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ABSTRACT

Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion
through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse
supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic
robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that
a significant fraction, 15+9

−8%, of core-collapse supernovae are “late”, that is, they occur 50–200 Myr after birth, when all massive
single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases,
with both stars initially being of intermediate mass (4–8 M⊙). The main evolutionary channels that contribute often involve either
the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by
the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae
increases by 14+15

−14% because of binarity for the same initial stellar mass. The high rate implies that we should have already observed
such late core-collapse supernovae, but have not recognized them as such. We argue that φ Persei is a likely progenitor and that
eccentric neutron star – white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time
distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of
prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations
of galaxy evolution.
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1. Introduction

Core-collapse supernovae (ccSNe) are bright explosions that
mark the end of the lives of massive stars (e.g., Heger et al.
2003; Smartt 2009) and the birth of neutron stars or black holes
(e.g., Ertl et al. 2016). They play a crucial role as sources of
chemical enrichment (e.g., Arnett 1973; Woosley et al. 2002)
and feedback, driving the evolution of their host galaxies (e.g.,
Hopkins et al. 2014). Their extreme brightness also allows us to
use them as probes of star-forming galaxies out to appreciable
redshifts (e.g., Strolger et al. 2015). These explosions are usually
attributed to stars with birth masses larger than approximately
8 M⊙ (Heger et al. 2003), although the exact value depends
on model assumptions concerning core overshooting, stellar-
wind mass-loss, and metallicity (e.g., Poelarends et al. 2008;
Jones et al. 2013; Takahashi et al. 2013; Doherty et al. 2015).

Observing campaigns of young massive stars in our Galaxy
and the Magellanic Clouds show that a very large fraction
have one or more companions, forming a close binary system
where severe interaction between the stars during their lives
is unavoidable (e.g., Kobulnicky & Fryer 2007; Mason et al.
2009; Sana et al. 2012; Chini et al. 2012). Such interaction can

be the exchange of mass and angular momentum through
Roche-lobe overflow, common envelope evolution, and merg-
ing of the two stars (Wellstein & Langer 1999; de Mink et al.
2013; De Marco & Izzard 2017). This interaction can drasti-
cally affect the further evolution of both stars and thus the
properties of their possible supernovae. Pioneers in modeling
the effects on (samples of) ccSNe include Podsiadlowski et al.
(1992), De Donder & Vanbeveren (2003b), Yoon et al. (2010),
Eldridge et al. (2008, 2013).

Our understanding of the endpoints of massive stars is radi-
cally being transformed by the rise of (automated) transient sur-
veys, which enable the efficient detection of ccSNe and other
transients in large numbers. Examples are the Lick Observatory
Supernova Search (LOSS, Filippenko et al. 2001), the Palomar
Transient Factory (PTF, Rau et al. 2009; Law et al. 2009), and its
near-future upgrade, the Zwicky Transient Facility, the All-Sky
Automated Survey for SuperNovae (ASAS-SN, Shappee et al.
2014), Pan-STARRS (Kaiser et al. 2002), and eventually the
Large Synoptic Survey Telescope (LSST, Ivezic et al. 2008). The
datasets provided by these facilities will be large, but may not
necessarily provide very detailed information about individual
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events, since this typically requires more intensive follow up, to
obtain spectra, for example. The large potential of these datasets
will be the statistical constraints that they can provide, allowing
for new constraints on theoretical models for both common and
rare events. Fully harvesting these datasets will require adapta-
tions from the theory side and thus predictions of the statistical
properties for large samples will be needed.

Motivated by the technological and observational develop-
ments, as well as the insight into the large importance of binarity,
we have started a systematic theoretical investigation aiming to
quantify the impact of binarity on the statistical properties ex-
pected for large samples of ccSNe. This paper is the first in a
series in which we describe the motivation and setup of our sim-
ulations (Sect. 2). In two papers that were completed ahead of
this one, the lead authors of this team demonstrated the early ap-
plication of these new simulations against observations of two
individual events.

In Van Dyk et al. (2016), we compared these simulations
with new deep Hubble Space Telescope observations of the site
of the now faded stripped-envelope type Ic supernova SN1994I
in search of a surviving companion star. While no companion
was detected, the data provided new strong upper brightness lim-
its, constraining the companion mass to less than 10 M⊙. This
result is consistent with the theoretical predictions of our simu-
lations and allowed a subset of formation scenarios to be ruled
out. In Margutti et al. (2017), we used these simulations to inter-
pret the multi-wavelength observations of supernova SN2014C
which over the timescale of a year underwent a complete meta-
morphosis from an ordinary H-poor type Ib supernova into a
strongly interacting, H-rich supernova of type IIn. These simu-
lations helped us to estimate the possibility that the surround-
ing hydrogen shell originated from a prior binary interaction (as
opposed to ejection resulting from instabilities during very late
burning phases, e.g., Quataert et al. 2016).

In this paper, we focus on the distribution of the expected
delay time between formation of the progenitor star and its fi-
nal explosion, extending the work of De Donder & Vanbeveren
(2003b). We investigate how binary interaction affects the delay-
time distribution of ccSNe. A significant fraction of ccSNe are
expected to be “late”, that is, they occur with delay times longer
than approximately 50 Myr, which is the maximum delay time
expected for single stars. We show that these late events origi-
nate from progenitors in binary systems with most of them be-
ing of intermediate mass. We discuss these late ccSNe in Sect. 3
and describe the various evolutionary channels that produce
them.

We further describe the outcome of an extensive study of the
robustness of our results against variations in the model assump-
tions and we compare with earlier work in Sect. 4. In Sect. 5,
we discuss (possible) observational evidence. We argue that the
well known binary φ Persei provides a direct progenitor sys-
tem that is expected to result in a late ccSN and we discuss
how the observed eccentric neutron star – white dwarf systems
may well provide the direct remnants. We then compare our re-
sults directly with the inferred delay time measured from su-
pernova remnants in the Magellanic Clouds, showing that they
are consistent with our predictions. We finish with a brief dis-
cussion on possible implications for feedback in star-forming
regions in galaxies by showing the differences with the widely
used single star predictions by the STARBURST99 simulations
(Leitherer et al. 1999). We end with a summary of our findings
in Sect. 6.

2. Method

We use a binary population synthesis code, binary_c (ver-
sion 2.0, SVN revision 4105), developed by Izzard et al. (2004,
2006, 2009) with updates described in de Mink et al. (2013) and
Schneider et al. (2015). The code employs rapid algorithms by
Tout et al. (1997) and Hurley et al. (2000, 2002) based on ana-
lytical fits to the detailed non-rotating single stellar models com-
puted by Pols et al. (1998).

The code enables us to efficiently simulate the evolution of
single stars and binary systems from the zero-age main sequence
until they leave behind compact remnants. This allows us to
make predictions for an entire population of massive stars by
spanning the extensive parameter space of initial properties that
determine their evolution. It also allows us to explore the robust-
ness of our results against variations in our assumptions.

In Sect. 2.1, we discuss the initial conditions and in Sect. 2.2,
we discuss the physical assumptions. From now on when we
mention “standard models” or “standard simulations”, we refer
to the simulations where we followed our main assumptions in
all the key parameters that we discuss below. There are two stan-
dard models with one simulating only single stars and the other
including binaries (discussed also below in the paragraph for bi-
nary fraction). A summary of the key parameters, their values
for our standard assumptions and the model variations that we
consider is provided in Table 1.

2.1. Initial conditions

Initial distributions. We assume that the distribution of the ini-
tial mass, M1, of primary stars (the initially most massive star
in a binary system) and of single stars follows a Kroupa (2001)
initial mass function (IMF),

dN

dM1
∝ Mα

′

1 , (1)

where,
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0.01 < M1/ M⊙ < 0.08,
0.08 < M1/ M⊙ < 0.5,

0.5 < M1/ M⊙ < 1,
1 < M1/ M⊙ < 100.

(2)

In our standard models, we adopt α = −2.3. When assessing
the uncertainties, we consider variations in which α = −1.6 and
−3.0 following the uncertainty given in Kroupa (2001) as well
as one model in which α = −2.7 (e.g., Kroupa et al. 1993).

For the initial mass ratio q ≡ M2/M1, where M2 is the initial
mass of the secondary star, we take

dN

dq
∝ qκ. (3)

We adopt a uniform distribution in our standard simulation,
for example, κ = 0 for q ∈ [0.1, 1], consistent with
Kiminki & Kobulnicky (2012) and Sana et al. (2012). We also
consider the variations κ = −1 and 1.

For the initial orbital period distribution, we assume

dN

d log10 P
∝

(

log10 P
)π
. (4)

We adopt π = 0, also known as Öpik’s law (1924), for sys-
tems with primary masses up to 15 M⊙ (Kobulnicky et al. 2014;
Moe & Di Stefano 2015). To account for the strong preference of
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Table 1. Summary of the key parameters adopted in our standard simulations and the variations that we consider.

Symbol Standard modelsa Model variations

Physical assumptions
- Mass transfer efficiency β βth 0, 0.2, 1
- Angular momentum loss γ γorb,acc 0, γdisk
- Mass loss during merger of two MS stars µloss 0.1 0, 0.25
- Mixing during merger of two MS stars µmix 0.1 0, 1
- Natal kick compact remnant (km s−1) σ 265 σ0,∞
- Common envelope efficiency αCE 1 0.1, 0.2, 0.5, 2, 5, 10
- Envelope binding energy λCE λDewi+00 0.5
- Critical mass ratio for contact for MS donor qcrit,MS 0.65 0.25, 0.8
- Critical mass ratio for unstable mass transfer for HG donor qcrit,HG 0.4 0, 0.25, 0.8, 1
- Stellar-wind mass-loss efficiency parameter η 1 0.33, 3
- Maximum single-star equivalent birth mass for ccSN (M⊙) Mmax,cc 100 20, 35
- Minimum metal core for ccSN (M⊙) Mmin,metal 1.37 1.3, 1.4

Initial conditions
- Slope initial mass function α −2.3 –1.6, –2.7, –3.0
- Slope initial mass ratio distribution κ 0 –1, 1
- Slope of initial period distr. π πOpik24, Sana+12 –1, 1
- Metallicity Z 0.014 0.0002, 0.004, 0.008, 0.02, 0.03
- Binary fractiona fbin 0.7, 0.0a 0.3, 1, fbin(M1)
- Normalization parameter (M⊙) Mlow 2 1, 3

Notes. See Sect. 2 for a description of the symbols and further assumptions. (a) The difference between our two standard models is that in one we
simulate only single stars and in the other we assume a binary fraction of 0.7.

more massive stars to reside in short period systems, we adopt
π = −0.55 when M1 > 15 M⊙ as found by Sana et al. (2012). The
range of initial periods we consider is log10(P/day) ∈ [0.15, 3.5]
as given by Sana et al. (2012). When assessing the uncertainties,
we consider π = −1 and 1 over the full mass range.

For the initial spin period of the stars, we follow
Hurley et al. (2000). Although this does not account for the
full distribution (e.g., Huang et al. 2010; Dufton et al. 2013;
Ramírez-Agudelo et al. 2013, 2015), this is sufficient for inves-
tigating the role of binarity as the impact of the adopted birth
spin is negligible compared to the angular momentum the star
later receives as a result of interaction by tides and mass transfer
(de Mink et al. 2013).

Although we account for the effects of eccentricity, we chose
to adopt circular orbits at birth to limit the number of dimensions
that our grid of models spans. This is justified as most systems
circularize shortly before the onset of mass transfer by Roche-
lobe overflow as a result of tides (Portegies Zwart & Verbunt
1996; Hurley et al. 2002). However, with this approach, we do
not account for systems that are too wide to strongly interact
when circular, but where eccentricity implies periastron sepa-
rations small enough to trigger Roche-lobe overflow. We may
therefore slightly underestimate the impact of binary interaction.
See, for example, the interacting systems arising from binaries
with initial orbital periods well in excess of 103.5 days depicted
in Fig. 2 of de Mink & Belczynski (2015). We explore the un-
certainties arising from this assumption indirectly when we vary
the initial orbital period distribution and the total binary fraction.

Binary fraction. In our two standard models we either simulate
only single stars or we adopt a binary fraction of fbin = 0.7.
Here, we define a binary as a system with initial mass ratio q ∈
[0.1, 1] and initial period log10(P/day) ∈ [0.15, 3.5] based on

Sana et al. (2012) and consistent with the ranges adopted above.
We consider variations of fbin = 0.3 and 1.0.

The binary fraction for intermediate-mass stars is less well
constrained. We therefore consider a model variation where
we adopt a binary fraction that decreases with mass based on
Moe & Di Stefano (2013). These authors provide the inferred
fraction of systems with a companion in very close orbit, P = 2–
10 days, and q > 0.1. They find that this fraction drops from
0.22 for early B-type to 0.16 for late B-type stars. Information
on systems with orbits longer than 10 days are not available from
this study. These results may either indicate that the binary frac-
tion decreases towards late spectral types or that there is simply
a preference for systems with orbital periods longer than 10 days
in these stars. We use these results to construct a mass-dependent
binary fraction assuming that the binary companions of B-type
stars still follow an (Öpik 1924) law over the full period range
0.15 < log10 P < 3.5. We construct a mass-dependent binary
fraction fbin(M) referring to the binary fraction for the full period
range, such that the binary fraction for periods P = 2–10 days
are as in Moe & Di Stefano (2013). This results in

fbin(M1) =



















0.44
0.61
0.7

M1/M⊙ < 6
6 ≤ M1/M⊙ < 15

15 ≤ M1/M⊙

∼late B,
∼early B,
∼O,

(5)

which we adopt as one of the model variations. We want to stress
the importance of further observational campaigns aimed to con-
strain the initial binary distributions and the binary fraction for
the full M1, q and period range (e.g., Moe & Di Stefano 2017).

Normalization. When quoting absolute rates, we express our
results normalized by the total mass formed in stars in units of
106 M⊙. For this, we integrate over the full range of the IMF
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as specified in Eq. (2). For stars with masses above Mlow, we
account for the mass contained in the companion star as specified
in Eq. (3). Effectively, we assume that low-mass stars, with M1 <
Mlow, do not have companions massive enough to significantly
contribute to the mass of the stellar population. In our standard
assumptions we adopt Mlow = 2 M⊙ and we vary this parameter
to 1 and 3 M⊙ to check that this choice does not have a large
influence on our results.

Metallicity. We assume solar metallicity in our standard pop-
ulation, adopting a mass fraction of elements heavier than he-
lium of Z = 0.014 (Asplund et al. 2009) because present day
transient surveys focus on larger galaxies with metallicities that
are comparable to solar. We also consider low metallicities of
Z = 2 × 10−4 relevant for metal-poor progenitors of globular
clusters and populations formed at high redshift. We addition-
ally test Z = 0.004 and Z = 0.008, relevant to nearby dwarf
galaxies similar to the Small and Large Magellanic Clouds. We
further provide results for the former canonical solar abundance
of Z = 0.02 (e.g., Grevesse et al. 1996) for comparison with ear-
lier studies and one super solar metallicity, Z = 0.03, relevant to
the central regions of large galaxies.

2.2. Physical assumptions

For a full description of the code, we refer to the references cited
at the start of this section. Here we discuss the main assumptions
that are of direct relevance to this study.

Stellar lifetimes. The evolutionary tracks and stellar lifetimes
(until reaching the white dwarf phase or core collapse) of single
stars in our simulations originate from the grid of detailed non-
rotating stellar evolutionary models of Pols et al. (1998) com-
puted with an updated version of the STARS code (Eggleton
1971, 1972; Pols et al. 1995). For stars up to 20 M⊙, we use
the fitting formulae of Hurley et al. (2000) for these models. At
higher mass, we switch to a logarithmic tabular interpolation of
the lifetimes by Pols et al. (1998), and above 50 M⊙, we extrap-
olate as described in Schneider et al. (2015).

Our resulting mass-lifetime relation is shown in Fig. 1. We
find good agreement with simulations with the evolutionary code
MESA, version 7184 (Paxton et al. 2011, 2013, 2015) for non-
rotating stars when using our standard metallicity, Z = 0.014,
and the Schwarzschild criterion for convection with a step-
overshooting parameter αov = 0.335Hp, where Hp is the pressure
scale height, as calibrated by Brott et al. (2011).

The widely-used Geneva models of Schaller et al. (1992)
predict lifetimes that are 10–15% shorter, as can be seen in
Fig. 1. These are models of non-rotating stars with a metallicity
Z = 0.02. Our MESA simulations give similar lifetimes when
assuming no overshooting, αov = 0. Given the evidence for extra
mixing processes beyond the convective core based on calibra-
tions of the overshooting parameter αov (e.g., Ribas et al. 2000;
Claret 2007; Brott et al. 2011), we consider the lifetime predic-
tions by our models with overshooting to be more realistic.

Stellar winds. We include updated mass-loss prescriptions
as described in de Mink et al. (2013), which include the
recipes of Vink et al. (2000). At luminosities in excess of
4000 L⊙, we switch to the empirical mass-loss rates of
Nieuwenhuijzen & de Jager (1990) when these rates exceed
those by Vink et al. (2000). To account for the empirical
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Fig. 1. Lifetime τ (until the white dwarf phase or core collapse) as a
function of initial mass for single stars adopted in this work (black line)
is compared with predictions that we obtained using the MESA stel-
lar evolutionary code (Paxton et al. 2011) with and without overshoot-
ing (dark and lightblue dots) and with Geneva models of Schaller et al.
(1992, black dots). Single stars with masses less than Mmin,cc end their
lives as white dwarfs instead of ccSNe (hashed region). ccSNe are ex-
pected between τmin,cc and τmax,cc (yellow shaded region), which refer to
the lifetimes of the most and least massive star to undergo core collapse.
The bottom panel shows the relative difference in lifetimes with respect
to the lifetimes used in our work (Sect. 2.2).

boundary of stars in the upper part of the Hertzsprung-Russell
diagram as described in Humphreys & Davidson (1994), we add
a factor in the mass loss as described in Hurley et al. (2000) to
simulate the enhanced mass loss of Luminous Blue Variables
(LBV) that are thought to reside near this boundary. For stars that
are stripped from their hydrogen envelopes, we adopt the Wolf-
Rayet (WR) mass-loss prescription by Hamann et al. (1995) and
Hamann & Koesterke (1998) reduced by a factor of 10 to ac-
count for the effect of wind clumping (Yoon 2015). For post-
main-sequence stars, Asymptotic Giant Branch (AGB) stars,
and thermally pulsating AGB stars, we use Kudritzki & Reimers
(1978), Vassiliadis & Wood (1993), and Karakas et al. (2002) re-
spectively, as described in Izzard et al. (2009).

Our mass-loss prescriptions scale with metallicity as Ṁ ∝

(Z/Z⊙)m where m = 0.69 in main-sequence stars (Vink et al.
2001; Mokiem et al. 2007). In post-main-sequence phases, we
adopt m = 0.5 (Kudritzki et al. 1989). In the WR phase, mass
loss scales with metallicity assuming a power-law index of 0.86
(Vink & de Koter 2005). In the LBV phase, mass loss is assumed
to be invariant for metallicity.

The mass-loss rate by stellar winds as well as eruptive events
is uncertain, in particular for the late phases and the most mas-
sive stars (Smith 2014). In the mass range we are most interested
in, mass loss during the late phases only affects the stellar enve-
lope. It does not have a large impact on the core of the stars
and thus on the remaining lifetimes, which are the main focus
of this work. Nevertheless, we explore the impact of changes in
the mass-loss rate by multiplying the mass loss by an efficiency
factor, η, which we set to unity in our standard simulations. We
consider the variations η = 3 and η = 0.33 for all mass-loss rates
simultaneously.
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Tides. We account for the effect of tides on the stellar spins
and the stellar orbits of stars in binary systems (Zahn 1977;
Hurley et al. 2002) and the transfer of angular momentum dur-
ing mass transfer via an accretion disk or the direct impact of the
accretion stream onto the surface as described in de Mink et al.
(2013) following Ulrich & Burger (1976) and Packet (1981). We
assume that the stellar spins are aligned with the orbit (Hut
1981).

Mass transfer. When a star fills its Roche lobe and mass trans-
fer is stable, we compute the mass-loss rate from the donor star
by removing as much mass as needed for the star to remain in-
side its Roche lobe. The resulting mass transfer rates are capped
by the thermal timescale of the donor. We define the mass trans-
fer efficiency, β, as the fraction of the mass lost by the donor that
is accreted by the companion,

β ≡

∣

∣

∣

∣

∣

∣

Ṁacc

Ṁdon

∣

∣

∣

∣

∣

∣

· (6)

If mass is transferred on a timescale that is much shorter than
the thermal timescale of the accreting star τth,acc, the star will be
driven out of thermal equilibrium and expand (Neo et al. 1977).
Although our simulations do not follow this phase in detail, it is
expected that the companion can only accrete a fraction of the
transferred material when |Ṁdon| ≫ Ṁacc,th ≡ Macc/τth,acc, where
Macc is the mass of the accreting star. In line with this physical
picture, we limit the mass accretion rate to

|Ṁacc| = min

(

|Ṁdon|, f
Macc

τth,acc

)

, (7)

where f is an efficiency parameter for which we adopt 10 in our
standard simulation (to reproduce the mass transfer efficiency of
Schneider et al. 2015). The mass transfer efficiency in this case,
which we refer to as βth, varies between 0 and 1 depending on the
physical properties of the donor and the accretor. The efficiency
of mass transfer is poorly constrained (see, e.g., the discussion
in de Mink et al. 2007). We therefore also explore the extreme
case where none of the transferred mass is accreted, β = 0, the
case of very inefficient mass accretion, β = 0.2, as well as fully
conservative mass transfer, β = 1.

Angular momentum loss. Mass that is lost from the system
also takes away angular momentum. The specific angular mo-
mentum h, carried away from the system during mass loss, is
parametrized by,

h = γ
Jorb

Macc + Mdon
, (8)

where Jorb is the total orbital angular momentum, Macc and Mdon
are the masses of the accretor and donor star respectively and γ
is a free parameter. In our standard simulation, we assume that
mass lost from the system is emitted in a spherical wind or bipo-
lar outflow originating from the accreting star (van den Heuvel
1994). Thus, the specific angular momentum, h, that the lost
mass carries is equal to the specific orbital angular momentum
of the accreting star, which yields γ = γorb,acc ≡ Mdon/Macc.

We also consider the extreme limiting case of negligi-
ble angular momentum transported by the mass lost from the
system during mass transfer (γ = 0). We further consider
the case where mass is lost through the outer Lagrangian
point, forming a circumbinary disk. Based on simulations by

Artymowicz & Lubow (1994), we consider that the binary sys-
tem will clear out the inner portion of the disk by resonance
torques. We explore the case that an inner region of size rmin =

2a is cleared, where rmin is the inner radius of the circumbinary
disk and a the separation of the binary system. This is consistent
with typical values found by Artymowicz & Lubow (1994). We
thus consider the case of γ = γdisk,

γdisk ≡
(Macc + Mdon)2

MaccMdon

√

rmin

a
· (9)

Contact and common envelope evolution. To decide which
systems come into contact or experience common envelope (CE)
evolution, we consider a critical mass ratio, qcrit. In binary sys-
tems with a post-main-sequence donor, we assume that systems
with Macc/Mdon < qcrit enter a common envelope phase. We fol-
low the prescriptions of Hurley et al. (2002) for qcrit, except for
the case when the donor fills its Roche lobe while experiencing
hydrogen shell burning and crossing the Hertzsprung gap (HG),
where we use qcrit,HG = 0.4 (de Mink et al. 2013). We use the
same value for the naked helium star donors that experience he-
lium shell burning (HeHG).

Common envelope evolution may either lead to the removal
of the envelope or, if the ejection is not successful, a merger. In
our treatment of common envelope evolution we use the formal-
ism described in Tout et al. (1997) based on Webbink (1984),
Livio & Soker (1988) and de Kool (1990). In this formalism,
two parameters are introduced, the efficiency parameter of ejec-
tion, αCE, and λCE which parametrizes the binding energy of the
envelope (see Eqs. (73) and (69) in Hurley et al. 2002, respec-
tively). In our standard model, we assume that αCE is unity (e.g.,
Webbink 1984; Iben & Tutukov 1984; Hurley et al. 2002), but
we also run models with a range of values (0.1, 0.2, 0.5, 2, 5,
10) to probe the large uncertainties associated with this phase
of evolution. By varying the efficiency parameter, we also im-
plicitly consider the effect of uncertainties in the binding en-
ergy λCE as αCEλCE appears as a product in the expression.
Values of αCE > 1 account for possible extra energy sources
used to unbind the envelope apart from the orbital energy (e.g.,
De Marco et al. 2011; Ivanova & Nandez 2016). To compute the
envelope binding energy parameter, λCE, we use fits to detailed
models (Dewi & Tauris 2000, 2001; Tauris & Dewi 2001). We
also consider a model variation where we adopt a constant value
λCE = 0.5 (e.g., de Kool 1990). For a discussion of the limita-
tions of this formalism we refer to Ivanova et al. (2013b).

In systems with a main-sequence donor, we adopt qcrit,MS =

0.65 to account for systems that come into contact during the
rapid thermal timescale mass transfer phase, which is consis-
tent with the detailed models by de Mink et al. (2007). Alterna-
tively, binary systems may come into contact because of their
own nuclear timescale evolution. In main-sequence stars, we as-
sume that contact leads to a merger.

Mergers and rejuvenation. In case a merger occurs, we fol-
low Table 2 of Hurley et al. (2002) to determine the outcome.
When two main-sequence stars (MS+MS) merge, we follow
the updated algorithm by de Mink et al. (2013, 2014), based on
Glebbeek et al. (2013), to account for mass loss and internal
mixing. This algorithm uses two parameters, µloss = 0.1, which
is the fraction of the total mass lost from the system during the
merger, and µmix = 0.1, which is the fraction of the remaining
envelope mass that is mixed into the convective core. The values
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above are adopted in our standard simulation. We vary µloss be-
tween 0 and 0.25 and µmix between 0 and 1.

We account for the rejuvenating effect of mixing of fresh hy-
drogen into the central regions of accreting stars and mergers.
For this, we use fits to the effective mass of the convective core
by Glebbeek & Pols (2008) as described in de Mink et al. (2013)
and Schneider et al. (2015).

Minimum mass for core-collapse supernovae. We predict the
final fate of the stars in our simulation using our estimate of the
final metal core mass, that is, the mass of the core consisting
of elements heavier than helium, sometimes referred to as car-
bon oxygen (CO) core mass. We adopt a minimum metal core
threshold of Mmin,metal = 1.37 M⊙ for a collapse (Nomoto 1984,
1987; Podsiadlowski et al. 2004; Takahashi et al. 2013). In our
standard simulations, this corresponds to a minimum single star
initial mass of Mmin,cc = 7.53 M⊙. We also consider the varia-
tions Mmin,metal = 1.30 and 1.40 M⊙ when exploring the sensi-
tivity of our results. In single stars, these values correspond to
a minimum initial mass of Mmin,cc ≈ 7 and 8 M⊙, respectively,
in our standard metallicity. We do not explicitly distinguish be-
tween electron capture and iron ccSN (e.g., Tauris et al. 2015).
We also do not consider the accretion-induced-collapse of white
dwarfs.

It is uncertain whether or not the collapse of the core leads
to a successful supernova explosion in all cases and whether or
not this explosion is a bright event. Especially in massive stars,
the explosion may fail to eject the outer layers resulting in fall
back of material. This possibly leads to fainter explosions (e.g.,
O’Connor & Ott 2011; Ugliano et al. 2012; Nadezhin 1980;
Lovegrove & Woosley 2013; Piro 2013), or even the simple
disappearance of a star without any electromagnetic signature
(e.g., Kochanek et al. 2008). In our standard simulations, we as-
sume that all core collapses result in an observable event. We
also run model variations in which we exclude all supernovae
from stars with metal cores more massive than a single star of
Mmax,cc = 35 M⊙ and Mmax,cc = 20 M⊙ would produce, mimick-
ing, in a simplified way, the effect of “failed” explosions.

Supernova kick. We account for the effect of sudden mass
loss during the supernova explosion on the orbit (Blaauw 1961;
Boersma 1961; Hurley et al. 2002). In addition, at the onset of
the supernova, asymmetries in the explosion mechanism may
lead to a natal kick to the compact remnant. We assume a na-
tal kick for the compact object as in Eq. (A.15) of Hurley et al.
(2002), where the remnant receives a kick in a random direction
and with a scalar velocity drawn from a 1D Maxwellian distribu-
tion characterized by a 1D root mean square of σ = 265 km s−1

(Hobbs et al. 2005). We also examine the effect of the extreme
cases with no supernova natal kick at the remnant (σ0) and with
kicks strong enough to always disrupt a binary system after the
explosion.

2.3. Simulation set up

In our standard assumptions, we evolve 104 single stars and more
than 3 × 106 binary systems with varying primary masses, mass
ratios, and orbital periods on a grid of 150 × 150 × 150 systems.
Test simulations indicate that these resolutions are sufficient for
the purpose of this work. The difference between our two stan-
dard models is that in one we take into account only single stars
and in the other we assume a binary fraction of 0.7. We take

primary masses spaced at equal logarithmic intervals between
M1 = 3 and 100 M⊙. The lower limit encompasses all systems
in our simulations with the potential to result in a core-collapse
event within a safe margin. We take mass ratios linearly spaced
between q = 0.1 and 1 and orbital periods spaced at equal log-
arithmic intervals between log10 P(d) = 0.15 and 3.5. We weigh
each system according to the initial distribution functions speci-
fied in Sect. 2.1. When computing variations in the assumptions,
we reduce the resolution of the grids in each dimension by a fac-
tor of two resulting in approximately 4.2 × 105 systems in each
model variation.

3. Results

The lifetime of a star is determined by the amount of nuclear fuel
available and the rate at which it burns this fuel. In single stars,
both of these properties are primarily a function of the initial
mass, as shown in Fig. 1. The lifetime approximately scales with
mass as τ(M) ≈ M−x. The relation is steeper for intermediate-
mass stars (x ≈ 2.4 near M = 5 M⊙) and flattens at higher masses
(x ≈ 0.6 near M = 50 M⊙). At the highest masses, the lifetime
converges to a finite value of approximately 3 Myr. For stars
in binary systems, the lifetime is no longer a simple function of
their initial mass alone, due to possible mass transfer or merging.

In this section, we discuss the distribution of stellar lifetimes
of single stars and binary systems that produce a core-collapse
supernova. The lifetime sets the time-delay between formation
of the star and the moment its core collapses. We therefore re-
fer to this distribution as the delay-time distribution (DTD) of
ccSNe. We first discuss the case of a population of single stars
in Sect. 3.1, followed by the case of a population that contains a
realistic fraction of binary systems in Sect. 3.2.

3.1. Delay-time distribution of single stars

In a population of single stars formed in an instantaneous star-
burst at τ = 0, we expect ccSNe between τmin,cc ≈ 3 Myr, cor-
responding to the lifetime of the most massive star in our sim-
ulation, and τmax,cc ≈ 48 Myr, corresponding to the lifetime of
the least massive star that undergoes core collapse in our simula-
tion, with Mmin,cc = 7.53 M⊙ (Fig. 1). This can be seen in Fig. 2
where we show the DTD for single stars for a 106 M⊙ starburst.
The diagram shows the number of ccSNe per logarithmic time
bin.

The distribution rises steadily between τmin,cc and τmax,cc.
The slope of the distribution is dictated by the slope of the IMF
and the derivative of τ−1(M), the inverse of the lifetime-mass re-
lation. The IMF favors less massive stars that contribute in the
later time bins. The flattening of the lifetime-mass relation for
the highest masses leads to a relative pile-up of ccSNe in the
early time bins. The net effect is a distribution that rises steadily,
when expressed in the units chosen here, with a slope that is
slightly steeper at early times, τ . 5 Myr. The average de-
lay time of the distribution is τav = 17.5 Myr, the median is
τ50%,all = 19.6 Myr.

The units and axes used here have the advantage that an
equal number of systems occupy an equal area in this diagram,
which is useful as a visualization of the discussion in the para-
graphs that follow. For convenience, we also show the evolution
of the ccSN rate (the number of events per year per mass) in Ap-
pendix A. The rate for single stars peaks around 5.1 Myr in our
simulation to a value of approximately 4.75 × 10−10 events per
yr per M⊙, as shown in Fig. A.1.
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Fig. 2. Delay-time distribution of core-collapse supernovae based on
our single star models. The diagram shows the number of events per
logarithmic time bin for a starburst of 106 M⊙ in our standard model.
The top axis shows the initial mass of single stars with the correspond-
ing lifetime given in the bottom axis, computed with binary_c. The
most massive stars evolve most rapidly and end their life after approx-
imately 3 Myr. There are no core-collapse events after approximately
48 Myr when the least massive single star that can undergo core col-
lapse explodes.

3.2. Delay-time distribution including binaries

The picture changes when we account for a realistic fraction
of binary systems. Some intermediate-mass stars, with M <
Mmin,cc, can accrete mass from their companions and become
massive enough to experience the advanced nuclear burning
stages. As a result, they end their lives as supernovae leaving
neutron stars as remnants instead of becoming white dwarfs.
Mass accretion also rejuvenates a star because fresh fuel is mixed
into the central burning regions, effectively prolonging its life.
However, mass accretion also accelerates aging. Making the star
more massive increases its luminosity and thus the rate at which
it burns its remaining fuel. Conversely, mass stripping can, under
certain conditions, prevent a massive star from ending its life as
a supernova. This is only true if mass loss occurs early in its evo-
lution, before the star has a fully developed core. We investigate
how all these binary evolution processes interplay and compete
in affecting the DTD.

In Fig. 3 we show the distribution of ccSNe resulting from a
106 M⊙ starburst event in our standard simulation that accounts
for binaries. The single star DTD is over-plotted for comparison.
Both distributions are remarkably similar at early times. The dif-
ferences become evident at around 20 Myr, where the binary
distribution peaks. At around 30–50 Myr, the binary distribu-
tion shows a deficit with respect to the single star distribution.
The deficit results from close systems in which the primary star
has a mass just above but close to Mmin,cc. If it is stripped of its
envelope early in its evolution, that is, before the completion of
hydrogen burning, this can prevent its core from growing enough
in mass to reach the advanced burning stages. Thus, interaction
with a companion prevents these stars from ending their lives as
ccSNe.

The most striking feature that distinguishes the binary star
distribution from that of single stars is the prominent excess of
events between 50 and 200 Myr. These occur after the last single

star exploded at τmax,cc ≈ 48 Myr. We refer to them as “late core-
collapse supernovae” and discuss them in detail in Sect. 3.4.
These late events account for 15.5+8.8

−8.3% of the total number of
ccSNe. The main value quoted here corresponds to the relative
contribution of late events with respect to all core-collapse events
as found in our standard simulation. The errors reflect the mini-
mum and maximum we find when considering model variations,
as we discuss in Sect. 4. The above ratio of late ccSNe to total
ccSNe will be referred to as flate from now on.

The average delay time for a population including a realistic
fraction of binaries is τav = 21.6 Myr, around 20% longer than
in our single star simulation. The median time delay is τ50%,all =

22.1 Myr, nearly 10% longer than in our single-star simulation.
We observe a tail of very late events with delay times

>300 Myr. They are extremely rare in our standard simulation
accounting for less than 0.01% of all core-collapse events. How-
ever, in some of the variations that we consider, we find higher
fractions of 0.03%. These very late events result from a vari-
ety of rare binary evolutionary paths. They typically originate
from systems with a low-mass secondary (<4 M⊙) in an initially
wide orbit (∼1000 days). The systems usually evolve through
multiple CE and mass transfer episodes, eventually leading to a
merger of a massive white dwarf (the primary) with a helium star
secondary. Some of these may result in an accretion-induced col-
lapse, but to determine the fate of these mergers requires detailed
modeling beyond the scope of this work.

3.3. Total number of core-collapse supernovae

Accounting for binaries increases the number of ccSNe for
the same total stellar mass of a population. We find a rela-
tive increase of 14+15

−14% when accounting for a realistic binary
population. The increase is due to the added contribution of
intermediate-mass systems, which are favored by the IMF. How-
ever, the increase is limited by the fact that we normalize our
simulations by the total stellar mass; if the average mass of sin-
gle stars is 〈M〉 then that of a binary systems is 〈M1 + M2〉 =

〈M〉 + 1/2 〈M〉 = 3/2 〈M〉, assuming that single and primary stars
follow the same IMF and taking into account that the typical
mass ratio is q ≈ 0.5. Thus, in a population of the same total
mass, the number of systems is lower when binary systems are
included. We find that the net result of both the above effects is
an increase in the number of ccSNe in a population that contains
binary systems.

The total numberN of ccSNe in a 106 M⊙ stellar population
is less well constrained because of uncertainties in the normal-
ization of the mass contained in low-mass stars. In our standard
simulations, we find N = 1.14 × 104 for single stars and N =
1.30 × 104 for a realistic binary fraction. Variations in the IMF
slope alone (α = −3.0 and −1.6) lead toN = 0.28−2.53×104, re-
spectively, in the single-star population andN = 0.35−2.53×104

in the simulation that includes binaries. All other model varia-
tions considered in Table 2 lead to changes in the total number
of events by less than 25%.

3.4. Late core-collapse supernovae and their progenitors

Late ccSNe occurring around 50–200 Myr after star formation
are not predicted in single stellar evolution. They are exclusively
the product of interacting binaries and, as mentioned, they ac-
count for flate = 15.5+8.8

−8.3% of all ccSNe. Almost all systems
that lead to a late event have at least one intermediate-mass star
with M < Mmin,cc = 7.53 M⊙, the threshold mass for a single
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Fig. 3. Delay-time distribution of core-collapse supernovae for a population consisting of 70% binary systems (green histogram) compared to
the distribution for a population of only single stars (black dashed line). It shows the number of events per logarithmic time bin for a starburst
of 106 M⊙ for our standard models. The top axis shows the initial mass of single stars with the corresponding lifetime given in the bottom axis,
computed with binary_c. The most striking difference is the fraction of “late” core-collapse supernovae ( flate = 15.5+8.8

−8.3%), after the last massive
single star explodes at τmax,cc ≈ 48 Myr. The errors in the fraction above result from variations of our standard assumptions.

Fig. 4. Progenitor properties of “late” core-collapse supernovae for our standard simulation with binary stars. The normalized histograms show
the distribution of the initial total mass Mtot, the initial mass of the primary, M1, and secondary, M2, the initial mass ratio, q ≡ M2/M1, and the
initial orbital period P of binary systems that produce at least one core collapse after the last single star has exploded at around 48 Myr.

star to undergo core collapse. Approximately three out of four
late events result from systems in which both stars have initial
masses below Mmin,cc. Both stars in these systems were destined
to end their lives as white dwarfs, if it were not for the interaction
with their companion. This can be seen in Fig. 4, where we show
the normalized distributions of the initial properties of the pro-
genitor systems. We provide the initial total mass, Mtot, the ini-
tial mass of the primary and secondary, M1 and M2 respectively,
the initial mass ratio, q ≡ M2/M1, and the initial orbital period
log10 P.

The distribution of initial total mass for the progenitor sys-
tems peaks at 9 M⊙ (leftmost panel of Fig. 4). It extends up to
around 15 M⊙, that is, approximately 2 Mmin,cc, rapidly declining
for higher masses. The distribution drops off steeply for masses
lower than the peak with a minimum approaching Mmin,cc.

The typical mass of the primary star is in the range 5–8 M⊙
(second panel of Fig. 4). Stars in this mass range take around 50–
200 Myr to evolve off the main sequence and start interacting.
Hence, it is mainly the relatively slow evolution of the primary
that causes the eventual explosions in these systems to be late.
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Fig. 5. Main channels for “late” core-collapse supernovae in our stan-
dard simulation and their relative contribution to the number of late
events (only showing those that contribute >5% of the number of late
ccSNe, i.e., >0.75% of the total number of ccSNe). For merger chan-
nels, we indicate the evolutionary state of the primary and secondary
star at the onset of merging. Arrows indicate the direction of mass
transfer preceding the merger, which can be forward (from primary
to secondary) or reverse (from secondary to primary). MS: main se-
quence; HG: Hertzsprung gap; COWD and ONeWD: carbon-oxygen
and oxygen-neon-magnesium white dwarf; HeStar: naked helium star;
AGB: Asymptotic Giant Branch.

A secondary reason for longer delay times is rejuvenation of the
accreting star (or merger product).

The distribution of secondary masses ranges from approxi-
mately 1–8 M⊙ and peaks near 4.5 M⊙, as can be seen in the
third panel of Fig. 4. There is a preference for systems that ini-
tially have mass ratios near unity, as shown in the fourth panel.
Most progenitor systems originate from systems with initial or-
bital periods less than approximately 30 days, as can be seen
in the rightmost panel. Systems with initial mass ratios near
unity and orbital periods below approximately 30 days generally
experience a more conservative first phase of mass transfer in
our simulations (cf. Fig. 3 of Schneider et al. 2015). This means
that a significant fraction of the mass lost by the primary star is
accreted by the secondary and is thus retained in the system. This
is necessary for an intermediate-mass binary system to produce
a ccSN because in most cases neither of the stars is individually
massive enough to produce a collapse.

3.5. Evolutionary channels

The evolutionary channels that lead to late events often involve
multiple phases of mass transfer. The majority of late events,
87% in our standard simulation, result from binary channels in
which the two stars coalesce. We distinguish between “forward”
and “reverse” mergers depending on whether it is the primary,
that is, the initially more massive star, or the secondary that fills
its Roche lobe and initiates the merger process, respectively. Be-
low, we elaborate on these merger channels and after we discuss
the non-merger scenarios. We limit the discussion to channels
that contribute at least 5% of the late events (i.e., more than ap-
proximately 0.75% of the total core-collapse rate). The less fre-
quent merger channels that we do not discuss are responsible for
a combined contribution of 16% of the late events.

Figure 5 provides a summary of the relative rates contributed
by the main channels. While our simulations cannot reliably

follow the details of the merger process and the interior struc-
ture of the newly formed stellar object, we can predict relative
rates of the different channels and assess the evolutionary sta-
tus at the onset of the merger. This information can guide future
numerical experiments.

Forward mergers. In our standard simulations, we find that
24% of the late ccSNe come from systems that experience a
merger in which the expansion of the primary star beyond its
Roche lobe initiates the merger process. We distinguish the fol-
lowing cases.

MS⇒MS: the merger between two main-sequence stars con-
tributes 9% of the late ccSNe in our standard simulations;
they result from intermediate-mass primaries with initial
masses of 5–8 M⊙ in tight binaries with initial orbital pe-
riods that are typically shorter than approximately 3 days.
The main contribution comes from systems with initial mass
ratios q < 0.65. In such systems, the initial rapid phase of
mass transfer drives the accreting star out of thermal equilib-
rium causing it to swell up. Such systems come into contact
during the initial rapid mass transfer phase, denoted as Case
AR, with A referring to the fact that the donor star still re-
sides on the main sequence and R referring to the rapid mass
transfer phase in the classification by Kippenhahn & Weigert
(1967) and Nelson & Eggleton (2001). A second contribu-
tion comes from systems with initial mass ratios q ≈ 1 in pe-
riods of less than approximately 2 days, in which both stars
evolve on a similar timescale. The stars come into contact
when the secondary star also fills its Roche lobe due to its
own evolutionary expansion. This occurs during the slow nu-
clear time scale mass transfer phase (denoted as Case AS).
The primary has typically already completed over 80% of
its main sequence evolution at the moment of coalescence.
The secondary is in a similar evolutionary phase in Case AS,
whereas it is quite unevolved in Case AR, having only com-
pleted 10–30% of its main-sequence evolution. In Case AR
mergers, the more evolved primary star is the more massive
component at the onset of the merger, at 5–8 M⊙, whereas the
secondary mass is 1–4 M⊙. In Case AS mergers, mass trans-
fer leads to a reversal of the mass ratio. As a result, the mass
of the primary is approximately 2–4M⊙ at the onset of merg-
ing and that of the secondary is 6–9 M⊙ (see also Fig. B.1).
In both cases, the stars come into a deep over-contact con-
figuration (Pols 1994; Wellstein et al. 2001; de Mink et al.
2007). In our simulations, contact results in merging of the
stars as this is the most likely outcome (see also discussion
by de Mink et al. 2014). The simulations of Gaburov et al.
(2008) and Glebbeek et al. (2013) suggest that the merger
product that forms will initially be a puffed up and red ob-
ject (Tylenda et al. 2011; Pejcha et al. 2016), but as it radi-
ates away the excess energy, it will recover a thermal equilib-
rium structure. The core of the primary is thought to sink to
the center of the new object with the core of the less evolved
secondary settling above (Glebbeek et al. 2013). The role of
mixing and mass loss during this stage is highly uncertain.
To first order, the further evolution may be approximated by
that of a rejuvenated (rotating) single star. It will continue
with the subsequent burning stages and, if massive enough,
end its life as its core collapses. Whether or not the abnormal
interior chemical profile or enhanced budget of angular mo-
mentum leaves significant imprints on the final pre-explosion
structure and leads to observable signatures remains to be
investigated.
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HG⇒MS: forward mergers involving a post-main-sequence
primary star are dominated by cases where the primary star is
crossing the Hertzsprung gap (HG). These so-called Case B
mergers account for 15% of the late ccSNe. They originate
from systems with unequal masses (q < 0.4 in our standard
simulations). The systems come into contact as a result of the
expansion of the secondary in response to rapid mass accre-
tion and/or, for the most extreme mass ratios, because mass
transfer is unstable (see however Pavlovskii et al. 2017). This
leads to a common envelope phase that may lead to the
ejection of (part of) the envelope while the orbit shrinks. If
the ejection fails, we are left with a merger of a partially
stripped post-main-sequence primary with its less evolved
main-sequence secondary. The typical mass of the primary
is 6–7 M⊙ at the onset of the merger. At this stage, it has an
inert helium core of 1–1.4 M⊙. The typical secondary star
has a mass of 1–3 M⊙ in our standard simulations (see also
Fig. B.1).
Simulations by Glebbeek et al. (2013) indicate that the he-
lium core of the original primary will sink to the center.
The steep mean molecular weight gradient will likely inhibit
mixing between the core and layers above. After the merger
product has radiated away the excess energy and restores
thermal equilibrium, it has the structure of a giant with a core
mass that is abnormal for its total mass compared to a reg-
ular giant created through single-star evolution. A fraction
of these objects are expected to appear as blue supergiants.
The helium core grows as a result of shell hydrogen burn-
ing and, when massive enough, continues with the advanced
burning stages. The final pre-explosion properties are uncer-
tain but some of these may give rise to 1987-like events (e.g.,
Podsiadlowski et al. 1990); see also Vanbeveren et al. (2013)
and Justham et al. (2014).

Reverse mergers. Approximately half of the late ccSNe (47%)
in our standard simulation (equivalent to 7.5% of all ccSNe)
originate from mergers following a reverse mass-transfer phase
from the initially less massive secondary back to the initially
more massive primary. Nearly all these systems experienced one
or more semi-conservative phases of mass transfer from the pri-
mary to the secondary before, allowing the secondary to grow
beyond the mass threshold Mmin,cc. The secondary would have
exploded as a ccSN as a result of this. However, as it evolves and
expands, it encounters the stripped remnant core of the primary,
which is still in orbit, triggering a reverse mass-transfer phase.
The donor star is now typically a few times more massive than
the remaining core of the primary, leading to common envelope.
The secondary engulfs the primary. The orbit shrinks while part
of the envelope of the secondary is ejected. If complete ejection
is unsuccessful, the two stars will coalesce. We distinguish dif-
ferent cases depending on the evolutionary stage of the primary
and secondary.

HeStar⇐HG: in our standard simulation, 20% of the late
events are produced by the merger of the naked helium
core of the initially more massive primary star and a post-
main-sequence secondary after a common envelope phase.
These are cases where the combined helium core mass after
the merger exceeds the single star threshold for ccSN (e.g.,
Nomoto 1984, 1987; Habets 1986) and can produce a metal
core mass of at least Mmin,metal.
The typical progenitor system involves two intermediate-
mass stars with similar initial masses (q > 0.6) and an ini-
tial period shorter than approximately 10 days. The typical

mass of the naked He primary star at the moment of merging
ranges from 0.4 to 1.3 M⊙, while the secondary star ranges
from 6 to 13 M⊙ and has developed a He core of 1.5 to 3 M⊙
(see also Fig. B.1).

COWD⇐HG: we find that 10% of late ccSNe result from the
merger of a massive recently formed CO white dwarf, being
the remnant of the primary, which is engulfed by a HG sec-
ondary star. The typical mass of the COWD is approximately
0.9 M⊙, being the remnant of a star with initial mass around
5–8 M⊙, although there is a small contribution of progeni-
tors with masses of 9–12 M⊙ that results in more massive
white dwarfs (see also Fig. B.1). The first group originates
from wide systems with periods P > 100 days experiencing
almost non-conservative mass transfer. The second group in-
volves systems in tighter orbits, P . 30 days, that evolved
fairly conservatively, allowing the secondary to almost dou-
ble its mass.
Assessing the outcome of these mergers will require fu-
ture dedicated simulations. Sabach & Soker (2014) have ad-
dressed the question of what is the result of these reverse
common envelope channels involving a white dwarf. Here
we speculate on some of the possible outcomes. We expect
the white dwarf to spiral in and sink to the center of the
merger product, where it will find itself surrounded by the
former helium core of the secondary, that is, by 1–3 M⊙
of helium. The structure of the star is a post-core-helium-
burning star, with an abnormal ratio for the core and shell
mass. Nuclear burning will proceed in a hydrogen burning
shell (if hydrogen is left after the spiral in phase) and a he-
lium burning shell. The CO core will grow due to ashes of
the helium burning shell. This may lead to off-center ignition
of carbon. Carbon ignition may occur in non-degenerate con-
ditions and lead to the formation of an ONeMg core, which
may eventually collapse as a result of electron capture (e.g.,
Nomoto 1984).
Alternatively, if carbon ignition occurs under degenerate
conditions, it could, in principle, lead to either a deflagra-
tion, leaving a neutron star remnant, or a detonation of the
entire core, similar to a type Ia thermonuclear explosion
(Nomoto & Kondo 1991). The main difference from normal
Ia supernovae is that it would occur inside a hydrogen en-
velope. In the case of the detonation of the core without
leaving any remnant, it may be similar to the “type 1.5” su-
pernova that Iben & Renzini (1983) proposed, which is the
detonation of the CO core of an Asymptotic Giant Branch
(AGB) star that reaches a mass close to the Chandrasekhar
limit. It has been suggested that this can also be the final out-
come of single intermediate-mass stars in very low metallic-
ity environments (e.g., Zijlstra 2004; Lau et al. 2008) where
the wind mass loss is low enough to allow the formation of
such a massive CO core. As we show here, binarity may al-
low similar structures even at higher metallicities. The the-
oretical “type 1.5” supernova mechanism is suggested as
a possible explanation for the observed class of thermonu-
clear explosions that show interaction with circumstellar ma-
terial, sometimes referred to as Ia-CSM supernovae (e.g.,
SN2002ic, Hamuy et al. 2003).
A third possibility that we cannot exclude at present is that
the effects of mass loss and possible dredge-up prevent the
star from growing a core massive enough to undergo core
collapse.

ONeWD⇐HG: mergers involving an ONeMg white dwarf
with and a HG secondary account for 11% of the late ccSN
in our standard simulations. The white dwarf has a mass
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between 1 M⊙ and the Chandrasekhar mass. The mass of
the secondary is around 5–8 M⊙ at the moment of merg-
ing with a He core of around 1 M⊙ (see also Fig. B.1).
These systems originate from initially wide systems (approx-
imately 60–1000 days) that evolve very non-conservatively.
We expect the products of these mergers to end their lives ei-
ther as electron capture supernovae or iron-ccSNe (see also
Sabach & Soker 2014).

COWD⇐AGB: mergers where the secondary is an AGB star
merging with the CO white dwarf remnant of the primary
contribute 6% of the late events in our standard simulations.
In these cases, the combined mass of the white dwarf pri-
mary and the degenerate CO core of the secondary exceeds
the Chandrasekhar mass. These systems primarily originate
from progenitors with intermediate periods of 30–100 days
(see also Fig. B.1).
One of the earliest discussions of this channel is given
by Sparks & Stecher (1974) who suggested that merg-
ers of this type may lead to collapse forming a neu-
tron star. This scenario differs from the classical case of
the merger of two white dwarfs as the merger will oc-
cur inside a hydrogen envelope. While this was origi-
nally discussed as a channel for thermonuclear explosions
of white dwarfs (Iben & Tutukov 1984; Webbink 1984),
Nomoto & Iben (1985), Saio & Nomoto (1985) and, more
recently, Schwab et al. (2016), argue in favor of the forma-
tion of a neutron star.
Regardless of whether this leads to a thermonuclear or core-
collapse event, it is interesting to note that the timescale be-
tween the merger and the final explosive event is short. Re-
mainders of the partially ejected envelope may still be in the
close vicinity of the merger product, allowing for observa-
tional consequences as the supernova shock interacts with
the circumstellar material.
Alternatively, Hachisu et al. (1999) suggest that systems
consisting of a COWD with a massive AGB star can avoid
common envelope phase due to high wind mass-loss rates
from the WD. If the WD accretes enough mass to explode,
it would provide an alternative possible channel for Ia-CSM
supernovae (Nomoto et al. 2004).

Non-merger channels. Approximately 13% of the late ccSNe
occur in binaries in which the stars interact but avoid coales-
cence. In nearly all cases, it is the initially less massive secondary
that explodes, having previously accreted mass from the primary.
In more than half of these cases, the primary explodes prior to
the secondary, disrupting the system. The secondary explodes
later after having drifted away from its place of birth by up to
hundreds of parsecs.

A few percent of the late ccSNe occur when a common en-
velope evolution initiated by the expansion of the secondary
results in a successful envelope ejection. The outcome is a
ccSN explosion from the stripped secondary next to an also
stripped primary or a white dwarf. If the binary system does
not get disrupted by this late supernova, it may lead to a sys-
tem similar to PSR B2303+46 and PSR J1141-6545 in which
the neutron star pulsar was formed after the WD compan-
ion (e.g., Portegies Zwart & Yungelson 1999; Tauris & Sennels
2000; Davies et al. 2002; Kalogera et al. 2005; Church et al.
2006).

4. Robustness of the predictions

To estimate the sensitivity of our results to variations in the as-
sumed parameters, we conduct a set of simulations in which
we vary the assumptions concerning the physical processes
(Sect. 2.2) and the treatment of initial conditions (Sect. 2.1). In
Table 2, we provide a summary of the considered variations and
the resulting fraction of late ccSNe flate. The maximum range
we find among all variations we consider is flate = 7.2−24.3%.
We also provide the median delay time of late ccSNe (t50%,late)
and the delay time below which 90% the late events are found
(t90%,late). We discuss the most important effects below.

4.1. Physical processes

The efficiency of mass transfer, that is, the fraction of the mass
lost by the donor star that is accreted by the companion, is one
of the main uncertainties affecting the evolution of binary sys-
tems (for a discussion we refer to de Mink et al. 2007). Our stan-
dard model considers a physically motivated simple prescription,
which considers the thermal timescale at which the accreting
star can respond to mass loss (Sect. 2.2). Lowering the accre-
tion efficiency β reduces the number of secondary stars that gain
enough mass to exceed the threshold for ccSNe. This affects the
reverse merger and the non-merger channels that produce late
events. In the extreme case of fully non-conservative mass trans-
fer (β = 0, m01 in Table 2), we still find that approximately 9%
of the ccSNe are late. Adopting the opposite extreme of conser-
vative mass transfer (β = 1, m03) results in an increase of the
fraction of late supernovae close to 22%.

Our results are also sensitive to the treatment of common
envelope ejection (Ivanova et al. 2013b). In our standard simula-
tions, the large majority of late ccSN result from systems that
merge during a common envelope phase. Increasing the effi-
ciency parameter for common envelope ejection αCE enhances
the fraction of systems that avoid coalescence. Adopting a ten
times larger efficiency (αCE = 10, m17) prevents nearly all re-
verse mergers. Nevertheless, in this case, we still find a fraction
of 7.2% for the contribution of late ccSNe, from forward merg-
ers or systems that do not merge. On the other hand, reducing
the common envelope efficiency leads to an enhancement of flate
because of an increase in the number of merger products that
produce a late ccSN. Simultaneously, this reduction of αCE aug-
ments the number of systems that merge prematurely during the
first phase of mass transfer, hence resulting in a rearrangement
of the relative importance of each evolutionary channel that pro-
duces a late event.

A few reverse channels for late events in our default simula-
tion involve the merger of a white dwarf and a non-degenerate
secondary. The outcome of such a merger is hard to predict re-
liably without further detailed simulations. To account for this
uncertainty, we consider a model variation where we only allow
for ccSNe from systems where the HG companion exceeds the
threshold of Mmin,cc before merging, that is, where we would ex-
pect a ccSN even without merging with the white dwarf. The
number of late events is reduced with this assumption, as ex-
pected, but the effect is mild: flate ∼ 13.2% (m27).

The formation of black holes in failed explosions may not
be accompanied by a bright optical transient. We therefore con-
sider a model variation in which the most massive progenitors
are excluded. Recent work suggests that there is no simple mass
threshold for black hole formation (e.g., O’Connor & Ott 2011;
Sukhbold et al. 2016), but this simple approach is sufficient to
have an impression of the impact. We assume that all single
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Table 2. Variations of the physical assumptions and initial conditions considered and their impact on the fraction of late events, flate, with respect
to the total number of core-collapse supernovae.

Model Description flate t50%,late t90%,late

(Myr) (Myr)

00 Standard Simulations 15.5% 71.9 150.5

Physical assumptions

01 mass transfer efficiency β = 0 8.8% 72.7 143.5
02 ′′ ′′ β = 0.2 10.5% 61.1 140.9
03 ′′ ′′ β = 1 21.7% 79.1 146.1
04 angular momentum loss γ = 0 15.3% 70.6 146.1
05 ′′ ′′ γ = γdisk 17.1% 71.4 130.3
06 mass loss during merger of two MS stars µloss = 0 14.9% 78.2 162.8
07 ′′ ′′ µloss = 0.25 14.9% 70.6 142.6
08 mixing during merger of two MS stars µmix = 0 15.4% 72.3 148.7
09 ′′ ′′ µmix = 1 15.8% 73.2 148.7
10 natal kick compact remnant σ = σ0 16.3% 75.4 152.3
11 ′′ ′′ σ = ∞ 15.6% 72.3 147.8
12 common envelope efficiency αCE = 0.1 19.4% 77.7 147.8
13 ′′ ′′ αCE = 0.2 20.4% 81.5 158.9
14 ′′ ′′ αCE = 0.5 16.5% 81.0 162.8
15 ′′ ′′ αCE = 2.0 13.1% 69.3 145.2
16 ′′ ′′ αCE = 5.0 8.3% 63.0 137.5
17 ′′ ′′ αCE = 10.0 7.2% 61.8 137.5
18 envelope binding energy λCE = 0.5 17.0% 82.0 178.1
19 critical mass ratios for contact/unstable mass transfer qcrit,MS = 0.25 15.5% 72.7 149.6
20 ′′ ′′ qcrit,MS = 0.8 15.3% 71.9 146.9
21 ′′ ′′ qcrit,HG = 0.0 15.6% 79.6 170.8
22 ′′ ′′ qcrit,HG = 0.25 14.4% 75.4 154.2
23 ′′ ′′ qcrit,HG = 0.8 19.7% 73.6 124.9
24 ′′ ′′ qcrit,HG = 0.99 22.3% 74.9 138.4
25 stellar wind mass-loss efficiency η = 0.33 15.7% 74.0 157.0
26 ′′ ′′ η = 3.0 15.7% 71.3 141.7
27 exclusion of WD mergers if companion < Mmin,cc 13.2% 68.9 138.4
28 maximum single star equivalent birth mass for ccSN Mmax,cc = 35 16.9% 72.7 148.7
29 ′′ ′′ Mmax,cc = 20 20.4% 72.7 148.7
30 minimum metal core for ccSN Mmin,metal = 1.30 14.8% 83.5 165.7
31 ′′ ′′ Mmin,metal = 1.40 16.2% 62.6 132.7

Initial conditions

32 initial mass function α = −1.6 8.2% 68.5 142.6
33 ′′ ′′ α = −2.7 20.4% 74.9 153.3
34 ′′ ′′ α = −3.0 24.3% 76.3 157.9
35 initial mass ratio distribution κ = −1 12.1% 64.9 140.9
36 ′′ ′′ κ = +1 18.1% 76.3 151.4
37 initial period distribution π = +1 11.3% 69.3 146.9
38 ′′ ′′ π = −1 23.2% 78.2 151.4
39 metallicity Z = 0.0002 12.6% 98.2 199.7
40 ′′ ′′ Z = 0.001 11.8% 92.5 179.2
41 ′′ ′′ Z = 0.004 12.9% 83.0 159.8
42 ′′ ′′ Z = 0.008 14.1% 78.2 152.3
43 ′′ ′′ Z = 0.02 14.8% 68.5 141.7
44 ′′ ′′ Z = 0.03 14.7% 64.9 134.3
45 binary fraction fbin = 0.3 7.7% 72.7 148.7
46 ′′ ′′ fbin = 1.0 20.0% 72.7 148.7
47 mass dependent binary fraction fbin(M1) 12.8% 68.9 138.4
48 normalization parameter Mlow = 1 M⊙ 15.5% 72.7 148.7
49 ′′ ′′ Mlow = 3 M⊙ 15.5% 72.7 148.7

Notes. We also provide the median delay time of late events, t50%,late, and the delay time before which 90% the late events are found, t90%,late.
Standard assumptions are listed in Table 1 and symbols are explained in Sect. 2.

stars with initial masses above a certain threshold, Mmax,cc, lead
to no or very faint transients. For binary products, we consider
the final metal core mass and compare with the resulting thresh-
old for single stars. Setting Mmax,cc = 35 M⊙ or 20 M⊙ gives

flate = 16.9% and 20.4% respectively (m28 and m29). The in-
crease in the relative importance of the late ccSNe occurs be-
cause the excluded events have short delay times, thus the total
number of ccSNe decreases but the tail is not affected.
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The mass ratio criterion for contact and merging during the
main sequence (m19-20) only affects the frequency of late ccSN
by a few percent because it influences only one evolutionary
channel. The criterion for unstable mass transfer when the donor
is crossing the HG (m21-24) affects the results more, as many
late events originate from systems that experience this process.
Increasing qcrit,HG, that is, allowing for unstable mass transfer in
more systems even when the mass ratio of the two stars is not ex-
treme, increases flate to ∼22% with the HG+MS forward merger
becoming the dominant channel.

The considered variations in the minimum metal core mass
for collapse (Mmin,metal, m31 and m32) effectively change the
minimum initial mass of a single star for core collapse, Mmin,cc,
to approximately 7 and 8 M⊙ respectively. Thus, the maximum
delay time of single stars τmax,cc also changes. We define, as
“late” ccSNe, those that occur after the τmax,cc for each model.
Thus, the median and 90th percentile of the delay time of late
ccSNe is shifted, whereas the ratio of these events to the total is
not significantly affected.

We find that the frequency of late events is not sensitive to
the adopted parameters for the treatment of main sequence merg-
ers (m06-09). These mergers are not a dominant channel for late
events. Similarly, varying the assumptions concerning the super-
nova kicks, which can potentially disrupt the system (m10-11),
has little effect because the majority of late events result from
intermediate-mass systems in which only one SN occurs. Aug-
menting the angular momentum loss due to non-conservative
mass transfer (m05) results in closer systems after mass trans-
fer and thus to a slight increase in the number of mergers that
lead to late ccSNe. Varying the stellar wind mass-loss efficiency
(m25-26) does not significantly change flate.

4.2. Initial conditions

Of the adopted initial conditions, we find that the high-mass
slope of the IMF, α, is the largest source of uncertainty, in
agreement with the conclusions drawn by de Mink & Belczynski
(2015). A steeper IMF favors late supernovae as they origi-
nate from intermediate-mass progenitors. We find variations of
flate = 8.2−24.3% when varying the slope from α = −1.6 to −3
(m32-34), which are the extreme values considered.

Late events preferentially originate from systems with com-
parable initial masses and initial periods less than approximately
30 days (see Fig. 4). Adopting an initial mass ratio distribution
that more strongly favors equal mass systems thus leads to a rel-
ative increase of late supernovae. We obtain flate = 12.1−18.1%
when varying the slope of κ from −1 to +1 (m35-36). Simi-
larly, a period distribution favoring short period systems also en-
hances the relative fraction of late supernovae. We find flate =

11.3−23.2% when varying π from −1 to +1 (m37-38).
Changing the overall binary fraction, fbin, proportionally af-

fects the contribution of late supernovae, with flate = 7.7−20.0%
when varying fbin = 0.3, 1.0 (m46-47). In addition, we also
compute a population assuming a mass dependency in the
binary fraction, which favors binarity in more massive stars
(m48, Eq. (5)). This results in a decrease of flate to 12.8%, as
intermediate-mass binaries that are the progenitors of late ccSNe
are disfavored. We have tested that this result is not very sensi-
tive to the actual choice of the mass boundaries in Eq. (5). The
normalization parameter, Mlow, which affects the total mass con-
tained in low-mass stars, does not affect the shape of the DTD,
only the total number of ccSNe per unit mass (m48-49).

We also consider the effect of metallicity. The minimum
mass for core collapse in a single star (Mmin,cc) decreases for

Table 3. Comparison of the median delay time of all core-collapse su-
pernovae, t50%,all, and the delay time below which 90% of all events are
found, t90%,all, in simulations by independent groups.

Simulation t50%,all t90%,all flate

(Myr) (Myr)

Single stars
– STARBURST99 (default) 15.0 32.7 0%
– STARBURST99 (modified) 16.4 36.7 0%
– BRUSSELS 23.1 39.7 0%
– BPASS 17.0 50.1 0%
– This work 19.6 41.6 0%

Including binary stars
– BRUSSELS 31.5 112.7 23%
– BPASS 17.7 63.1 8.5%
– This work 22.1 64.1 15.5%

Notes. The fraction of late ccSNe flate is also shown. All simulations
including binaries adopt a binary fraction of 0.7.

lower metallicity (Pols et al. 1998) and thus the lifetime of
the last ccSN resulting from single stars τmax,cc increases. For
example, for Z = 0.002, we find Mmin,cc = 6 M⊙, which corre-
sponds to a lifetime of approximately 70 Myr. In general, we thus
find a shift to longer delay times for lower metallicities. We find
that flate, defined as the fraction of supernovae that explode after
the last single supernova for that metallicity, decreases. This is
because stars at low metallicity are generally more compact. In a
binary system with the same initial parameters, that is, M1, M2,
and period, mass transfer typically occurs at a later evolutionary
stage of the primary in a lower metallicity system. This disfavors
most of the evolutionary channels that produce late events.

4.3. Comparison with results by independent groups

Various independent groups provided predictions for the DTD
of ccSNe. In Table 3, we show the results of different groups
for the fraction of late ccSNe, flate, as well as the median delay
time, t50%,all, and the delay time before which 90% of all ccSNe
are found, t90%,all. We find that flate predicted by different groups
that consider binarity agrees within a factor of two with our stan-
dard predictions. Simulations that only account for single stars
find flate = 0%, by definition. Below, we discuss the individual
studies.

STARBURST99. We use the online interface of STAR-
BURST99 (Leitherer et al. 1999; Vázquez & Leitherer 2005;
Leitherer et al. 2010, 2014) to compute the DTD, using two sets
of assumptions. In the first, labelled “default”, we choose the de-
fault assumptions of the online interface that use the classical
grid of models by Schaller et al. (1992) for Z = 0.02, adopting a
Kroupa (2001) IMF and assume Mmin,cc = 8 M⊙. We also com-
pare our results with predictions obtained with “modified” as-
sumptions where we set the threshold to Mmin,cc = 7.53 M⊙ and
Z = 0.014, to match our standard assumptions, and where we se-
lected the newer non-rotating models by Ekström et al. (2012).

The DTD of the STARBURST99 simulations is shown in
Fig. 6 along with our standard simulations of single stars and
including binaries (we note that the units on the y-axis are dif-
ferent than in Figs. 2 and 3; for a discussion, we refer to Ap-
pendix A). The DTDs for single stars are very similar until the
maximum delay time, which is approximately 35 Myr in the
default STARBURST99 population, 40 Myr for the modified
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Fig. 6. Comparison of our delay-time distribution of ccSNe including binaries (green shading) with those of our single-star population (black
dashed line) and predictions by STARBURST99 (thin full and dotted lines, see Sect. 4.3 for a description). We further show measurements by
Maoz & Badenes (2010) using Magellanic Cloud supernova remnants (pink squares), which contain a combination of remnants of ccSNe and
SNe Ia. Blue triangles and circles represent the observed rates of SNe Ia measured in extragalactic surveys in Totani et al. (2008) and Maoz et al.
(2010), respectively. The blue line is a t−1 fit through the extragalactic data. Horizontal error bars indicate the bin size. Vertical errorbars show
the 1σ error bars on the rate. The rightmost pink supernova rate is an upper limit. We argue that “late” ccSNe can help explain the discrepancy
between the intermediate age bin in the DTD by Maoz & Badenes (2010, central pink square) and the trend in the extragalactic SNe Ia (blue line),
instead of the original interpretation that this age bin includes only “prompt” SNe Ia (see discussion in Sect. 5.2).

STARBURST99, and 50 Myr in our simulation with only single
stars. This is due to differences in the minimum single star
threshold mass for ccSN as well as differences in lifetimes (see
also Fig. 1).

When we account for binaries, we find an increase of more
than 30% in the median of the DTD (t50%,all = 21.5 Myr, Table 3)
with respect to the default STARBURST99 models (∼16 Myr).
The 90th-percentile of the distribution, t90%,all, shifts by almost a
factor of two (from 33 Myr to 64 Myr) because of the tail of late
events that are produced only by binaries.

BRUSSELS Group. De Donder & Vanbeveren (2003a, hence-
forth DV03) were the first to explore the effects of binaries on
the DTD of ccSNe and find very similar general trends. They
find a tail of late events after their last single star explodes at
approximately 40 Myr extending until approximately 250 Myr,
slightly later than what we find (200 Myr). They describe a con-
tribution from mergers where the secondary engulfs the white
dwarf remnant of the primary, which is responsible for approx-
imately 16% of all ccSNe in their simulations. This is signifi-
cantly higher than what we find (∼4% of all ccSNe, combining
channels of CO/ONeWD⇐HG/AGB in Fig. 5). They mention
that the secondary is either still on the main sequence or is an
evolved red giant with a CO core. In our simulations, we find
instead that most of these mergers result from cases where the
secondary is a HG star. The authors do not mention channels
where the remnant of the primary is a naked helium star, which

is the dominant reverse channel in our simulation (HeStar⇐HG
in Fig. 5).

The original data from their simulations is no longer avail-
able (D. Vanbeveren, priv. communication, 2015), but we extract
the data from the top panel of Fig. 1 in De Donder & Vanbeveren
(2003a) using the PlotDigitizer software tool distributed under
the terms of the GNU General Public License. For a binary frac-
tion of 0.7, they find a total fraction of late events of approx-
imately 23%, which is higher than our 15.5%. In part, this is
due to the steeper IMF that these authors adopt, α = −2.7. Our
model 33, which adopts the same IMF as DVO3, results in a
fraction of late events of 20.4%.

The BRUSSELS simulations show significantly longer de-
lay times. They find a median delay time of 32 Myr, which is
approximately 50% larger than our standard simulation. Their
90th-percentile lies at 113 Myr, which is nearly twice as large as
in our standard simulations; see Table 3.

BPASS. Xiao & Eldridge (2015) discuss predictions for the
ccSNe rate using the Binary Population and Spectral Synthe-
sis (BPASS) code by Eldridge & Stanway (2009). They find a
maximum delay time for core-collapse events from single stars
around 70 Myr, which is considerably larger than in our sim-
ulations (approximately 50 Myr). No tail of late events due to
binary interactions is visible in their Fig. 1, maybe because these
simulations do not include intermediate-mass binaries.

The newer BPASS v2.0 models are based on more extended
model grids. We retrieved them from the online repository. The
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coverage of the initial binary parameter space is still sparse for
our purposes (∼5000 binary systems per metallicity, while we
use approximately two orders of magnitude more systems in our
variations and three orders of magnitude more for our standard
simulation, see Sect. 2.3). However, we find similar trends. The
BPASS v2.0 models also show a tail of late events up to approx-
imately 250 Myr after starburst, comparable to our findings. The
late events in the BPASS models account for 8.5% of all ccSNe,
which is lower than but still consistent with our findings. The
median and 90th-percentile of their distribution are similar to
ours, see Table 3.

5. Discussion

We discuss a variety of ideas to observationally test the pre-
dicted tail of late ccSNe and highlight current observations that
already provide hints (Sects. 5.1–5.3). We then discuss possible
implications for stellar feedback and for the derived cosmic-star-
formation rate.

5.1. Direct progenitors and descendants of late ccSNe

Our simulations predict the existence of direct progenitors of
late ccSNe. The well studied, post-interaction binary φ Persei
(Poeckert 1981; Slettebak 1982) provides a very strong case of
such.

The brightest star in the system is a Be star with a mass of
9.6 ± 0.3 M⊙ (Mourard et al. 2015, and references therein); well
above Mmin,cc. This binary system is considered to be a member
of the α Persei cluster, which has an estimated age of 50–60 Myr
(Makarov 2006; Zuckerman et al. 2012). This is almost twice
the expected lifetime of a single star with a mass similar to that
of the Be star. This age discrepancy can be naturally explained
if the Be star was born with lower mass before gaining mass
from a companion later in its life, giving it the appearance of
a blue straggler. The rapid rotation of the Be star is a further
indication that it was spun up during a previous phase of mass
transfer (Packet 1981; de Mink et al. 2013).

Evidence is also provided by the properties of the com-
panion, which is a hot subdwarf O star of 1.2 ± 0.2 M⊙
(Mourard et al. 2015). Its properties and current orbital period
of 126 days match the theoretical expectations for a typical
post-mass-transfer system. The hot, low-mass companion is
the remaining stripped helium core of the initially most mas-
sive star that lost its hydrogen-rich envelope during Roche-
lobe overflow. The current mass of the subdwarf corresponds
to the core mass of a star with an initial mass of approxi-
mately 7 M⊙. Evolutionary modeling of the system by different
groups show that the Be star was likely born with a mass around
4−5 M⊙ (Vanbeveren et al. 1998; Pols 2007, Schootemeijer
et al., in prep.).

This means that both stars were born with masses below the
single-star mass threshold for ccSN. Binary interaction increased
the mass of the Be star sufficiently that is should end its life as
a ccSN. However, the final fate of the system depends on the
uncertain phase of common envelope evolution that is expected
when the Be star leaves the main sequence, expands and engulfs
the subdwarf. If the system fails to eject the envelope, which
we deem likely, the resulting merger product will likely be mas-
sive enough to undergo core collapse. If the system successfully
ejects the envelope, the outcome will depend on how much mass
is lost during subsequent mass transfer phases.

More generally, as mentioned in Sect. 3.5, if a similar sys-
tem survives both the reverse common envelope process and

the ccSN of the secondary, it may lead to an eccentric binary
of a white dwarf and a neutron star, similar to PSR B2303+46
and PSR J1141-6545. It has been argued that in these sys-
tems, the secondary formed a neutron star after the primary be-
came a white dwarf (e.g., Portegies Zwart & Yungelson 1999;
Tauris & Sennels 2000; Davies et al. 2002; Kalogera et al. 2005;
Church et al. 2006), meaning the neutron star was formed dur-
ing a “late” ccSN. For example, Tauris & Sennels (2000) discuss
such an evolutionary scenario for PSR J1141-6545, predicting
that the supernova occurs at approximately 70 Myr. This would
imply that PSR B2303+46 and PSR J1141-6545 systems are di-
rect descendants of “late” ccSNe.

Progenitor systems such as φ Persei are extremely valuable
for verifying the predictions of the evolutionary models. FY
Canis Majoris (Peters et al. 2008) and 59 Cygni (Peters et al.
2013) are systems that probably followed a similar evolution
with φ Persei and may also be progenitors of late ccSNe. Only
a small number of post-interaction systems have been identi-
fied and characterized so far, due to the many biases that hinder
the detection of these systems (de Mink et al. 2014). To move
forward, it is necessary to prioritize systematic observing cam-
paigns that are carefully designed to identify them (e.g., Götberg
et al., in prep.) to provide more stringent test cases with well
determined parameters.

5.2. A possible signature of late ccSNe in the sample
of Magellanic Cloud supernova remnants

Several groups have tried to measure the DTD of supernovae.
However, in general, all studies focus on the delay time of
type Ia supernovae (SNe Ia), which are thought to arise from
the thermonuclear explosion of a white dwarf (e.g., Totani et al.
2008; Maoz et al. 2010, 2011, 2012; Maoz & Badenes 2010;
Graur & Maoz 2013; Graur et al. 2014); we refer to Maoz et al.
(2014) for a review. The general idea behind the different tech-
niques that are used is to measure SN rates in different environ-
ments and compare them to the star-formation history (SFH) of
the associated stellar populations (e.g., the cosmic SFH based
on the redshift of the explosion or the SFH of each galaxy for
extragalactic surveys, etc.).

Because SNe Ia originate from lower-mass systems than cc-
SNe, they typically have longer delay times; of the order of hun-
dreds of Myr to Gyr, in contrast to the typical tens of Myr for cc-
SNe. This can be seen in Fig. 6 where we show the DTD of SNe
Ia derived by Totani et al. (2008) and Maoz et al. (2010) from
extragalactic surveys (blue triangles and circles, respectively).
The blue line is a simple power-law fit to highlight the widely
accepted t−1 form of the SNe Ia DTD (e.g., Maoz et al. 2014).

The techniques used to measure the DTD of SNe Ia cannot be
applied directly for ccSNe. The much shorter typical delay times
of ccSNe require a much higher accuracy in the derived age of
the associated stellar populations, for any meaningful compari-
son of data and models. Even in Maoz et al. (2011), where the
time accuracy is better than all previous methods, all ccSNe are
grouped together in the first time bin (0–420 Myr). Thus, it is dif-
ficult to observationally probe the short time-delay regime where
the model predictions of ccSNe DTD lie.

Maoz & Badenes (2010) pioneered a new technique to sta-
tistically infer the DTD, based on the largely complete sam-
ple of the 77 supernova remnants in the Magellanic Clouds
(Badenes et al. 2010). Because of the proximity to the Clouds,
the stellar populations in the vicinity of the remnants can be
resolved. This allows for a more accurate estimate of the age
distribution of the surrounding population, providing statistical
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constraints on the delay time. We show their results in Fig. 6
(pink squares). This is the highest-quality DTD at early times,
probing the short delay regime and so far the only published
DTD based on resolved stellar populations.

While the original main interest of these authors was to probe
SNe Ia with short delay times, their sample also includes rem-
nants produced by ccSNe. Unfortunately, for most of the rem-
nants in this sample, it is no longer possible to reliably tell
whether they came from type Ia or core-collapse supernova.
Most of them are more than 10 kyr old and they are in the Sedov-
Taylor phase (Maoz & Badenes 2010). Therefore, the DTD in-
ferred from this sample contains the combined signal of SNe Ia
and ccSNe.

Maoz & Badenes (2010) argue that the signal in the interme-
diate age bin that spans between 35 and 330 Myr (central pink
square in Fig. 6) is dominated by so-called prompt SNe Ia. They
justify their reasoning with single-star models, which predict the
last single star to explode at approximately 35–50 Myr (Fig. 1).
The authors also explicitly test their assertion by separately an-
alyzing the subset of remnants for which the type of explosion
is known. Based on these, the authors conclude that “leakage”
of core-collapse events from the first into the intermediate age
bin is likely to be small. Unfortunately, the subset of remnants
that could be used for this test is small because only 11 remnants
have been identified as resulting from ccSNe.

Our simulations challenge the interpretation that the interme-
diate age time bin (35–330 Myr, central pink square) is purely
due to prompt SNe Ia. Instead, our predictions suggest a sig-
nificant contribution to this time bin from late ccSNe resulting
from binary systems. This can be seen in Fig. 6 where we over-
plot our model predictions for the DTD of ccSNe (green shad-
ing). For comparison, we also show our predictions for single
stars (black dashed line) and the predictions by the widely-used
STARBURST99 population synthesis code for single stars (thin
full and dotted lines, discussed separately in Sect. 4.3).

Support for a significant contribution of late ccSNe
comes from the discrepancy between the measurements by
Maoz & Badenes (2010) for the intermediate age time bin (cen-
tral pink square) and the general trend in the extragalactic SNe Ia
(blue line). For these extragalactic measurements, there is no rea-
son to confuse type Ia and core-collapse events. They are classi-
fied directly based on their light curves and spectra of the explo-
sions. We therefore consider the extragalactic measurements to
be a reliable indication of the general trend in the DTD for SNe
Ia. These measurements suggest a much lower contribution of
prompt SNe Ia to the intermediate age bin than Maoz & Badenes
(2010, the offset between the blue line and central pink square).

We conclude that the data is consistent with a substantial
contribution of late ccSNe. We refrain from drawing a firm con-
clusion, given the challenging nature of the measurements by
Maoz & Badenes (2010) and the possibility that systematic er-
rors play a role. However, the comparison above is certainly
promising and shows the large potential of this method.

Possible future improvements. A significant step forward
can be made by more accurately characterizing the surround-
ing stellar population for each supernova remnant. The original
study of Maoz & Badenes (2010) was limited by the spatial and
time resolution of the SFH map of the Magellanic Clouds by
Harris & Zaritsky (2004, 2009). Jennings et al. (2012, 2014) and
Williams et al. (2014) demonstrate how more accurate results
can be obtained using archival Hubble Space Telescope imaging.

This allows extension to other nearby galaxies, such as M31 and
M33 (see also Murphy et al. 2011).

Further improvement can be made with respect to the stel-
lar models adopted for the analysis. As we show in Fig. 1, more
modern calibrated stellar models lead to lifetimes that are ap-
proximately 15% longer. Also, for consistency, the inclusion of
the effects of binarity in the characterization of the stellar popula-
tion is highly desired. This is now becoming possible as demon-
strated by Wofford et al. (2016), using the BPASS simulations.
This is important since products of binary evolution are typically
rejuvenated and make the stellar populations appear younger
than they actually are (e.g., Schneider et al. 2014). Systemati-
cally underestimating the age of stellar populations surrounding
the remnants will obstruct the identification of remnants result-
ing from late ccSNe.

Progress can also be made by improving our understand-
ing of the observational biases in the sample of remnants
(Sarbadhicary et al. 2017) and by increasing the fraction of rem-
nants where the type of explosion can be unambiguously de-
termined. Lopez et al. (2011) propose that the morphology of
the remnants can be used to determine this. X-ray spectral
properties can also be used to classify a large fraction of the
remnants (Maggi et al. 2016). A potentially promising strategy
would be to target remnants surrounded by intermediate age
populations for deep follow up and search for a remaining neu-
tron star (e.g., Perna et al. 2008). This is now also possible in
the Magellanic Clouds, such as PSR J0537-6910 in the remnant
N157b, (Marshall et al. 1998) for example.

Several studies focus on trying to identify runaway stars in-
side supernova remnants (Tetzlaff et al. 2013). Our simulations
imply that this is not a promising path to search for late cc-
SNe because the majority arise from mergers. However, this pre-
diction is subject to uncertainties, most notably the poorly con-
strained common envelope ejection efficiency, αCE.

5.3. Photometric transient surveys: possible expected
signatures in the light curves of late events

If indeed approximately one in seven ccSNe are late, as is the
case in our standard simulation, many of these events should
already have been detected in supernova surveys. We expect
the majority of events to be hydrogen rich type II supernovae,
although the precise fraction is dependent on model assump-
tions such as the common envelope efficiency, αCE. We note that
the late events come from a variety of evolutionary scenarios
(Fig. 5). Thus, they may not form a very homogeneous SN class
and different distinguishing features may be expected among the
different subtypes. Dedicated simulations will be required to pre-
dict the variety. Here, we briefly speculate on variations that may
qualitatively be expected.

A subset of channels consist of mergers involving at least
one star that has evolved beyond helium burning (i.e., the reverse
mergers CO/ONeWD⇐HG/AGB, see Fig. 5, Sect. 3.5). In these
cases, the supernova is expected to occur relatively quickly fol-
lowing the merger event. The merging is expected to lead to the
shedding of several solar masses of hydrogen. If a small fraction
of this material remains in the vicinity until the explosion, the
event may show signatures of interaction with a dense circum-
stellar medium and give rise to narrow emission lines (type IIn).

We may expect further signatures in the light curve that indi-
cate an abnormal pre-explosion structure resulting from mixing
or mass loss during the binary interaction event. For example,
excessive mass loss may result in type II events with lower than
usual mass in the hydrogen envelope. Another possibility could
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be that the envelope is more helium rich than usual, which may
leave an imprint on the shape of the plateau of the light curve.

Finally, the merger events themselves may constitute a subset
of the rich and diverse class of the observed red intermediate
luminosity transients or of gap transients, as has been pointed
out by Ivanova et al. (2013a).

5.4. Binarity and the missing supernova problem in relation
to the cosmic star-formation rate

Core-collapse supernovae can be used as tracers of the
cosmic star-formation rate (e.g., Horiuchi et al. 2011;
Madau & Dickinson 2014). This method makes use of the
fact that the delay times between star formation and the result-
ing ccSNe are short compared to cosmological timescales. This
is still true when considering late ccSNe due to binarity because
the impact on the average delay times is too small to have an
effect. Binarity does affect the total number of ccSNe produced
per unit mass formed in stars (Sect. 3.3). Horiuchi et al. (2011)
pointed out that there is a discrepancy between the cosmic
ccSN rate and the measured cosmic massive-star-formation
rate, with the former being approximately a factor 2 lower than
the latter (cf. Hopkins & Beacom 2006; Mannucci et al. 2007;
Botticella et al. 2008).

To arrive at this conclusion, Horiuchi et al. (2011) use a con-
version factor of 0.0088 ccSNe per M⊙ to convert the cosmic
star-formation rate into the expected core-collapse rate. In com-
parison, we find a conversion factor of 0.0115 ccSNe per M⊙ in
our standard single-star simulation with large variations when
changing the IMF (0.0028–0.0253 ccSNe per M⊙). In other
words, uncertainties in the IMF alone can, in principle, already
resolve the discrepancy. Accounting for binarity increases this
conversion factor by 14+15

−14% to 0.0128 SNe per M⊙ in our stan-
dard binary simulations (0.0035–0.0253 SNe per M⊙ in the vari-
ations considered), making the missing supernova problem a fac-
tor of 1.5 times worse.

Binarity will also affect the derived star-formation rate it-
self as it changes the production of UV and Hα photons per unit
mass, which are used as indicators. For a discussion of these ef-
fects we refer to Xiao & Eldridge (2015) and references therein.

5.5. Late core-collapse supernovae and implications
for feedback

Supernovae play a crucial role as sources of feedback in galaxies.
Binarity is likely to affect when, where, and how this process
occurs. The level of sophistication used to account for super-
nova feedback in simulations of galactic evolution varies be-
tween studies (if implemented at all). In one of the more sim-
ple forms, all core-collapse explosions are assumed to happen
promptly or at a fixed time after starburst, typically 10 Myr. We
would advise using 20 Myr, which corresponds to the median de-
lay time (t50%,all, Table 3), as a more realistic value. Accounting
for binary systems has little effect on the median (from 19.6 Myr
for single stars to 22.1 Myr for simulations with binaries). For a
more realistic implementation, it is worth considering the spread
in delay times. As mentioned in Sect. 4.3, the delay time up
to which 90% of ccSNe have exploded, t90%,all, increases from
33 Myr in STARBURST99 to 42 Myr in our standard single-
star simulation and to 64 Myr when we include binary systems
(Table 3).

These differences are large enough to be worthy of con-
sideration. Kimm et al. (2015) showed that using more realistic

stellar lifetimes (meaning the extended delay times predicted by
the single stellar models in the STARBURST99 simulations)
has a significant impact on galactic models. It can for exam-
ple prevent the formation of high density gas clouds and lead to
some explosions occurring in low-density environments. Bina-
rity can stretch the DTD significantly. Struck-Marcell & Scalo
(1987), Parravano (1996), Quillen & Bland-Hawthorn (2008)
show that a delay between starburst and feedback is needed
for episodic star formation to occur. In their estimates,
Quillen & Bland-Hawthorn (2008) assume ccSNe delay times of
a few Myr. If average supernova delay times are longer, as we
show, the potentially increased feedback timescale may impact
future star formation in the molecular cloud.

The delays also imply that the supernovae will occur signif-
icantly displaced from their birth location. A star with a delay
time of 60 Myr that has inherited a velocity of approximately
5 km s−1 from the turbulent motions of its birth cloud will travel
300 pc before exploding. Note that this is without invoking any
runaway nature.

Finally, a delay time implies a lag in chemical enrichment
of the environment. It is unclear, at present, whether or not the
tail in the DTD discussed here is significant enough to cause
observable effects to chemical enrichment models.

6. Summary

We investigate the impact of binarity on the stars that end their
lives as core-collapse supernovae (ccSNe) and on the delay time
between the starburst and their explosions. We use a binary pop-
ulation synthesis code to compute the delay-time distribution
(DTD) of ccSNe, where we calculate the supernova rate versus
time after a starburst. Our main findings are as follows:

– Binaries extend the DTD to longer delay times (50–200 Myr)
compared to a population consisting only of single stars. The
fraction of “late” (>50 Myr) to the total number of ccSNe in
a population with binaries is flate = 15.5+8.8

−8.3%.
– Late ccSNe originate predominantly from intermediate-mass

binaries, in which one or, in three out of four cases, both stars
have birth masses below Mmin,cc, the threshold for single stars
to explode. The typical initial primary masses are between 5
and 8 M⊙.

– With our standard assumptions, almost half of the late super-
novae originate from merger events of a post-main-sequence
star with either a stripped helium star or a white dwarf, fol-
lowing a common envelope phase. Prior to the merger, the
system experiences one or more mass transfer episodes from
the primary, that is, the initially more massive star that later
becomes the helium star or the white dwarf, to its companion
(secondary) that later evolves to the post-main-sequence star
that initiates the merger. Late supernovae from this type of
“reverse” mergers constitute approximately 7.5% of the total
number of ccSNe in our standard simulation. The slow evo-
lutionary timescales of their progenitors, compared to more
massive stars, are why most of them end up in the late tail
of the DTD. In our code, these reverse mergers may lead
to ccSNe but detailed models should further investigate the
outcome of these intriguing products and thus we provide the
mass distributions of the stars at the onset of merging.

– Another significant channel for late supernovae is the merger
of an intermediate-mass star with its companion during the
first mass-transfer episode (“forward” mergers), contribut-
ing to approximately 25% of all late ccSNe. The primary is
near or immediately after the end of its main sequence life
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and its companion is usually fairly unevolved. The merger
product is massive enough to experience collapse and is also
rejuvenated, leading to a late ccSN. We provide the proper-
ties of the stars at the moment of merger for these channels
as well.

– A smaller contribution to late events comes from systems
that do not experience merging, either because of successful
ejection of the envelope during a common envelope evolu-
tion phase or due to disruption of the binary system by a
prior supernova explosion.

– We test our results by varying the parameters of our standard
model one by one. Our results are sensitive to only a few of
them, mainly the mass transfer efficiency, the common en-
velope evolution parameter and the IMF slope. The fraction
of late supernovae also decreases for lower binary fractions
especially for stars in the intermediate-mass regime, because
these binary systems are the main progenitors of late events.
The error ranges provided in all our results are based on these
variations.

– We find that populations including binaries produce 14+15
−14%

more ccSNe than singles stars, for the same amount of stellar
mass.

– We discuss various possible ways to observational test our
predictions. We argue that the binary system φ Persei is a
direct progenitor system and that the Be star in this system
will likely give rise to a late ccSN. We further argue that
the eccentric neutron star – white dwarf binaries, in which
the neutron star is believed to have formed after the white
dwarf, are direct descendants of late ccSNe, in agreement
with earlier studies.

– We discuss how age dating the stellar populations at su-
pernova explosion sites and around supernova remnants can
constrain the DTD of ccSNe. In particular, we argue that the
excess of Magellanic Cloud supernova remnants surrounded
by intermediate age populations (spanning 35–330 Myr),
that Maoz & Badenes (2010) provide, can be interpreted as
evidence favoring the existence of late ccSNe (effectively re-
ducing the contribution of prompt Ia supernovae).

– We briefly discuss the potential implications for the cosmic
supernova rates and role of late ccSNe as sources of feed-
back. We provide fitting formula in Appendix A to facilitate
a simple implementation of our results in simulations.
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Appendix A: Supernova rate and fitting formula

In Figs. 2 and 3, we show the DTD as the number of ccSNe per
logarithmic time bin for a 106 M⊙ population. These units have
the visual advantage that an equal number of systems occupy the
same area in different parts of the diagram. However, for var-
ious applications of these results, the supernova rate expressed
as events per year per M⊙ are more appropriate. In Fig. A.1, we
provide the supernova rate in our standard simulations contain-
ing only single stars (top) and our standard simulation including
a realistic fraction of fbin = 70% binary systems (bottom).

For convenience of implementation of our results, we pro-
vide fitting functions to our numerical results. In order to derive
them, we fitted the cumulative distribution of our supernovae
events and then differentiated to derive the supernova rate. The
main advantage of this method is that it is independent of the
binning.

The delay-time distribution of the supernova rate, R, in units
of ccSNe yr−1 M−1

⊙ for a single star population is well described
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Fig. A.1. Core-collapse supernova rate as a function of time in a popu-
lation of single stars (top) and a realistic mix of single stars and binaries
(bottom) formed as an instantaneous starburst at t = 0, for our stan-
dard assumptions. The red dashed lines show the fitting formulae. The
top axis shows the initial mass of single stars with the corresponding
lifetime given in the bottom axis, computed with binary_c.

by

R =

{

10−9[−2.83 + 8.70(log10 t) − 2.07(log10 t)2](1/t)
10−8[−4.85 + 6.55(log10 t) − 1.92(log10 t)2](1/t),

(A.1)

for
{

3 ≤ t/Myr < 25,
25 ≤ t/Myr < 48,

respectively, and 0 otherwise.
The delay-time distribution of the supernova rate, again in

units of ccSNe yr−1 M−1
⊙ , for a realistic population including

fbin = 70% binary systems can be approximated as

R =























10−9[−2.65 + 7.51(log10 t) − 0.98(log10 t)2](1/t)
10−8[−0.89 + 1.73(log10 t) − 0.51(log10 t)2](1/t)
10−8[ 3.46 − 2.98(log10 t) + 0.65(log10 t)2](1/t),

(A.2)

for


















3 ≤ t/Myr < 25,
25 ≤ t/Myr < 48,
48 ≤ t/Myr < 200,

respectively, and 0 otherwise. For the calculation of the fit, we
omit ccSNe after 200 Myr because their contribution is not im-
portant to the total number of ccSNe (as shown in Fig. A.2). The
relative difference between our fit and our histogram values is,
on average, approximately 10%.

In Fig. A.2, we show the normalized cumulative distribution
both for a single star population and for one including binaries,
following our standard assumptions. It can be used to calculate
the fraction of supernovae that occurred before a specific time
compared to the total.
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Fig. A.2. Normalized cumulative distribution of core-collapse super-
novae as a function of time in a population of single stars (black dashed
line) and a realistic mix of single stars and binaries (green solid line)
formed as an instantaneous starburst at t = 0. The results are shown for
our standard assumptions. The top axis shows the initial mass of single
stars with the corresponding lifetime given in the bottom axis, computed
with binary_c.
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Appendix B: Properties of the merger channels

In Fig. B.1, we show six panels of triangular diagrams, one for
each of the main merger channels leading to late core-collapse
events. These diagrams provide information on the masses and
core masses (or evolutionary state) of the two stars involved in
the merger. The top two panels show the forward mergers, where
the merger occurs during a mass transfer event initiated by the
primary star. These include either two main-sequence stars (top
left) or one HG star and a main-sequence star (top right). The
four bottom panels show the properties of various reverse merger
channels including those where the primary star is a CO white
dwarf (central panels), an ONeMg white dwarf (bottom left), and
a helium star (bottom right). In the reverse mergers, the sec-
ondary star is typically a HG star. The exception is the central
right panel where the secondary star is an AGB star.

The triangular plots in each panel show the 1D distributions
of relevant properties together with the corresponding 2D distri-
butions showing how these properties are correlated. The color
shading is linear with yellow indicating the highest values and

black the lowest. In each panel, we show the mass of the ini-
tially more massive primary at the onset of merging at time tm in
the top row. The mass of the initially less massive secondary is
shown on the bottom row.

The quantity in the central row changes between plots. In all
cases that involve a HG star, we show the helium core, MHG,He, at
the onset of merging. In the case where the secondary is an AGB
star (central right panel), we show the CO core mass instead,
MAGB,CO. The core mass is not well defined for main-sequence
stars. Therefore, we show the fractional age, tfrac, of the most
evolved primary in mergers involving two main-sequence stars
(top left panel). We define the fractional age as the age relative to
the expected main sequence lifetime of a single star of the same
mass. This parameter, which can take values between 0 and 1, is
thus an indication of how evolved along the main sequence the
star is.

The channels and implications are discussed in the main text.
These diagrams serve as a reference and can in principle be used
to guide future detailed simulations of merger products.
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Fig. B.1. Triangular diagrams show the 1D normalized histograms of the properties of the six main subclasses of late events at the moment of
merger (tm) and how they are correlated in the 2D histograms. In Appendix B, we describe the various quantities that are shown. Masses are in
units of M⊙ and tfrac is dimensionless.
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