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Abstract

We consider the problem of estimating the spatial layout

of an indoor scene from a monocular RGB image, modeled

as the projection of a 3D cuboid. Existing solutions to this

problem often rely strongly on hand-engineered features

and vanishing point detection, which are prone to failure in

the presence of clutter. In this paper, we present a method

that uses a fully convolutional neural network (FCNN) in

conjunction with a novel optimization framework for gener-

ating layout estimates. We demonstrate that our method is

robust in the presence of clutter and handles a wide range

of highly challenging scenes. We evaluate our method on

two standard benchmarks and show that it achieves state of

the art results, outperforming previous methods by a wide

margin.

1. Introduction

Consider the task of estimating the spatial layout of a

cluttered indoor scene (say, a messy classroom). Our goal

is to delineate the boundaries of the walls, ground, and ceil-

ing, as depicted in Fig. 1. These bounding surfaces are an

important source of information. For instance, objects in

the scene usually rest on the ground plane. Many objects,

like furniture, are also usually aligned with the walls. As a

consequence, these support surfaces are valuable for a wide

range of tasks such as indoor navigation, object detection,

and augmented reality. However, inferring the layout, par-

ticularly in the presence of a large amount of clutter, is a

challenging task. Indoor scenes have a high degree of intra-

class variance, and critical information required for infer-

ring the layout, such as room corners, is often occluded and

must be inferred indirectly.

There are works which approach the same problem given

either depth information (e.g. an RGBD frame) or a se-

quence of monocular images from which depth can be in-

ferred. For our work, we restrict the input to the most

general case: a single RGB image. Given this image, our

∗indicates equal contribution.

Figure 1: An overview of our layout estimation pipeline.

Each heat map corresponds to one of the five layout labels

shown in the final output. They are color coded correspond-

ingly.
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framework outputs the following: i) a dense per-pixel label-

ing of the input image (as shown in Fig. 1), and ii) a set of

corners that allows the layout to be approximated as the pro-

jection of a box. The classes in the dense labeling are drawn

from the following set: {Left Wall, Front Wall, Right Wall,

Ceiling, Ground}. The parameterization of the scene as a

box is described in further detail in Sec. 3.2.

Prior approaches to this problem usually follow a two-

stage process. First, a series of layout hypotheses are gen-

erated. Next, these are ranked to arrive at the final layout.

The first stage is usually accomplished by detecting three

orthogonal vanishing points in the scene, often guided by

low-level features such as edges. For instance, the influen-

tial work by Hedau et al. [6] generates layout candidates

by inferring vanishing points and then ranking them using a

structured SVM. Unfortunately, this first stage is highly sus-

ceptible to clutter and often fails to produce a sufficiently

accurate hypothesis. While subsequent works have pro-

posed improvements to the second stage of this process (i.e.,

ranking the layouts), they are undermined by the fragility of

the candidate generation.

Our method is motivated by the recent advances in se-

mantic segmentation using fully convolutional neural net-

works [11, 2, 23], since one can consider layout estima-

tion to be a special case of this problem. That said, con-

straints that are unique to layout estimation prevent a direct

application of the existing general purpose semantic seg-

mentation methods. For instance, the three potential wall

classes do not possess any characteristic appearance. Mul-

tiple sub-objects may be contained within their boundaries,

so color-consistency assumptions made by CRF methods

are not valid. Furthermore, there is an inherent ambiguity

with the semantic layout labels (described in further detail

in Sec. 3.4.5). This is in contrast to traditional semantic seg-

mentation problems where the labels are uniquely defined.

Our contributions are as follows:

• We demonstrate that fully convolutional neural net-

works can be effectively trained for generating a belief

map over our layout semantic classes.

• The FCNN output alone is insufficient as it does not

enforce geometric constraints and priors. We present a

framework that uses the FCNN output to produce ge-

ometrically consistent results by optimizing over the

space of plausible layouts.

Our approach is robust even when faced with a high de-

gree of clutter. We demonstrate state of the art results on

two datasets.

2. Related Work

The problem, as stated in Sec. 1, was introduced by

Hedau et al. in [6]. Their method first estimates three or-

thogonal vanishing points by clustering line segments in the

scene. These are then used for generating candidate box

layouts that are ranked using a structured regressor. Unlike

our approach, this method requires the clutter to be explic-

itly modeled. Earlier work in this area by Stella et al. [19]

approached this problem by grouping edges into lines and

quadrilaterals and finally depth ordered planes.

In [20], Wang et al. model cluttered scenes using latent

variables, eliminating the need for labeled clutter. Extend-

ing upon this work in [17], Schwing et al. improve the

efficiency of learning and inference by demonstrating the

decomposition of higher-order potentials. In a subsequent

work [16], Schwing et al. propose a branch and bound based

method for jointly inferring both the layout and the objects

present the scene. While they demonstrate that their method

is guaranteed to retrieve the global optimum of the joint

problem, their approach is not robust to occlusions.

Pero et al., in [14] and [13], investigate generative ap-

proaches for solving layout estimation. Inference is per-

formed using Markov Chain Monte Carlo sampling. By in-

corporating the geometry of the objects in the scene, their

method achieves competitive performance.

A number of works consider a restricted or special vari-

ant of this problem. For instance, Liu et al. [10] generate the

room layout given the floor plan. Similarly, [7] assumes that

multiple images of the scene are available, allowing them

to recover structure from motion. This 3D information is

then incorporated into an MRF-based inference framework.

In [1], Chao et al. restrict themselves to scenes containing

people. They use the people detected in the scene to reason

about support surfaces and combine it with the vanishing

point based approach of [6] to arrive at the room layout.

More recently, Mallya and Lazebnik [12] used FCNN

for the task, similar to ours. However, while we use an

FCNN for directly predicting per-pixel semantic labels,

their method uses it solely for generating an intermediate

feature they refer to as “informative edges”. These infor-

mative edges are then integrated into a more conventional

pipeline, where layout hypotheses are generated and ranked

using a method similar to the one used in [6]. Their re-

sults do not improve significantly upon those achieved by

Schwing et al.

3. Method

3.1. Overview

Given an RGB image I with dimensions w × h, our

framework produces two outputs:

1. L, a w × h single channel image that maps each pixel

in the input image, Iij , to a label in the output image

Lij ∈ {Left, Front, Right, Ceiling, Ground}.

2. The box layout parameters, as described in Sec. 3.2.

617



Figure 2: Given a w × h × 3 input RGB image (shown on

the left), our neural network outputs a w×h×5 belief map,

where each of the 5 slices can be interpreted as a classifica-

tion map for a specific label. For instance, the slice shown

on the right corresponds to the ground plane label.

The pipeline is described broadly in Fig. 1. The estima-

tion of L begins by feeding I into the fully convolutional

neural network described in Sec. 3.3. The normalized out-

put of this network is a w × h × 5 multidimensional array

T which can be interpreted as:

T
(k) = Pr (Lij = k | I) ∀k ∈ {1, ..., 5} (1)

where T(k) is the kth channel of the multidimensional array

T. This “belief map” is then used as the input to our opti-

mization framework which searches for the maximum like-

lihood layout estimate that fits our box parameterization.

3.2. Modeling the Layout

Most works in this area [6, 17, 20], including ours, as-

sume that the room conforms to the so-called “Manhattan

world assumption” [3] that is based on the observation that

man-made constructs tend to be composed of orthogonal

and parallel planes. This naturally leads to representing in-

door scenes by cuboids. The layout of an indoor scene in an

image is then the projection of a cuboid.

Hedau [6] and Wang [20] describe how such a cuboid can

be modeled using rays emanating from mutually orthogo-

nal vanishing points. The projection of such a cuboid can

be modeled using four rays and a vanishing point [20], as

described in Fig. 3. Our parameterization of this model is

τ = (l1, l2, l3, l4, v), where li is the equation of the ith line

and v is the vanishing point.

Given τ , we can partition an image into polygonal re-

gions as follows:

• The intersections of the lines li give us four vertices

pi. The polygon described by these four vertices cor-

responds to one of the walls.

• The intersections of the rays starting at v passing

through pi with the bounds of the image give us four

Figure 3: The layout parametrized using four lines,

(l1, l2, l3, l4), and a vanishing point, v, as described in

Sec. 3.2.

more vertices, ei. We can now describe four additional

polygons defined by (pi, ei, ei+1, pi+1) (where the in-

dex additions are modulo 4). These correspond to two

additional walls, the ceiling, and the ground.

The vertices pi and ei may lie outside the bounds of the

image, in which case the corresponding polygons are either

clipped or absent entirely. We also define a deterministic

labeling for these polygons. The top and bottom polygon

are free from ambiguity and always labeled as “ceiling” and

“ground”. The polygons corresponding to the walls are la-

beled left to right as (left, front, right). If only two walls are

visible, they are always labeled (left, right). If only a single

wall is visible, it is labeled as “front”.

3.3. Belief Map Estimation via FCNN

Deep convolutional neural networks (CNN) have

achieved state-of-the-art performance for various vision

tasks like image classification and object detection. Re-

cently, they have been adapted for the task of semantic seg-

mentation with great success. Nearly all top methods on the

PASCAL VOC segmentation challenge [4] are now based

on CNNs. The hierarchical and convolutional nature of

these networks is particularly well suited for layout segmen-

tation. Global context cues and low-level features learned

from the data can be fused in a pipeline that is trained from

end-to-end.

Our CNN uses the architecture proposed by Chen et

al. in [2], which is a variant commonly referred to as a

fully convolutional neural network (FCNN). Most common

CNN architectures used for image classification, such as

AlexNet [9] and its variants, incorporate fully-connected

terminal layers that accept fixed-sized inputs and produce
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RGB Input Image Convolution Layer Max Pooling Layer Interpolated Output

Figure 4: The fully convolutional network architecture used for our layout estimation. It is based on the “LargeFOV” variant

described in [2], which in turn is based on the VGG16 architecture proposed by Simonyan and Zisserman in [18] .

Each convolution layer depicted in this figure is followed by a rectified linear unit (ReLU), excluding the final one (layer W ).

During training, dropout regularization is applied to layers U and V .

non-spatial outputs. In [11], Long et al. observe that these

fully-connected layers can be viewed as convolutions with

kernels that cover their entire input regions. Thus, they can

be re-cast into convolutional layers which perform sliding-

window style dense predictions. This conversion also re-

moves the fixed-size constraint previously imposed by the

fully connected layers, thereby allowing the new networks

to operate on images of arbitrary dimensions.

One caveat here is that the initial network produces dense

classification maps at a lower resolution than the original

image. For instance, the network proposed by Long et al.

produces an output that is subsampled by a factor of 32.

They compensate for this by learning an upsampling filter,

implemented as a deconvolutional layer in the network. In

contrast, our network produces an output that is subsampled

by only a factor of 8. As a result, simple bilinear interpo-

lation can be used to efficiently upsample the classification

map.

We finetune a model pretrained on the PASCAL VOC

2012 dataset. The weights for the 21-way PASCAL VOC

classifier layer (corresponding to layer W shown in Fig. 4)

are discarded and replaced with a randomly initialized 5-

way classifier layer. Since our belief map before interpola-

tion is subsampled by a factor of 8, the ground truth labels

are similarly subsampled. The loss function is then formu-

lated as the sum of cross entropy terms for each spatial po-

sition in this subsampled output. The network is trained

using stochastic gradient descent with momentum for 8000

iterations. Chen et al. describe an efficient method for per-

forming convolution with “holes” [2] - a technique adopted

from the wavelet community. We use their implementation

of this algorithm within the Caffe framework [8] to train our

network.

3.4. Refinement

3.4.1 The Problem

Given the CNN output T, a straightforward way to obtain

a labeling is to simply pick the label with the highest score

for each pixel:

L̂ij = argmax
k

T
(k)
ij ∀i ∈ [1, ..., w], j ∈ [1, ..., h] (2)

However, note that there are no guarantees that this lay-

out will be consistent with the model described in Sec. 3.2.

Indeed, the wall/ground/ceiling intersections in L̂ are al-

ways “wavy” curves (rather than straight lines), and often

contain multiple disjoint connected components per label.

This is because our CNN does not enforce any smoothness

or geometric constraints. A common solution used in gen-

eral semantic segmentation is to refine the output using a

CRF. These usually use the CNN output as the unary po-

tentials and define a pairwise potential over color intensi-

ties [2]. However, we found these CRF based methods to

perform poorly in the presence of clutter, where they tend

to segment along the clutter boundaries that occlude the true

wall/ground/ceiling intersection.

3.4.2 Overview of our Approach

Given the neural network output T, we want to obtain the

refined box layout, τ∗, and the corresponding label-map,

L
∗. Let f be a function that maps a layout (parametrized as

described in Sec. 3.2) to a label-map. Then, we have:

L
∗ = f(τ∗) (3)

For any given layout, we define the following scoring

metric:

S (L = f(τ) | T) =
1

wh

∑

i,j

T
(Lij)
ij (4)

We now pose the refinement process as the following op-

timization problem:

τ∗ = argmax
τ

S (f(τ) | T) (5)

This involves ten degrees of freedom: two for each of the

four lines, and two for the vanishing point. While search-

ing over the entire space of layouts is intractable, we can

initialize the search very close to the solution using L̂. Fur-

thermore, we can use geometric priors to aggressively prune

the search space.

3.4.3 Preprocessing

We use L̂ (as defined in Eq. 2) for initialization and deter-

mining which planes are not visible in the scene. An issue
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here is that L̂ may contain spurious regions. In particular, it

often includes spurious front wall regions (not surprisingly,

given the ambiguity described in Sec. 3.4.5). Furthermore,

there may be multiple disjoint components per label.

We address the multiple disjoint components by prun-

ing all but the largest connected component for each label.

The presence of potentially spurious regions is addressed

by considering two candidates in parallel: one with these

regions pruned, and another with them preserved. The can-

didate with the highest score is selected at the end of the

optimization. In practice, we found that it is sufficient to

restrict this pruning to just the front wall. The “holes” in

labeling created by pruning are filled in using a k-nearest

neighbor classifier.

3.4.4 Initialization

Given a preprocessed L̂, we can produce an initial estimate

of the four lines li in τ by detecting the wall/ceiling/ground

boundaries. We do this by considering each relevant pair of

labels (say, ground and front wall) and treating it as a bi-

nary classification problem. The corresponding line is then

obtained using logistic regression.

3.4.5 Optimization

Algorithm 1: Layout Optimization

Input: T // The output of our CNN

(l1, l2, l3, l4) // Initialization

Output: Layout τ∗ = (l1, l2, l3, l4, v)
repeat

foreach Candidate vanishing point p do
evaluate S (τ = (l1, l2, l3, l4, p) | T)
if Score Improved then

v := p

end

end

foreach i ∈ (1...4) do

foreach Candidate line l do
evaluate S (τ = (l1, ...l..., l4, v) | T)
if Score Improved then

li := l

end

end

end

until Score did not improve

Given an input image, I, so far we have described how

to obtain:

• A “belief map” T using our neural network

• A scoring function S that can be used for comparing

layouts

• An initial layout estimate τ0

To obtain the final layout, τ∗, we use an iterative refine-

ment process. Our optimization algorithm, described in al-

gorithm 1, is reminiscent of coordinate ascent. It greedily

optimizes each parameter in τ sequentially, and repeats un-

til no further improvements in the score can be obtained.

Sampling vanishing points: We start with the vanish-

ing point, v ∈ τ , since our initialization only provides us

estimates for the four lines. While we could have used L̂ to

provide an initial estimate for v, we found that directly us-

ing grid search works better in practice. The feasible region

for v is the polygon described by the vertices (p1, p2, p3, p4)
as shown in Fig. 3. We evenly sample a grid within this re-

gion to generate candidates for v. For each candidate van-

ishing point, we compute the score using S and update our

parameters if the score improves.

Sampling lines: Next, each line, li ∈ τ , is sequen-

tially optimized. The search space for each line is the local

neighborhood around the current estimate. Let (x1, y1) and

(x2, y2) be the intersections of li with the image bounds.

We evenly sample two sets of points centered about (x1, y1)
and (x2, y2) along the image boundary. Our search space

for li is then the cartesian product of these two sets.

Handling label ambiguity: There is an inherent ambi-

guity in the semantic layout labels as demonstrated in Fig. 5.

Indeed, our network often has trouble emitting a consis-

tent label when faced with such a scenario. In such cases,

the probability is split between the labels “front” and either

“left” or “right” as the case may be. Our existing scoring

function does not take this issue into account. Therefore,

for this special case, we formulate a modified scoring func-

tion as follows:

Ŝ = max (S(L′), S(L)) (6)

where L
′ is the labeling obtained by replacing all occur-

rences of the label “front” with either “left” or “right”. This

allows our optimization algorithm to commit to a label with-

out being unfairly penalized. Note that this modified scor-

ing function is only used when our optimizer is considering

a “two-wall” layout scenario as determined during initial-

ization. For a single-wall or three-wall case, the ambiguity

issue does not apply.

4. Experimental Evaluation

4.1. Dataset

We train our network on the Large-scale Scene Under-

standing Challenge (LSUN) room layout dataset [21], a di-

verse collection of indoor scenes with layouts that can be

approximated as boxes. It consists of 4000 training, 394
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Figure 5: There is an inherent ambiguity in semantically

labeling layouts. Two plausible labelings are shown above.

A human may reasonably label the wall behind the bed as

“front”, whereas a labeling that enforces consistency based

on left-to-right ordering may classify it as “right”.

validation, and 1000 testing images. While these images

have a wide range of resolutions, we rescale them anisotrop-

ically to 321 × 321 pixels using bicubic interpolation. The

ground truth images are relabeled to be consistent with the

ordering described in Sec 3.2.

We also test on the dataset published by Hedau et al. [6].

This consists of 209 training and 104 testing images. We do

not use the training images.

4.2. Accuracy

We evaluate our performance by measuring two standard

metrics:

1. The pixelwise accuracy between the layout and the

ground truth, averaged across all images.

2. The corner error. This is the error in the position of

the visible vertices pi and ei (as shown in Fig. 3), nor-

malized by the image diagonal and averaged across all

images.

We use the LSUN room layout challenge toolkit scripts to

evaluate these. The toolkit addresses the labeling ambigu-

ity problem by treating it as a bipartite matching problem,

solved using the Hungarian algorithm, that maximizes the

consistency of the estimated labels with the ground truth.

Our performance on both datasets are summarized in Ta-

bles 1 and 2. Our approach outperforms all prior methods

and achieves state-of-the-art results.

4.3. Efficiency

The CNN used in our implementation can process 8

frames per second on an Nvidia Titan X. For optimization,

we use a step size of 4 pixels for sampling lines and a grid of

200 vanishing points. With these parameters, the optimiza-

tion procedure takes approximately 30 seconds per frame.

The current single-threaded implementation is not tuned

Method Pixel Error

Hedau et al. (2009) [6] 21.20

Del Pero et al. (2012) [14] 16.30

Gupta et al. (2010) [5] 16.20

Zhao et al. (2013) [22] 14.50

Ramalingam et al. (2013) [15] 13.34

Mallya et al. (2015) [12] 12.83

Schwing et al. (2012) [17] 12.8

Del Pero et al. (2013) [13] 12.7

DeLay 9.73

Table 1: Performance on the Hedau [6] dataset

Method Corner Error Pixel Error

Hedau et al. (2009) [6] 15.48 24.23

Mallya et al. (2015) [12] 11.02 16.71

DeLay 8.20 10.63

Table 2: Performance on the LSUN [21] dataset

for performance, and significant improvements should be

achievable (for instance, by parallelizing the sampling loops

and utilizing SIMD operations).

5. Qualitative Analysis

We analyze the qualitative performance of our layout es-

timator on a collection of scenes sampled from the LSUN

validation set. We split our analysis into two broad themes:

i) scenarios where our estimator performs well and demon-

strates unique strengths of our approach, and ii) scenarios

that demonstrate potential weaknesses of our framework

and provide insight into future avenues for improvement.

Fig. 6 shows a collection of scenes where our estimator

produces layouts that closely match the human-annotated

ground truths. Fig. 6a shows the robustness of our estimator

to a high degree of clutter. The ground plane’s intersections

with the walls are completely occluded by the table. The

decorative fixture near the ceiling not only occludes the top

corner but also includes multiple strong edges that can be

easily confused for wall/ceiling intersections. Despite these

challenges, our framework produces a highly accurate esti-

mate. Fig. 6f shows a scene with illumination variation and

nearly uniform wall, ground, and ceiling colors with almost

no discernible edges at their intersections. Such scenes are
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(a) (b) (c) (d) (e) (f)

Figure 6: Our results on the LSUN validation set. The first row shows the input images. The second row depicts L̂, the most

probable label per pixel before optimization. The third row comprises our final layout estimate L
∗. The fourth row is the

ground truth, while the fifth is our estimate superimposed on the input image. A detailed analysis of these images is provided

in Sec. 5.

particularly challenging for methods that rely on low-level

features and color consistency. However, our method is able

to recover the layout almost perfectly. Fig. 6e shows an ex-

ample where the Manhattan world assumption is violated.

Our estimate, however, degrades gracefully. Arguably, it is

no less valid than the provided ground truth image, which

also attempts to fit a boxy layout to the non-conforming

scene.

Fig. 6d and 6c show the effectiveness of our optimiza-

tion procedure, and demonstrate that simply trusting the

CNN output is insufficient. Directly using the estimate L̂

produces garbled results with inconsistencies like multiple

disjoint components for a single label and oddly shaped

boundaries. However, our optimizer is able to successfully

recover the layout. It also shows the labeling ambiguity is-

sue we described in Sec. 3.4.5. Observe that the CNN’s

confidence is split over the front and right wall classes in the

ambiguous region. However, our modified scoring function

is able to successfully handle this case.

In Fig. 7, we explore some of the scenarios where our

estimator fails to produce results that agree with the human

annotations. Fig. 7a is an interesting case where our esti-

mate predicts a left wall that is absent from the ground truth.

A closer observation of the image reveals that there is in-

deed a left wall present (this scene also violates the Manhat-

tan assumption). Fig. 7c shows a scenario where our CNN
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(a)

(b)

(c)

(d)

Figure 7: A set of challenging cases where our estimator’s

results do not match the human-annotated ground truths.

The first column is the input image, the second is L̂, the

third is our final layout estimate L
∗, while the fourth is the

ground truth.

produces a reasonably accurate output, but our optimizer

incorrectly prunes the front wall as a spurious region. Oc-

casionally, we encounter cases where the CNN predictions

differ so drastically from the ground truth that the optimizer

fails to provide any improvements. Such a case is shown in

Fig. 7d where the presence of a strong color change in the

wall causes our network to consider it as a separate wall.

In Fig. 7b, we demonstrate a “semantic failure”. The lower

half of the scene is dominated by a bed. It is geometrically

consistent with the notion of a ground plane, but not seman-

tically.

Observing the results above, a few patterns emerge that

lend themselves to future improvements. For instance, the

CNN output suggests that the Manhattan world assumption

is not strictly necessary. The issue with the bed in Fig. 7b

illustrates the importance of incorporating broader seman-

tics into the room layout estimation problem. A promising

approach here would be to train a CNN for performing joint

segmentation of both layout and object classes.

Figure 8: Further examples that demonstrate our estimator’s

performance on the LSUN validation set. Column 2 is our

estimate, while column 3 is the ground truth.

6. Conclusion

In this paper, we presented a framework for estimating

layouts for indoor scenes from a single monocular image.

We demonstrated that a fully convolutional neural network

can be adapted to estimate layout labels directly from RGB

images. However, as our results show, this output alone is

insufficient as the neural network does not enforce geomet-

ric consistency. To address this issue, we presented a novel

optimization framework that refines the neural network out-

put to produce valid layouts. Our method is robust to clutter

and works on a wide range of challenging scenes, achieving

state-of-the-art results on two leading room layout datasets

and outperforming prior methods by a large margin.
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