driven methods are

widely used by scholars to study supplement time

scheduling and train operation conflict resolution to realize

train delay recovery. These methods mainly include

queuing theory, optimal scheduling algorithms, and opti-

mization theory.

Dispatchers often set supplement times by extending

train running times and increasing dwell times to achieve

train delay recovery. Train timetable elasticity is consid-

ered an important criterion for the description and mea-

surement of delay absorption and recovery capabilities, but

an increase in the supplement time will result in wasted

capacity [1]. Simulation methods are considered effective

for the establishment of joint delay recovery models [2, 3].

Krasemann [4] used a depth-first greedy algorithm to assist

the integer adjustment model for train operation adjustment

planning and considered the supplement time of the oper-

ation timetable as a tool to eliminate the effect of random

interference on train operation. Yuan et al. [5] established a

stochastic theoretical model of delay propagation at sta-

tions that took into account the recovery parameters for

delayed trains at stations and in sections. Stochastic anal-

ysis models, integer programming models, decision tree

methods, and depth-first greedy algorithms have commonly

been used to study the problems of delay recovery and

supplement time scheduling [4–7]. Dollevoet et al. [8]

proposed a delay management method based on the

micrograph model of surrogate graphs, and iteratively

solved a microscopic train scheduling optimization prob-

lem to minimize passenger operation delays and passenger

transfer conflicts. Cheng [9] established a train operation

network graph model and proposed train scheduling actions

considering conflict resolution measures, such as the pri-

ority of the arrival train, local optimization, and the critical

path method.

Benefiting from the development of railway informati-

zation and big data technology in recent years, research on
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dispatch modeling based on railway operation performance

has gradually increased [10]. Commercial simulation

software, such as OpenTrack and RailSys, has also been

developed and widely used [11, 12]. Many studies have

also addressed the issues of the comparison and selection

of train operation adjustment actions and delay recovery.

By implementing different scheduling actions, the dis-

patcher can change the interval running time, dwell time,

and train interval to achieve delay recovery. Interval run-

ning time estimation is a problem to which researchers

have devoted considerable attention. It requires the con-

sideration of factors such as random interference and the

setting of supplement time during the entire operation of

the train. Regarding the statistical and stochastic models

for the establishment of train delay propagation models,

Yamamura et al. [13] first used heat maps to visualize train

operation data, and then performed static and dynamic

analyses on the delay at each station; finally, methods by

which to reduce train delays were proposed. Naohiko [14]

discussed delay recovery actions for trains in the Tokyo

Circle. Liebchen et al. [15] introduced the concept of

recovery robustness and proposed an optimization action

for train delay recovery based on actual train performance.

Kecman and Goverde [16] developed a model by collecting

running times and dwell times from a training set and

investigated a machine model for accurate prediction of

train event times based on a timed event graph with

dynamic arc weights after a train was delayed [17]. It is

also worth noting that Khadilkar [18] studied the delay

distribution probability, and the analysis of historical data

revealed that the average delay recovery rate of the Indian

Railway was 0.13 min/km. This value was then used as the

delay recovery ability in the constructed delay recovery

model; however, it is difficult to reflect the delay recovery

ability of a train in each section and station using the

average value, which will affect the prediction ability of

the model. Regarding domestic research, Guo et al. [19]

regarded train operation as a series of discrete events based

on the Beijing–Shanghai high-speed railway, and the

operating performances of five railway stations were used

to establish a linear regression model for delay prediction.

Based on the train performance of the Wuhan–Guangzhou

high-speed railway, a chain process of delay propagation

[20], multiple linear regression of the initial delay recov-

ery, and a random forest model [21] have been investi-

gated, and multiple types of machine learning models for

the prediction of delay recovery have been compared [22].

The dispatcher can adjust the train operation, recover

delays, and improve the robustness of the train timetable by

utilizing the resource of supplement time among sections,

stations, and trains. Therefore, the advantages and disad-

vantages of a scheduling action are reflected in the use of

supplement time to recover train delays. The layout and

utilization of the supplement time vary with different sta-

tions, trains, sections, and time periods. Based on statistical

methods, Yuan and Hansen [23] determined that with an

increase in the supplement time between train lines, the

absorption capacity for joint delays will increase expo-

nentially, the supplement time available for dispatching

may be greater, and the delay recovery effect will be

improved. According to the guideline ‘‘UIC CODE 451-1

OR’’ issued by the International Railway Union, the

scheduled supplement time is determined using the average

travel distance or formation time of the train, and the

supplement time scheduling scheme is calculated in min-

utes per kilometer (min/km) or as a percentage (%).

However, statistical schemes do not distinguish between

trains, stations, sections, etc., and the resulting scheme is

thus not targeted. In recent years, scholars in different

countries have studied the problem of delay recovery

[24–26], and, based on random delays in arrivals and

departures, the method of rearranging redundant time to

improve the utilization of the supplement time has been

gradually recognized [27, 28].

As described above, experts and scholars have carried

out numerous related studies and achieved fruitful results

in theories of railway traffic control; besides, more

researchers have dedicated efforts to the application of big

data in the modeling of railway operations, and more train

operation data become available for train delay modeling.

However, related theories and methods for high-speed

railways, especially those for dispatching in China’s high-

speed railways, are still insufficient; there is a lack of

research on the application of machine learning methods to

train delays, delay recovery, and scheduling decision

mechanisms; and there are also deficiencies in the regular

extraction of scheduling decisions made by dispatchers.

With the rapid development of machine learning methods,

it is possible to apply these methods to establish data-dri-

ven models of train operation adjustment decision-making

and delay recovery, but the research in this area is rarely

reported.

3 Problem statement and data description

3.1 Problem statement

The process of a train changing from a delayed state to an

on-time state, or of the reduction in the degree of a delay, is

called delay recovery. The process of increasing the delay

of a train is called a delay increase, while delay stasis

occurs when the delay of a train remains unchanged during

operation. As shown in Fig. 1, train i changes from the

punctual state S0i to a delayed state S1i . At this time, the
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degree of delay is small, after which it increases to reach

state S2i . During the process of transitioning from S2i to S3i ,

the degree of delay is reduced; i.e., the delay is recovered.

During the process of transitioning from S3i to S4i , the

degree of delay is unchanged; i.e., the train remains

delayed. Finally, after a further delay recovery, train i

changes from a delayed state S4i to an on-time state S5i . In

this analysis, S (S0i ; S
1
i ; . . .; S

n
i ) represents the state of a

train. In addition,

Dtni ¼ Tn
ai � Tn

si

DTn
di ¼ Dtnþ1

i � Dtni

�
;

where Tn
ai represents the actual arrival time in state Sni , T

n
si

represents the scheduled arrival time in state Sni , Dt
n
i rep-

resents the delay time of train i in state Sni , DT
n
di represents

the change in the delay time of delayed train i corre-

sponding to the change from state Sni to Snþ1
i , and n repre-

sents the number of the state.

The dispatcher can adopt different train operation

adjustment actions, which will affect the process by which

train i changes from state Sni to state Snþ1
i . It is necessary to

establish delay recovery models for different train opera-

tion adjustment actions to determine their effects on delay

recovery. These models can predict the possible effects of

the implementation of a certain train operation adjustment

action under particular train operating parameters, thereby

assisting the dispatcher in estimating the role of the

selected dispatching action and improving the efficiency

and accuracy of dispatching decisions.

3.2 Data description

This study was based on the operation of the Wuhan–

Guangzhou high-speed railway from July 1, 2015 to June

30, 2016 from Guangzhou North Station to Chibi North

Station; a total of 40,888 train running data points were

utilized. The data were obtained from the scheduled and

actual train operation timetables and included both the

scheduled and actual train arrival and departure times. Via

statistical analysis and data modeling, the delay recovery

mechanisms for different scheduling actions were

elucidated.

The data format is shown in Table 1, where the data can

be divided into two types of recovery actions, namely the

compression of the downtime and compression of the

recovery intervals, based on the different adjustment

actions employed. The respective data sets for these

adjustment actions were extracted, yielding 26,877 and

61,963 data points, respectively. This indicates that, during

actual train operation, the compression of the train dwell

time at stations to achieve delay recovery occurs far less

often (about 1/3) than the compression of the train running

time in sections.

The six variables related to delay recovery are recorded

as the delay recovery time (Tr), the delay time (Td), the

scheduled supplement time (Ts), the running interval (Ti),

the occurrence time (T), and the place where the delay

occurred (L). To investigate the correlation between vari-

ables, the time data variable T was converted into numer-

ical data; for example, the time ‘‘2015/11/3 8:44’’ was

converted to the value 8.73. In particular, a higher number

indicates that the station or section occurs further toward

the end of the line.

The Pearson correlation coefficient was used to analyze

the correlations between variables when the compression

of the train dwell time at stations was employed, as sum-

marized in Table 2.

As can be seen from Table 2, in the recovery data for the

compression of the train dwell time at stations, there is a

strong positive correlation between Tr and Ts, and a weak

positive correlation between Tr and Td; in addition, there

are negative correlations between Tr and each Ti, T and L.

The Pearson correlation coefficients for the six variables

in the delay recovery data for the adjustment action of the

compression of the train running time in sections were also

analyzed, and the results are summarized in Table 3.

In the recovery data reported in Table 3, there are pos-

itive correlations between Tr and each Td, Ts, T, and L; Tr
has strong positive correlations with Ts and L, while it has

weak positive correlations with Td and T. Additionally, Tr
has a negative correlation with Ti.

A significance test was conducted to verify that the

sample data accurately represent the overall data charac-

teristics. As presented in Table 4, the significance test

results indicate that the correlation coefficients between Tr

1
iS

2
iS

3
iS 4

iS
5
iS

0
iS

1
d 0iT� � 2

d 0iT� � 3
d 0iT� �

4
d 0iT� �

0 0it� � 1 0it� � 2 0it� � 3 0it� � 4 0it� � 5 0it� �

Fig. 1 Changes in the delay state of a train
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and each Td, Ts, Ti, T, and L are all significant and nonzero;

therefore, the original hypotheses of a correlation degree of

zero can, respectively, be rejected.

4 Multiple variable feature selection based
on stepwise regression

The correlation analysis revealed the nature and strength of

the correlations between the six variables (Tr, Td, Ts, Ti, T,

and L) in the delay recovery data related to the compression

of the train dwell time at stations and the compression of

the train running time in sections. To further quantify the

influencing factors and establish a mathematical model of

delay recovery, it is necessary to filter and optimize these

variables (with the exception of Tr), remove uncorrelated

and redundant feature variables, and select the truly related

simplified feature variables by differentiation. This process

can not only reduce the running time of the model, but can

also improve the accuracy of the model. There are many

methods that can be used for feature selection, including

the direct method, single-variable feature selection, and

multivariable feature selection. Because there are many

influencing factors of delay recovery, a stepwise regression

algorithm was applied for multivariable feature selection to

select the feature variables that affect delay recovery.

Multivariate feature selection refers to the combination

and simultaneous optimization of multiple variables.

Stepwise regression is a multivariate regression method for

variable selection [29]. In this method, the independent

variables that have the most significant impacts on the

dependent variables are introduced sequentially, and the

significances of the original independent variables in the

model are tested to eliminate any nonsignificant variables;

Table 1 Data format

Train

no.

Recovery time

(min)

Delay time

(min)

Scheduled supplement time

(min)

Running interval

(min)

Time Place

G542 2 5 4 8 2016/6/18 11:16 CZW

G1104 3 3 5 3 2015/10/1 9:45 HYE

G280 1 1 5 6 2015/11/3 8:44 QY-YDW

G6110 1 5 9 7 2016/5/28 16:57 CZW-

LYW

G432 2 2 14 41 2015/12/12

22:19

CSS-MLE

Table 2 Correlation coefficients between the delay recovery variables under the action of compression of the train dwell time at stations

– Tr Td Ts Ti T L

Tr 1 0.1171 0.5855 - 0.1867 - 0.0187 - 0.1946

Td 0.1171 1 0.0604 0.1066 0.0192 0.1243

Ts 0.5855 0.0604 1 - 0.1691 0.0549 - 0.1698

Ti - 0.1867 0.1066 - 0.1691 1 0.0450 0.3478

T - 0.0187 0.0192 0.0549 0.0450 1 0.2920

L - 0.1946 0.1243 - 0.1698 0.3478 0.2920 1

Table 3 Correlation coefficients between the delay recovery vari-

ables under the action of compression of the train running time in

sections

– Tr Td Ts Ti T L

Tr 1 0.1355 0.3129 - 0.0237 0.1214 0.4149

Td 0.1355 1 0.0826 0.0302 0.0918 0.1401

Ts 0.3129 0.0826 1 0.0531 0.2491 0.3641

Ti - 0.0237 0.0302 0.0531 1 0.2056 - 0.0109

T 0.1214 0.0918 0.2491 0.2056 1 0.2313

L 0.4149 0.1401 0.3641 - 0.0109 0.2313 1

Table 4 Significance test results of the correlation coefficients under

the action of compression of the train running time in sections

– Tr Td Ts Ti T L

Tr 0.00 0.00 0.00 0.00 0.00 0.00

Td 0.00 0.00 0.00 0.00 0.00 0.00

Ts 0.00 0.00 0.00 0.00 0.00 0.00

Ti 0.00 0.00 0.00 0.00 0.00 0.01

T 0.00 0.00 0.00 0.00 0.00 0.00

L 0.00 0.00 0.00 0.01 0.00 0.00
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the resulting model includes all the significant independent

variable features of the dependent variables.

The feature selection of five variables ( Td, Ts, Ti, T, and

L) related to Tr in the delay recovery data of the operation

actions of the compression of the train dwell time at sta-

tions and the compression of the train running time in

sections was carried out. First, the five variables Td, Ts, Ti,

T, and L were, respectively, used to establish regression

models for Tr. The F-statistics were then calculated, and

the variable with the most significant F-statistic (i.e., the

largest F-statistic and p\ 0.01) was selected and input into

the regression model. Then, the most important variable of

the remaining four variables was selected and input into the

regression model, and the significance (p value) of the two

variables after entering them into the model was tested. If

p was not less than 0.01, the second step was repeated to

judge all variables. After iterative calculation, the charac-

teristic variables that affect delay recovery were finally

determined. The statistical analysis results of the regression

models are summarized in Table 5.

Taking the variable selection for the compression of the

dwell time as an example, among the five F-statistics

determined in Step 1, the F-statistic corresponding to Ts
was the largest, and p\ 0.01. Therefore, Ts was selected to

be entered into the regression model. Then, in Step 2,

among the remaining four variables (Td, Ti, T, and L), the

variable L was selected for inclusion in the regression

model because it had the highest F-statistic. In this way, the

variables were obtained sequentially by the 5 steps.

It must be noted that, in the regression model obtained in

Step 5, the p-values of Td, Ts, L, Ti, and T were,

respectively, 2.12 9 10–14,\ 2.2 9 10–16, 8.01 9 10–8,

1.18 9 10–7, and 0.0777. Among them, the p-value of

T was greater than 0.01, so the variable T was not used in

the model, and the variable selection process returned to

Step 4. Finally, for the delay recovery data of both the

compression of the train dwell time at stations and the

compression of the train running time in sections, it was

ultimately determined that the characteristic variables that

affect delay recovery are Tr * Ts ? L ? Td ? Ti.

5 Delay recovery model based on a gradient-
boosted regression tree

The GBRT algorithm is a machine learning regression

algorithm based on the gradient boosting method. This

algorithm is an integrated model by use of the gradient

descent algorithm to obtain a lifting tree, the goal of which

is to minimize the mean squared error [30–32]. In the

GBRT algorithm, subsequent decision trees are formed by

learning the conclusions and residuals of the previous

decision tree. By adjusting the weight of the weak learner,

the accuracy of the regression prediction is gradually

improved. Advantages of the GBRT algorithm include a

high model accuracy, the ability to handle nonlinear data,

and strong robustness to outliers.

During the process of carrying out the GBRT algorithm,

the loss function, number of iterations, learning rate,

resampling ratio, and depth of the decision tree are the

most important model parameters. Based on experience,

the value of the learning rate shrinkage is generally

Table 5 Statistical analysis results of the regression models

Regression model Compression of the train dwell time Compression of the train running time

F-statistics Significance (p value) F-statistics Significance (p value)

STEP 1 Tr * Td 51.39 9.104 9 10–13 1135 \ 2.2 9 10–16

Tr * Ts 1928 \ 2.2 9 10–16 6587 \ 2.2 9 10–16

Tr * Ti 133.5 \ 2.2 9 10–16 34.13 5.188 9 10–9

Tr * T 1.29 0.256 908.8 \ 2.2 9 10–16

Tr * L 145.4 \ 2.2 9 10–16 1263 \ 2.2 9 10–16

STEP 2 Tr * Ts ? Td 992.6 \ 2.2 9 10–16 6586 \ 2.2 9 10–16

Tr * Ts ? Ti 997.9 \ 2.2 9 10–16 7701 \ 2.2 9 10–16

Tr * Ts ? T 974.7 \ 2.2 9 10–16 6330 \ 2.2 9 10–16

Tr * Ts ? L 1004 \ 2.2 9 10–16 6344 \ 2.2 9 10–16

STEP 3 Tr * Ts ? L ? Td 696.6 \ 2.2 9 10–16 5300 \ 2.2 9 10–16

Tr * Ts ? L ? Ti 680.1 \ 2.2 9 10–16 5162 \ 2.2 9 10–16

Tr * Ts ? L ? T 670.7 \ 2.2 9 10–16 5125 \ 2.2 9 10–16

STEP 4 Tr * Ts ? L ? Td ? Ti 533 \ 2.2 9 10–16 4000 \ 2.2 9 10–16

Tr * Ts ? L ? Td ? T 523.2 \ 2.2 9 10–16 3978 \ 2.2 9 10–16

STEP 5 Tr * Ts ? L ? Td ? Ti ? T 427.3 \ 2.2 9 10–16 3200 \ 2.2 9 10–16
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between 0.001 and 0.01, and the resampling ratio is

preferably 50%. In this study, during the process of

establishing the regression models, the squared error isPn
i¼1 ðyi � yiÞ2, where indexes over some training set of

the size of actual values of the output variable yi is the

predicted value, and yi is the observed value.

The delay recovery data under the train operation

adjustment actions of the compression of the train dwell

time at stations and the compression of the train running

time in sections were sorted according to time. The first

75% of the data was used as the training set, and the

remaining 25% of the data was used as the test set. Based

on the feature variables selected in Sect. 3, a regression

model of Td, Ts, Ti, and L against Tr was established using

the GBRT algorithm.

5.1 Preferences

Before a model is established, the parameter values need to

be determined. In this work, the tenfold cross-validation

method was used to calculate the number of iterations, and

the sum of the squared error loss was used as the evaluation

criterion [33]. The optimal model iterations of compressed

train dwell time and running time are determined as shown

in Fig. 2. For these models, the sum of the squared error

loss became stable when the numbers of iterations were,

respectively, 2622 and 7389, as determined by the tenfold

cross-validation method. Therefore, the optimal numbers

of iterations for the delay recovery models in cases of

compressing the train dwell time at stations and com-

pressing the train running time in sections were determined

to be 2622 and 7389, respectively.

Next, the depths of decision trees were determined, and

the root-mean-square errors of the cross-validation were

compared at different decision tree depths. It was found

that the root-mean-square error was the least when the

decision tree depth was 5, as presented in Fig. 3.
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of the respective regression models
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5.2 Modeling

After the model parameters were determined, the training

data set was separately used for training and modeling. Due

to the large amount of delay recovery data for the train

intervals, the learning rate shrinkage was set as 0.05 to

reduce the model running time while ensuring the accuracy

of the model. In the delay recovery model of the com-

pression of the train dwell time at stations, the learning rate

shrinkage was set to 0.01.

The sum of the squared residuals was then calculated for

the two training models; the results of the model with

compression of the train dwell time at stations and com-

pression of the train running time in sections were 0.926

and 0.290, respectively. It is normal for the values to differ

so greatly because the two models are independent of each

other. As delay recovery occurs more frequently and more

supplement time can be used during train operation in

sections than when the trains stop at stations, the value of

the sum of squared error of the delay recovery model with

compression of the train running time was much larger than

that of the model with compression of the train dwell time.

The importance of each variable in the two regression

models was calculated, and the results are presented in

Fig. 4. It was found that, for the delay recovery models

with both the compression of the train dwell time at sta-

tions and the compression of the train running time in

sections, the supplement time has the highest importance,

the delay time has the second-highest importance, and the

interval between trains has the lowest importance.

According to this result, to recover train delays,

regardless of which action is adopted, increasing the

scheduled supplement time is the most effective approach,

while changing the headway between trains has little

effect.

Finally, the training models were used to predict the test

data set, and the results are presented in Fig. 5.

The curves for the true and predicted values exhibited in

Fig. 5 have high degrees of coincidence and small devia-

tions; thus, the prediction models are considered to have

performed well.
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a compression of the train dwell time and b compression of the train

running time
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5.3 Model analysis

To further explore whether GBRT is the optimal regression

model for delay recovery, a random forest (RF) model was

used. The RF is a widely used and well-behaved integrated

model for data prediction and has been confirmed to per-

form better than multiple linear regression and support

vector machines when modeling delay recovery [22].

Generally, the distribution of residuals for the true and

predicted values is used to analyze the effectiveness of the

prediction. In the distribution figure, if most of the area

under the curve is concentrated near zero, it means that the

prediction effect is good; otherwise, it means that the

prediction effect is not ideal. The residual distributions in

Fig. 6 reveal that the areas under the residual curves of

both the GBTR model and RF model are concentrated near

zero, and the GBRT model has smaller residuals than the

RF model, especially when the residuals are less than 2.5

for the action of compression of the train dwell time. This

means that the GBRT model has achieved a better pre-

diction accuracy than the RF model to a certain extent. In

addition to its superior prediction accuracy, the advantages

of the GBRT method also lie in the speed of parallel

operation and its ability to process large amounts of data

[30].

6 Conclusions

Modeling research on the effects of delay recovery for

high-speed railways under different train operation

adjustment actions can provide decision-making assistance

for dispatchers in the selection of reasonable scheduling

actions; it also can provide theoretical support for the

development of intelligent scheduling for high-speed

railways.

In this study, the variables in train operation data that

may affect the delay recovery under different dispatching

actions were first determined to be the delay recovery time

(Tr), the delay time (Td), the scheduled supplement time

(Ts), the running interval (Ti), the occurrence time (T) and

the place where the delay occurred (L). The Pearson cor-

relation coefficients for the six variables were then calcu-

lated, and it was found that correlations existed between

the six variables. To establish delay recovery models under

different train operation adjustment actions and elucidate

the delay recovery mechanism, the stepwise regression

method was used to select multiple variables among the

five identified influencing variables (Td, Ts, Ti, T, and L).

To demonstrate the superiority of the GBRT algorithm, an

RF model was selected for comparison. From the results,

the following conclusions can be drawn.

1. In the delay recovery models under different train

operation adjustment actions, four explanatory vari-

ables, namely the scheduled supplement time, the

delay time, the occurrence place, and the running

interval, were found to have the same order of

importance in cases of compressing the train dwell

time at stations and compressing the train running time

in sections, i.e., Ts[ Td[ L[ Ti.

2. The sums of the squared residuals of the GBRT

regression prediction models for both the compression

of the train dwell times and the compression of the

train running time were both very small, indicating that

the prediction performances of the models were good.

In other words, the GBRT prediction model can

effectively explain the delay recovery mechanism.

(a)

(b)

Fig. 6 Distribution of residuals: a compression of the train dwell time

and b compression of the train running time
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However, as delay recovery occurs more frequently

and more supplement time can be used during train

operation in sections than when trains stop at stations,

the value of the sum of squared errors of the

compressed train running time model was much larger

than that of the compressed train dwell time model.

3. By comparing the prediction abilities of the GBRT

prediction model and RF model, the GBRT prediction

model was found to have higher prediction accuracy,

and is characterized by a fast speed of parallel

operation and the ability to process large amounts of

data.

In the future, how to utilize the proposed model in the

automation of dispatching knowledge should be studied in

depth to assist dispatchers to make decisions easily and

precisely and support the development of intelligent train

dispatching systems. A goal of future research is to

establish a database based on these models, which should

include knowledge of delay recovery that accounts for

different delay recovery actions to indicate which actions

may be adopted according to the situations of the delayed

trains. For example, once there is a delay, and once the

related variables of the train can be retrieved, the possible

delay recovery actions can be generated automatically to

facilitate the decision-making of dispatchers.
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