
88 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 2, NO. 2, JUNE 2000

Delay Reduction Techniques for Playout Buffering
Cormac J. Sreenan, Jyh-Cheng Chen, Member, IEEE, Prathima Agrawal, Fellow, IEEE, and B. Narendran

Abstract—Receiver synchronization of continuous media
streams is required to deal with delay differences and variations
resulting from delivery over packet networks such as the Internet.
This function is commonly provided using per-stream playout
buffers which introduce additional delay in order to produce a
playout schedule which meets the synchronization requirements.
Packets which arrive after their scheduled playout time are
considered late and are discarded. In this paper, we present the
Concord algorithm, which provides a delay-sensitive solution for
playout buffering. It records historical information and uses it
to make short-term predictions about network delay with the
aim of not reacting too quickly to short-lived delay variations.
This allows an application-controlled tradeoff of packet lateness
against buffering delay, suitable for applications which demand
low delay but can tolerate or conceal a small amount of late
packets. We present a selection of results from an extensive evalu-
ation of Concord using Internet traffic traces. We explore the use
of aging techniques to improve the effectiveness of the historical
information and hence, the delay predictions. The results show
that Concord can produce significant reductions in buffering
delay and delay variations at the expense of packet lateness values
of less than 1%.

Index Terms—Multimedia stream synchronization, playout
buffering.

I. INTRODUCTION

T HE USE OF packet networks for delivering continuous
media is set to become more and more popular, driven

by user demand and network technology advances providing
quality of service (QoS) and increased bandwidth to the user
terminal. When such networks transport packetized streams
of continuous media, receiver synchronization is required.
Single streamsynchronization aims to smooth the transmission
delay variations (often calledjitter) between packet arrivals
for a given stream. This problem can be solved at the receiver
by using per-stream playout buffers, as illustrated in Fig. 1.
These buffers introduce additional delay with the aim of
producing a playout schedule which meets the synchronization
requirements. In terms of operation, playout buffers act as a
holding area for packets whose scheduled playout time is in the
future. Packets which arrive after their scheduled playout time
are considered late and are discarded.

Manuscript received April 23, 1999; revised November 8, 1999 and March 29,
2000. The associate editor coordinating the review of this paper and approving
it for publication was Dr. Hong-Yuan Mark Liao.

C. J. Sreenan is with the Department of Computer Science, University College
Cork, Cork, Ireland (e-mail: cjs@cs.ucc.ie).

J.-C. Chen and P. Agrawal are with Telcordia Technologies, Morristown, NJ
07960 USA (e-mail: jcchen@research.telcordia.com; pagrawal@research.tel-
cordia.com).

B. Narendran is with Juno Online Services, Inc., New York, NY 10036 USA
(e-mail: naren@staff.juno.com).

Publisher Item Identifier S 1520-9210(00)05453-5.

Fig. 1. Stream synchronization

Common algorithms for managing a playout buffer take
one of two basic approaches. Fixed approaches assume that
the range of delays is predictable and use a static buffer size
and schedule. Reactive approaches, which are common in the
Internet, measure immediate jitter and use that to dynamically
adjust the buffer size and schedule to avoid lateness. Fixed
approaches have known buffering delay but potentially large
packet lateness, while reactive approaches avoid lateness but
at the expense of potentially very high buffering delays. This
paper works with an alternative predictive approach, which
records historical information and uses it to make short-term
predictions about network delay with the aim of not reacting
too quickly to short-lived variations. This allows an applica-
tion-controlled tradeoff of packet lateness against buffering
delay, suitable for applications which demand low delay but
can tolerate or conceal a small amount of late packets. Our
solution, known asConcord, is notable because it defines a
single framework to deal with both single and multiple stream
synchronization, and operates under the influence of parameters
which can be supplied by the application involved. We perform
a tradeoff of packet lateness against the total end-to-end delay
suffered by packets, by applying these parameters to historical
data describing packet delay distributions (PDD’s). This
paper describes the Concord algorithm and presents a detailed
evaluation of its performance using traces for audio and video
streams having traversed the Internet. Based on Concord,
we also explore the use of aging techniques to improve the
effectiveness of the historical information and hence, the delay
predictions. Three aging algorithms are proposed and compared
with a reactive approach commonly used in the Internet. The
results show that Concord can produce significant reductions
in buffering delay and jitter at the expense of packet lateness
values of less than 1%.

The rest of the paper is organized as follows. Section II
describes the Concord algorithm and the predictive approach
it uses. Section III describes aging techniques as an extension

1520–9210/00$10.00 © 2000 IEEE

SREENANet al.: DELAY REDUCTION TECHNIQUES FOR PLAYOUT BUFFERING 89

to Concord to improve its effectiveness. Section IV presents
results of a trace-driven simulation for Concord (without
using aging) in comparison to other well-known techniques
for playout buffer operation. Section V presents an additional
set of simulation results to demonstrate the effectiveness of
aging. Section VI summarizes related work, while Section VII
concludes the paper. Basic features of the Concord algorithm
were originally described in [1], while some initial simulation
results appeared in [2]. The aging algorithms presented in this
paper build upon our earlier work in [3].

II. FUNDAMENTAL FEATURES OF THECONCORDALGORITHM

This section summarizes the features of the Concord algo-
rithm, which uses a predictive approach to playout buffer man-
agement.

A. Approach

For applications like packet telephony, large delays cause a
significant negative impact on quality because they reduce inter-
activity. For example, in packetized voice applications, figures
in the 150–250 ms range are often quoted as being the maximum
acceptable total end-to-end delay. It is argued that a better ap-
proach than those commonly employed for operating a playout
buffer is necessary in order to minimize end-to-end delay. There
are two common approaches to operating a playout buffer:

• Fixed: If a packet does not arrive within a certain fixed
time bound, the packet is assumed to be lost, and subse-
quent packets are played back. Ifdoes arrive later it is
declared to be late and is thrown away.

• Reactive:In this scheme, the receiver waits until a packet
arrives to play back the packet.

The concern here is the total end-to-end delay: the cumulative
delay suffered by packets in the network and the buffer. With the
fixed approach, if every packet is delayed in the buffer such that
it suffers a cumulative delay (in the network and buffer) equal
to the maximum network delay, the receiver can reproduce a
jitter-free playout. Problems with this approach are that it may
be difficult to obtain an accurate estimate of maximum network
delay over a stream lifetime, and such a value may be quite large
in relation to the mean delay, especially in wide area networks
such as the Internet. The reactive approach results in a playout
buffer which grows and shrinks to accommodate delay fluctu-
ations. This can also result in large buffering delays, often just
to deal with the type of short-lived increases in network delay
(“spikes”) seen in the Internet.

The predictive approach used in Concord takes advantage
of the built in redundancy of a multimedia stream to reduce
the buffer delay at the expense of increasing the number of
late packets (and hence, increasing the overall packet loss rate).
Many voice and video coding algorithms can still produce satis-
factory output by cleverly concealing missing packets. In Con-
cord, a tradeoff is performed of packet lateness against the total
end-to-end delay suffered by packets, by taking application-sup-
plied parameters and applying them to probabilistic data de-
scribing historical PDD’s. The aim is not to react too quickly
to short-lived network jitter.

TABLE I
BASIC NOTATION

B. Operation

In Concord we define a stream as a sequence of packets, pro-
duced according to some period, each marked with a sequence
number. Table I defines the basic notation used throughout the
paper. A stream is characterized by themaximum acceptable
delay () it can suffer, and themaximum late packets
() percentage it can tolerate. For each stream we construct
a PDD—a statistical representation of network delays for
packets in that stream. The PDD is approximate, but over time
it is updated dynamically so that it closely tracks the actual
performance. The speed of getting this process established can
be accelerated by having an initial approximation for the PDD,
perhaps based on recent observations. The basic problem is
then to find the minimum buffer size at the receiver that will
smooth out network jitter so that the stream’s requirements of

and are satisfied, if possible. That is, to find
the minimum buffer size satisfying the following.

• For every packet: is a value , where
is the total end-to-end delay, is the network delay
suffered by packet, and is the inducedbuffer delay
for .

• The chosen is less than the of the stream.
• The chosen does not lead to more than percent

of packets being thrown away.
We show how to calculate the total end-to-end delay, using

the PDD shown in Fig. 2 as an example. This PDD shows a
normal distribution of packet delays, which is common in packet
switched networks, but is not a Concord prerequisite. From this
plot it is clear that all packets that suffer more than in net-
work delay will be declared late. Hence, packets
will be declared late, where is thecumulative distribution
functionon the PDD. Now we can influence Concord’s behavior
by choosing a value of so that either or is minimized
(best visualized by moving the line in the figure to the right
or left, respectively).

90 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 2, NO. 2, JUNE 2000

Fig. 2. Example packet delay distribution (PDD).

III. D YNAMIC CONTROL OFSTATISTICAL TRENDS

There are several known approaches for processing statis-
tical trends based on observed measurements. One approach is
the full aggregationmethod wherein data is accumulated into
a probability distribution curve throughout the lifetime of the
transmission. The second approach is theflush and refreshap-
proach in which statistical samples are stored for a period of
time and then periodically flushed and refreshed. With the first
approach, the recent information and old information are given
the same weight in terms of their influence on the probability
distribution. Therefore, it is slow to react to changes occurring
in the system. With the second approach, the periodic flush re-
sults in a complete loss of historic information and can introduce
boundary effects at the flush instances.

There is a need for a suitable statistical method which can
predict the future network delay by analyzing historical and cur-
rent information and monitor, maintain, update, and store statis-
tical trends of network delays. The approach taken in Concord
is to store and track network delay trends using a measured his-
togram to approximate the PDD curve. The histogram bins store
frequency of delay patterns, wherebin widthmeans the range of
network delays grouped together to represent one pattern in the
histogram. Naturally, the number of bins increases directly as
the width of the bins is decreased. Since network characteristics
vary with time, these statistical trends vary, and current informa-
tion is necessary for Concord to be effective, that is, it requires
an update and operation of each bin to diminish the effect of
older samples. This operation is calledaging.

The next section introduces theaging functionwhich ages
the older samples gradually to allow an accurate delay estimate.
Instead of discarding older information, it is graduallyretired.
The balance between bin width and accuracy is then discussed
in a subsequent section.

A. Aging Function

The aging function is an essential element for increasing the
effectiveness of the Concord algorithm.Aging frequencydeter-
mines how often the aging function should be invoked. Users
or applications can set the rate or frequency of aging. More fre-
quent aging means the data is very current and quick to react to
changes. Less frequent aging works with less current data and
may react to changes slowly.

Aging may be achieved in several ways. A simplistic
approach involves discarding all the data prior to a certain

threshold based on time or a packet count. The threshold here
is a moving window of fixed size prior to the current time.
While this retains more history information than theflush and
refresh method, it has high overheads and can be awkward
to implement, requiring complete data to be kept, rather than
a statistical approximation. The approach advocated here
involves not discarding the older data entirely, but instead
gradually reducing its effect on the statistical distribution.
This can be done by periodically scaling down the existing
distribution by anaging coefficientdetermined by a user
or an application while continuing to add new sample data
with a constant weight. This periodic process progressively
lessens the influence of the older samples while giving the
newer ones a larger effect. Aging coefficient is a parameter
provided by the applications, while Concord translates that into
a correspondingaging factor, which is a mathematical quantity
used to scale the PDD histograms. The type of translation is
what distinguishes the three different algorithms described
later. Theaging coefficienthereafter is defined as a number
between 0 and 1 which is determined by an application and
used to diminish the effect of older statistical data. Theaging
factor is defined as a scaling factor used by Concord to scale
down the value of each bin in histogram.

Aging may be based on the number of packets received.
For example aging may be applied to every packet arrival. In
another example a user or an application may choose to age
the statistical data every 1000 packets and increment the bin
corresponding to each packet’s delay by one whenever a packet
arrives. There are several ways to deal with the aging factor
and coefficient. Three different approaches are presented.
Algorithm 1 is the basic version. Algorithm 2 is the improved
version of Algorithm 1. Algorithm 3 is a variant of Algorithm 2.

1) Aging Algorithm 1: In the first algorithm, each histogram
bin is multiplied by the aging factor which is defined as

(1)

where is the aging coefficient, and is the aging factor.Aging
factor is the real number used to scale down each bin, andaging
coefficient is the parameter provided by users/applications.
Their relationship is identical in Algorithm 1, but differs in
Algorithms 2 and 3. In this first algorithm, the total count is
readjusted by the aging coefficient times the previous sum of
all the histogram bin contents. The bin corresponding to the
new packet’s delay is then increased by one. After aging, all
subsequent packets to arrive cause the corresponding bin to
be incremented by one until aging happens again. Let
be the function of the histogram after theth aging, be the
network delay of new packet, thus

(2)

The ratio of old aged data to the newly arrived packet is de-
fined as

(3)

SREENANet al.: DELAY REDUCTION TECHNIQUES FOR PLAYOUT BUFFERING 91

The ratio of old aged data to subsequent packets until the next
aging is defined as

(4)

where is the aging frequency in packet spacing. Let be
the PDD function after theth aging, hence,

(5)

where . In practical implementations, the
continual function () can be replaced by a discrete function
(). Also, can be limited to the upper and lower bounds of
network delay which can be updated whenever every packet ar-
rives. is a function of the actual number of packets in the
histogram. normalizes so that .

must satisfy the following condition:

(6)

where is the chosen (Fig. 2). Let and be two different
aging coefficients. If we set the same for both of them, the
following equation can be obtained for in (6):

(7)

Suppose , we then get

(8)

For the case of , we can obtain

(9)

Since , the result of (8) can be derived for this
case also. Therefore, we can conclude that when
from (8). This means decreasing aging coefficient decreases the
value of .

2) Aging Algorithm 2: In Algorithm 1, the bin values are
scaled down by the aging coefficient when aging occurs. As the
number of samples increase, hence, the corresponding bin value
increases, the packet arriving after aging contributes less to the
histogram in comparison to the old aged data in histogram which
have just been scaled down [see (3)]. For example, if the total
of histogram bin values is 10, this is scaled down by 0.9 after
aging. The new packet then contributes one to the histogram.

The ratio of old aged data to the newly arrived packet is 9. After
some time, the sum of the bins in histogram may be 10 000.
After aging by 0.9, the ratio of old aged data to the newly arrived
packet is 9000, which is different with the previous ones. This
can be seen in (3) that is changing based on the value of old
aged data in histogram.

The intention of the second algorithm is to keep the ratio of
old aged data to the newly arrived packet constant through the
lifetime of the synchronization stream. When aging occurs, the
next packet contributes one to the histogram, but the old statis-
tical data prior to aging are scaled down by the following factor:

(10)

By scaling down the old bins by (10), the ratio of old aged data
to the newly added bin is always constant, which is represented
by

(11)

Therefore, at each aging, the ratio of old aged data to the new
arrival’s bin is independent of the lifetime of the stream. Each
arriving packet contributes the same weight which is to
the new statistical data. The old aged data also contributes the
same weight which equals. Comparing to the first algorithm,
the advantage is that the data may still be current and quick to
react to changes if the stream has a long lifetime. The ratio of
old aged data to subsequent packets until the next aging is

(12)

Suppose . Following the same derivation from (2),
(5), and (6), we get

(13)

Therefore, the same result in (8) can be obtained for the case
. A similar procedure can be used to derive an identical

result for the case of . Hence, the same conclusion in
aging Algorithm 1 that when can be obtained.

3) Aging Algorithm 3: In previous algorithms, the scaling
factor is related to the aging coefficient only. In the first
algorithm, the bins are scaled down by the aging coefficient
without considering the ratio of old aged data to a new packet.
Algorithm 2 scales down each bin by the factor in (10) which
keeps the ratio constant. The ratio, however, does not
consider the aging frequency. In the third algorithm, (10) is
modified as follows:

(14)

where is the aging frequency inpacket spacing. By scaling
down the bin values by (14), the ratio of old aged data to the sub-

92 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 2, NO. 2, JUNE 2000

sequent packets until next aging is constant through the lifetime
of the stream even if the aging frequency is changing dynami-
cally. The statistical data may be aged everypackets. The goal
of this algorithm is to keep the sum of all subsequent packets
until next aging the same weight to the new statistical data. The
ratio of old aged data to subsequent arrived packets is indepen-
dent of aging frequency which equals

(15)

However, the ratio of old aged data to a new packet depends
on the aging frequency

(16)

As that in Algorithms 1 and 2, the following equation can be
obtained:

(17)
When is fixed, if . Similarly,

if when is fixed. This indicates that more frequent
aging allows a smaller value of .

This section has shown three algorithms for the aging func-
tion. The difference between these algorithms is only in the ac-
tion of aging which happens in different frequencies. For ex-
ample, assume all of them do the aging in 100 packets. In the
arrival of 100th packet, they age the histogram by scaling down
each bin with different factors. For the intervening packets be-
tween the two successive agings, the corresponding bin in the
histogram is increased by one for each packet. Algorithm 3 takes
frequency (100 in this example) into account for the factor, but
Algorithms 1 and 2 do not. The next section discusses histogram
bin width, which is strongly related to the accuracy of histogram
data.

B. Bin Width of Histogram

The bin width of histogram is directly related to the accuracy
of data stored. As defined above, bin width means the range
of network delay grouped together to represent one pattern in
histogram. For instance, bin width may be set to 10 ms, and
205 ms can be chosen to represent the network delay in the
range of 200–209 ms. In this example, all delays in the range of
200–209 ms are stored in the same bin represented by the net-
work delay of 205 ms. Narrow bins carry higher accuracy than
wider bins. The number of bins required, however, increases di-
rectly as the width of the bins is narrowed. As indicated above,
the number of bins may range from 0 todepending on the net-
work delay. Although it is possible to limit the upper and lower
bounds, it is still necessary to reduce the number of bins if the
networks suffer heavily congestion which results in a very wide
range of delay. To increase the bin width therefore reduces the
number of bins, each packet delay being stored to the histogram
is as follows:

(18)

where
network delay;
bin width;
corresponding bin in histogram.

is the floor function. Thus, all network delays inrange are
represented by only one bin. After storing the network delay
of the packet to the corresponding bin, it is still necessary to
recalculate the network delay. It could be done by

(19)

This takes the mean value of this range to represent the net-
work delay for this bin. One can also choose the maximum or
minimum value which are and , respec-
tively. The other alternative is to calculate the real mean value of
delay in this range. This approach, however, requires additional
overheads and memory to keep track and store the mean value
of delays for each bin. This may not be suitable since an aim of
wider bins is to reduce the memory needs.

The following two sections present an evaluation of Con-
cord based on a trace-driven simulation. Section IV compares
the performance of Concord with a fixed approach and a well-
known reactive algorithm. In this case Concord is designed to
operate without the additional complexity of aging. Section V
examines aging, demonstrating the improved performance ben-
efits of employing aging as part of Concord’s operation.

IV. EVALUATING THE BASIC EFFECTIVENESS OFCONCORD

A simulation of Concord was designed such that it could be
used in a trace-driven manner. Actual traces of audio and video
were recorded using streams as they traversed the Internet to
AT&T in New Jersey (research.att.com) from a variety of hosts.
These hosts were located on both the East and West coasts and
also in the U.K. Traces were gathered using each source during
the morning, afternoon, and evening on different days of the
week, and on different weeks in July/August 1995. In this paper,
we focus on the results using traces from stanford.edu (13 hops)
to illustrate the general conclusions we observed using the larger
set of traces. Audio streams are 64 Kb/s with packets generated
every 20 ms; video is 128 Kb/s with packets generated every
200 ms (i.e., 5 frames/s). These values are typical of the confer-
encing tools currently used on the MBONE. Traces were 10 min
in duration.

Packets were transmitted using conventional UDP, each
containing a sequence number and the transmission time as
recorded at the sender. This information was saved for each
packet in addition to the recorded time of arrival at the receiver.
The sender/receiver clocks were not synchronized, so the
differences include any clock offset as well as network delay.
This is not a problem since our focus is on delay variations,
their distribution, and inter-stream delays, rather than absolute
delay measurements. Thus, we define network delay as that
quantity in excess of the minimum observed delay from sender
to receiver for a given streamor group of simultaneous streams.
The latter is determined by finding the packet with the smallest
difference in send/receive times (we assume negligible clock
drift over the lifetime of each trace). In addition to the notation

SREENANet al.: DELAY REDUCTION TECHNIQUES FOR PLAYOUT BUFFERING 93

TABLE II
RESULTS FORTRACE t1

used in the previous section, we define as the actual late
packets (%) as measured. This is the number of packets that
arrive and are intentionally discarded by Concord because they
are deemed to have arrived too late. It does not include packets
losses due to network congestion. The next section analyzes
Concord for single stream synchronization.

A. Single Stream Synchronization

The Concord algorithm is predictive, in that it uses avail-
able information about recent network behavior and/or any ser-
vice contracts to estimate future delay distributions and calcu-
late buffer delays. This distinguishes it from the time preserving
techniques which are fixed in nature and maintain a static buffer
delay regardless of changes in network conditions or packet late-
ness. Similarly, it differs from the data preserving techniques
which take a reactive approach, looking at the most recent in-
formation on network behavior and increasing the buffer delay
to avoid lateness. Thus, these approaches constrain either
or but not both. Concord, on the other hand, allows a bal-
ance of these parameters.

The future Internet might be capable of giving a QoS contract
which may be sufficient to allow Concord to set a value
to be used throughout a given stream’s lifetime and provide
input in constructing a PDD. The behavior of today’s Internet
[4] is not amenable to such an approach, so it is important that
Concord must operate dynamically, revising its PDD and recal-
culating buffer delays when needed. In this casecan vary
throughout a stream lifetime. The following section illustrates
the use of fixed and reactive approaches to synchronize a set
of audio streams, while Section IV-A2 examines and compares
the Concord scheme. Tables II–IV show the results using each
algorithm for three traces. Note that a consequence of our def-
inition of network delay is that it is acceptable to compare the
performance of different algorithms for any individual stream,
but not to compare absolute network delays for different unre-
lated streams.

1) Fixed and Reactive Approaches:The results for the fixed
approach were produced using a value of 200 ms. Note
that the percentage of late packets is calculated based on the
total number of received packets, rather than the total number
of transmitted packets. Similarly, details of burst losses refers
only to those packets which arrived but were discarded as being
late. Fig. 3 illustrates in a time plot for one of the traces.
Packets which appear above the line are discarded for being
late. Figs. 4 and 5 show the corresponding segment for reactive
and Concord algorithms respectively.

For comparison we show the results from a reactive algo-
rithm. The algorithm we chose was introduced after observing
that sudden variations in Internet transit delay are common, and
that existing algorithms tend to react too slowly (hence, drop-

TABLE III
RESULTS FORTRACE t2

TABLE IV
RESULTS FORTRACE t3

ping more packets than necessary) [5]. It is based closely on the
playout algorithm used in the well-known Nevot audio tool, and
very similar to that used in the popular MBONE tool called vat.
It is considered a relatively simple technique, with which a con-
siderable amount of practical experience has been gained.

Without repeating the full details here, in essence this algo-
rithm detects sudden variations by comparing network delay for
the current packet and the previous packet. It reacts by adjusting
the total delay as a function of the most recently observed delay
value. The algorithm returns to normal operation when the tran-
sient condition ends. It is designed to execute for every received
packet and deals explicitly with audio, relying on a number of
constant values which were derived after extensive examina-
tion of many audio traces. Note that was again initialized
to 200 ms for each experiment. Unlike the fixed algorithm, this
scheme aims to minimize packet lateness by changing the buffer
delay as necessary. The result is thattends to vary consider-
ably, even over short time periods.

2) Concord: Concord uses available information on delay
probabilities to set a value for such that application sup-
plied values for the and parameters are satisfied. In
this section we analyze Concord’s dynamic mode of operation,
where the value of is occasionally recalculated. In essence,
this requires the receiver to maintain a historical record of ob-
served values in the form of a measured histogram. The per-
formance of the algorithm is then expected to improve over time
as this structure is built up, so the obvious optimization is to
initialize it appropriately if reasonable information is available
(e.g., using recent data from that source). The recorded infor-
mation is consulted occasionally and used to revise the current

if necessary to stay within the application QoS parameters.
We use two controls over Concord’s dynamic behavior. The first
is a threshold factor which determines when is recalculated.
The second controls the relevance of the histogram data by aging
its contents over time with the aim of more accurate behavior.
The execution overhead can be reduced by choosing a threshold
factor which results in a smaller number of recalculations,
but of course this may result in decreased effectiveness. Aging
increases the execution overheads, although this can be reduced
by using a larger bin width. We use default settings for the fol-
lowing experiments: recalculate for each arriving packet, a
histogram with 1 ms bin-width, andno agingof histogram con-
tents.

94 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 2, NO. 2, JUNE 2000

Fig. 3. Time plot segment for tracet1 with fixed algorithm (ted = 200 ms)

Fig. 4. Time plot segment for tracet1 with reactive algorithm

Fig. 5. Time plot segment for tracet1 with Concord algorithm (mlp =1%).

3) Discussion: The Concord algorithm started with an
empty histogram which it updated as each packet arrived.
The results were obtained using a value of , thus,
easing comparison with the reactive algorithm. An immediate
observation is that the maximum and standard deviation for
are less than for the reactive algorithm, which in turn can allow
receiver buffer requirements to be reduced. Thus, Concord
does indeed result in lower maximum delays and less variation
in delays than the reactive algorithm. This is due to the fact
that Concord uses a larger sample space when making delay

adjustment decisions. Values for mean are similar in both
algorithms. The nature of the reactive algorithm can lead to
some samples receiving a very low delay, although this number
is typically very small, e.g., 0.03% 100 ms for trace . This
explains the significant difference in minimum delay values as
shown.

A feature of Concord which can be a drawback is that multiple
successive packets can be discarded. These burst loss quantities
were not significant as shown in the current results. To gauge
the effect of these losses on the audio quality we performed a

SREENANet al.: DELAY REDUCTION TECHNIQUES FOR PLAYOUT BUFFERING 95

crude subjective analysis by listening to a voice segment after
Concord processing. The result was quite audible and compared
wellwiththeoriginalvoicesegment.Therewereperiodswhenthe
discarded packets caused a break up in continuity, but these were
shortand infrequentenoughtonotmake listeninguncomfortable.
Naturally, the choice of a higher value would allow Concord
todiscardagreaternumberofpacketsandthis in turnwouldcause
a reduction in audio quality. In comparison, using the reactive
approach there are negligible discarded packets and hence, the
quality is basically unaffected, while using the fixed approach
the quality varied wildly from near perfect (as in trace) to
unintelligible (as in trace).

In summary, it is clear that Concord outperforms the reac-
tive approach by producing lower values for maximum delay
and delay variation. There are no conclusive differences be-
tween the average delay values of the two algorithms. The re-
active algorithm relies on a relatively straightforward delay es-
timate closely related to that used in TCP, while Concord re-
quires use of a history of measured delays along with a rela-
tively simple prediction calculation. Thus, the choice of algo-
rithm is effectively a) a tradeoff of memory for storing the his-
togram against the need to have reduced maximum delays and
b) an application’s ability to tolerate a small increase in addi-
tional late packets when using the Concord algorithm. In light
of this tradeoff we consider that Concord is most suitable for
applications such as IP telephony which have tight bounds on
end-to-end latency, and may be willing to sacrifice a small in-
crease in packets lost due to lateness. In the next section we
further demonstrate that the addition of aging to Concord yields
additional delay reductions, with a modest increase in the com-
plexity of the prediction calculation.

V. EVALUATING EFFECTIVENESS OFAGING IN CONCORD

The previous section evaluated the basic performance of
Concord. This section examines the impact of the proposed
aging techniques on the performance of Concord, using the
same trace-driven simulation environment.

A. Aging Functions

We present simulation results for the different aging algo-
rithms described in Section III-A. For comparison, results using
a reactive algorithm and the version of Concord without aging
are also presented. Table V compares the reactive algorithm
and Concord without aging, in which mean , maximum

, standard deviation of , and actual late packets () are
also plotted in Figs. 6 and 7. In Figs. 6 and 7,-axis is or

, while -axis and -axis are aging coefficient and aging
frequency, respectively. Note that aging frequency in-axis
is based on logarithm scale. The is set to 1% in Concord
so that the mean values are almost identical in both reactive
and nonaging Concord cases. The focus here is on the aging
function and the comparison between aging and nonaging
Concord algorithms. Note that aging coefficient and frequency
have no effect for the reactive and nonaging Concord. Their
values of and remain constant in Figs. 6 and 7. The
experiments explore varying aging coefficient in-axis and
aging frequency in -axis, where the aging coefficient is ranged

TABLE V
COMPARISON OFREACTIVE ALGORITHM AND CONCORDWITHOUT AGING

from 0 to 0.99. The aging frequency is based on the number of
packets received. The histogram is aged everypackets, where

. A lower value of aging frequency implies a
more frequent aging. The three-dimensional presentation of
Figs. 6 and 7 shows how variation in both aging coefficient
and aging frequency affects and in Concord. Although
there are three different algorithms, we show figures for results
from aging Algorithms 2 and 3 only. Algorithm 1 has the
same general trends as those indicated in Fig. 6(a)–(d). The
following paragraphs discuss Algorithm 3 first. Then rather
than repeating the same discussion for all of them, we make a
direct comparison between these three algorithms.

Maximum is directly related to the buffer requirements.
Mean and , the actual late packets (%), are the pa-
rameters of QoS. Standard deviation demonstrates the delay
variation (jitter). Minimum was omitted since it does not
provide very useful information. The analysis in Section III-A
shows that the bigger the coefficient, the higher the
[(7)–(9), (13), and (17)]. As expected, the mean decreases
as the aging coefficient decreases in Fig. 6(a). When the aging
coefficient is smaller, the older samples have less of an impact.
If the aging is more frequent (corresponding to a lower packet
spacing frequency in the figure), the data stored is very current
and reacts quickly to changes. When the frequency is greater
than 100 packets, the change in is not very significant while
varying the coefficient. However, changing in is visible
while varying the frequency for a high coefficient value. This
indicates that the aging function should choose a frequency less
than a certain number in order to have the statistical dataretire
properly. On the other hand, even a high coefficient can age the
old data if the frequency is chosen correctly. When the aging
coefficientequals 0, it is the equivalent offlush and refresh.
Similarly, the special case offull aggregationis when the aging
factor equals 1. Fig. 6(a) also indicates that aging coefficient
and frequency have no effect on the nonaging Concord and
reactive algorithms.

Fig. 6(b) shows the packet lateness rate. As in Fig. 6(a), de-
creasing the frequency or coefficient generally reduces the late-
ness rate. However, there are exceptions in the high frequency
and high coefficient area. When frequency is less than 50, the
lateness rate is almost 0 independently of the coefficient value.
This is because old data is aged frequently which results in that
the chosen being close to the current delay. Please note that
all of them are less than themlp which is set to 1%.

Fig. 6(c) examines the maximum which is directly re-
lated to the buffer size required in the receiver. When aging fre-
quently and more aggressive scaling for the old statistical data,

changes frequently as the network delay changes. There is
a higher probability that the chosen is close to the network
delay, which might vary from 0 to . This causes higher max-
imum values than in the nonaging orless-agingcases where

96 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 2, NO. 2, JUNE 2000

Fig. 6. Aging Algorithm 3: (a) meanted, (b) actual late packets (%), (c) maximumted, and (d) standard deviation ofted.

relies more on historical data. Fig. 6(c) indicates that it reaches
an upper bound quickly as the coefficient and frequency de-
crease from high values. A similar situation applies to Fig. 6(d)
which shows the variation of . The difference in (c) and (d)
is that (d) shows the deviation of while (c) takes the max-
imum. Fig. 6(d) indicates that decreasing frequency and coeffi-
cient may cause high delay variation which might have an im-
pact on the audio-visual quality as perceived by a human user.
That is the price paid for lower and the small lateness rate
shown in (a) and (b). A larger buffer may also be needed as
shown in (c).

1) Comparison of Different Algorithms:Although the re-
sults of Algorithm 1 are not shown here, in Algorithm 2 is
smaller than that in Algorithm 1, especially for high frequency
which means performing the aging less frequently. Algorithm 1
always scales down the historical data with a fixed factor [(1)],
while the factor used to scale down the old data in Algorithm 2
depends on the sum of the bin contents in the histogram [(10)],
which leads to the same ratio of old data to newly arrived packet
value [(11)]. Therefore, in Algorithm 2 the newly added bin con-
tributes the same weight to the histogram through the lifetime of
the stream. In Algorithm 1, however, a new bin added after aging
has less influence as shown in (3). Hence, Algorithm 2 reacts to
changes faster than Algorithm 1. This is reflected in the small
mean value in , and general small lateness rate. As discussed

above, a quick reaction in changes of network delay results in
bigger maximum and delay variation in Algorithm 2.

Algorithm 3 takes the aging frequency into consideration
as well. The factor used to scale down the old data increases
while the aging frequency increases [(14)]. Comparing it to
Algorithm 2, the impact is that it reacts to changes slowly in
high aging frequency. As discussed above, small coefficient
changes the statistical behavior no matter in high or low fre-
quency. Therefore, the difference in Algorithm 2 and 3 should
be mainly in high-frequency and high-coefficient area.

Comparing Figs. 6 and 7, (a) and (d) have similar trends with
some differences as discussed above. Generally speaking, (b)
in the figures is similar also. For (c), the maximum has a
sudden drop-off in the high-frequency and high-coefficient area
in Algorithms 3. This is not the case in Algorithm 2. For all
algorithms, if the aging is more frequent and the coefficient is
smaller, the data stored is very current and it reacts quickly to
changes. The maximum delay of this trace stream is 333 which
is not very far from the mean value of 288. Figures show that
the maximum of Algorithm 2 reaches the maximum delay
closely with any coefficient and frequency, while Algorithm 3
does not reach it in the high-frequency and high-coefficient area
since it does not react quickly enough in this area. Also, Algo-
rithm 3 reacts more slowly than Algorithm 2 in this high-fre-
quency and high-coefficient area and does not achieve the max-

SREENANet al.: DELAY REDUCTION TECHNIQUES FOR PLAYOUT BUFFERING 97

Fig. 7. Aging Algorithm 2: (a) meanted, (b) actual late packets (%), (c) maximumted, and (d) standard deviation ofted.

imum delay in that area. Overall, there are tradeoffs between
these algorithms. For the application with a short stream life-
time, Algorithm 1, which is the simplest, could be the choice
because the impact of different weight in each aging is not ap-
parent for a stream with short lifetime. For the application with
a long stream lifetime, Algorithms 2 or 3 could be used. Com-
paring to Algorithm 1, they still react to aging as time goes by.
When aging does not happen very often, Algorithm 2 is more
suitable for applications which still need to react fast to changes
in network delay. Algorithm 3, however, is the choice for those
require small buffer even if aging takes place less frequently.

B. Bin Width of Histogram

In this experiment, we study the effect of different bin widths.
The bin width is set to 1 ms initially. is set to 1% also. We
then repeat the same process with different bin widths. The
chosen to represent the bin is the mean value of this bin as in
(19). For example, if the bin width is 25 ms, 12 ms is chosen
to represent the s which fall in the range of 0–24 ms. Due to
the space limitations, Fig. 8 only shows the results without aging
for the trace from stanford.edu. Although not shown here, other
traces with or without aging have the same trends generally.

Fig. 8 shows the results from three different streams which are
labeled by S1, S2, and S3. Results show that the mean value of

changes slightly while the bin width changes. The value may

be increased or decreased without any constraints. The packet
lateness rate, however, may increase very quickly when the bin
width increases. Fig. 8(b) indicates that the packet lateness rate
might be much larger than the original setting when the bin
width is bigger than ten. However, it may still maintain the
which is close to the initial setting when the bin width is less than
ten. Suppose the original bin width is 1, and ,
where , , and are different network delays. Let’s choose a
new bin width which equals , and is the mean
value which represents the network delay for all delays in the
range of . For all chosen s in the range of , they are
replaced by now in the wider-bin case. If the network delay of
one arrived packet is greater thanbut less the original , it
is not lost when using the original bin width but it is lost in the
wider-bin case. The actual lateness rate depends on the network
delay and the chosen . However, this is more common when
the bin width is bigger. Therefore, we can see that the lateness
rate is generally higher when the bin width is bigger, and when
the bin width is bigger, the chosen may deviate more from
the original value. This may cause higher standard deviation.
However, if all s are deviated to the same value, it results
in a small standard deviation. Hence, Fig. 8(d) shows that the
standard deviation may be higher or lower while changing the
bin width. Since we choose a mean value to represent the delay
in the range of , the mean and maximum s change slightly
while the bin width changes.

98 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 2, NO. 2, JUNE 2000

Fig. 8. Bin width results without aging: (a) meanted, (b) actual late packets (%), (c) maximumted, and (d) standard deviation ofted. Results are shown with
three different sources: S1, S3, and S5.

Overall, the experiments indicate that narrow bins carry
higher accuracy than wider bins. For most streams, increasing
the bin width slightly won’t change mean , maximum ,

and too much. In simulations, the maximum delay may
range from 200 to 300 ms, which needs around 200–300 bins.
When the bin width is increased from 1 to 2 ms, the number of
bins required is actually half of the original one. It is only one
fourth when the bin width is increased to 4 ms. This reduction
in memory may be sufficient for most cases.

VI. RELATED WORK

The area of delay adaptation for packet voice has been re-
ceiving attention for many years [6], [7]. Early experimental
systems for packetized voice on a LAN used a fixed scheme
for managing the playout buffer [8]. More recently, reactive ap-
proaches have become popular in the Internet, such as that em-
ployed in thevat audio tool (based on delay estimation from
[9]) and the related improvements proposed in [5]. More general
adaptation work has also appeared, both for application design
[10], [11] and middleware support for cooperative QoS manage-
ment [12]. Synchronization between multiple related streams
has also been a popular research topic. Some solutions assume
that reasonable upper bounds on the delay across streams are
available [13], while others set a fixed upper delay bound for
a stream, discarding data which arrives late and would cause a
loss of synchronization [14].

More closely related to our current work are efforts to re-
duce delays for reactive approaches. The technique of [15] is
based on a reactive algorithm which is modified to quickly re-
duce the buffer size after it had been increased to handle a delay
spike. The decision is made after observing the jitter encoun-
tered by the most recently arrived packets. More recently, [16]
also advocates a predictive-style approach to sizing the playout
buffer, aiming to reduce the delays of the reactive approach from
[5]. It operates by recording packet delay information with the
aim of determining the average network delay under normal
conditions, using that information to react more effectively to
delay spikes. Rather than maintaining a statistical approxima-
tion of the delay distribution as in our proposal, they record
actual delays for a fixed number of previously arrived packets,
currently set to 10 000. In [17], a new reactive algorithm is pre-
sented, which uses a simple least-mean-square adaptive pre-
dictor for network delays, demonstrating lower delays in com-
parison to conventional reactive approaches. Unlike our work
these schemes do not explore allowing explicit application con-
trol over lateness or interaction.

For aging techniques, [18] presents a page replacement al-
gorithm, called LRU-K, for database disk buffering by consid-
ering only the last K references to a page. Comparing to our ap-
proaches, LRU-K does not accumulate all historical data in his-
togram and employ techniques to gradually diminish the effect
of old data. The exponential aging proposed in [19] is similar to

SREENANet al.: DELAY REDUCTION TECHNIQUES FOR PLAYOUT BUFFERING 99

our approaches. It however recommends a constant aging factor
of 0.9 which is more like our aging Algorithm 1 only. Several
other agings have been proposed for different purposes also. The
priority aging in [20], for instance, continually depresses a job’s
priority until the end of every decay cycle. The aging window in
[21] is the amount of time a record is eligible for reintegration.
Comparing to our approaches, most of them simply keep track
of time then take some actions such as update, remove or reuse
the data in certain time points.

VII. CONCLUSION

This paper presented the Concord algorithm for synchro-
nizing networked multimedia streams. Concord is notable
because it defines a solution for synchronization, that operates
under the direct influence of application-supplied parameters
for QoS control. In particular, these parameters are used
to allow a tradeoff between the packet lateness rates, total
end-to-end delay and skew. Thus, an application can directly
indicate an acceptable lost packet rate, rather than having
the synchronization mechanism operate by always trying to
minimize losses due to lateness.

We have described the details of the Concord algorithm
and its extension. Issues of calculating the receiver buffer size
and estimating network delays were discussed. In addition,
features for dealing with imperfect clocks and dynamic network
behavior were described. The evaluation is based on traces
of audio and video traffic which had traversed the Internet.
Concord employs a new predictive approach, which we
evaluate and compare with other algorithms. We demonstrate
that Concord can operate with lower maximum and variation
in total end to end delay, which in turn can allow receiver
buffer requirements to be reduced. In addition, we show it
discards late packets at a predictable rate, as specified by the
application along with a maximum acceptable delay bound.
We also explore the use of aging techniques to improve the
effectiveness of the historical information and hence, the delay
predictions. Three aging algorithms are proposed and compared
using a simulation driven with the same Internet traffic traces.
In comparison to the type of reactive approach typically used
in the Internet, the results show that Concord algorithm with
aging can produce significant reductions in buffering delay and
jitter at the expense of packet lateness values of less than 1%.

REFERENCES

[1] N. Shivakumar, C. J. Sreenan, B. Narendran, and P. Agrawal, “The Con-
cord algorithm for synchronization of networked multimedia streams,”
in Proc. IEEE Int. Conf. Multimedia Computing and Systems, May 1995,
pp. 31–40.

[2] C. J. Sreenan, B. Narendran, P. Agrawal, and N. Shivakumar, “Internet
stream synchronization using Concord,” inProc. IS&T/SPIE Conf. Mul-
timedia Computing and Networking, 1996, pp. 352–359.

[3] P. Agrawal, J.-C. Chen, and C. J. Sreenan, “Use of statistical methods
to reduce delays for media playback buffering,” inProc. IEEE Int.
Conf. Multimedia Computing and Systems, Austin, TX, June 1998, pp.
259–263.

[4] D. Sanghi, A. K. Agrawala, O. Gudmundsson, and B. N. Jain, “Exper-
imental assessment of end-to-end behavior on Internet,” inProc. IEEE
INFOCOM, 1993, pp. 867–874.

[5] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne, “Adaptive
playout mechanisms for packetized audio applications in wide-area
networks,” in Proc. IEEE INFOCOM, Toronto, Ont., Canada, June
1994, pp. 680–688.

[6] G. Barberis and D. Pazzaglia, “Analysis and optimal design of a packet-
voice receiver,”IEEE Trans. Commun., vol. 28, pp. 217–227, Feb. 1980.

[7] W. A. Montgomery, “Techniques for packet voice synchronization,”
IEEE J. Select Areas Commun., vol. 1, pp. 1022–1028, Dec. 1983.

[8] S. Ades, R. Want, and R. Calnan, “Protocols for real time voice commu-
nication on a packet local network,” inProc. IEEE Int. Conf. Commun.
(ICC), June 1986, pp. 525–530.

[9] V. Jacobson, “Congestion avoidance and control,” inProc. ACM SIG-
COMM, Aug. 1988, pp. 314–329.

[10] P. Moghe and A. Kalavade, “Terminal QoS of adaptive applications and
its analytical computation,” inProc. IFIP Int. Workshop on Quality of
Service, May 1997, pp. 369–380.

[11] P. Sisalem, “End-to-end quality of service control using adaptive appli-
cations,” inProc. IFIP Int. Workshop on Quality of Service, May 1997,
pp. 369–380.

[12] C. J. Sreenan and P. P. Mishra, “Equus: a QoS manager for distributed
application,” inProc. IFIP Int. Conf. Distributed Platforms, Mar. 1996,
pp. 496–509.

[13] J. Escobar, D. Deutsch, and C. Partridge, “Flow synchronization pro-
tocol,” in Proc. IEEE GLOBECOM, 1992, pp. 1381–1387.

[14] R. Yavatkar, “MCP: A protocol for coordination and temporal synchro-
nization in multimedia collaborative applications,” inProc. IEEE Int.
Conf. Distributed Computing Systems, June 1992, pp. 606–613.

[15] D. L. Stone and K. Jeffay, “Queue monitoring: A delay jitter manage-
ment policy,” inProc. Int. Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV), Nov. 1993.

[16] S. B. Moon, J. Kurose, and D. Towsley, “Packet audio playout delay
adjustment: Performance bounds and algorithms,”ACM/Springer Mul-
timedia Syst. J., vol. 6, pp. 17–28, Jan. 1998.

[17] P. De Leon and C. J. Sreenan, “An adaptive predictor for media playout
buffering,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Pro-
cessing (ICASSP), Phoenix, AZ, Mar. 1999, pp. 3097–3100.

[18] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “An optimality proof of the
LRU-K page replacement algorithm,”J. ACM, vol. 46, pp. 99–112, Jan.
1999.

[19] A. Brunstrom, S. T. Leutenegger, and R. Simha, “Experimental evalua-
tion of dynamic data allocation strategies in a distributed database with
changing workloads,” inProc. Int. Conf. Information and Knowledge
Management, Baltimore, MD, Nov. 1995, pp. 395–402.

[20] D. H. J. Epema, “Decay-usage scheduling in multiprocessors,”ACM
Trans. Comput. Syst., vol. 16, pp. 367–415, Nov. 1998.

[21] L. B. Mummert, M. R. Ebling, and M. Satyanarayanan, “Exploiting
weak connectivity for mobile file access,” inProc. ACM Symp.
Operating Systems Principle, Copper Mountain, CO, Dec. 1995, pp.
143–155.

Cormac J. Sreenan received the Ph.D. degree
in computer science from Cambridge University,
Cambridge, U.K.

He is a Professor of computer science at Univer-
sity College Cork, Cork, Ireland. Prior to taking up
his current position in August 1999, he was Principal
Technical Staff Member at AT&T Labs Research,
Florham Park, NJ, and Member of Technical Staff
at Bell Labs, Murray Hill, NJ. His research interests
include multimedia networking, mobile computing,
and packet telephony.

Jyh-Cheng Chen(S’96–M’99) received the B.S. de-
gree in information science from Tunghai University,
Taichung, Taiwan, R.O.C., in 1990, the M.S. degree
in computer engineering from Syracuse University,
Syracuse, NY, in 1992, and the Ph.D. degree in elec-
trical engineering from the State University of New
York, Buffalo, in 1998.

From 1995 to 1996, he was a Software Engineer at
ASOMA-TCI, Inc., North Tonawanda, NY. During
the summer of 1997, he worked in the Networked
Computing Technology Department at AT&T Labs,

Whippany, NJ, and contributed to energy efficient MAC protocols for wireless
ATM networks. Since August 1998, he has been a Research Scientist in Ap-
plied Research at Telcordia Technologies (formerly Bellcore), Morristown, NJ.
At Telcordia Technologies, his research is focused on third generation wireless
networking, next generation networks, QoS for IP networks, Internet telephony,
and multimedia communications.

Dr. Chen is a member of ACM.

100 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 2, NO. 2, JUNE 2000

Prathima Agrawal (S’74–M’77–SM’86–F’89)
received the Ph.D. degree in electrical engineering
from the University of Southern California, Los
Angeles.

She is Executive Director of the Computer
Networking Research Department and Assistant
Vice President of the Internet Architecture Research
Laboratory at Telcordia Technologies (formerly
Bellcore), Morristown, NJ. She is also a Visiting
Professor of electrical and computer engineering,
Wireless Networking Laboratory (WINLAB),

Rutgers University, Piscataway, NJ. Previously, she worked for 20 years at
AT&T/Lucent Bell Laboratories, Murray Hill, NJ, where she was Head of the
Networked Computing Research Department. Presently, she leads the ITSUMO
joint research project between Telcordia and Toshiba Corporporation. ITSUMO
is a third generation wireless access system for multimedia communication
over end-to-end packet networks. Her research interests are computer networks,
mobile and wireless computing and communication systems, and parallel
processing. She has published over 150 papers and has received or applied for
more than 40 U.S. patents.

Dr. Agrawal is a member of the ACM. Presently, she chairs the IEEE Fellow
Selection Committee.

B. Narendran received the B.Tech. degree in com-
puter science from the Indian Institute of Technology,
Madras, India, and the Ph.D. degree in computer sci-
ence from the University of Wisconsin, Madison.

From 1993 to 1997, he was a Member of Tech-
nical Staff at Bell Laboratories, Lucent Technologies,
where he worked on a variety of research issues in
wireless and multimedia networking. He is currently
a Vice President at Juno Online Services, New York,
NY.

