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Delayed commitment to evolutionary fate
in antibiotic resistance fitness landscapes
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Shimon Bershtein4 & Roy Kishony1,5

Predicting evolutionary paths to antibiotic resistance is key for understanding and controlling

drug resistance. When considering a single final resistant genotype, epistatic contingencies

among mutations restrict evolution to a small number of adaptive paths. Less attention has

been given to multi-peak landscapes, and while specific peaks can be favoured, it is unknown

whether and how early a commitment to final fate is made. Here we characterize a multi-

peaked adaptive landscape for trimethoprim resistance by constructing all combinatorial

alleles of seven resistance-conferring mutations in dihydrofolate reductase. We observe that

epistatic interactions increase rather than decrease the accessibility of each peak; while they

restrict the number of direct paths, they generate more indirect paths, where mutations are

adaptively gained and later adaptively lost or changed. This enhanced accessibility allows

evolution to proceed through many adaptive steps while delaying commitment to genotypic

fate, hindering our ability to predict or control evolutionary outcomes.

DOI: 10.1038/ncomms8385

1Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. 2 Laboratory of Systems Pharmacology, Harvard Medical

School, Boston, Massachusetts 02115 USA. 3Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
4Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel. 5Department of Biology and Department of Computer

Science, Technion-Israel Institute of Technology, Haifa 320003, Israel. w Present address: School of Biotechnology and Biomolecular Sciences, University of

New South Wales, Sydney, New South Wales 2052, Australia (A.C.P.); Department of Genome Sciences, University of Washington, Seattle, Washington

98195, USA (S.K.). * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to R.K. (email:

rkishony@technion.ac.il).

NATURE COMMUNICATIONS | 6:7385 | DOI: 10.1038/ncomms8385 | www.nature.com/naturecommunications 1

& 2015 Macmillan Publishers Limited. All rights reserved.



A
ntibiotic resistance can evolve through the sequential
accumulation of multiple resistance-conferring mutations
in a single gene1–8. Such multistep evolutionary pathways

have been studied by reconstructing all possible intermediate
genotypes between the ancestor and an evolved drug resistance
genotype, to assess the feasibility of different pathways9,10. These
studies show that only a limited number of pathways to the highly
adapted genotype are feasible (continuously increasing in fitness),
suggesting that epistatic interactions impose constraints that
may render evolution more predictable1,2,11. However, adaptive
landscapes can often have multiple distinct adaptive peaks, of
which some may be more readily attainable than others5,12,13.
Key to the predictability of evolution is whether and how early
does evolution commit to a final genotypic state. By
‘commitment’ we refer to the idea that, as ongoing drug
selection drives the sequential acquisition of resistance-
conferring mutations, the number of resistant genotypic fates
available to evolution is reduced and, out of the many initially
available adaptive genotypic peaks, a single peak is finally chosen.

Here we studied the evolutionary paths to trimethoprim
resistance using a set of resistance-conferring mutations identified
by laboratory evolution experiments, where five initially isogenic
and drug-susceptible Escherichia coli populations were evolved in
parallel under dynamically sustained trimethoprim selection,
yielding several different drug-resistant genotypes8. These
genotypes contained partially overlapping sets of mutations in
the gene encoding trimethoprim’s target, dihydrofolate reductase
(DHFR); each evolved strain had mutations in three out of five
particular amino acids in DHFR and also a mutation in the DHFR
promoter.

We find that although genetic interactions limit the number of
direct evolutionary paths to adaptive genotypes, where mutations
are only gained, they greatly expand the number of indirect paths,
where mutations can be adaptively lost or replaced by a different
mutation at the same locus. This allows intermediate genotypes in
the evolutionary process to trace feasible paths to many adaptive
peaks, preventing early commitment to a genotypic fate.
Furthermore, we find from simulations that this behaviour arises
as a general property of multi-peak adaptive landscapes rich in
high-order genetic interactions.

Results
Measurement of a multi-peaked adaptive landscape. To map
the adaptive landscape of trimethoprim resistance, we con-
structed and characterized all combinatorial sets of a collection
of these resistance-conferring mutations8. We studied the effects
of one promoter mutation (� 35C4T, position relative to
transcription start site) and five mutated amino acid residues,
P21L, A26T, L28R, I94L and W30G/R, where at the W30 site we
investigated two different types of mutations that were observed
in the final genotypes (Fig. 1a). All possible combinations
amounted to 96 DHFR variants (25� 31), which were each
synthesized and recombined into the E. coli chromosome in place
of wild-type DHFR (Methods)14,15. Each strain was characterized
in triplicate by measuring growth rates across a range of
trimethoprim concentrations (Fig. 1a, Supplementary Fig. 1).
Briefly, a microtitre plate of the strain collection was inoculated
into microtitre plates with liquid growth medium containing
different trimethoprim concentrations. Plates were incubated at
30 �C with shaking, while optical density at 600 nm (OD600) was
measured every 45min. Growth at each drug concentration was
quantified as the definite integral of OD600 from 0 to 30 h (this
showed superior reproducibility to division rate; Supplementary
Note 1). Drug resistance was quantified by IC75, the
trimethoprim concentration that inhibits growth to 25% of

wild-type drug-free growth (Fig. 1b, Supplementary Data 1,2).
IC75 measurements were highly reproducible across independent
replicates, with experimental variance explaining o0.8% of
the total variance in log(IC75) across the set of mutants
(Supplementary Fig. 2).

This network of genotypes and their associated IC75s produced
a ‘rugged’ adaptive landscape with multiple peaks (Fig. 1d;
Supplementary Note 2 for comparison with adaptive evolution
study8). Eleven of the 96 genotypes constitute ‘adaptive peaks’,
where no gain or loss of a mutation is able to increase
trimethoprim resistance (Supplementary Fig. 3; some peaks are
neutrally connected to others while others are fully separated by
fitness valleys). An adaptive landscape can contain multiple peaks
only if mutations’ phenotypic effects change sign (advantageous
or deleterious) depending on the presence of other mutations, a
genetic interaction called sign epistasis. (If mutations’ effects were
positive on all backgrounds, there would have been a single
adaptive peak containing all the mutations.)16,17 Interestingly,
while multiple peaks have previously been observed as the result
of pairwise incompatibilities between mutations7,18, here every
possible pair of mutated amino acids coexists in at least one
adaptive peak (Supplementary Fig. 3) suggesting a more complex
origin for the observed ‘ruggedness’ than pairwise interactions.

The landscape is shaped by high-order genetic interactions.
The fitness landscape has extensive high-order genetic inter-
actions. A series of models of increasing complexity were con-
structed that described the log(IC75) of each genotype as a sum of
parameters (equivalent to multiplying fold-changes in IC75) that
represent the contributions to resistance of mutation’s effects
alone and in pairwise or high-order combinations. A gradient of
model complexity was created by finding which single parameter
explained the most variance in IC75, then determining which
second parameter contributed the next greatest increase in var-
iance explained, and so forth (Fig. 2a). In this unbiased approach
to detect explanatory effects and interactions, the promoter
mutation (� 35C4T) explained a large amount of variance
because it more consistently provided a strong benefit, whereas
the individual effects of amino acid mutations were overwhelmed
by the genetic interactions that define their effects when present
in various combinations (Fig. 2b, Supplementary Fig. 4). For
example, although L28R is by far the most beneficial mutation to
acquire on the wild-type background, its effect is more context
dependent when acquired on other backgrounds. To avoid
‘overfitting’ with spurious parameters, the Akaike Information
Criterion19 (AIC) was applied to assess the likelihood of each
model relative to its number of parameters, revealing that over 60
genetic interaction terms, most of them high-order, made
meaningful contributions to drug resistance (Fig. 2a). Pairwise
genetic interactions reflect scenarios in which the effect of a
mutation depends on the presence of another. Here we observed
that, because of the multitude of high-order genetic interactions,
the actual way in which two mutations interact varies based on
the presence or absence of other mutations in the genetic
background (Fig. 2c, Supplementary Fig. 5). We next consider the
effect of these genetic interactions on the adaptive paths and the
commitment to evolutionary outcomes.

Hundreds of accessible evolutionary pathways. Examining the
accessible evolutionary trajectories, we found that adaptive
mutation loss facilitated escape from seeming evolutionary ‘dead-
ends’. Starting from the wild-type genotype we identified 483
adaptive trajectories where every step increases trimethoprim
resistance (all continuously adaptive pathways were enumerated;
Supplementary Fig. 6 presents methods to estimate pathway
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probabilities). Each trajectory ends at one of the ‘peak’ genotypes
with strong and locally optimal trimethoprim resistance; it is an
interesting feature, not necessarily universal, that no trajectories
become trapped in local optima of modest trimethoprim
resistance. Adaptation did not only proceed along ‘direct paths’,
consisting only of gaining mutations. Instead, in many ‘indirect
paths’, a mutation that was initially gained advantageously later
became beneficial to lose due to interactions with newly gained
mutations. Such adaptive mutational losses occur by converting
to an alternative amino acid at the same site or by reverting to the
wild-type amino acid (Fig. 3a). All but one of the amino acid
mutations show some propensity for adaptive loss (Fig. 3b).
At several genotypes, the only adaptive step within this finite

landscape is mutational loss, indicating that without the
consideration of mutation loss or the gain of different mutations
to those studied here, it may appear – misleadingly – that
trajectories could become stuck in evolutionary ‘dead-ends’
(Supplementary Fig. 7, example in Fig. 3a). Thus, mutation
reversion and conversion can contribute to evolvability on rugged
adaptive landscapes, where some optima might otherwise
be poorly accessible9. This property of the DHFR landscape
is consistent with other empirically measured adaptive
landscapes2,5,20. Mutational conversion and loss in DHFR was
also directly observed in the forward evolution of trimethoprim
resistance in E. coli, by daily genotyping of evolving populations8.
It is unclear whether this tendency is particular to DHFR or if it
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Figure 1 | Synthetic construction and phenotyping of all combinations of seven trimethoprim resistance mutations. (a) Trimethoprim (TMP) resistance

can be conferred by any of seven different mutations in the target of trimethoprim, DHFR. Each combination of these mutations was synthesized and

recombined into the E. coli DHFR gene. (b) The growth of each mutant strain was measured in liquid cultures spanning a range of trimethoprim

concentrations, in triplicate. Growth is quantified by integrating optical density at 600nm from 0 to 30 hours, and is illustrated by two strains, shown with

no drug or with 630mgml� 1 trimethoprim. (c) Growth as a function of trimethoprim concentration is shown for the two example strains in b. The two

drug concentrations shown in b appear here as diamond (no drug) and triangle (630mgml� 1) markers. Trimethoprim IC75 is determined from this data

as the drug concentration that inhibits growth to 25% of the wild-type growth without drug; three such independent measurements of each strain’s IC75

were performed. Each strain is represented by a column with height proportional to its IC75; atop each column are coloured circles that represent which

DHFR mutations are carried in that strain (colours matching a). (d) The adaptive landscape of trimethoprim resistance conferred by DHFR mutations.

Strains with different DHFRmutations are distributed in rows sorted by number of mutations. Each gain of mutation throughout the network of genotypes is

shown as a line coloured by the mutation gained. The trimethoprim resistance of the wild-type strain and each single mutant is shown with greater

resolution in a vertically enlarged box.
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may be common but is typically not observed when only initial
and final evolved strains are genotyped. As the daily genotyping
of evolving populations becomes increasingly practical, it will be
interesting to test the generality of this property in different genes
and environmental stresses.

The process of mutational gain and subsequent loss generates
indirect paths that greatly increase the number of evolutionary
pathways leading to any specified peak. For each single-peak
subset of the landscape with n mutations, there are n! potential
direct mutational paths leading to this peak (6, 24 or 120 paths to
3, 4 or 5 mutations, respectively). Consistent with previous
studies of single-peaked adaptive landscapes1–3, many of these
direct paths are restricted because genetic interactions render
certain mutations deleterious on the background of other
mutations (Fig. 3c, black bars). However, considering all
adaptive paths in the multi-peak landscape reveals many
additional indirect paths in which gained mutations are
subsequently adaptively lost or converted. These indirect paths
are so abundant as to overcompensate for the reduction in direct
pathways (Fig. 3c, grey bars). Most indirect paths are only one or
two steps longer than most direct paths (Supplementary Fig. 8a).

Due to these indirect paths, the landscape has a higher level of
connectivity; they increase the number of genotypes that can lead
to any one peak (Supplementary Fig. 8b) and the number of peaks
accessible from each genotype (Supplementary Fig. 8c). These
properties are observed in this landscape, and not in previously
characterized single-peaked landscapes, because it contains more
mutations than only those in a single adaptive genotype. We thus
anticipate that this increased accessibility due to indirect paths
would only be more pronounced if a larger set of mutations was
examined.

Delayed commitment to evolutionary fate. The increased
accessibility of each adaptive peak in the actual landscape delays
commitment to evolutionary fate much beyond what would be
expected from simple models of adaptive landscapes. Landscapes
without any sign epistasis contain only a single peak. Consider
then a model adaptive landscape where pairwise epistasis creates
multiple peaks: 2k peaks can result from k incompatible pairs of
mutations, where possessing any one member of the pair
increases fitness but possessing both decreases fitness (that is, sign
epistasis). In this simple model the number of peaks accessible to
evolution halves with each adaptive mutation (Fig. 4a; similar
results observed when multiple peaks are created by diminishing
returns epistasis, Supplementary Fig. 9). In contrast to the simple
theoretical landscape where the final genotype quickly becomes
predictable, analysing all trajectories on the actual landscape
reveals that they can proceed through many more steps with little
reduction in the availability of different terminal fates (Fig. 4a;
similar results obtained when applying this analysis to another
experimental multi-peaked landscape5, Supplementary Fig. 10).
This relaxed commitment is a direct result of the capacity for
indirect paths; commitment is not delayed in the experimental
landscape when mutational reversions and conversions are not
permitted (Supplementary Fig. 11). Indirect paths with delayed
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experimentally indistinguishable IC75 (no favoured direction) are
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commitment to evolutionary fate appear in the measured
adaptive landscape but not in the simple pairwise epistasis model.

Delayed commitment is created by high-order genetic inter-
actions. Beginning with the aforementioned pairwise epistasis
model, the progressive addition of random high-order genetic
interactions (repeated over thousands of such landscapes)
increases the number of evolutionary pathways and the average
number of mutational steps taken until fate commitment (Fig. 4b;
Supplementary Fig. 12). A simple model of three mutations
suffices to illustrate how these effects occur. Second-order
(pairwise) sign epistasis can generate two distinct peaks, but
evolutionary paths on this landscape show fast commitment
(Fig. 5a). However, adding a third-order interaction, whereby the
sign epistasis of two mutations depends on the presence of the
third (as often observed in the real landscape; Fig. 2c), can
maintain these two peaks while allowing indirect paths and
postponing commitment to evolutionary fate (Fig. 5b).

Discussion
The evolution of trimethoprim resistance through mutations in
the drug’s target DHFR is characterized by high-order genetic
interactions that enable a multitude of indirect paths with
mutational reversions and conversions. This abundance of

feasible pathways increases the evolutionary accessibility of
adaptive peaks, allowing the bypass of evolutionary dead-ends
and postponing evolutionary commitment to fate. Simulations of
adaptive landscapes showed that these effects crucially depend on,
and are a general property of, high-order genetic interactions in
adaptive landscapes. Therefore, more generally, when there exist
multiple genotypic solutions to an evolutionary challenge, the net
effect of genetic interactions is to increase the connectivity of the
adaptive landscape and the number of feasible evolutionary
pathways to any specified peak. This proliferation of adaptive
paths on multi-peak landscapes considerably limits our ability to
predict or control the course of evolution. The notion of an
adaptive ‘end point’ is most relevant to the evolution of a specific
functional change in a protein, such as drug resistance, but in the
context of whole-genome evolution to a novel environment,
adaptation may proceed for many thousands of generations21.
Still a general principle emerges from this DHFR landscape that
may apply also in this broader context: genetic interactions may
strongly shape the course of evolution, but they do so as much by
limiting opportunities as by presenting new ones.

Methods
Strains and media. All DHFR mutant strains were constructed in MG1655
attTn7::pRNA1-tdCherry (gift from N.D. Lord). Growth rate measurements were
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performed in a modified M9 minimal medium, for consistency with the forward
evolution studies that identified the set of trimethoprim resistance mutations8

(6 g l–1 Na2HPO4 � 7H2O, 3 g l
–1 KH2PO4, 5 g l

–1 NaCl, supplemented with
0.4% glucose, 0.2% casamino acids and 1mM MgSO4). Drug solutions were
made from powder stock (Sigma Aldrich: chloramphenicol, C0378; kanamycin,
K1876; trimethoprim, T7883). Stock solutions of trimethoprim were
prepared at 30mgml� 1 in dimethylsulphoxide, and to avoid trimethoprim
precipitation at high concentrations in media, working solutions were
prepared by the slow addition of M9 media, with mixing, to the required
volume of stock.

Chromosomal integration. Mutant DHFR strains were constructed by replacing
the endogenous (coding and noncoding regions) of the DHFR gene with chemically
synthesized mutant DHFR sequences, following the method of Datsenko et al.14

specifically adapted for DHFR 15. Briefly, mutant DHFR genes, including the native
DHFR promoter, were synthesized and cloned into plasmid pKD13 that contained
flanking kanamycin and chloramphenicol resistance genes. The integration cassette
was PCR amplified with primers possessing 60 nucleotide homology to the genes
immediately upstream (kefC) and downstream (apaH) of DHFR in the E. coli
chromosome (upstream primer: 50-GAAGAAGGTAAACATACCGGCAACATG
GCGGATGAACCGGAAACGAAACCCTCATCCTAATCATGATCATCGCAG
TACTGTTG-30 , downstream primer: 50-AAGGCCGGATAAGACGCGACCGGC
GTCGCATCCGGCGCTAGCCGTAAATTCTATACAAAACTGTCAAACATGA

GAATTAATTC-30 ; both PAGE purified). PCR products were DpnI digested
(New England Biolabs, R0176) and electroporated into strains carrying the lambda
Red recombinase expression plasmid pKD46 (ref. 14). Integrants were selected on
lysogeny broth (LB) agar with 30mg l–1 kanamycin and 25mg l–1 chloramphenicol.
Colony purification at 42 �C removed the pKD46 plasmid, which was confirmed by
a failure to grow on LB agar with 100mg l–1 ampicillin. Single colonies were Sanger
sequenced to verify the sequence of the mutated DHFR locus. Gene synthesis
services were provided by GenScript, oligonucleotide synthesis by Integrated DNA
Technologies and DNA sequencing by GENEWIZ.

Phenotyping assay. Frozen stocks of all mutant strains were prepared in multiple
master 96-well plates (M9 minimal media with 15% glycerol). For each replicate
experiment, a frozen master plate was thawed and the contents diluted 33-fold into
a deep 96-well plate of fresh M9 minimal media, to be used as an inoculation
culture. A Liquidator 96 Manual Pipetting System (Mettler Toledo) was used to
transfer 10 ml from each well of the inoculation culture plate into each of 29
experimental 96-well plates prepared with 140ml of M9 minimal media and
trimethoprim such that the final trimethoprim concentrations (after inoculation)
spanned a 28-point range, from 0.16 to 3,400 mgml–1, with also duplicate
trimethoprim-free plates. Plates were incubated with shaking in a ‘plate hotel’
(Liconic) in an environmental room at 30 �C and 70% humidity. Each well’s optical
density at 600 nm (OD600) was measured approximately every 45min by an
EnVision Multilabel Reader (Perkin Elmer).

a

b c

Observed

Pairwise epistasis model

Number of mutation events
A

c
c
e

s
s
ib

le
 p

e
a

k
s
 (

%
)

A
c
c
e

s
s
ib

le
 p

e
a

k
s
 (

%
)

100

100

100

100

75

75

75

75

50

50

50

50

25

25

25

25

0

0

0

0
0

0 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10

Number of mutation events

Pairwise model

+8 random

interactions

Pairwise model

+16 random

interactions

Pairwise model
+32 random
interactions

0 40 60 8020
1

2

3

4

Number of genetic interactions

A
ve

ra
g

e
 n

u
m

b
e

r 
o

f 
m

u
ta

ti
o

n

 e
ve

n
ts

 u
n

ti
l 
h

a
lf
-c

o
m

m
it
m

e
n

t

Figure 4 | High-order genetic interactions can delay commitment to evolutionary fate. (a) For each of the 483 adaptive pathways, the fraction of

adaptive peaks that are potentially accessible from each genotypes along that path is plotted with respect to the number of mutational events (‘steps’) in a

trajectory. Individual trajectories are shown with slight scatter in coordinates to visualize overlapping paths. Branching in the data reflects diversity amongst

trajectories in the number of adaptive peaks that remain accessible. The observed properties of the DHFR landscape (blue) are contrasted with a model of

pairwise epistatic interactions (purple), where a peak is composed of an always beneficial promoter mutation plus any set of three binary choices between

incompatible pairs of amino acid mutations (that is, choose one of mutations a or b, choose one of c or d, and choose one of e or f). (b,c) Beginning with the

pairwise epistasis model (three second-order interactions, creating eight peaks), landscapes with a range of genetic interaction densities are created by

adding interactions that are random in sign, magnitude and mutations involved (in groups of one each of second, third, fourth, and fifth order). Panel b

shows how this addition of random genetic interactions (blue) postpones commitment to fate relative to the minimal pairwise model (purple), for

ensembles of 100 such landscapes. The average number of mutations events until ‘half-commitment’—when half or fewer peaks remain accessible—is

calculated for each landscape, with each trajectory weighted by its relative likelihood according to the equal fixation probability model1. Panel c shows how

the number of mutations until reaching half-commitment is delayed with increasing numbers of random genetic interactions. Each dot is a landscape, and a

red line follows the average of each ensemble of 200 simulated landscapes.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8385

6 NATURE COMMUNICATIONS | 6:7385 |DOI: 10.1038/ncomms8385 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.



Growth and IC75 determination. A background optical density of 0.03 units was
subtracted from each OD600 measurement, based upon the optical density of a
control empty well present in all assays. A linear interpolation was created
connecting measured data of OD600 over time, which was then integrated over the
time span from 0 to 30 h, giving a quantified measure of growth that is sensitive to
drug-induced changes in growth rate as well as drug-induced changes in the duration
of lag phase. Across the full set of over 2,500 growth measurements, 13 instances
of aberrant growth were identified (0.5% of measurements), where growth of a
particular strain at a particular trimethoprim dose was over twice the matching
growth at the next lower trimethoprim concentration, and also twice the average
growth of the other two replicates at the same trimethoprim concentration. These 13
aberrant measurements were substituted by the mean of their other two replicates.

The trimethoprim resistance of each strain was quantified by the IC75, as
calculated from the function of growth versus trimethoprim concentrations.
Specifically, linear interpolations of growth versus log([trimethoprim]) were
constructed, and IC75 was calculated as the largest trimethoprim concentration at
which this linear interpolation of growth was equal to one quarter of the
uninhibited wild-type growth. When simulating evolutionary trajectories (Figs 3b
and 4a) and determining the directions of adaptive steps (Fig. 2b) we required 95%
confidence that the IC75 values of neighbouring genotypes were not equal (based
on the standard deviation of triplicate IC75 measurements), or else they were
considered to be connected by neutral drift. Drift transitions between genotypes
were not permitted in simulated evolutionary trajectories.

Quantifying the complexity of genetic interactions. A series of models were
constructed to fit the trimethoprim resistance of each strain, as measured by

log(IC75), using a series of terms that capture different ‘orders’ of mutational
effects and genetic interactions. The presence or absence in a strain of each
mutation i is referred to by terms mi that equal 0 when that mutation is absent or 1
when present (i ranges from 1 to 7 for the 7 different mutations characterized). The
contribution of each individual mutation i to log(IC75) was described by the terms
ci. The effect on log(IC75) of possessing the pair of mutations i and j (two-way
interaction) was described by the term ci,j. Similarly, three-way interactions were
described by terms ci,j,k, four-way interactions by ci,j,k,l and five-way interactions
by ci,j,k,l,n. In the most complex model that includes all terms up to five-way
interactions, the log(IC75) of each strain is thus described by:

X

i

ci mi þ
X

i;j

ci;j mimj þ
X

i;j;k

ci;j;k mimjmk

þ
X

i;j;k;l

ci;j;k;l mimjmkml þ
X

i;j;k;l;n

ci;j;k;l;n mimjmkmlmn

ð1Þ

Parameter fitting was performed by minimizing the term:

X

strains

log IC75observedð Þ� log IC75fittedð Þ
error in log IC75observedð Þ

� �2

ð2Þ

using the Minimize function of Mathematica 9.0. Error in log(IC75observed) was
estimated when analysing growth inhibition measurements (see ‘Growth rate and
IC75 determination’ above), and here is taken to be the larger of either the
estimated experimental error or the concentration step between experimentally
utilized trimethoprim concentrations (Supplementary Fig. 1). For example, if IC75
was estimated as 1,200 mgml� 1, being between experimental measurements of
growth at 1,000 and 1,400 mgml� 1 trimethoprim, error in log(IC75) is at least
log(1,400)–log(1,000). The seven particular combinations of mutations that could
not be engineered into the E. coli chromosome, plus one strain with o25% of
wild-type growth even in the absence of drug, were not included when summing
the error over strains. 100% of variance was defined as this error term when
IC75fitted was equal to the mean IC75 of all measured strains.

A gradient of model complexity was created by first testing all single parameters
and identifying the one parameter that produced the best fit (that is, explained the
most variance). Next, all remaining parameters were tested together with the first
chosen parameter to identify which two parameters produced the best fit. In this
subsequent fit, the numerical value of first selected parameter was allowed to
change to reflect the new discrimination amongst genotypes introduced by the
second parameters. This process was iterated, adding one parameter each round.

The AIC of each model was calculated as 2.k–2.log(L), where ‘k’ is the number
of parameters in the model and ‘L’ is the likelihood of measuring the observed IC75
values if the true values were those predicted by the model19. Specifically, the
likelihood of a model was the product of the likelihoods of each strain’s IC75
measurement. The likelihood that a given IC75 measurement would be made for
strain i is the probability density at the observed log10(IC75) (observationi) of a
normal distribution centred on the predicted log10(IC75) (predictioni) with
standard deviation equal to the larger of either the estimated experimental error or
the concentration step between experimentally utilized trimethoprim
concentrations (errori). Mathematically, model likelihood L is:

L ¼
Y

i

Exp
� observationi � predictioni
� �2

2�error2i

 !,

ffiffiffiffiffi

2p
p

�errori

� �

ð3Þ

where the denominator serves to normalize probability density in the elements of
the product:

Z

1

�1

Exp
� observation� predictionð Þ2

2�error2

� �	

ffiffiffiffiffi

2p
p

�error
� �

:d:prediction ¼ 1

ð4Þ
The model with the greatest relative likelihood is considered to be that with the
minimum AIC value (AICmin, which was the model with 72 parameters). The
relative likelihood of all other models i was calculated by Exp((AICmin–AICi)/2)
(ref. 19).

Simulating landscapes with randomized genetic interactions. A model adap-
tive landscape was constructed that was similar in composition to the observed
trimethoprim-resistance landscape except containing, initially, only second-order
genetic interactions. Thus, seven mutations were defined each with fitness effect
þ 1, where one mutation was always beneficial (approximating the � 35C4T
promoter mutation), and where six mutations showed pairwise incompatibility,
that is, three pairs each showed a second-order genetic interaction with fitness
effect � 2 (approximating the amino acid mutations), producing eight adaptive
peaks. The number of potential genetic interactions to be added include 18 second
order (7� 6/2!� 3 already present), 35 third order (7� 6� 5/3!), 35 fourth order
(7� 6� 5� 4/4!) and 21 fifth order (7� 6� 5� 4� 3 /5!). Variant landscapes
were generated by randomly selecting k each of the possible second-, third-, fourth-
and fifth-order interactions, and assigning to each new interaction a random fitness
effect between � 1 and þ 1, such that they are no larger in magnitude than
mutations’ individual effects. Two hundred such landscapes were created for each
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Figure 5 | A simple illustration of high-order epistasis causing delayed

commitment. (a) The possible effects of high-order epistasis are illustrated

by simple examples of multi-peaked landscapes consisting of three

mutations. Circles represent genotypes, whose fitness is represented by

circle size and colour. Arrows show the favored directions of evolutionary

transitions; grey dotted lines mark transitions that cannot be realized. In

these examples the mutation reached by a diagonal transition is always

beneficial, while the mutations reached by horizontal and vertical

transitions either always show reciprocal sign epistasis (second order),

or only show reciprocal sign epistasis in the presence of the third mutation

(third order). A grey line illustrates an indirect trajectory on the third-order

landscape with late commitment. (b) The number of peaks accessible from

each genotype in a is plotted as a function of the number of mutation

events in a trajectory. Second-order sign epistasis (purple) creates rapid

commitment to fate: adaptive peaks are reached in at most two steps, and

commitment can be made after a single step. Third-order sign epistasis

(blue) creates longer trajectories with late commitment to fate: trajectories

can take as long as four steps, and fate is never determined before a peak is

reached.
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integer k. Landscapes were discarded if any new adaptive peaks were created, or if
any of the eight designated adaptive peak genotypes became inaccessible from the
wild-type genotype. For each landscape, all feasible evolutionary trajectories were
enumerated, and the number of adaptive peaks that remain accessible at every
mutational step was determined. ‘Half-commitment’ was defined as the step at
which half or fewer adaptive peaks remain accessible. To calculate the average
number of mutation events until half-commitment for an entire landscape, each
trajectory’s ‘half-commitment’ point was weighted by the estimated probability of
realization of a given trajectory, according to the equal fixation probability model
(briefly, when an evolutionary trajectory has n different options for adaptive
mutations, each occurs with probability n� 1)1.
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