
 Open access Journal Article DOI:10.4304/JCM.6.6.477-484

Delay Tolerant Network on Android Phones: Implementation Issues and
Performance Measurements — Source link

Rerngvit Yanggratoke, Abdullah Azfar, María José Peroza Marval, Sharjeel Ahmed

Published on: 09 Jan 2011 - Journal of Communications (Academy publisher)

Topics: Android (operating system), The Internet and Delay-tolerant networking

Related papers:

 Security and performance aspects of Bytewalla: A Delay Tolerant Network on smartphones

 Epidemic routing for partially-connected ad hoc networks

 Opportunistic email distribution and access in challenged heterogeneous environments

 DTNperf_3: A further enhanced tool for Delay-/Disruption- Tolerant Networking Performance evaluation

 Delay Tolerant Network utilizing train for news portal and email services

Share this paper:

View more about this paper here: https://typeset.io/papers/delay-tolerant-network-on-android-phones-implementation-
4d4fzyb9gm

https://typeset.io/
https://www.doi.org/10.4304/JCM.6.6.477-484
https://typeset.io/papers/delay-tolerant-network-on-android-phones-implementation-4d4fzyb9gm
https://typeset.io/authors/rerngvit-yanggratoke-393a2axb4y
https://typeset.io/authors/abdullah-azfar-2xmtwt8s1j
https://typeset.io/authors/maria-jose-peroza-marval-u8si5thuji
https://typeset.io/authors/sharjeel-ahmed-4iq1lhnrcg
https://typeset.io/journals/journal-of-communications-1559vfdf
https://typeset.io/topics/android-operating-system-1s2dcrk5
https://typeset.io/topics/the-internet-1hyt0v5h
https://typeset.io/topics/delay-tolerant-networking-235h54k0
https://typeset.io/papers/security-and-performance-aspects-of-bytewalla-a-delay-vlc9ggqi0m
https://typeset.io/papers/epidemic-routing-for-partially-connected-ad-hoc-networks-s5rslcaiip
https://typeset.io/papers/opportunistic-email-distribution-and-access-in-challenged-1ujnqpn7b1
https://typeset.io/papers/dtnperf-3-a-further-enhanced-tool-for-delay-disruption-4cl7gvubsm
https://typeset.io/papers/delay-tolerant-network-utilizing-train-for-news-portal-and-4r1o4kug89
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/delay-tolerant-network-on-android-phones-implementation-4d4fzyb9gm
https://twitter.com/intent/tweet?text=Delay%20Tolerant%20Network%20on%20Android%20Phones:%20Implementation%20Issues%20and%20Performance%20Measurements&url=https://typeset.io/papers/delay-tolerant-network-on-android-phones-implementation-4d4fzyb9gm
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/delay-tolerant-network-on-android-phones-implementation-4d4fzyb9gm
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/delay-tolerant-network-on-android-phones-implementation-4d4fzyb9gm
https://typeset.io/papers/delay-tolerant-network-on-android-phones-implementation-4d4fzyb9gm

Delay Tolerant Network on Android Phones:

Implementation Issues and Performance

Measurements

Rerngvit Yanggratoke
School of Electrical Engineering, The Royal Institute of Technology (KTH), Stockholm, Sweden

E-mail: rerngvit@kth.se

Abdullah Azfar
Dept. of Computer Science and Information Technology, Islamic University of Technology (IUT), Gazipur, Bangladesh

E-mail: azfar@iut-dhaka.edu

María José Peroza Marval, Sharjeel Ahmed
School of Information and Communication Technology, The Royal Institute of Technology (KTH), Stockholm, Sweden

E-mail: {mjpm, sharjeel}@kth.se

Abstract— Many regions of the world do not have access to

the Internet due to lack of proper communication

infrastructure. Delay Tolerant Network (DTN) provides

communication in a challenging network condition such as

high communication delay and intermittent connectivity.

DTN is a promising solution to solve lack of connectivity

problems in developing regions such as rural areas. DTN

works in a store-and-forward approach, where the data is

stored in a server and forwarded to a suitable carrier. The

android phones can be made DTN capable to become a

carrier for DTN bundles. Android phone is one of the front

runners as the DTN carrier because of its portability and

increasing popularity. In this paper, we have described the

implementation of DTN on Android phone and the

performance measurements including DTN bandwidth and

battery consumption.

Index Terms— Delay Tolerant Network (DTN), Wi-Fi,

Android phone, Bundle, Access Point, Server.

I. INTRODUCTION
����

The advancement in development of technologies has

made it possible to carry powerful mobile devices. These

devices are capable of Bluetooth and Wi-Fi connectivity

and storing large amount of data. These devices can be

used to store even gigabits of data because of the

improved capacity of portable storage such as SD Card.

As a result, in some conditions, physically carrying the

network data in the devices can be cheaper than setting

up a network infrastructure [1]. For example, it might be

more cost effective to make a person carry gigabits of

data everyday in his/her smart phone across twenty

villages while travelling by his car or bike, rather than

building an infrastructure in the village. This can be

���� Manuscript received August 5, 2010; revised June 7,

2011; accepted July 15, 2011.

accomplished by the implementation of Delay Tolerant

Networking (DTN) in the mobile devices.

DTN provides communication in highly stressed

environments such as variable delays, discontinuous

connectivity and high bit error rate. The current DTN

implementation is based on Bundle Protocol (BP) [2].

The BP relies on the services of a convergence layer. The

convergence layer converts BP messages to link layer and

vice versa in order to practically make the network

communication. The link layer can be any link layer

protocol. For our implementation we used TCP/IP as link

layer protocol. This architecture is shown in Fig. 1.

The protocol data units (PDU) of DTN are known as

“bundles”. The bundles may be split up into fragments and

the source and the destination of the bundles are identified

by the end point identifiers [3]. When the bundles are

created, they are specified with the bundle expiration time.

Bundles may move from one DTN node to another in a

broken path [4]. Bundles may arrive to a node and find the

link between the current node and the next node broken.

The bundles reside in the node until the expiration time is

over.

Figure 1. DTN layer architecture

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011 477

© 2011 ACADEMY PUBLISHER
doi:10.4304/jcm.6.6.477-484

Android is an operating system designed for mobile

devices [5]. The Android Software Development Kit

(SDK) provides all the tools and APIs for developing. The

application development is made with a new Java library

named Java Android library [6]. Our target mobile device

platform is Android because of its openness and profound

industry support. The source code for the platform is

publicly available and currently 50 leading telecom,

hardware, software companies are registered as its

members [7]. Thus, our challenge is to implement the

protocol on the platform for facilitating the exchange of

data between the mobile device and the network.

Our primary contributions are as follows. Firstly, we

have developed an Open source DTN implementation on

Android platform that is fully compatible with RFC 5050

[2]. Secondly, we are the first to report power consumption

on DTN implementation. Thirdly, we have found that the

power consumption for upload is lower than download

DTN data. This insight supports people deploying DTN in

practice. In particular, the deployment should favor upload

over download in order to minimize power consumption.

The rest of the paper is organized as follows: related

works are discussed in section 2. The implementation

issues of DTN on Android phones are discussed in section

3. The performance measurements of DTN on android

phone are discussed in section 4. A general discussion is

presented in section 5. Finally, some conclusions are drawn

in section 6.

II. RELATED WORKS

Our aim is to develop an Open source DTN

implementation on Android platform that is compatible

with RFC 5050 [2]. We target for Opensource software

for others to be benefited from it and further

improvement by the DTN community. And, it must be

compatible with the standard for interoperability with

other existing implementations. There are several DTN

implementations available including DTN2 [8], IBR-

DTN [9], Spindle [10], and Java BP-RI [11].

Nonetheless, none of them is compatible with the

Android platform, Open source license, and the standard.

As a result, our solution is unique.

DTN2 is an Open source implementation developed by

the DTN research group. It is mainly implemented as a

testing of basic DTN functionalities and it is not very

efficient [9]. It follows the standard and aims to “embody

the components of the DTN architecture, while also

providing a robust and flexible software framework for

experimentation, extension, and real-world deployment”

[8]. It heavily relies on standard C++ library and Oasys

system library. But neither of them is available on the

Android platform.

IBR-DTN is another Open source implementation

specially designed for embedded system such as Wi-Fi

router [9], to allow access points (APs) to be used as a

compact “plug-and-play” DTN-Modules for vehicular or

stationary applications. Even though it is a great idea and

it has been tested to work efficiently - consumes less

main memory and has more throughput than DTN2 and

our implementation – our solution is more portable, less

expensive and the infrastructure involved is less complex

since it is based on mobile devices. The IBR-DTN

platform is written in C++ but the development language

for Android platform is Java. As a result, this

implementation is also not compatible with our solution.

Spindle is a DTN implementation built on top of

DTN2 for using in the military context [10]. It follows the

standard and, unlike our work, has advanced features

such as efficient routing algorithm, complex name

management, and knowledge-based DTN. The source

code is not publicly available. Furthermore, similar to

DTN2 and IBR-DTN, it is developed in C++ and as a

result incompatible with our platform.

Java BP-RI is a DTN implementation written in Java.

It does not comply with the standard because it follows

the draft version 4 of the Bundle Protocol. Even though it

is written in the same language for Android platform, it

uses the Java-RMI feature, which is not available on the

platform [11][12].

III. IMPLEMENTATION ISSUES

Three implementation issues on Android platform are

discussed in this section. Section 3.A elaborates on

technical challenges. Section 3.B explains overview of

the implemented software components. Section 3.C

shows the internal design of DTNService, which is the

main component responsible for DTN logic.

A. Technical Challenges

During the beginning of our work, we identified three

viable alternatives to implement DTN on Android. The

alternatives are porting from DTN2 [8], porting from Java

BP-RI [11], and implementing from scratch in Android.

We finally decided to take the first option, porting from

DTN2, because it is the best option in term of flexibility

to adapt to Android platform, software license, efforts

required for existing DTN developers to understand and

use the result. The details of the analysis are discussed in

[13].

While porting DTN implementations from DTN2, we

face three major technical challenges including size of the

software, differences between programming languages,

and missing of system programming library.

The size of DTN2 software is very large. It composes

of approximately 4MB of source code and 394 source

files. Porting huge software to another platform is not

trivial. In particular, if we made even a small design

Figure 2. Major software components

478 JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

mistake, it will cost us a lot of time to correct. As a result,

one has to be very careful in designing and implementing

software as this size.

While DTN2 is implemented in C++ [8], the major

language for Android is Java. As a result, we have to find

workarounds when there are some features available in

C++ but not in Java. For example, in C++, one can inherit

multiple classes but this is not possible in Java. We

redesign and implement new programming classes in

order to support this.

DTN2 relies heavily on OASYS, system-programming

library written in C++. For example, many main data

structures in DTN2 are inherited from classes in OASYS.

However, the aforementioned library is not available in

Android SDK. Thus, porting DTN2 to Android is not

straightforward. We have to cope with this either by

finding equivalent classes in the SDK or implementing

from scratch if they are not available.

B. Software Components Overview

There are three software components in the

implementation. They are: DTNService, DTNManager,

and DTNApps. These components interact with each

other and with the Android TCP/IP stack. The

interactions are illustrated in Fig. 2.

DTNService is a backend application serving DTN

communication. As a result, even though the user is using

other applications such as making a phone call or reading

text messages, he/she is still able to send/receive DTN

transmission. To be able to run in backend in the Android

platform, this component is implemented as Android

Service [14]. And, this component uses TCP/IP stack of

the Android platform to achieve network communication.

Because DTNService is running in backend, there is a

need for a user interface for interacting with the service.

This is where DTNManager shows up. It is a frontend

application for the user to configure, monitor, and

manage the DTNService. This frontend application is

designed as Android Activity [15]. The user interface for

DTN manager is shown in Fig. 3. The DTNManager

supports several management actions including starting,

stopping, restarting, configuring, and monitoring status of

DTNService.

DTNApps are the applications running on top of the

DTNService. As a result, they are in BP application layer

as shown in Fig. 1. Two sample DTN applications

developed are DTNSend and DTNReceive. DTNSend is

a DTN application allowing users to send text messages

over DTN. On the other hand, DTNReceive is a DTN

application allowing users to receive text messages over

DTN. Because both of them are frontend applications

similar to DTNManager, they are mapped to Android

Activity [15].

Figure 3. DTN Manager, GUI for managing DTN service

C. DTNService Internal Design Summary

The design of DTNService follows very closely the

design of DTN2, the DTN reference implementation

written in C++ by the DTNRG [8]. Hence, the design has

similar characteristics of the reference implementation by

which it is a modular design. In other words, the system

composes of several plug-in components working

together. When there is a new function to be added to a

particular component, other parts need not to be changed.

This makes the system very easy to extend. For example,

if anyone would like to add new routing algorithm to the

DTNService, he/she can simply extend the BundleRouter

class without making any modification to the other parts.

The DTNService composes of nine running modules

including Bundle Daemon, Contact Manager, TCP

Convergence Layer, Discovery, Persistent Storage,

Registration, Bundle Router, Fragmentation manager and

APILib.

DTNService is an event driven system. There are

several types of events, for example, bundle receiving

event, bundle transmitted event, or contact initiation

event. The system works according to the event handling

functions defined in event handling components

including Bundle Daemon, Bundle Router, and Contact

Manager.

The communication among the running modules with

each other in order to respond to an event is illustrated in

Fig. 4. The arrow represents the communication between

each module. The brief summaries of all modules are

discussed below.

Bundle daemon is the main event handler of the

system. It is the central processing unit and responsible

for communicating with other module for processing the

bundle event. Every bundle event will be checked first by

the daemon. If the Bundle daemon determines that other

two event processing components including Bundle

Router and Contact Manager should process the event as

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011 479

© 2011 ACADEMY PUBLISHER

well, it will forward event to the components. Otherwise,

it will just remove the event.

Contact Manager is the service in charge of detecting

new opportunities of connections. Each opportunity of

connection ("opportunistic link") with a neighbor

("contact") is under the control of Contact Manager

which also does the scheduling of the links.

TCP Convergence Layer is the transport mechanism

over TCP that the DTN application uses for transmitting

bundles to a next hop.

Discovery is the method by which other nodes can be

aware of the "existence, availability, and addresses of

other DTN participants" [16]. Discovery is based on IP

protocol where each node sends and listens to IP UDP

announcements to discover remote neighbors.

Persistent storage is the storage mechanism that stores

data objects permanently on the disk. Persistent storage is

a generic implementation. It can store any kind of objects

on the disk. It also stores unique identifier of every

available object in the database to identify the object.

Registration is defined as “A registration is the state

machine characterizing a given node's membership in a

given endpoint” [2]. This module handles the specified

registration created from the Bundle Daemon. Every

bundle received by the daemon will be checked with this

module and if it is matched, it will be delivered to the

registration for further processing.

Bundle router is the main decision maker regarding

forwarding the bundles. Depending on the

implementation, it may contain the routing table as a

database for making the routing decision. The router

implemented here is the static Bundle Router which

mainly relies on the routing table database configured

before the system starts. The router is used by the Bundle

Daemon for checking and finding an appropriate next hop

to send the DTN bundle. Then, if it finds the next hop, it

will forward the DTN bundle to the Contact Manager for

initiating a communication with the hop.

Fragment manager makes fragments of the large

bundles. It also keeps the state of all the fragmentary

bundles and partially received bundles. Finally it

reconstructs the whole bundle from the received

fragments.

APILIb provides Application Programming Interface

(API) for making a DTN application on Android

platform. The API will communicate with Bundle

Daemon to achieve the API calls. As a result, this is the

channel for other components such as DTNApps to

programmatically use DTNService. This component is

implemented by Android Binder [17]. A DTN application

developer can bind with this Binder. Then, the developer

can call an API from the Binder interface. For example, if

the developer would like to write an application for

sending a DTN bundle, he/she can call "dtnsend" Binder

interface provided in this component.

IV. PERFORMANCE MEASUREMENTS

Our test environment consists of two servers running

DTN2 and an Android phone as shown in Fig. 5. The

specification of the servers and android phone are shown

in table 1 and 2.

We made two custom codes in order to make the tests.

The first code is a script to generate DTN bundles with

different sizes. The script inputs parameters including the

number of DTN bundles, initial bundle size, the

incremental value, number of repetition of bundles with

the same size, source Endpoint ID, and destination

Endpoint ID of the DTN bundles.

The second script is for recording the performance of

the Android phone. This script was added to the Android

DTN system. For getting DTN Bandwidth, the recording

code supports recording of the upload/download time of

each individual DTN bundle. For getting the battery

consumption, the code hooks on the battery status change

API of the Android phone. Every time the battery level is

changed, the upload/download size is recorded.

In order to evaluate the performance, 105 DTN

bundles are generated to be routed from one server to the

other. The parameter for bundle repetition was set to 3.

As a result bundles with 35 different sizes with each size

having 3 instances were generated. This was done to get

the average bandwidth value for bundle of each size. The

initial bundle size was 100KB. Each of the remaining

bundle size was incremented by 100KB. So the size of

the last 3 bundles was 3.5MB.

Figure 4. DTNService internal design

480 JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

A. Bandwidth Analysis

The time for downloading the 105 bundles is shown in

Fig. 6. There was 189013.1 KB of data in total. In this

case the bundles were downloaded from the server to the

Android phone. The graph shows a linear increase in

download time with the increase of bundle size. This

follows a linear equation of the general form y=mx+b.

This is expected because while downloading the bundles,

there were no other download activities running which

can consume the bandwidth.

The average download bandwidth is calculated below:

Average Download Bandwidth

= Total Bundle Size / Total Download Time

= 189013.1 KB / 3680.36 s

= 51.36 KB/s

The bandwidth analysis for upload time is shown in

Fig. 7. The bundles were sent from the Android phone to

the other server. As expected, the upload time increased

linearly with the increase of bundle size. An average

value for the upload bandwidth is as follows:

Average Upload Bandwidth

= Total Bundle Size / Total Upload Time

= 189013.1 KB / 3134.999 s

= 60.29 KB/ s

A comparative study between the download and

upload bandwidth is shown in Fig. 8. For small bundles

of size 100 KB, the download and upload times are

identical. Up to the bundle size of 1.5MB, there is a very

small difference in upload and download time. After that,

the difference increases as the download time increases.

A significant observation made from this figure is that the

download time is always higher than the upload time.

B. Battery Consumption Analysis

The battery consumption was recorded with a fully

charged battery of HTC tattoo phone. The 105 bundles

had a total of 189013.1 KB = 184.68 MB of data.

Fig. 9 shows the cumulative battery consumption for

downloading the bundles. No other applications were run

in the phone during the period the data were recorded.

This ensured the battery power was consumed only by the

DTN software. The battery consumption rate was high for

first 22 MB of data. But after that there was a drop in

battery consumption till 75 MB of data. Then it went high

a bit and continued in a linear way. At the end 44% of the

total battery charge was consumed for downloading

184.68 MB of data. The average battery consumption rate

is calculated as follows:

The HTC Tattoo phone has 1100 mAh for 100%

battery power. This means 1 % battery power= 110 mAh.

As a result, the Average DTN download battery

consumption rate

Figure 7. Upload bandwidth

Figure 6. Download bandwidth

TABLE I.

SPECIFICATION OF THE DTN2 SERVERS

CPU Intel Celeron 1.8 GHz

System Memory 512 MB ECC DDR

Total Hard Disk Size 40 GB

Operating System Linux Ubuntu 8.04

DTN Software DTN2 version 2.6

TABLE II.

SPECIFICATION OF THE ANDROID PHONE

Model HTC Tattoo

Processor Qualcomm® MSM7225™, 528 MHz

Operating System Android™ 1.6

DTN Software Android DTN

Phone Memory 256 MB

Network Interface Wi-Fi®: IEEE 802.11 b/g

Battery
Rechargeable Lithium-ion battery

Capacity: 1100 mAh

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011 481

© 2011 ACADEMY PUBLISHER

= 44*110 mAH / 184.68 MB

= 26.20 mAH/MB

Fig. 10 shows the cumulative battery consumption for

uploading bundles. Unlike download battery

consumption, the upload battery consumption maintains a

very linear increase. 36% of the total battery power was

consumed for uploading 184.68 MB of data. The average

battery consumption rate is calculated as follows:

Average DTN upload battery consumption rate

= 36*110 mAH / 184.68 MB

= 21.44 mAH/MB

A comparative study is shown between the cumulative

download and upload battery consumption in Fig. 11. The

battery consumption for uploading data is always lower

than the battery consumption for downloading data.

V. DISCUSSION

Our implementation has some limitations. The routing

algorithm is based mainly on the routing entries in the

routing table. The entries are specified in the

configuration file before the DTNService is started. As a

result, all the DTN routes have to be known before the

system begins operation. This is suitable for a simple

network topology, for example, when there are few DTN

nodes in the system such as servers in the villages, city,

and the data carrier. In real world situation where there

are possibly much more DTN nodes and complex

network configurations, this routing table will be very

difficult to manage and may make the whole network

inefficient.

If a disruption in the connection happens, the bundle is

discarded and must be transmitted again once the

connection is back. This approach is not suitable in

environments with often disruptions in connectivity. The

Figure 8. Comparisons between download and upload bandwidth

Figure 11. Comparison between battery consumption for download

and upload

Figure 10. Cumulative battery consumption for upload

Figure 9. Cumulative battery consumption for download

482 JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

sender node might have to send the same bundle several

times, and might not be able to transmit it completely

before the bundle expires.

The DTNAPI implemented here is a shared process

application programming interface (API). As a result, all

the DTN applications implemented in this project runs in

the same process as DTNService. This is fine if there are

no DTN applications consuming too many resources

running simultaneously with the DTNService. But this is

not the best practice for making an API for interacting

with a backend service on Android platform. This is

because an Android application running in the same

process shares the Dalvik Java Virtual machine (Dalvik

Java VM) [5]. And, a Dalvik Java VM will be shutdown

if it consumes too many resources. As a result, if there is

one DTN application exhausts system resources such as

main memory, the DTNService and other DTN

applications will be affected as well.

Considering the performance issues, this is the first

time where the power consumption on DTN

implementation has been measured. From our

measurements we can say that download time is always

higher than the upload time. On the other hand, battery

consumption for uploading data is always lower than the

battery consumption for downloading data. So, upload

data consumes less power than download data. Moreover,

upload power consumption linearly increases with bundle

size but download power consumption does not show this

property. In particular, downloading consumes high

power for first 0 - 40 MB and consumes less power and

increases linearly for 40 - 200 MB.

VI. CONCLUSIONS

Implementation of DTN on Android platform is a

relatively new concept. The goal of this paper was to

develop DTN software for Android platform. The

software supports static routing and shared process

application programming interface environment. A lot of

work can be done based on this. Effective routing

algorithms / protocols are required for real world

deployment. Both Delay Tolerant Routing for

Developing Regions [18] and Probabilistic Routing

Protocol (PRoPHET) [19] are the promising routing

algorithm / protocols to be implemented. Reactive

fragmentation can be implemented for supporting

environments with disruptions in connectivity. The

sender node can start transmitting an entire bundle, and in

case of a failure in the connection, both the remaining and

the received portion of the bundles can be converted into

valid fragments of DTN bundles. An API can be created,

which will be called from different processes other than

the DTNService to solve the problem of resource

exhaustion. This can be accomplished by a technique

called Inter-process communication (IPC). IPC on Anroid

platform is done by using a combination of AIDL [20]

and Parcelable [21]. The security concerns were not taken

into account in this implementation. The main focus was

to make the network working. Security mechanisms can

be developed by implementing the Bundle Security

Protocol [21] on the Android phone.

 ACKNOWLEDGMENT

 This work was a part of a Communication Systems

Design (CSD) project in the Royal Institute of

Technology (KTH), Sweden. We would like to thank

Professor Björn Pehrson, Marco Zennaro, Avri Doria,

Elwyn Davies and Hervé Ntareme for their continuous

support throughout the project.

REFERENCES

[1] Networking for Communications Challenged Communities,

http://www.n4c.eu/N4Cproject.htm, last visited: December 2009.

[2] K. Scott, S. Burleigh, “Bundle Protocol Specification”, IETF RFC

5050, IETF Network Working Group, November 2007.

[3] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott,

K. Fall, and H. Weiss, “Delay-Tolerant Networking Architecture”,

IETF RFC 4838, IETF Network Working Group, April 2007.

[4] Keith Scott, “Disruption Tolerant Networking Proxies for On-the-

Move Tactical Networks”, Military Communications Conference,

2005. MILCOM 2005. IEEE, Vol. 5, pp. 3226–3231, October

2005, ISBN: 0-7803-9393-7.

[5] Android Developers, “What is Android”,

http://developer.android.com/guide/basics/what-is-android.html,

last visited: December 2009.

[6] Java RMI, http://java.sun.com/javase/technologies/core/basic/

rmi/whitepaper/index.jsp, last visited: December 2009.

[7] Open Handset Alliance, http://www.openhandsetalliance.com/

oha_members.html, last visited: December 2009.

[8] DTN2, DTN Reference implementation by the

DTNRG, http://www.dtnrg.org/wiki/Code, last visited: December

2009.

[9] M. Doering, S. Lahde, J. Morgenroth, and L. Wolf, “IBR-DTN:

an efficient implementation for embedded systems”, Proceedings

of the Third ACM Workshop on Challenged Networks, San

Francisco, California, USA, 2008, pp. 117-120, ISBN:978-1-

60558-186-6.

[10] R. Krishnan et al, "The SPINDLE Disruption-Tolerant

Networking System," Proceedings of Military Communications

Conference, 2007. MILCOM 2007 IEEE, Orlando, FL, USA,

October 29-31, 2007, pp. 1-7, ISBN: 978-1-4244-1513-7.

[11] J. Deshpande, Java BP-RI, http://irg.cs.ohiou.edu/ocp/downloads/

BP-RI-Impl-Doc.pdf, last visited: December 2009.

[12] J. Agüero, M. Rebollo, C. Carrascosa, V. Julián, “Towards on

embedded agent model for Android mobiles”, Proceedings of the

5th Annual International Conference on Mobile and Ubiquitous

Systems: Computing, Networking, and Services, Dublin, Ireland,

Article No. 37, 2008, ISBN: 978-963-9799-27-1.

[13] A. Azfar et al, “Bytewalla: Delay Tolerant Networks on

Android phones Final Report”,

http://www.tslab.ssvl.kth.se/csd/projects/092106/sites/default/files/

Bytewalla_Final_Report_v1.0.pdf, last visited: December 2009.

[14] Android Developers, “Android Service”,

http://developer.android.com/reference/android/app/Service.html,

last visited: December 2009.

[15] Android Developers, “Android Activity”,

http://developer.android.com/reference/android/app/Activity.html,

last visited: December 2009.

[16] R. Beverly and D. Ellard, "DTN IP Neighbour Discovery (IPND)

draft-irtf-dtnrg-ipnd-00", http://tools.ietf.org/html/draft-irtf-dtnrg-

ipnd-00, last visited: January 2010.

[17] Android Developers, ”Android Binder”,

http://developer.android.com/reference/android/os/Binder.html, la

st visited: December 2009.

[18] M. Demmer and K. Fall, “DTLSR: Delay Tolerant Routing for

Developing

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011 483

© 2011 ACADEMY PUBLISHER

Regions”, http://www.cs.berkeley.edu/~kfall/papers/dtlsr-

nsdr07.pdf , last visited: December 2009.

[19] A. Lindgren and A. Doria, “Prophet routing protocol”,

http://www.dtnrg.org/docs/specs/draft-lindgren-dtnrg-prophet-

02.txt, last visited: December 2009.

[20] Android Developers, “Designing a Remote Interface Using

AIDL”,

http://developer.android.com/guide/developing/tools/aidl.html, last

visited: December 2009.

[21] Android Developers, “Android Parcelable”,

http://developer.android.com/reference/android/os/Parcelable.html

, last visited: December 2009.

Rerngvit Yanggratoke is doing his PhD with topic

“Autonomous Resource Allocation in Cloud Computing” in

School of Electrical Engineering with The Royal Institute of

Technology (KTH) in Stockholm, Sweden. He got his MS

in Erasmus Mundus NordSecMob program specialized in

Security and Mobile Computing from Aalto University School

of Science and Technology (TKK), Finland and Royal Institute

of Technology (KTH), Sweden. He received his BSc degree

in Computer Engineering from Chulalongkorn University,

Bangkok, Thailand in 2006. He worked as a software engineer

in the company named Openface Internet during the period

April 2006 – April 2008. He also served as a system

administrator in Dhammasociety Fund, Thailand during the

period April 2008 – August 2008. He was provided full

scholarship for two years studying in his MS from the European

Union. His major research interests are delay tolerant

networking, information system security, and high performance

distributed system.

Abdullah Azfar is working as an Assistant Professor in the

Computer Science and Information Technology department of

Islamic University of Technology (IUT), Gazipur, Bangladesh.

He got his MS in Erasmus Mundus NordSecMob program

specialized in Security and Mobile Computing from Norwegian

University of Science and Technology (NTNU), Norway and

The Royal Institute of Technology (KTH), Sweden in 2010. He

received his BSc degree in Computer Science and Information

Technology from Islamic University of Technology (IUT),

Gazipur, Bangladesh in 2005. He served as a lecturer in Islamic

University of Technology during the period March 2006 – July

2008 and July 2010 – December 2010. He also served as a

lecturer in Prime University, Dhaka, Bangladesh during the

period October 2005 – February 2006. He received the Erasmus

Mundus scholarship from the European Union for his MS

studies. His research interests are mainly focused on

Information Security, VoIP Communication, Cryptography and

Mobile Computing.

María José Peroza Marval got her MS in Internetworking

program specialized in Networking and Radio Communication

Systems in Royal Institute of Technology (KTH), Sweden. She

received her BSc degree in Electronic Engineering from Simon

Bolivar University, Caracas, Venezuela in 2005 (graduated with

an Honourable Mention for her bachelor thesis). She worked as

a Network Engineer in the company named

MOVILNET, Venezuela, during the period May 2006 –

October 2007. She also worked as an Operations Analyst

in Dayco Telecom, Venezuela, during the period September

2005 – May 2006. Her research interest is mainly focused on

conventional Networking and Optical Networking.

Sharjeel Ahmed is doing his MS in Information and

Communication Technology Entrepreneurship in Royal Institute

of Technology (KTH), Sweden. He received his BSc degree

in Computer Science from COMSATS Institute of Information

Technology, Lahore, Pakistan in 2007. He worked as a software

engineer during the period March 2007 – August 2008. He has

innovated in a number of fields of information technology and

software development. With his research-based ideas and a

vision apart, he has evolved from being a software engineer to

an internet entrepreneur and now working on his ideas to start

new startups.

484 JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

