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Abstract Recently proposed particle MCMC methods

provide a flexible way of performing Bayesian inference

for parameters governing stochastic kinetic models de-

fined as Markov (jump) processes (MJPs). Each itera-
tion of the scheme requires an estimate of the marginal

likelihood calculated from the output of a sequential

Monte Carlo scheme (also known as a particle filter).
Consequently, the method can be extremely computa-

tionally intensive. We therefore aim to avoid most in-

stances of the expensive likelihood calculation through
use of a fast approximation. We consider two approxi-

mations: the chemical Langevin equation diffusion ap-

proximation (CLE) and the linear noise approximation

(LNA). Either an estimate of the marginal likelihood
under the CLE, or the tractable marginal likelihood un-

der the LNA can be used to calculate a first step accep-

tance probability. Only if a proposal is accepted under
the approximation do we then run a sequential Monte

Carlo scheme to compute an estimate of the marginal

likelihood under the true MJP and construct a second
stage acceptance probability that permits exact (simu-

lation based) inference for the MJP. We therefore avoid

expensive calculations for proposals that are likely to be

rejected. We illustrate the method by considering infer-
ence for parameters governing a Lotka-Volterra system,

a model of gene expression and a simple epidemic pro-

cess.
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1 Introduction

Stochastic kinetic models describe a probabilistic mech-

anism for the joint evolution of species in a dynami-
cal system. They can be used to model a wide vari-

ety of real-world phenomena and are increasingly ap-

plied in computational systems biology (Kitano, 2002),
motivated by a need for models that incorporate in-

trinsic stochasticity (Elowitz et al., 2002; Swain et al.,

2002; Wilkinson, 2009). Other areas of application in-
clude (but are not limited to) predator-prey population

models (Boys et al., 2008; Ferm et al., 2008; Golightly

and Wilkinson, 2011) and epidemic models (O’Neill and

Roberts, 1999; Boys and Giles, 2007; Ball and Neal,
2008; Jewell et al., 2009). Underpinned by a reaction

network in which reaction events change species num-

bers by an integer amount, a stochastic kinetic model is
most naturally represented by a continuous time Markov

jump process (MJP). Our goal is to perform inference

for the rate constants that govern the MJP using time
course data that may be incomplete and/or subject to

measurement error.

Exact (simulation based) Bayesian inference for the

MJP was the subject of Boys et al. (2008). The au-
thors proposed two MCMC schemes that targeted the

joint posterior of the rate constants and latent reac-

tion events but found the statistical efficiency of their

method to be relatively poor. It was shown in Golightly
and Wilkinson (2011) how a recently proposed parti-

cle MCMC algorithm (Andrieu et al., 2010) can be ap-

plied to this class of models. In particular, the particle
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marginal Metropolis-Hastings (PMMH) scheme allows

a joint update of the rate constants and (latent) pro-
cess which can alleviate common mixing problems when

sampling high dimensional target densities that may ex-

hibit strong correlations. The proposal mechanism in-
volves drawing a new parameter value from an arbitrary

proposal kernel and drawing new values of each latent

state from a sequential Monte Carlo (SMC) approxi-
mation to the distribution of latent states conditional

on the proposed new parameter value. The acceptance

probability requires computation of a realisation of an

unbiased estimator of marginal likelihood which can be
readily obtained from the output of the SMC scheme.

Consequently, at each iteration of the MH scheme, an

SMC algorithm must be implemented. The method can
be extremely computationally intensive, as the SMC al-

gorithm typically must generate many realisations of

the MJP, with each realisation obtained from an algo-
rithm such as the stochastic simulation algorithm (SSA)

of Gillespie (1977). By using a computationally cheaper

approximation to the marginal likelihood we avoid run-

ning the computationally more expensive SMC algo-
rithm at most iterations of the MH scheme, but we still

maintain the posterior under the MJP as the target

distribution of the MH scheme.

The simplest approximation of the MJP is the macro-

scopic rate equation (MRE) which ignores the discrete-

ness and stochasticity of the MJP by modelling specie
dynamics with a set of coupled ordinary differential

equations (van Kampen, 2001). The diffusion approx-

imation or chemical Langevin equation (CLE) (Gille-
spie, 2000) on the other hand, ignores discreteness but

not stochasticity by modelling the reaction network with

a set of coupled stochastic differential equations (SDEs).
Whilst inference for the parameters governing nonlinear

multivariate SDEs is possible (Golightly andWilkinson,

2008), the marginal likelihood under this model is in-

tractable. Despite this, Golightly and Wilkinson (2011)
show that inference is possible under this model using a

PMMH algorithm, and this approach can result in com-

putational savings when compared to a similar scheme
targeting the posterior under the MJP.

Further computational savings can be made by con-

sidering a linear noise approximation (LNA) (van Kam-
pen, 2001; Komorowski et al., 2009; Fearnhead et al.,

2014) which is given by the MRE plus a stochastic term

accounting for random fluctuations about the MRE.
Under the LNA the latent process follows a multivari-

ate Gaussian distribution and, under an assumption of

Gaussian measurement error, the marginal likelihood is
tractable.

Christen and Fox (2005) describe a delayed-acceptance

Metropolis-Hastings scheme in which the single MH

accept-reject step is replaced by an initial ‘screening’

stage which substitutes a computationally cheap ap-
proximate posterior for the true posterior in the MH

acceptance probability formula, but then adds a sec-

ond accept-reject stage which ensures that detailed bal-
ance is still satisfied with respect to the true posterior.

This second, computationally expensive, stage is only

applied to proposals which pass the first stage.
Our novel contribution is to exploit the tractabil-

ity of the LNA by proposing a particle analogue of this

scheme for performing exact, simulation based inference

for the MJP parameters. Essentially, to avoid calculat-
ing an estimate of marginal likelihood under the MJP

for proposals that are likely to be rejected, proposed

parameter draws are initially screened using a compu-
tationally cheap approximation to the posterior, such as

that based on the marginal likelihood computed under

the LNA. A related approach has been proposed in-
dependently by Smith (2011) for performing inference

for the parameters governing nonlinear, discrete time

economic models. A simple stochastic volatility model

and a Real Business Cycle model are considered, with
approximations based on a linear Gaussian state space

model and an unscented Kalman filter used in a pre-

liminary screening step. Unlike Smith (2011), we also
consider a scenario in which the marginal likelihood un-

der the approximation is intractable, but can be esti-

mated cheaply (relative to the same calculation under
the MJP) using a particle filter. Use of the CLE in the

preliminary screening step falls into this category. In

both cases, we show that the resulting MCMC scheme

targets the correct marginal, that is, the marginal pa-
rameter posterior under the MJP. The proposed meth-

ods can in principle be applied to any Markov jump

process.
The remainder of this paper is organised as fol-

lows. In Section 2 we describe the Markov jump pro-

cess model and associated inference problem. The CLE
and LNA are briefly reviewed. We describe the PMMH

algorithm in Section 3.1 before considering a modifi-

cation to allow delayed acceptance in Section 3.3. We

apply the method to a Lotka-Volterra system, a model
of gene expression and a simple epidemic process in

Section 4. Conclusions are drawn in Section 5.

2 Stochastic kinetic models

Consider a reaction network involving u species X1,X2,

. . . ,Xu and v reactions R1,R2, . . . ,Rv, with reaction
Ri given by

Ri : pi1X1 + pi2X2 + · · ·+ piuXu

−→ qi1X1 + qi2X2 + · · ·+ qiuXu



Delayed acceptance particle MCMC 3

where the stoichiometric coefficients pij and qij are non-

negative integers. Let Xj,t denote the number of specie
Xj at time t, and letXt be the u-vectorXt = (X1,t, X2,t,

. . . , Xu,t)
′. The v × u matrix P consists of the coeffi-

cients pij , and Q is defined similarly. The u × v stoi-
chiometry matrix S is defined by

S = (Q− P )′

and encodes important structural information about
the reaction network. In particular, if ∆R is a v-vector

containing the number of reaction events of each type

in a given time interval, then the system state should
be updated by ∆X, where

∆X = S∆R.

Each reaction Ri is assumed to have an associated rate
constant, ci, and a propensity function, hi(Xt, ci) giving

the overall hazard of a type i reaction occurring. That

is, we model the system as a Markov jump process, and
for an infinitesimal time increment dt, the probability of

a type i reaction occurring in the time interval (t, t+dt]

is hi(Xt, ci)dt. In many examples (such as those consid-

ered in Sections 4.1 and 4.3) the form of hi(Xt, ci) can
be thought of as arising naturally from the interactions

between components of a well-mixed population, such

as reactants in a well-stirred container at constant tem-
perature. This leads to a mass action kinetic rate law

(Gillespie, 1992), under which the hazard function for

a particular reaction of type i takes the form

hi(Xt, ci) = ci

u∏

j=1

(
Xj,t

pij

)
.

Let c = (c1, c2, . . . , cv)
′ and h(Xt, c) = (h1(Xt, c1),

h2(Xt, c2), . . . , hv(Xt, cv))
′. Values for c and the ini-

tial system state X0 = x0 complete specification of the

Markov process. Although this process is rarely ana-

lytically tractable for interesting models, it is straight-
forward to forward-simulate exact realisations of this

Markov process using a discrete event simulation method.

This is due to the fact that if the current time and state
of the system are t and Xt respectively, then the time to

the next event will be exponential with rate parameter

h0(Xt, c) =

v∑

i=1

hi(Xt, ci),

and the event will be a reaction of type Ri with proba-

bility hi(Xt, ci)/h0(Xt, c) independently of the waiting

time. Forward simulation of process realisations in this
way is typically referred to as the stochastic simulation

algorithm (Gillespie, 1977). See Wilkinson (2012) for

further background on stochastic kinetic modelling.

2.1 Chemical Langevin equation

We present here an informal intuitive construction of

the chemical Langevin equation (CLE), and refer the

reader to Gillespie (2000) for further details.
Consider an infinitesimal time interval, (t, t + dt].

Over this time, the reaction hazards will remain con-

stant almost surely. The occurrence of reaction events
can therefore be regarded as the occurrence of events

of a Poisson process with independent realisations for

each reaction type. Therefore, if we write dRt for the
v-vector of the number of reaction events of each type

in the infinitesimal time increment, it is clear that the

elements are independent of one another and that the

ith element is a Po(hi(Xt, ci)dt) random quantity. From
this we have that E(dRt) = h(Xt, c)dt and Var(dRt) =

diag{h(Xt, c)}dt. It is therefore clear that

dRt = h(Xt, c)dt+ diag
{√

h(Xt, c)
}
dWt

is the Itô stochastic differential equation (SDE) which

has the same infinitesimal mean and variance as the
true Markov jump process (where dWt is the increment

of a v-dimensional Brownian motion). Now since dXt =

SdRt, we obtain

dXt = S h(Xt, c)dt+
√
Sdiag{h(Xt, c)}S′dWt, (1)

where now Xt and Wt are both u-vectors. Equation (1)

is the SDE most commonly referred to as the chemical

Langevin equation or diffusion approximation, and rep-

resents the diffusion process which most closely matches
the dynamics of the associated Markov jump process,

and can be shown to approximate the stochastic kinetic

model increasingly well in high concentration scenarios
(Gillespie, 2000). Note that in the absence of an analytic

solution to (1), a numerical solution can be constructed.

For example, the Euler-Maruyama approximation is

∆Xt ≡ Xt+∆t −Xt

= S h(Xt, c)∆t+
√
Sdiag{h(Xt, c)}S′∆Wt (2)

where ∆Wt is a mean zero Normal random vector with

variance matrix diag{∆t}.
We require a computationally efficient approxima-

tion to the Markov jump process for use in a delayed

acceptance particle MCMC scheme (described in Sec-

tion 3.3). Performing exact (simulation based) infer-
ence for the diffusion approximation has been the fo-

cus of Golightly and Wilkinson (2005), Purutcuoglu

and Wit (2007), and Golightly and Wilkinson (2011)

among others. Although the latter find that a particle
MCMC scheme based on the CLE can be more com-

putationally efficient than a similar scheme that works

with the Markov jump process directly, calculation of
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an estimate of marginal likelihood under the CLE (as

is necessary at every iteration of a particle MCMC
scheme) can be computationally expensive. To facili-

tate greater computational savings, we therefore also

consider a linear noise approximation (LNA) (van Kam-
pen, 2001; Komorowski et al., 2009; Fearnhead et al.,

2014; Stathopoulos and Girolami, 2013) which gener-

ally possesses a greater degree of numerical and ana-
lytic tractability than the CLE (Wilkinson, 2012). This

is the subject of the next section.

2.2 Linear noise approximation

The LNA was first considered as a functional central

limit law for density dependent processes by Kurtz (1970)
and can be derived in a number of more or less formal

ways. For example, Komorowski et al. (2009) (and see

also Elf and Ehrenberg (2003)) derive the LNA by ap-
proximating the forward Kolmogorov equation (satis-

fied by the transition rate of the MJP) through a Taylor

series expansion. We eschew this approach in favour of

an informal derivation following that of Fearnhead et al.
(2014) and we refer the reader to the references therein

for a more detailed discussion. In what follows we cal-

culate the LNA for a general SDE before formulating it
as an approximation to the CLE.

Consider now a general SDE satisfied by a process

{Xt, t ≥ 0} of the form

dXt = α(Xt)dt+ ǫβ(Xt)dWt (3)

where ǫ << 1. Partition Xt into a deterministic path zt
and a residual stochastic process Mt and let zt be the

solution to

dzt
dt

= α(zt). (4)

We assume that ||Xt−zt|| is O(ǫ) over a time interval of

interest and substitute Xt = zt+ ǫMt into equation (3)

to give

d(zt + ǫMt) = α(zt + ǫMt)dt+ ǫβ(zt + ǫMt)dWt.

We then Taylor expand α(·) and β(·) about zt and col-
lect terms of O(ǫ) to give the SDE satisfied by Mt as

dMt = FtMtdt+ β(zt)dWt (5)

where Ft is the Jacobian matrix with (i, j)th element

∂αi(zt)/∂zj,t and αi(zt) refers to the ith element of

α(zt). Note that we use ǫ to indicate that the stochastic

term in (3) is small and, essentially, that the drift term
dominates the diffusion coefficient. However ǫ plays no

role in the evolution equations, (4) and (5). Without

loss of generality, therefore, we simplify the exposition

by setting ǫ = 1. To further simplify the notation we

also drop the explicit dependence of the hazard function
on c, and of the mean and variance of Mt on both c and

zt.

For the CLE, we have

α(Xt) = S h(Xt), β(Xt) =
√
Sdiag{h(Xt)}S′.

The linear noise approximation of the CLE is therefore
defined through

dzt
dt

= Sh(zt) (6)

and

dMt = FtMtdt+
√

Sdiag{h(zt)}S′dWt (7)

where Ft has (i, j)th element S∂hi(zt)/∂zj,t.

For fixed or Gaussian initial conditions, that isMt1 ∼
N(mt1 , Vt1), the SDE in (7) can be solved explicitly to

give

(Mt|c) ∼ N(mt , Vt) (8)

where mt is the solution to the deterministic ordinary

differential equation (ODE)

dmt

dt
= Ftmt (9)

and similarly

dVt

dt
= VtF

′
t + Sdiag{h(zt)}S

′ + FtVt . (10)

Hence, the solution of equation (7) requires the solution
of a system of coupled ODEs; in the absence of an an-

alytic solution to these equations, a numerical solution

can be used. The approximating distribution of Xt can

then be found as

(Xt|c) ∼ N(zt +mt , Vt) . (11)

3 Inference

We now consider the task of performing inference for

the rate constants governing the Markov jump process.

First, let us augment the rate vector c to include any
additional parameters that arise from the observation

process and assign to it a prior density, p(c). Suppose

that the MJP X = {Xt | 1 ≤ t ≤ T} is not observed

directly, but (perhaps partial) observations (on a regu-
lar grid) y = {yt | t = 1, 2, . . . , T} are available and as-

sumed conditionally independent (given X) with condi-

tional probability distribution p(yt|xt, c). In this work,
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we consider Bayesian inference for c via the marginal

posterior density

p(c|y) =

∫
p(c,x|y) dx (12)

where

p(c,x|y) ∝ p(c) p(x|c)
T∏

t=1

p(yt|xt, c)

and p(x|c) is the probability of the Markov jump pro-

cess. Since the posterior in (12) will typically be unavail-

able in closed form, samples must usually be generated
through a suitable MCMC scheme.

In what follows, for simplicity, we assume that the
initial value of the MJP, X1 = x1, is a known fixed

quantity, and we take z1 = x1 so that m1 is the length-

u zero vector and V1 is the u × u zero matrix. If X1

were unknown then it could be assigned a prior and

treated as an additional parameter in the augmented

rate vector.

3.1 Particle marginal Metropolis-Hastings

We consider the special case of the particle marginal

Metropolis-Hastings (PMMH) scheme of Andrieu et al.

(2010) and Andrieu et al. (2009) in which only samples
from the marginal parameter posterior are required.

Noting the standard decomposition p(c|y) ∝ p(y|c)p(c),
we run a Metropolis-Hastings (MH) scheme with pro-

posal kernel q(c∗|c) and accept a move from c to c∗ with
probability

min

{
1 ,

p̂
(
y|c⋆

)
p
(
c⋆
)

p̂
(
y|c

)
p
(
c
) × q

(
c|c⋆

)

q
(
c⋆|c

)
}

(13)

where p̂(y|c) is a sequential Monte Carlo (SMC) or ‘par-

ticle filter’ estimate of the intractable marginal likeli-

hood term p(y|c). The PMMH scheme as described here
is an example of a pseudo-marginal Metropolis-Hastings

scheme (Beaumont, 2003; Andrieu and Roberts, 2009)

and provided that p̂(y|c) is unbiased (or has a constant
multiplicative bias that does not depend on c), it is

possible to verify that the method targets the marginal

p(c|y). Let u denote all random variables generated

by the SMC algorithm and write the SMC estimate of
marginal likelihood as p̂(y|c) = p(y|c, u). Augmenting

the state space of the chain to include u, it is straight-

forward to rewrite the acceptance ratio in (13) to find
that the chain targets the joint density

p(c, u|y) ∝ p(y|c, u)p(u|c)p(c) .

Marginalising over u then gives

∫
p(c, u|y)du ∝ p(c)

∫
p(y|c, u)p(u|c)du

∝ p(c)p(y|c) .

The key insight here is that the SMC scheme can be

constructed to give an unbiased estimate of the marginal

likelihood p(y|c) under some fairly mild conditions in-
volving the resampling scheme (Del Moral, 2004). The

scheme therefore targets the correct marginal p(c|y).
Although interest here is in the marginal p(c|y) the
PMMH scheme can be used to sample the joint density

p(c,x|y). At each step of the algorithm, a new path x∗

is proposed from an SMC approximation of p(x∗|y, c∗).
The acceptance probability is as in (13). For further de-
tails, we refer the reader to Andrieu et al. (2010). The

(special case of the) PMMH algorithm and details of the

SMC scheme that we use are given in Appendices A.1
and A.2.

3.2 Inference using the CLE and LNA

Although the marginal likelihood under the CLE is in-

tractable, a PMMH scheme can be implemented to per-

form inference for this model. In the simplest version of
the scheme, we replace draws of the MJP in step 2(a) of

the SMC scheme with draws of a numerical solution of

the CLE, for example, using the Euler-Maruyama ap-
proximation. This is the focus of Golightly and Wilkin-

son (2011) and further details can be found therein.

Under the LNA, the marginal likelihood is tractable

for additive Gaussian observation regimes. This tractabil-
ity has been exploited for the purposes of parameter

inference by Komorowski et al. (2009), Fearnhead et al.

(2014) and Stathopoulos and Girolami (2013). In Ko-
morowski et al. (2009) and Stathopoulos and Girolami

(2013), the LNA is applied over the entire time inter-

val for which observations are available. In particular,

the ODE component of the LNA is solved once over
the whole time-course for a given initial condition. As

discussed in Fearnhead et al. (2014), this can lead to a

poor approximation to the distribution of Xt as t gets
large, due to the mismatch between the stochastic and

ODE solution. We therefore adopt the approach pro-

posed in Fearnhead et al. (2014) and restart the LNA
at each observation time t, initialising zt to the pos-

terior mean of Xt given all observations up to time t.

The algorithm for constructing the marginal likelihood

under an additive Gaussian observation regime using
this approach is given in Appendix A.3. Use of a Gaus-

sian observation model is likely to be unsatisfactory in

some scenarios. For example, in Section 4.1 we consider
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observations with a Poisson distribution, the mean of

which is the value of the true process. Nonetheless, we
may still use the LNA to obtain a tractable approxi-

mation to the marginal likelihood under the true MJP.

We approximate the observation density p(yt|xt) by a
Gaussian density with mean and variance given by the

ODE solution (6). That is, we apply the algorithm in

Appendix A.3 with Σ replaced by a diagonal matrix
containing the components of zt for which observations

are made. This tractable approximation can then be

used in the delayed acceptance scheme.

3.3 Delayed acceptance particle marginal

Metropolis-Hastings

In order to improve the efficiency of the PMMH al-

gorithm for the MJP we aim to limit the number of
runs of the computationally expensive SMC scheme for

the MJP. Ideally we want to run the SMC scheme only

for parameter values which are likely to lead to accep-
tance in the PMMH algorithm. We do this by choosing

a particular proposal kernel in the PMMH scheme of

Appendix A.1. This proposal kernel is based on a pre-

liminary screening step involving an approximate model
which is less computationally intensive than the MJP,

such as the LNA or the CLE. In what follows, the CLE

approximation refers to the Euler-Maruyama approxi-
mation in (2). Likewise, the LNA refers to the numeri-

cal solution of the ODEs in (6), (9) and (10). We note

that the CLE or LNA are used only in the preliminary
screening step and further approximation through use

of a numerical solution will not change the target dis-

tribution of the Metropolis-Hastings scheme.

Our proposed algorithm for taking advantage of the

CLE approximation, which we call delayed acceptance
PMMH (daPMMH), is outlined in Algorithm 1; the al-

gorithm which takes advantage of the LNA is a slight

simplification of this. Both algorithms have the follow-

ing basic structure. First a candidate set of parameter
values is proposed, then a decision is made whether to

accept or reject these values based on a MH step with

target density pa(c|y) ∝ pa(y|c)p(c), which is the poste-
rior density of parameters under the approximate model

(for example, the LNA or the CLE); here pa(y|c) rep-

resents the marginal likelihood under the approximate
model. If the proposed parameter values are accepted

at this first stage then they undergo another MH step

with target density p(c|y) ∝ p(y|c)p(c), which is the

marginal posterior density under the MJP. The idea
here is that the first stage weeds out ‘poor’ parame-

ter values. Consequently, the computationally expen-

sive SMC algorithm for the MJP is only implemented

Algorithm 1 Delayed acceptance PMMH (daPMMH)

1. Initialisation, i = 0,
(a) set c(0) arbitrarily,
(b) run a particle filter targeting p(x|y, c(0)), and let

p̂(y|c(0)) denote the marginal likelihood estimate,
(c) run a particle filter targeting pa(x|y, c(0)), and let

p̂a(y|c(0)) denote the marginal likelihood estimate un-
der the approximate model.

2. For iteration i ≥ 1,
(a) sample c∗ ∼ q(·|c(i−1)),
(b) Stage 1

(i) run a particle filter targeting pa(x|y, c∗), and let
p̂a(y|c∗) denote the marginal likelihood estimate
under the approximate model,

(ii) with probability

α1(c
(i−1), c∗) =

min

{

1,
p̂a(y|c

∗)p(c∗)

p̂a(y|c
(i−1))p(c(i−1))

q(c(i−1)|c∗)

q(c∗|c(i−1))

}

,

(14)
run a particle filter targeting p(x|y, c∗), let
p̂(y|c∗) denote the marginal likelihood esti-
mate and go to 2(c); otherwise, set c(i) =
c(i−1), p̂(y|c(i)) = p̂(y|c(i−1)), p̂a(y|c(i)) =
p̂a(y|c(i−1)), increment i and return to 2(a).

(c) Stage 2

With probability
α2(c

(i−1), c∗) =

min

{

1,
p̂(y|c∗)p(c∗)

p̂(y|c(i−1))p(c(i−1))

p̂a(y|c
(i−1))p(c(i−1))

p̂a(y|c
∗)p(c∗)

}

(15)
set c(i) = c∗, p̂(y|c(i)) = p̂(y|c∗) and p̂a(y|c(i)) =
p̂a(y|c∗) otherwise set c(i) = c(i−1), p̂(y|c(i)) =
p̂(y|c(i−1)) and p̂a(y|c(i)) = p̂a(y|c(i−1)). Increment
i and return to 2(a).

for ‘good’ parameter values which are likely to be ac-
cepted at the second stage.

When the CLE is used as the approximate model the

marginal likelihood pa(y|c) is not available analytically,
so we replace it with an unbiased estimate p̂a(y|c) ob-
tained from an SMC scheme which targets pa(x|y, c),
the conditional density of the latent states under the

approximate model, given the observed data and the
parameter values. We therefore have to run a particle

filter at both stages of the daPMMH algorithm, as one

is always needed at stage 2 to give an unbiased estimate
p̂(y|c) of the MJP marginal likelihood p(y|c). We note,

however, that despite the CLE requiring a run of an

SMC scheme to obtain p̂a(y|c) this may still be much
faster to run than the SMC scheme for the MJP (with

the same number of particles).

Our daPMMH algorithm is an extension of the de-

layed acceptance MH (daMH) algorithm of Christen
and Fox (2005), which is a version of the ‘surrogate

transition method’ of Liu (2001). Specifically, we have

extended the daMH algorithm by replacing all intractable
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marginal likelihoods by unbiased estimates obtained from

appropriate SMC schemes. Our extension of the daMH
algorithm to an intractable likelihood at Stage 1 is es-

sential when the approximate model is the CLE since

the marginal likelihood under the CLE is intractable.
However, when the LNA is chosen as the approximate

model this extra level of complexity is not necessary; we

simply replace the marginal likelihood estimates p̂a(y|c)
in Algorithm 1 with the exact values pa(y|c) since these
are available numerically (see Appendix A.3 for details).

Despite replacing the intractable marginal likelihoods

by unbiased estimates, our daPMMH algorithm still
targets the (exact) posterior density of the parameters

under the MJP, p(c|y), as we outline in Section 3.3.1.

Note that in an independent technical report, Smith
(2011) proved that the daPMMH algorithm has p(c|y)
as its target density when the marginal likelihood un-

der the approximate model is tractable. In Section 3.3.1
we generalise the argument of Smith (2011) to the case

of an SMC-based marginal likelihood estimate for the

approximate model.

3.3.1 Validity of delayed acceptance PMMH

In this section we show that the daPMMH algorithm
(Algorithm 1) is a valid MCMC scheme which targets

a distribution that admits p(c|y) as a marginal distri-

bution.
We first define some notation and an extended state-

space. Let F : R2 → [0, 1] be any function satisfying the

following.

aF [a, a∗] = a∗F [a∗, a] (16)

F [ba, ba∗] = F [a, a∗]. (17)

An example of F is the Metropolis-Hastings acceptance

probability F [a, a∗] = min(1, a∗/a), with a = p(c|y)q(c∗|c)
and a∗ = p(c∗|y)q(c|c∗). More generally, F defines an
acceptance probability that admits a chain with invari-

ant density a, a joint density (known up to an arbitrary

constant) on the current value in the chain and the next

proposal. Condition (16) ensures that detailed balance

is satisfied with respect to a, and Condition (17) en-

sures that the target density need only be known up to

a fixed constant.
Let U be a vector of auxiliary random variables,

sampled conditional on the parameters according to

qa(u|c), and let p̂(c, u) and p̂a(c, u) be two approxi-
mations to the posterior which depend on U , with p̂

unbiased up to a fixed constant, k > 0:
∫

p̂(c, u) qa(u|c) du = k p(c|y). (18)

Note that for notational simplicity, we have dropped

dependence of p̂(c, u) and p̂a(c, u) on the data y. For

further clarity of exposition we adopt the shorthand

p̂ := p̂(c, u), p̂∗ := p̂(c∗, u∗), p̂a := p̂a(c, u),

p̂∗a := p̂a(c
∗, u∗), qa := qa(u|c), q∗a = qa(u

∗|c∗).

Our delayed-acceptance Markov chain proposes ac-

cording to q(c∗|c)q∗a and accepts with a probability of

α (c, u; c∗, u∗) = F [p̂a q(c∗|c), p̂∗aq(c|c
∗)]× F

[
p̂

p̂a
,
p̂∗

p̂∗a

]
.

Our chain targets the joint posterior p̂(c, u)qa(u|c) so

that, by (18), the marginal distribution for c is the pos-
terior p(c|y). To show that p̂(c, u)qa(u|c) is indeed the

invariant distribution of the chain it is sufficient to show

that our chain satisfies detailed balance with respect to
this posterior. Since rejection moves (c∗ ← c, u∗ ← u)

automatically satisfy detailed balance we need only con-

sider moves where the proposal is accepted. Now

p̂ qa q(c∗|c) q∗a = p̂a q(c∗|c)×
p̂ qa q∗a

p̂a
.

By (16),

p̂a q(c∗|c) F [p̂a q(c∗|c), p̂∗a q(c|c∗)]

= p̂∗a q(c|c∗) F [p̂∗a q(c|c∗), p̂a q(c∗|c)] .

Also, by (17) then (16) then (17) again,

p̂ qa q∗a
p̂a

× F

[
p̂

p̂a
,
p̂∗

p̂∗a

]

=
p̂ qa q∗a

p̂a
× F

[
p̂ qa q∗a

p̂a
,
p̂∗ qa q∗a

p̂∗a

]

=
p̂∗ qa q∗a

p̂∗a
× F

[
p̂∗ qa q∗a

p̂∗a
,
p̂ qa q∗a

p̂a

]

=
p̂∗ qa q∗a

p̂∗a
× F

[
p̂∗

p̂∗a
,
p̂

p̂a

]
.

Thus

p̂ qa q(c∗|c) q∗a α(c, u; c∗, u∗)

= p̂∗ q∗a q(c|c∗) qa α(c∗, u∗; c, u),

as required. When our Stage 1 approximation is de-
terministic (using the LNA ) then it is independent of

U . Otherwise, when we use the CLE at Stage 1, our

two estimates of the posterior are independent, i.e. U
is split into two independent vectors, U1 and U2, with

p̂a a function of U1 only and p̂ a function of U2 only.

However, for the algorithm to work we only need to be
able to simulate U1 (for Stage 1) and then, if required,

U2|U1 = u1 (for Stage 2); the independence is not nec-

essary. Indeed a higher Stage 2 acceptance rate might

be obtainable if it were possible to make p̂a(c, U) and
p̂(c, U) positively correlated. Unfortunately we cannot

see any obvious method for constructing correlated es-

timators based upon the CLE and the MJP.
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3.3.2 Comments on efficiency

Christen and Fox (2005) note that with a fast approxi-
mate model daMH algorithms are less computationally

expensive — that is, they exhibit lower CPU times for

the same number of iterations — than standard MH al-
gorithms that do not employ delayed acceptance. They

also note that daMH algorithms are less statistically

efficient than standard MH algorithms that do not em-

ploy delayed acceptance. Here statistical efficiency re-
lates to the mixing of the Markov chain, and can be

measured by the effective sample size (ESS), the num-

ber of independent samples that are equivalent in in-
formation content to the actual number of dependent

samples from the Markov chain. Clearly, computational

time is dictated by the speed with which pa(y|c) (or
its estimate p̂a(y|c)) is computed, and statistical effi-

ciency is dictated by the accuracy of the approximation

pa(y|c) or p̂a(y|c) to p(y|c). For example, pa(y|c) under
the LNA will be faster to compute than p̂a(y|c) under
the CLE since the latter requires a run of an SMC algo-

rithm. However, we might expect the CLE (at least with

a small Euler time-step) to provide a better approxima-
tion to the MJP than the LNA, since the LNA is, in

some sense, a simplified version of the CLE. Increasing

the time-step ∆t in the CLE will decrease the computa-
tion time but should also decrease the accuracy of the

approximation; the trade-off in terms of computational

efficiency between these two factors merits further in-

vestigation.

Another factor which will affect statistical efficiency
is the variability associated with the SMC-based esti-

mate of marginal likelihood p̂a(y|c). An algorithm using

p̂a(y|c) will be less statistically efficient than an ide-

alised algorithm which uses pa(y|c) (for the same ap-
proximate model). We might expect, therefore, that us-

ing the LNA as the approximate model, with its tractable

marginal likelihood, may lead to increased statistical
efficiency over the CLE-based approximation, although

this depends on the accuracy of the LNA.

The daPMMH scheme (using either the LNA or

CLE) requires specification of a number of particles N

to be used in the SMC scheme at Stage 2. As noted
by Andrieu and Roberts (2009), the mixing efficiency

of the PMMH scheme decreases as the variance of the

estimated marginal likelihood increases. This problem
can be alleviated at the expense of greater computa-

tional cost by increasing N . This therefore suggests an

optimal value of N and finding this choice is the subject

of Pitt et al. (2012) and Doucet et al. (2013). The latter
suggest that N should be chosen so that the variance

in the noise in the estimated log-posterior is around 1.

Pitt et al. (2012) note that the penalty is small for a

value between 0.25 and 2.25. We therefore recommend

performing an initial pilot run of daPMMH to obtain
an estimate of the posterior mean for the parameters

c, denoted ĉ. The value of N should then be chosen

so that Var(log p(y|ĉ)) is around 1–1.5. When the CLE
is used as a surrogate model, we must also specify a

number of particles (say N1) to be used in Stage 1. For

simplicity, we take N1 = N . Provided the CLE is a
reasonable approximation to the MJP, we may expect

that N1 provides a suitable trade-off between compu-

tational cost and accuracy (in terms of the variance of

the estimated marginal likelihood under the CLE).

In the next section we show empirically that our

daPMMH algorithm (with either the CLE or the LNA

as the approximate model) can lead to improvements in

overall computational efficiency (in terms of ESS nor-
malised by CPU time) over a vanilla PMMH scheme for

the MJP.

4 Applications

4.1 Lotka-Volterra

Following Boys et al. (2008), we consider first a Lotka-

Volterra model of predator and prey interaction com-
prising three reactions:

R1 : X1

c1−−−→ 2X1

R2 : X1 + X2

c2−−−→ 2X2

R3 : X2

c3−−−→ ∅.

For simplicity of notation we drop the explicit depen-

dence of the current state X = (X1, X2)
′ and the de-

terministic approximation z = (z1, z2)
′ on time, t. The

stoichiometry matrix is given by

S =

(
1 −1 0

0 1 −1

)

and the associated hazard function is

h(X, c) = (c1X1, c2X1X2, c3X2)
′.

The diffusion approximation can be calculated by sub-

stituting S and h(X, c) into the CLE (1) to give respec-
tive drift and diffusion coefficients of

α(X, c) =

(
c1X1 − c2X1X2

c2X1X2 − c3X2

)
,

β(X, c) =

(
c1X1 + c2X1X2 −c2X1X2

−c2X1X2 c2X1X2 + c3X2

)
.
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For the linear noise approximation, the Jacobian matrix

Ft is given by

Ft =

(
c1 − c2z2 −c2z1

c2z2 c2z1 − c3

)
.

We simulated a synthetic dataset by generating 50
observations at integer times using the Gillespie algo-

rithm with initial conditions x1 = (70, 80)′ and param-

eter values c = (1.0, 0.005, 0.6)′ taken from Wilkinson
(2012). Predator values were discarded leaving 50 ob-

servations on prey only. These were then corrupted via

an error distribution for which the marginal likelihood

under the LNA is intractable:

Yt ∼ Poisson(x1,t), t = 1, 2, . . . , 50.

A tractable approximation to the true marginal likeli-

hood under the MJP, for use in Stage 1 of the delayed

acceptance scheme was obtained using the LNA as de-

scribed in Section 3.2. In what follows, for simplicity,
we assume that the latent initial state x1 is known.

For brevity, we refer to the MCMC algorithm target-

ing the posterior under the MJP that uses the LNA in-
side the delayed acceptance PMMH scheme as daPMMH-

LNA. Similarly, when using the CLE inside the delayed

acceptance scheme we refer to this as daPMMH-CLE.
Finally, we designate the vanilla PMMH scheme with-

out delayed rejection as PMMH. Using independent

Uniform U(−8, 8) priors for each log(ci) we performed a

pilot run of the PMMH scheme with 50 particles to give
an approximate covariance matrix V̂ar(c) and approx-

imate posterior mean ĉ. Further pilot runs were then

implemented with c fixed at ĉ and numbers of particles
ranging from 50 to 250. We found that using 200 par-

ticles gave the variance in the noise in the estimated

log-posterior as 1.16. We therefore took N = 200 par-
ticles for the main monitoring runs, which consisted of

2 × 105 iterations of each scheme, with the log(ci) up-

dated in a single block using a Gaussian random walk

proposal kernel. For PMMH, we followed the practi-
cal advice of Sherlock et al. (2013) and used an inno-

vation variance matrix given by λ 2.382

3
V̂ar(c) with λ

tuned to give an acceptance rate of around 10%. We

tried a range of λ values and report results for λ = 0.7
which gave an acceptance rate of 9.4%. For daPMMH-

CLE and daPMMH-LNA, we found that using λ = 1

and λ = 3 (respectively) gave an improved overall ef-
ficiency (compared with simply using λ = 0.7). Intu-

itively, as computation of an estimate of marginal like-

lihood under the CLE and an approximation to the

marginal likelihood under the LNA is extremely cheap
relative to the MJP, larger moves should be tried at

Stage 1. For daPMMH-CLE, we considered three levels

of discretisation, namely, ∆t = 0.2, 0.125, 0.0625. The

cost of computing either an estimate of marginal like-

lihood (under the CLE) or an approximation to the
marginal likelihood (under the LNA) scales roughly as

1 : 20 : 30 : 58 : 362 for LNA : CLE(∆t = 0.2) :

CLE(∆t = 0.125) : CLE(∆t = 0.0625) : MJP. All al-
gorithms are coded in C and were run on a desktop

computer with a 2.83 GHz clock speed.

Figure 1 summarises the output of the PMMH scheme

(consistent with the output of the delayed acceptance

schemes, not reported). We also give kernel density es-
timates of the marginal parameter posteriors under the

LNA and CLE (for each discretisation choice). That

is, we ran daPMMH-LNA and daPMMH-CLE without
performing the Stage 2 correction. When working with

the CLE, smaller Euler time steps appear to give a bet-

ter approximation. The effect of this choice on overall
efficiency can be seen in Table 1. Here, we report Stage

1 acceptance rate α1, Stage 2 acceptance rate α2|1, the

CPU time, the minimum (over the 3 parameters) effec-

tive sample size (ESSmin) and minimum effective sam-
ple size per second, relative to the corresponding value

obtained from the vanilla PMMH scheme. Whilst the

daPMMH-CLE scheme gives an improvement in over-
all efficiency (as measured by relative ESSmin per sec-

ond) for all values of ∆t employed, the effect of the

discretisation is clear. The marginal likelihood under
the CLE approaches that under the MJP as ∆t de-

creases, resulting in greater statistical efficiency of the

daPMMH-CLE scheme. This can also be seen by in-

specting the Stage 2 acceptance probability reported
in Table 1. Naturally, this improvement comes at a

greater computational cost suggesting an optimal value

of ∆t between 0.2 and 0.0625 for this example. Perhaps
counter-intuitively, the CPU time for ∆t = 0.2 is actu-

ally greater than that for ∆t = 0.125. Whilst all three

approximate posteriors that are derived from the CLE
are wider than that derived from the MJP, the approxi-

mate posterior with ∆t = 0.2 is by far the widest. Con-

sequently the Stage 1 acceptance rate is much higher

and the computationally intensive Stage 2 calculation
is performed more often. Further insight into this result

can be gained from Figure 2, which plots estimates of

the marginal likelihood (on the log-scale) under PMMH
against the corresponding value obtained under each

approximation, for 10, 000 values of c sampled from the

posterior p(c|y). The Stage 1 and 2 acceptance rates de-
pend only on the estimates of the log-likelihood at the

proposed and current values through their difference.

Thus the efficiency of the algorithm is unaffected by

any fixed shift of the points from the line through the
origin with a slope of one. However, variability about a

line with this slope is important and we see greater vari-

ability in the estimates obtained for ∆t = 0.2 resulting
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Fig. 1 Lotka-Volterra model. Marginal posterior distributions under the MJP (histogram), LNA (solid line) and CLE with
∆t = 0.0625 (dashed line), ∆t = 0.125 (dotted line), ∆t = 0.2 (dot-dashed line). True values of each log(ci) are indicated (∗).

Algorithm α1 α2|1 CPU time (s) ESSmin Rel. ESSmin/s
PMMH 0.094 1.000 74850 2186 1.00
daPMMH-CLE (∆t = 0.2) 0.123 0.142 15167 485 1.10
daPMMH-CLE (∆t = 0.125) 0.105 0.278 14814 867 2.00
daPMMH-CLE (∆t = 0.0625) 0.109 0.327 21230 948 1.53
daPMMH-LNA 0.031 0.464 2581 835 11.08

Table 1 Lotka-Volterra model. Stage 1 acceptance rate α1, Stage 2 acceptance rate α2|1, CPU time (to the nearest second),
minimum effective sample size (ESSmin, to the nearest whole number) and minimum effective sample size per second, relative
to the corresponding value obtained from the vanilla PMMH scheme. All values are based on 105 iterations.

in a reduction in statistical efficiency for the daPMMH-
CLE (∆t = 0.2) scheme, with proposed values that were

accepted at Stage 1 being rejected at Stage 2.

The daPMMH-LNA scheme on the other hand re-

quires minimal tuning. The LNA gives an analytic form

for the (approximate) marginal likelihood and there-

fore does not require implementation of a particle fil-
ter during the first Stage of the delayed acceptance

scheme. Moreover, the LNA solution involves solving

a set of ODEs, for which standard routines, such as the
lsoda package (Petzold, 1983), exist. Therefore, pre-

specification of a suitable time discretisation is not re-

quired. We find for this example that the daPMMH-
LNA scheme outperforms the vanilla PMMH scheme

by a factor of more than 10. In what follows, we focus

on the daPMMH-LNA scheme.

4.2 Gene Expression

Here, we consider a simple model of gene expression in-

volving three biochemical species (DNA, mRNA, pro-

tein) and four reaction channels (transcription, mRNA

degradation, translation, protein degradation):

R1 : DNA
κR,t

−−−−→ DNA+R

R2 : R
γR
−−−→ ∅

R3 : R
κP−−−→ R+ P

R4 : P
γP
−−−→ ∅.

This system has been analysed by Komorowski et al.

(2009) among others, and we therefore adopt the same

notation to aid the exposition.

Let Xt = (Rt, Pt)
′ denote the system state at time

t, where Rt and Pt are the respective number of mRNA

and protein molecules. As in Komorowski et al. (2009),

we take κR,t to be the time dependent transcription
rate of the gene. Specifically,

κR,t = b0 exp
(
−b1(t− b2)

2
)
+ b3

so that transcription rate increases for t < b2 and tends

to the baseline b3 for t > b2. We denote the vector of

unknown parameters by

c = (γR, γP , κP , b0, b1, b2, b3)
′

and our goal is to perform inference for these parame-

ters. The stoichiometry matrix associated with the sys-
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Fig. 2 Log-marginal likelihood estimates under the MJP (log(p̂(y|c))) against the corresponding log-marginal likelihood
estimate under (a) the CLE (∆t = 0.2), (b) the CLE (∆t = 0.125), (c) the CLE (∆t = 0.0625) and (d) the LNA. All plots are
obtained using 10, 000 values of c sampled from the posterior p(c|y) for the Lotka-Volterra model.

tem is given by

S =

(
1 −1 0 0
0 0 1 −1

)

and the associated hazard function is

h(Xt, c) = (κR,t, γRRt, κPRt, γPPt)
′.

For the linear noise approximation, we have the Jaco-
bian matrix as

Ft =

(
−γR 0

κP −γP

)
.

We simulated a synthetic dataset by generating ob-

servations every 15 minutes for 25 hours (giving 100

observations in total) noting that care must be taken

when simulating from the MJP representation of this

system, due to the time dependent hazard of reaction

R1. We used initial conditions of x1 = (10, 150)′ and
parameter values c = (0.44, 0.52, 10, 15, 0.4, 7, 3)′ with

units of time in hours. As in Komorowski et al. (2009)

we created a challenging data-poor scenario by discard-
ing observations on mRNA levels and corrupting the

remaining protein observations with additive Gaussian

noise:

Yt ∼ N(Pt , σ
2), t = 1, 2, . . . , 100.

We took σ = 10 and assume that this quantity is un-

known. We therefore augment the parameter vector c

to include σ. The data are shown in Figure 3.
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Fig. 3 A single realisation of the gene expression system obtained using the first reaction method. Protein numbers used in
the artificial dataset are shown as circles.

For each rate constant, we assumed the same prior
distributions as in Komorowski et al. (2009) including

informative priors for the degradation rates to ensure

identifiability. Specifically, we have that

γR ∼ Γ (19.36, 44), γP ∼ Γ (27.04, 52),
κP ∼ Exp(0.01), b0 ∼ Exp(0.01),

b1 ∼ Exp(1), b2 ∼ Exp(0.1),

b3 ∼ Exp(0.01), σ ∼ Exp(0.01)

where Γ (a, b) denotes the Gamma distribution with

mean a/b and Exp(b) denotes the Exponential distribu-

tion with mean 1/b). For simplicity, we fixed the initial
latent states at their true values. We performed a pilot

run of the PMMH scheme with 50 particles to give an

approximate covariance matrix V̂ar(c) and approximate
posterior mean ĉ. By performing further pilot runs we

found that using 250 particles gave the variance in the

noise in the estimated log-posterior as 1.54. We there-

fore took N = 250 particles for the main monitoring
runs, which typically consisted of 2 × 105 iterations of

each scheme, with the log(ci) updated in a single block

using a Gaussian random walk proposal kernel. We used
an innovation variance matrix given by λ 2.382

3
V̂ar(c).

For PMMH, further pilot runs were performed to deter-

mine an appropriate scaling λ. We used λ = 0.6 (which
gave an acceptance rate of around 8%) for the main

run. The cost of computing an approximation to the

marginal likelihood (under the LNA) versus comput-

ing an estimate of marginal likelihood under the MJP
scales roughly as 1 : 780 for LNA : MJP and we might

therefore expect that a larger value of λ will be opti-

mal for daPMMH-LNA. In order to investigate effect of

λ on the daPMMH-LNA scheme, we report results for
λ = 0.6, 1, 2, 3, 4.

Figure 4 summarises the output of the PMMH scheme
which we find to be consistent with the output of the

daPMMH-LNA scheme (not reported). We also give

kernel density estimates of the marginal parameter pos-
teriors under the LNA. The posterior samples appear

to be consistent with the true values that produced the

data although we see some discrepancy between the

LNA and MJP posteriors. Table 2 shows Stage 1 ac-
ceptance rate α1, Stage 2 acceptance rate α2|1, CPU

time, minimum (over the parameters) effective sample

size (ESSmin) and minimum effective sample size per
second, relative to the corresponding value obtained

from the PMMH scheme. The effect of increasing the

scaling parameter λ (which in turn increases the inno-
vation variance for the Gaussian random walk update)

can clearly be seen. When λ = 3 we see an 8 fold im-

provement in overall efficiency (as measured by relative

ESSmin per second). The result is relatively robust to
the choice of λ, with a relative ESSmin per second of

2.72 when using the same scaling as PMMH (λ = 0.6).

The accuracy of the LNA can be assessed through

inspection of Figures 4 and 5. There is a noticeable

discrepancy in the marginal posteriors for log(b1) and

log(b2). Despite this, Figure 5 suggests that the LNA
provides a reasonable approximation to the MJP in re-

gions of high posterior density, and we recorded an em-

pirical Stage 2 acceptance probability of around 0.18.
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Fig. 4 Gene expression model. Marginal posterior distributions under the MJP (histograms) and LNA (solid line). True values
of each log(ci) are indicated (∗).
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under the LNA, using 10, 000 values of c sampled from the posterior p(c|y) for the gene expression model.

4.3 Epidemic model

Finally, we consider a Susceptible–Infected–Removed

(SIR) epidemic model involving two species (suscepti-

bles X1 and infectives X2) and two reaction channels

(infection of a susceptible and removal of an infective):

R1 : X1 + X2

β
−−→ 2X2

R2 : X2

γ
−−→ ∅.

The system can be seen as a special case of the Lotka-

Volterra system with c1 = 0. We let c = (β, γ)′ denote

the unknown parameter vector. The stoichiometry ma-
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Algorithm α1 α2|1 CPU time (s) ESSmin Rel. ESSmin/s
PMMH 0.077 1.000 350657 524 1.00
daPMMH-LNA (λ = 0.6) 0.218 0.198 77704 316 2.72
daPMMH-LNA (λ = 1) 0.137 0.178 50840 394 5.19
daPMMH-LNA (λ = 2) 0.051 0.163 20155 246 8.18
daPMMH-LNA (λ = 3) 0.029 0.149 11667 153 8.76
daPMMH-LNA (λ = 4) 0.023 0.182 9518 120 8.44

Table 2 Gene expression model. Stage 1 acceptance rate α1, Stage 2 acceptance rate α2|1, CPU time (to the nearest second),
minimum effective sample size (ESSmin, to the nearest whole number) and minimum effective sample size per second, relative
to the corresponding value obtained from the vanilla PMMH scheme. All values are based on 2× 105 iterations.

trix is given by

S =

(
−1 0

1 −1

)

and the associated hazard function is

h(X, c) = (βX1X2, γX2)
′

where X = (X1, X2)
′ denotes the state of the system at

time t. For the linear noise approximation, the Jacobian
matrix Ft is given by

Ft =

(
−βz2 −βz1
βz2 βz1 − γ

)

where z = (z1, z2)
′ is the state at time t of the deter-

ministic process satisfying (6).

We consider the Abakaliki small pox dataset given

in Bailey (1975) and studied by O’Neill and Roberts
(1999), Fearnhead and Meligkotsidou (2004) and Boys

and Giles (2007) among others. Page 125 of Bailey

(1975) provides a complete set of 29 inter-removal times,
measured in days, from a smallpox outbreak in a com-

munity of 120 individuals in Nigeria. We report the data

here as the days on which the removal of individuals
actually took place, with the first day set to be time 0

(Table 3). We assume an SIR model for the data with

observations being equivalent to daily measurements of

X1 + X2 (as there is a fixed population size). In ad-
dition, and for simplicity, we assume that a single in-

dividual remained infective just after the first removal

occurred. We analyse the data under the assumption of
no measurement error. This assumption can be incor-

porated into the PMMH algorithm by calculating the

un-normalised weight in step 2(b) of the SMC scheme
as

w∗i
t+1 =

{
1, xi

t+1 = yt+1

0, otherwise

The marginal likelihood under the LNA can be com-
puted using the algorithm described in A.3 with G′ =

(1, 1) and Σ = 0. Note that for this example, the cost

of computing the LNA marginal likelihood versus an

estimate of marginal likelihood under the MJP scales
roughly as 1 : 34 for LNA : MJP.

We followed Fearnhead and Meligkotsidou (2004)

by taking β ∼ Γ (10, 104) and γ ∼ Γ (10, 102) a pri-

ori. A pilot run of the PMMH scheme with 500 parti-

cles was used to give an approximate covariance matrix
V̂ar(c) and approximate posterior mean ĉ. By perform-

ing further pilot runs we found that using 2000 parti-

cles gave the variance in the noise in the estimated log-
posterior as 1.25. We therefore took N = 2000 particles

for the main monitoring runs, which typically consisted

of 105 iterations of each scheme, with the log(ci) up-
dated in a single block using a Gaussian random walk

proposal kernel with innovation variance λ 2.382

3
V̂ar(c).

For PMMH, a number of short pilot runs suggested

that λ = 1.1 (which gave an acceptance rate of 0.23)
was close to optimal.

Figure 6 gives marginal posterior densities under the

MJP (using the output of the PMMH scheme) and the

LNA (using the output of the daPMMH-LNA scheme
without Stage 2). We see that the LNA substantially

underestimates the uncertainty in β. Use of the LNA

as a surrogate model in this case will likely lead to re-
jected parameter draws at Stage 1 that would otherwise

be accepted at Stage 2. We alleviate this problem by

scaling the log marginal likelihood under the LNA by

an amount 1/τ , where τ is chosen to maximise the ef-
ficiency of the delayed acceptance scheme. Specifically,

we replace pa(y|c) in Algorithm 1 with pa(y|c)
1
τ . To de-

termine an appropriate value for τ , we fixed the scaling
λ at 1.1 and ran the daPMMH-LNA scheme for τ in the

range [1, 10]. Table 4 reports results for τ ∈ {1, 4, 5, 6}.
We see that as τ increases so does the Stage 1 accep-
tance rate, resulting in an increase in CPU time (as the

expensive MJP simulator is run more often). However,

the Stage 2 acceptance rate also increases, suggesting

an optimal value of τ . We found that τ = 5 is optimal
for the range considered. We therefore fixed τ = 5 and

varied the scaling λ. For λ ∈ {3, 4, 5} it is possible to

achieve a 2-fold increase in efficiency over PMMH.
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Day 0 13 20 22 25 26 30 35 38 40 42 47
No. of removals 1 1 1 1 3 1 1 1 1 2 2 1
Day 50 51 55 56 57 58 60 61 66 71 76
No. of removals 1 1 2 1 1 1 2 1 2 1 1

Table 3 Abakaliki smallpox data.

−8.0 −7.5 −7.0 −6.5 −6.0

0
.0

1
.0

2
.0

3
.0

−3.5 −3.0 −2.5 −2.0 −1.5

0
.0

0
.5

1
.0

1
.5

2
.0

−8.0 −7.5 −7.0 −6.5 −6.0

−
3
.0

−
2
.5

−
2
.0

−8.0 −7.5 −7.0 −6.5 −6.0

−
3
.0

−
2
.5

−
2
.0

log(β)log(β)log(β)

lo
g
(γ

)

lo
g
(γ

)
log(γ)

MJP LNA

Fig. 6 Epidemic model. Marginal posterior distributions under the MJP (histograms) and LNA (solid line), and contour plots
of the joint posterior under the MJP (left) and LNA (right).

Algorithm α1 α2|1 CPU time (s) ESSmin Rel. ESSmin/s
PMMH 0.226 1.000 4981 7469 1.00
daPMMH-LNA (τ = 1, λ = 1.1) 0.252 0.402 1208 1478 0.82
daPMMH-LNA (τ = 4, λ = 1.1) 0.345 0.509 1634 3444 1.41
daPMMH-LNA (τ = 5, λ = 1.1) 0.358 0.499 1698 4374 1.72
daPMMH-LNA (τ = 6, λ = 1.1) 0.372 0.488 1763 2831 1.07
daPMMH-LNA (τ = 5, λ = 3) 0.180 0.476 890 2920 2.19
daPMMH-LNA (τ = 5, λ = 4) 0.144 0.471 762 2471 2.16
daPMMH-LNA (τ = 5, λ = 5) 0.120 0.468 649 2008 2.06

Table 4 Epidemic model. Stage 1 acceptance rate α1, Stage 2 acceptance rate α2|1, CPU time (to the nearest second),
minimum effective sample size (ESSmin, to the nearest whole number) and minimum effective sample size per second, relative
to the corresponding value obtained from the vanilla PMMH scheme. All values are based on 105 iterations.

5 Discussion

We have proposed two delayed acceptance Particle Mar-

ginal Metropolis-Hastings algorithms, analogues of the

delayed acceptance Metropolis-Hastings scheme of Chris-

ten and Fox (2005). We have shown that both lead to a
chain with the desired stationary distribution and ap-

plied them to the problem of parameter estimation in

Markov jump processes with state-dependent rate pa-
rameters. In both analogues the true posterior that is

used in Christen and Fox (2005) is replaced with an

unbiased approximation obtained through a particle fil-
ter. In the second analogue the fast deterministic ap-

proximation is replaced with a relatively fast stochastic

approximation that is also obtained via a particle fil-

ter. The need for such an approach is motivated by the
potentially huge computational cost of performing par-

ticle MCMC for the MJP directly, where each iteration

requires implementation of a particle filter with N par-

ticles, and a complete run of the stochastic simulation
algorithm is required for each particle.

The delayed acceptance PMMH scheme aims to avoid
calculating an estimate of marginal likelihood (and there-

fore running the particle filter) under the MJP for pro-

posals that are likely to be rejected, by implementing

a preliminary screening step that uses a cheap approxi-
mation of the marginal likelihood. We explored two ap-

proximations, the chemical Langevin equation (CLE)

and the linear noise approximation (LNA). The LNA
can be viewed as an approximation to the CLE. Thus,

providing the Euler time-step is not too large the CLE

leads to a greater effective sample size over a fixed
number of iterations. However under Gaussian obser-

vation regimes the marginal likelihood under the LNA

is tractable, whereas the marginal likelihood under the

CLE is generally intractable whatever the observation
regime. We therefore replaced the true posterior un-

der the CLE approximation with a stochastic approx-

imation to this, also obtained via a particle filter. We
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tested both schemes on a Lotka-Volterra system where

the observed counts follow a Poisson distribution with
expectation equal to the true count. We showed how the

LNA can be used to obtain a reasonable deterministic

approximation to the marginal likelihood even though
the observations are not Gaussian and created a scheme

which is approximately an order of magnitude more ef-

ficient than the standard PMMH scheme. Even though
the particle filter is computationally much more costly

than simply integrating the LNA, using the CLE we are

still able to double the efficiency compared with the

standard PMMH scheme. In a further application of
the LNA scheme to a more complex MJP, with a larger

number of unknown parameters we again obtained a

speed up of approximately an order of magnitude.

The proposed methodology can in principle be ap-

plied to any stochastic kinetic model and in Section 4.3

we applied the delayed acceptance scheme (using the
LNA) to a simple epidemic model. For this example,

we found that an estimate of marginal likelihood un-

der the MJP could be computed relatively cheaply. In
spite of this, running the delayed acceptance scheme is

still worthwhile, and we observed an overall increase in

efficiency of at least a factor of two.

The efficiency of both proposed delayed acceptance

PMMH schemes can be improved in a number of ways.

Both schemes can be parallelised and will benefit from
recent work on the use of graphics cards for Monte Carlo

methods (Lee et al., 2010). In addition, in high signal-

to-noise scenarios, the variance of the marginal likeli-
hood estimator under both the CLE and MJP could be

reduced through implementation of an auxiliary parti-

cle filter such as that considered by Pitt et al. (2012).

The interplay between the number of particles, and
choice of scaling for the RWM proposal, and the ef-

ficiency of the scheme is non-trivial. For example, in-

creasing the number of particles increases the CPU time
per iteration but (e.g. Andrieu and Roberts (2009))

should lead to a more efficient PMMH algorithm in

terms of ESS for a fixed number of iterations. How-
ever with a delayed acceptance algorithm we might ex-

pect less of an increase in ESS once the accuracy of the

stochastic approximation exceeds that of the determin-

istic approximation since the Stage 2 acceptance rate
depends on the ratio of these. Our tuning of the algo-

rithms was relatively ad hoc; with sound tuning advice

driven by theory it is possible that further efficiency
gains might be obtained.

Our demonstration of detailed balance showed that

when a stochastic estimate of the marginal likelihood
is used at Stage 1 as well as Stage 2, the independence

of the estimators is unnecessary. This suggests that a

positive correlation between the two might increase the

Stage 2 acceptance rate; unfortunately it was not ob-

vious how to achieve this for our particular estimators.
It is also straightforward to extend our derivation to

apply to a k-Stage delayed acceptance algorithm, using

a sequence of k − 1 approximations. Such a sequence
would need a careful design as the increase in accuracy

at each stage would need to outweigh the increase in

computational cost, and we do not pursue this here.
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A Appendix

Recall that x = {xt | 1 ≤ t ≤ T} denotes values of the latent
MJP and y = {yt | t = 1, 2, . . . , T} denotes the collection of
(noisy) observations on the MJP at discrete times. In addi-
tion, we define xt = {xs | t − 1 < s ≤ t} and yt = {ys | s =
1, 2, . . . , t}.

A.1 PMMH scheme

The PMMH scheme has the following algorithmic form.

1. Initialisation, i = 0,
(a) set c(0) arbitrarily and
(b) run an SMC scheme targeting p(x|y, c(0)), and let

p̂(y|c(0)) denote the marginal likelihood estimate
2. For iteration i ≥ 1,

(a) sample c∗ ∼ q(·|c(i−1)),
(b) run an SMC scheme targeting p(x|y, c∗), and let p̂(y|c∗)

denote the marginal likelihood estimate,
(c) with probability min{1, A} where

A =
p̂(y|c∗)p(c∗)

p̂(y|c(i−1))p(c(i−1))
×

q(c(i−1)|c∗)

q(c∗|c(i−1))

accept a move to c∗ otherwise store the current values

Note that the PMMH scheme can be used to sample the joint
posterior p(c,x|y). Essentially, a proposal mechanism of the
form q(c∗|c)p̂(x∗|y, c∗), where p̂(x∗|y, c∗) is an SMC approx-
imation of p(x∗|y, c∗), is used. The resulting MH acceptance
ratio is as above. Full details of the PMMH scheme includ-
ing a proof establishing that the method leaves the target
p(c,x|y) invariant can be found in Andrieu et al. (2010).

A.2 SMC scheme

A sequential Monte Carlo estimate of the marginal likelihood
p(y|c) under the MJP can be constructed using (for example)
the bootstrap filter of Gordon et al. (1993). Algorithmically,
we perform the following sequence of steps.

1. Initialisation.
(a) Generate a sample of size N , {x1

1, . . . , x
N
1 } from the

initial density p(x1).
(b) Assign each xi

1 a (normalised) weight given by

wi
1 =

w∗i
1∑

N
i=1 w

∗i
1

, where w∗i
1 = p(y1|x

i
1, c) .
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(c) Construct and store the currently available estimate
of marginal likelihood,

p̂(y1|c) =
1

N

N∑

i=1

w∗i
1 .

(d) ResampleN times with replacement from {x1
1, . . . , x

N
1 }

with probabilities given by {w1
1, . . . , w

N
1 }.

2. For times t = 1, 2, . . . , T − 1,
(a) For i = 1, . . . , N : draw Xi

t+1 ∼ p
(
xt+1|xi

t, c
)
using

the Gillespie algorithm.
(b) Assign each xi

t+1 a (normalised) weight given by

wi
t+1 =

w∗i
t+1∑

N
i=1 w

∗i
t+1

, where w∗i
t+1 = p(yt+1|x

i
t+1, c) .

(c) Construct and store the currently available estimate
of marginal likelihood,

p̂(yt+1|c) = p̂(yt|c)p̂(yt+1|yt, c)

= p̂(yt|c)
1

N

N∑

i=1

w∗i
t+1 .

(d) Resample N times with replacement from {x1
t+1, . . . ,

xN
t+1} with probabilities given by {w1

t+1, . . . , w
N
t+1}.

A.3 Marginal likelihood under the linear noise

approximation

Assume an observation regime of the form

Yt = G′Xt + εt , εt ∼ N(0, Σ)

where G is a constant matrix of dimension u× p and εt is a
length-p Gaussian random vector.

Now suppose that X1 ∼ N(a,C) a priori. The marginal
likelihood under the LNA, pa(y|c) can be obtained as follows.

1. Initialisation. Compute

pa(y1|c) = φ (y1 ; G
′a , G′CG+Σ)

where φ(· ; a , C) denotes the Gaussian density with mean
vector a and variance matrix C. The posterior at time
t = 1 is therefore X1|y1 ∼ N(a1, C1) where

a1 = a+ CG (G′CG+Σ)−1 (y1 −G′a)

C1 = C − CG (G′CG+Σ)−1 G′C .

2. For times t = 1, 2, . . . , T − 1,
(a) Prior at t+1. Initialise the LNA with zt = at, mt = 0

and Vt = Ct. Note that this implies ms = 0 for all
s > t. Therefore, integrate the ODEs (6) and (10)
forward to t+ 1 to obtain zt+1 and Vt+1. Hence

Xt+1|yt ∼ N(zt+1, Vt+1) .

(b) One step forecast. Using the observation equation, we
have that

Yt+1|yt ∼ N (G′zt+1, G
′Vt+1G+Σ) .

Compute

pa(yt+1|c) = pa(yt|c)pa(yt+1|yt, c)

= pa(yt|c)φ (yt+1 ; G′zt+1 , G
′Vt+1G+Σ) .

(c) Posterior at t+ 1. Combining the distributions in (a)
and (b) gives the joint distribution of Xt+1 and Yt+1

(conditional on yt and c) as

(
Xt+1

Yt+1

)
∼ N

{(
zt+1

G′zt+1

)
,

(
Vt+1 Vt+1G

G′Vt+1 G′Vt+1G+Σ

)}

and therefore Xt+1|yt+1 ∼ N(at+1, Ct+1) where

at+1 = zt+1 + Vt+1G (G′Vt+1G+Σ)−1 (yt+1 −G′zt+1)

Ct+1 = Vt+1 − Vt+1G (G′Vt+1G+Σ)−1 G′Vt+1 .
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