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Time-delayed feedback control is well known as a practical method for stabilizing
unstable periodic orbits embedded in chaotic attractors. The method is based on
applying feedback perturbation proportional to the deviation of the current state of the
system from its state one period in the past, so that the control signal vanishes when the
stabilization of the target orbit is attained. A brief review on experimental
implementations, applications for theoretical models and most important modifications
of the method is presented. Recent advancements in the theory, as well as an idea of
using an unstable degree of freedom in a feedback loop to avoid a well-known topological
limitation of the method, are described in detail.
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1. Introduction

Control theory is one of the central subjects in engineering science. Despite the
fact that engineers and applied mathematicians have been dealing with control
problems for a long time, an idea of controlling chaos has been introduced
relatively recently (Ott et al. 1990). This new idea has attracted great interest
among physicists and boosted an enormous amount of work on control problems.
Why are chaotic systems interesting subjects for control theory and applications?
The major ingredient for the control of chaos is the observation that a chaotic
set, on which the trajectory of the chaotic process lives, has embedded within it a
large number of unstable periodic orbits (UPOs). In addition, owing to
ergodicity, the trajectory visits or accesses the neighbourhood of each of these
periodic orbits. Some of these periodic orbits may correspond to a desired
system’s performance according to some criterion. The second ingredient is the
realization that chaos, while signifying sensitive dependence on small changes to
the current state and henceforth rendering the system state unpredictable in the
long term, also implies that the system’s behaviour can be altered by using small
perturbations. Then, the accessibility of the chaotic system to many different
periodic orbits, combined with its sensitivity to small perturbations, allows for
the control and the manipulation of the chaotic process. These ideas stimulated
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Figure 1. Block diagram of the delayed feedback control method. yðtÞ, is an output variable; p, a
control parameter; p0, its value at which the dynamical system has an unstable periodic orbit with
a period t; and K, the feedback gain.
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the development of a rich variety of new chaos-control techniques (see Shinbrot
et al. 1993; Kapitaniak 1996; Shuster 1999; Chen & Raton 2000; Boccaletti et al.
2000; Chen & Yu 2003 for review), among which the delayed feedback control
(DFC) method proposed by Pyragas (1992) has gained widespread acceptance.

The DFC method is reference-free and makes use of a control signal
obtained from the difference between the current state of the system and the
state of the system delayed by one period of the UPO. The block diagram of
the method is presented in figure 1. Alternatively, the DFC method is referred
to as a method of time-delay autosynchronization, since the stabilization of the
target orbit manifests itself as a synchronization of the current state of the
system with its delayed state. The method allows us to treat the controlled
system as a black box; no exact knowledge of either the form of the periodic
orbit or the system of equations is needed. Taking into account only the period
of the unstable orbit, the system under control automatically settles on the
target periodic motion, and the stability of this motion is maintained with
only small perturbations. The DFC algorithm is especially superior for fast
dynamical systems, since it does not require any real-time computer processing.
Experimental implementations, applications for theoretical models and most
important modifications of the DFC method are briefly listed in §1a–c.
(a ) Experimental implementations

The time-delayed feedback control has been successfully used in experimental
contexts, which are quite diverse. Pyragas & Tamaševičius (1993), Kittel et al.
(1994), Gauthier et al. (1994) and Celka (1994) verified it for electronic
chaos oscillators. Hikihara & Kawagoshi (1996) and Christini et al. (1997)
stabilized UPOs in mechanical pendulums. Bielawski et al. (1994), Basso et al.
(1997a,b) and Lu et al. (1998) applied the DFC to laser systems. Pierre et al.
(1996) investigated the DFC to a gas discharge system, Mausbach et al. (1997)
stabilized ionization wave chaos, Fukuyama et al. (2002) controlled chaos caused
by the current-driven ion acoustic instability and Gravier et al. (2000) stabilized
drift waves in a magnetized laboratory plasma. An application of the DFC to a
hydrodynamic system, namely, a chaotic Taylor–Couette flow, was considered
by Lüthje et al. (2001). Parmananda et al. (1999) and Guderian et al. (1998)
used the DFC to control electrochemical systems. Benner & Just (2002)
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stabilized a UPO in a high-power ferromagnetic resonance system. A possibility
of using the DFC to control helicopter rotor blades was considered by
Krodkiewski & Faragher (2000). Sugimoto & Osuka (2002) applied the DFC
to walking control of a robot. Lastly, Hall et al. (1997) used the DFC for a
cardiac system.

(b ) Applications for theoretical models

The DFC method has been verified for a large number of theoretical models
from different fields. Simmendinger & Hess (1996) proposed an all-optical
scheme, based on the DFC, for controlling delay-induced chaotic behaviour of
high-speed semiconductor lasers. The problem of stabilizing semiconductor
laser arrays was considered by Munkel et al. (1997) and Simmendinger et al.
(1999). Rappel et al. (1999) used the DFC for stabilization of spiral waves in
an excitable media as a model of cardiac tissue in order to prevent the spiral
wave break-up. Konishi et al. (1999) applied the DFC to a model of a car
following traffic. Batlle et al. (1999) implemented the DFC in a model of a
buck converter. Bleich & Socolar (2000) showed that the DFC can stabilize
regular behaviour in a paced, excitable oscillator described by the
Fitzhugh–Nagumo equations. Holyst & Urbanowicz (2000) and Holyst et al.
(2001) used the DFC to control chaos in the economical model. Tsui & Jones
(2000) investigated the problem of chaotic satellite attitude control. The
problem of controlling chaotic solitons by a time-delayed feedback mechanism
was considered by Fronczak & Holyst (2002). Mensour & Longtin (1995)
proposed the DFC as a method to store information in delay differential
equations. Galvanetto (2002) demonstrated the DFC of chaotic systems with
dry friction. Mitsubori & Aihara (2002) proposed a rather exotic application
of the DFC, namely the control of chaotic roll motion of a flooded ship in waves.
Recently, Rosenblum & Pikovsky (2004a,b) considered the influence of the DFC
on the synchronization in an ensemble of globally coupled oscillators and
discussed a possibility of using this approach to suppression of pathological brain
rhythms.

(c ) Modifications

A rich variety of modifications of the DFC has been suggested in order to
improve its performance. Adaptive versions of the DFC with automatic
adjustment of delay time (Kittel et al. 1995; Nakajima et al. 1997; Herrmann
2001) and control gain (Boccaletti & Arecchi 1995; Boccaletti et al. 1997) were
considered. Basso et al. (1997a,b, 1998) showed that for a Lur’e system (system
represented as a feedback connection between a linear dynamical part and a
static nonlinearity), the DFC can be optimized by introducing a linear filter,
with an appropriate transfer function, into a feedback loop. For spatially
extended systems, various modifications based on spatially filtered signals were
considered (Bleich et al. 1997; Hochheiser et al. 1997; Baba et al. 2002). The
wave character of dynamics in some systems allows a simplification of the
DFC algorithm by replacing the delay line with the spatially-distributed
detectors. Mausbach et al. (1997) reported such a simplification for an
ionization wave experiment in a conventional cold cathode-glow discharge
tube. Owing to dispersion relations, the delay in time is equivalent to the spatial
Phil. Trans. R. Soc. A (2006)



K. Pyragas2312
displacement and the control signal can be constructed without using the delay
line. Socolar et al. (1994) improved an original DFC scheme by using
information from many previous states of the system. This extended delayed
feedback control (EDFC) scheme achieves the stabilization of UPOs with a
greater degree of instability (Pyragas 1995; Bleich & Socolar 1996). The EDFC
presumably is the most important modification of the DFC and it will be
discussed in detail in this paper.

The theory of the DFC is rather intricate, since it involves nonlinear delay
differential equations. Even though linear stability analysis of the delayed
feedback systems is difficult, some general analytical results have been obtained
by Ushio (1996), Just et al. (1997), Nakajima (1997) and Nakajima & Ueda
(1998a). It has been shown that the DFC can stabilize only a certain class of
periodic orbits characterized by a finite torsion. More precisely, the limitation is
that any UPO with an odd number of real Floquet multipliers (FMs) greater
than unity (or with an odd number of real-positive Floquet exponents (FEs)) can
never be stabilized by the DFC. This statement was first proved by Ushio (1996)
for discrete-time systems. Just et al. (1997) and Nakajima (1997) proved the
same limitation for the continuous-time DFC, and this proof was then extended
for a wider class of delayed feedback schemes, including the EDFC (Nakajima &
Ueda 1998a). Hence, it seems hard to overcome this inherent limitation. Two
efforts, based on an oscillating feedback (Bielawski et al. 1993) and a half-period
delay (Nakajima & Ueda 1998b), have been taken to obviate this drawback. In
both these cases, the mechanism of stabilization is rather unclear. Besides, the
method of Nakajima & Ueda (1998b) is valid only for a special case of symmetric
orbits. The limitation has been recently eliminated in a new modification of the
DFC that does not use the symmetry of UPOs (Pyragas 2001; Pyragas et al.
2004b). The key idea is to introduce into a feedback loop, an additional unstable
degree of freedom that changes the total number of unstable torsion-free modes
to an even number. Then, the idea of using unstable degrees of freedom in
a feedback loop was drawn on to construct a simple adaptive controller
for stabilizing unknown steady states of dynamical systems (Pyragas et al.
2002, 2004a).

Some recent theoretical results on the DFC method and the unstable
controller are presented in more detail in the rest of the paper. §2 is devoted
to the theory of the DFC. We show that the main stability properties of the
system, controlled by time-delayed feedback, can be simply derived from a
leading FE defining the system behaviour under proportional feedback control
(PFC). We consider the EDFC versus the PFC and derive the transcendental
equation relating the Floquet spectra of these two control methods. First, we
suppose that the FE for the PFC depends linearly on the control gain and derives
the main stability properties of the EDFC. Then, the case of nonlinear
dependence is considered for the specific examples of the Rössler systems. For
this example, we discuss the problem of optimizing the parameters of the delayed
feedback controller. In §3, the problem of stabilizing torsion-free periodic orbits
is considered. We start with a simple discrete time model and show that an
unstable degree of freedom, introduced into a feedback loop, can overcome the
limitation of the DFC method. Then, we propose a generalized modification of
the DFC for torsion-free UPOs and demonstrate its efficiency for the Lorenz
system. The paper concludes with §4.
Phil. Trans. R. Soc. A (2006)
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2. Theory of delayed feedback control

If the equations governing the system dynamics are known, the success of the
DFC method can be predicted by a linear stability analysis of the target orbit.
Unfortunately, usual procedures for evaluating the FEs of such systems are
rather intricate. Here, we show that the main stability properties of the system,
controlled by time-delayed feedback, can be simply derived from a leading FE
defining the system behaviour under PFC (Pyragas 2002). As a result, the
optimal parameters of the delayed feedback controller can be evaluated without
an explicit integration of delay differential equations.

Several numerical methods for the linear stability analysis of time-delayed
feedback systems have been developed. The main difficulty of this analysis is
related to the fact that periodic solutions of such systems have an infinite number
of FEs, though only several FEs with the largest real parts are relevant for
stability properties. The most straightforward method for evaluating several
large FEs is described by Pyragas (1995). It adapts the usual procedure of
estimating the Lyapunov exponents of strange attractors (Benettin et al. 1979),
which requires a numerical integration of the variational system of delay
differential equations. Bleich & Socolar (1996) devised an elegant method to
obtain the stability domain of the system under EDFC, in which the delay terms
in variational equations are eliminated owing to the Floquet theorem and the
explicit integration of time-delay equations is avoided. Unfortunately, this
method does not define the values of the FEs inside the stability domain and is
unsuitable for optimization problems.

An approximate analytical method for estimating the FEs of time-delayed
feedback systems has been developed by Just et al. (1997, 1999). Here, as well as
in the paper by Bleich & Socolar (1996), the delay terms in variational equations
are eliminated and the Floquet problem is reduced to the system of ordinary
differential equations. However, the FEs of the reduced system depend on a
parameter that is a function of the unknown FEs themselves. Just et al. (1997,
1999) solved the problem on the assumption that the FE of the reduced system
depends linearly on the parameter. This method gives a better insight into the
mechanism of DFC and leads to reasonable qualitative results. Here, we use a
similar approach, but do not employ the above linear approximation and show
how to obtain the exact results. In this section, we restrict ourselves to the UPOs
that originated from a flip bifurcation.

(a ) Proportional versus delayed feedback

Consider a dynamical system described by an ordinary differential equation

_x Z f ðx; p; tÞ; ð2:1Þ
where the vectorx2Rm defines the dynamical variables and p is a scalar parameter
available for an external adjustment. We imagine that a scalar variable

yðtÞZ gðxðtÞÞ; ð2:2Þ
which is a function of dynamic variablesxðtÞ, canbemeasured as the systemoutput.
Let us suppose that at pZp0Z0 the system has a UPO x0ðtÞ that satisfies _x0Z
f ðx0; 0; tÞ and x0ðtCTÞZx0ðtÞ, whereT is the period of the UPO. Here, the value
Phil. Trans. R. Soc. A (2006)
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of the parameter p0 is fixed to zero without loss of generality. To stabilize the UPO,
we consider two continuous time feedback techniques, the PFC and the DFC, both
introduced by Pyragas (1992).

The PFC uses the periodic reference signal

y0ðtÞZ gðx0ðtÞÞ; ð2:3Þ

which corresponds to the system output if it would move along the target UPO.
For chaotic systems, this periodic signal can be reconstructed from the chaotic
output yðtÞ, using the standard methods for extracting UPOs from chaotic time-
series data (Lathrop & Kostelich 1989; So et al. 1996). The control is achieved via
adjusting the system parameter by a proportional feedback

pðtÞZG½y0ðtÞKyðtÞ�; ð2:4Þ

where G is the control gain. If the stabilization is successful, the feedback
perturbation pðtÞ vanishes. The experimental implementation of this
method is difficult since it is not simply to reconstruct the UPO from the
experimental data.

A more convenient method for the experimental implementation is the DFC,
which can be derived from the PFC by replacing the periodic reference signal
y0ðtÞ with the delayed output signal yðtKTÞ (Pyragas 1992),

pðtÞZK ½yðtKTÞKyðtÞ�: ð2:5Þ

Here, we exchanged the notation of the feedback gain with K to make it different
from that of the proportional feedback. The delayed feedback perturbation in
equation (2.5) also vanishes, provided the target UPO is stabilized. The DFC
uses the delayed output yðtKTÞ as the reference signal and the necessity of the
UPO reconstruction is avoided. This feature determines the main advantage of
the DFC over the PFC.

Hereafter, we shall consider a more general (extended) version of the DFC, the
EDFC, in which a sum of states at integer multiples in the past is used (Socolar
et al. 1994),

pðtÞZK ð1KRÞ
XN
nZ1

RnK1yðtKnTÞKyðtÞ
" #

: ð2:6Þ

The sum represents a geometric series with the parameter jRj!1 that
determines the relative importance of past differences. For RZ0, the EDFC
transforms to the original DFC. The extended method is superior to the original
in that it can stabilize UPOs of higher periods and with larger FEs. For
experimental implementation, it is important that the infinite sum in equation
(2.6) can be generated using only single time-delay element in the feedback loop.

The success of the above methods can be predicted by a linear stability
analysis of the target orbit. For the PFC method, the small deviations from the
UPO dxðtÞZxðtÞKx0ðtÞ are described by variational equation

d _x Z ½AðtÞCGBðtÞ�dx; ð2:7Þ
Phil. Trans. R. Soc. A (2006)
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where AðtÞZAðtCTÞ and BðtÞZBðtCTÞ are both T-periodic m!m matrices

AðtÞZD1f ðx0ðtÞ; 0; tÞ; ð2:8aÞ

BðtÞZD2f ðx0ðtÞ; 0; tÞ5Dgðx0ðtÞÞ: ð2:8bÞ

Here, D1 (D2) denotes the vector (scalar) derivative with respect to the first
(second) argument. The matrix AðtÞ defines the stability properties of the UPO
of the free system and BðtÞ is the control matrix that contains all the details on
the coupling of the control force.

Solutions of equation (2.7) can be decomposed into eigenfunctions according to
the Floquet theory,

dx Z expðLtÞuðtÞ; uðtÞZuðtCTÞ; ð2:9Þ

where L is the FE. The spectrum of the FEs can be obtained with the help of the
fundamental m!m matrix FðG; tÞ that is defined by equalities

_FðG; tÞZ AðtÞCGBðtÞ½ �FðG; tÞ; FðG; 0ÞZ I : ð2:10Þ

For any initial condition xin, the solution of equation (2.7) can be expressed with
this matrix, xðtÞZFðG; tÞxin. Combining this equality with equation (2.9), one
obtains the system ½FðG;TÞKexpðLTÞI �xinZ0 that yields the desired
eigensolutions. The characteristic equation for the FEs reads

det½FðG;TÞKexpðLTÞI �Z 0: ð2:11Þ

It defines m FEs Lj (or FMs mjZexpðLjTÞ), jZ1;.;m, which are the functions
of the control gain G,

Lj ZFjðGÞ; j Z 1;.;m: ð2:12Þ

The values Fjð0Þ are the FEs of the free system. By assumption, at least one FE
of the free UPO has a positive real part. The PFC is successful if the real parts of
all eigenvalues are negative, Re FjðGÞ!0, jZ1;.;m in some interval of the
parameter G.

Consider, next, the stability problem for the EDFC. The variational equation
in this case reads

d _x ZAðtÞdxðtÞCKBðtÞ ð1KRÞ
XN
nZ1

RnK1dxðtKnTÞKdxðtÞ
" #

: ð2:13Þ

The delay terms can be eliminated owing to equation (2.9), dxðtKnTÞZ
expðKnLTÞdxðtÞ. As a result, the problem reduces to the system of ordinary
differential equations, similar to equation (2.7),

d _x Z ½AðtÞCKHðLÞBðtÞ�dx; ð2:14Þ

where

HðLÞZ 1KexpðKLTÞ
1KR expðKLTÞ ; ð2:15Þ
Phil. Trans. R. Soc. A (2006)
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is the transfer function of the extended delayed feedback controller. Equations
(2.7) and (2.14) have the same structure, defined by the matrices AðtÞ and B(t),
and differ only by the value of the control gain. The equations become identical if
we substitute GZKHðLÞ. The price one has to pay for the elimination of the
delay terms is that the characteristic equation defining the FEs of the EDFC
depends on the FEs itself,

det½FðKHðLÞ;TÞKexpðLTÞI �Z 0: ð2:16Þ

Nevertheless, we can take advantage of the linear stability analysis for the PFC
in order to predict the stability of the system controlled by time-delayed
feedback. Suppose the functions FjðGÞ defining the FEs for the PFC are known,
then the FEs of the UPO controlled by time-delayed feedback can be obtained
through solution of the transcendental equation

LZFjðKHðLÞÞ; j Z 1;.;m: ð2:17Þ

Though a similar reduction of the EDFC variational equation has been
considered by Bleich & Socolar (1996) and Just et al. (1997, 1999, 2000), here,
we emphasize the physical meaning of the functions FjðGÞ, namely, these
functions describe the dependence of the FEs on the control gain in the case of
the PFC.

In the general case, the analysis of the transcendental equation (2.17) is not a
simple task owing to several reasons. First, the analytical expressions of the
functions FjðGÞ are usually unknown and can be evaluated only numerically.
Second, each FE of the free system Fjð0Þ yields an infinite number of distinct FEs
at Ks0; different eigenvalue branches that originate from different exponents of
the free system may hibridizate or cross so that the branches originating from
initially stable FEs may become dominant in some intervals of the parameter K
(Just et al. 2000). Third, the functions Fj in the proportional feedback technique
are defined for the real-valued argument G; however, we may need knowledge of
these functions for the complex values of the argument KHðLÞ when considering
the solutions of equation (2.17).

In spite of the above difficulties that may emerge generally, there are many
specific, practically important problems for which the most important
information on the EDFC performance can be simply extracted from equations
(2.15) and (2.17). Such problems cover low-dimensional systems whose UPOs
arise from a period-doubling bifurcation.

In what follows, we concentrate on special types of free orbits, namely, those
that flip their neighbourhood during one turn. More specifically, we consider
UPOs whose leading FM is real and negative, so that the corresponding FE obeys
ImF1ð0ÞZp=T . It means that the FE is placed on the boundary of the ‘Brillouin
zone’. Such FEs are likely to remain on the boundary under various
perturbations; hence, the condition ImF1ðGÞZp=T holds in some finite interval
of the control gain G2½Gmin;Gmax�, Gmin!0, GmaxO0. Subsequently, we shall
see that the main properties of the EDFC can be extracted from the function
Re F1ðGÞ, with the argument G varying in the above interval.

Let us introduce the dimensionless function

fðGÞZF1ðGÞTKip; ð2:18Þ
Phil. Trans. R. Soc. A (2006)
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which describes the dependence of the real part of the leading FE on the control
gain G for the PFC and is denoted by

lZLTKip; ð2:19Þ
the dimensionless FE of the EDFC shifted by the amount p along the complex
axes. Then, from equations (2.15) and (2.17), we derive

lZfðGÞ; ð2:20aÞ

K ZG
1CR expðKfðGÞÞ
1CexpðKfðGÞÞ : ð2:20bÞ

These equations define the parametric dependence l versus K for the EDFC.
Here, G is treated as an independent real-valued parameter and we suppose that
G varies in the interval ½Gmin;Gmax�, so that the leading exponent F1ðGÞ
associated with the PFC remains on the boundary of the Brillouin zone; thus, the
variables l, K and the function f are all real valued.

To demonstrate the benefit of equations (2.20a) and (2.20b), let us derive the
stability threshold of the UPO controlled by the extended time-delayed feedback.
The stability of the periodic orbit changes when l reverses the sign. From
equation (2.20a), it follows that the function fðGÞ has to vanish for some value
GZG1, fðG1ÞZ0. The value of the control gain G1 is nothing but the stability
threshold of the UPO controlled by the proportional feedback. Then, from
equation (2.20b), one obtains the stability threshold

K1 ZG1ð1CRÞ=2; ð2:21Þ
for the extended time-delayed feedback. In §2c, we shall demonstrate how to
derive other properties of the EDFC using the specific examples of chaotic
systems, but first we consider general features of the EDFC for a simple example
in which a linear approximation of the function fðGÞ is assumed.
(b ) Properties of the extended delayed feedback control: simple example

To demonstrate the main properties of the EDFC, let us suppose that the
function fðGÞ, defining the FE for the proportional feedback, depends linearly on
the control gain G (cf. Just et al. 1997, 1999),

fðGÞZ l0ð1KG=G1Þ: ð2:22Þ
Here, l0 denotes the dimensionless FE of the free system and G1 the stability
threshold of the UPO controlled by proportional feedback. Substituting
approximation (2.22) into equations (2.20a) and (2.20b), one derives the
characteristic equation

k Z ðl0KlÞ 1CR expðKlÞ
1CexpðKlÞ hjðlÞ; ð2:23Þ

defining the FEs for the EDFC. Here, kZKl0=G1 is the renormalized control
gain of the extended time-delayed feedback. The periodic orbit is stable if all the
roots of equation (2.23) are in the left half-plane Re l!0. The characteristic
root-locus diagrams and the dependence Re l versus k for two different values of
the parameter R are shown in figure 2. The zeros and poles of the jðlÞ function
Phil. Trans. R. Soc. A (2006)
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define the value of roots at kZ0 and k/N, respectively. For kZ0 (an open-loop
system), there is a real-valued root lZl0O0 that corresponds to the FE of
the free UPO and an infinite number of the complex roots lZ lnRC ipn,
nZG1;G3;. in the left half-plane associated with the extended delayed feedback
controller. For k/N, the roots tend to the locations lZ ipn, nZG1;G3;.
determined by the poles of the jðlÞ function. For intermediate values of K, the
roots can evolveby twodifferent scenariosdependingon thevalueof theparameterR.

If R is small enough (R!R-), the conjugate pair of the controller’s roots lZ
lnRGip collides on the real axes (figure 2a).After collision, one of these rootsmoves
along the real axes towardKN, and another approaches the FE of the UPO, then
collides with this FE at kZkop and passes to the complex plane. Afterwards, this
pair of complex conjugate roots move toward the pointsGip. At kZk2, they cross
into the righthalf-plane. In the interval k1!k!k2, all roots of equation (2.23) are in
the left half-plane and theUPOcontrolledby the extended time-delayed feedback is
stable. The left boundary of the stability domain satisfies equation (2.21). For the
renormalized value of the control gain, it reads

k1 Z l0ð1CRÞ=2: ð2:24Þ

An explicit analytical expression for the right boundary k2 is unavailable. Inside
the stability domain, there is an optimal value of the control gain kZkop, which for
the fixed R provides the minimal value lmin for the real part of the leading FE
(figure 2b). To obtain the values kop and lmin, it suffices to examine the properties of
the function jðlÞ for the real values of the argument l. The values kop and lmin are
Phil. Trans. R. Soc. A (2006)
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conditioned by the maximum of this function and satisfy the equalities

j0ðlminÞZ 0; kop ZjðlminÞ: ð2:25Þ
The above scenario is valid when the function jðlÞ is at the maximum. The
maximumdisappears atRZR- when it collides with theminimum of this function
so that the conditions j0ðlÞZ0 and j00ðlÞZ0 are fulfilled. For l0Z2, these
conditions yield R-z0:255.

Now, we consider an evolution of roots for ROR- (figure 2c,d). In this case, the
modes related to the controller and theUPO evolve independently from each other.
The FE of the UPOmoves along the real axes towardsKNwithout hibridizing with
the modes of the controller. As previously, the left boundary k1 of the stability
domain is determined by equation (2.24). The right boundary k2 is conditioned by
the controller mode associated with the roots lZ lnRGip at kZ0 that move
towards lZGip for k/N. The optimal value kop is defined by a simple intersection
of the real part of this mode with the mode related to the UPO.

Stability domains of the periodic orbit in the plane of parameters (k, R) are
shown in figure 3a. The left boundary of this domain is the straight line defined
by equation (2.24). The right boundary is determined by parametric equations

k2 Z
l20 Cs2

l0 Cs cotðs=2Þ ; RZ
l0Ks cotðs=2Þ
l0Cs cotðs=2Þ ; ð2:26Þ

with the parameter s varying in the interval ½0;p�. As is seen from the figure, the
stability domain is smaller for the UPOs with a larger FE l0. Figure 3b shows the
optimal properties of the EDFC, namely, the dependence lmin versus R, where
lmin is the value of the leading Floquet mode evaluated at kZkop. This
dependence possesses a minimum at RZRopZR-. Thus, for any given l0, there
exists an optimal value of the parameter RZRop, which at kZkop provides the
fastest convergence of nearby trajectories to the target periodic orbit. For
RORop, the performance of the EDFC is adversely affected with the increase in
R, since for R close to 1, the modes of the controller are damped out very slowly,
Re lZ lnR.

In this section, we used an explicit analytical expression for the function fðGÞ
when analysing the stability properties of the UPO controlled by the extended
time-delayed feedback. In the following sections, we consider a situation when
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the function fðGÞ is available only numerically and only for real values of the
parameter G. We show that, in this case, the main stability characteristics of the
system controlled by time-delayed feedback can be derived as well.
(c ) Demonstration for the Rössler system

Let us consider the problem of stabilizing the period-one UPO of the Rössler
(1976) system,

_x1

_x2

_x3

0
B@

1
CAZ

Kx 2Kx3

x1 Cax 2

bCðx1KcÞx3

0
B@

1
CACpðtÞ

0

1

0

0
B@

1
CA: ð2:27Þ

Here, we suppose that the feedback perturbation pðtÞ is applied only to the
second equation of the Rössler system and the dynamic variable x2 is an
observable available at the system output, i.e. yðtÞZgðxðtÞÞZx2ðtÞ.

For parameter values, aZ0:2, bZ0:2 and cZ5:7, the free (pðtÞh0) Rössler
system exhibits chaotic behaviour. An approximate period of the period-one
UPO x0ðtÞZx0ðtCTÞ embedded in a chaotic attractor is Tz5:88. Linearizing
equation (2.27) around the UPO, one obtains explicit expressions for the
matrices AðtÞ and BðtÞ defined in equation (2.8a) and (2.8b),

AðtÞZ
0 K1 K1

1 a 0

x 0
3ðtÞ 0 x01ðtÞKc

0
BB@

1
CCA; ð2:28Þ

and BZdiagð0;K1; 0Þ. Here, x0j ðtÞ denotes the j th component of the UPO.
First, we consider the system in equation (2.27) controlled by proportional

feedback, when the perturbation pðtÞ is defined by equation (2.4). By solving
equations (2.10) and (2.11), we obtain three FEs, L1, L2 and L3, as functions of
the control gain G. The real parts of these functions are presented in figure 4a.
The values of the FEs of the free (GZ0) UPO are L1TZ0:876C ip, L2TZ0 and
L3TZK31:974C ip. Thus, the first and third FEs are located on the boundary of
the Brillouin zone. The second, zero FE, is related to the translational symmetry
that is general for any autonomous system. The dependence of the FEs on the
control gain G is rather complex if it would be considered in a large interval of
the parameter G. In figure 4a, we restricted ourselves with a small interval of the
parameter G2½0; 0:67� in which all FEs do not change their imaginary parts,
i.e. the FEs L1 and L3 remain on the boundary of the Brillouin zone,
ImL1TZ ip, ImL3TZ ip and L2 remain real valued, and ImL2Z0 for any G
in the above interval. Any information on the behaviour of the leading FE L1 or,
more precisely, of the real-valued function fðGÞZL1TKip in this interval will
suffice to derive the main stability properties of the system controlled by time-
delayed feedback.

The main information on the EDFC performance can be gained from
parametric equations (2.20a) and (2.20b). They make possible a simple
reconstruction of the relevant Floquet branch in the (K, l) plane. This Floquet
branch is shown in figure 4b for different values of the parameter R. Let us denote
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Figure 4. (a) FEs of the Rössler system under PFC as functions of the control gain G . Thick solid,
thin broken and thin solid lines represent the functions L1TKip, L2T (zero exponent) and
L3TKip, respectively. (b) Parametric dependence K versus l defined by equations (2.20a) and
(2.20b) for the EDFC. The numbers mark the curves with different values of the parameter R: (1)
K0.5, (2) K0.2, (3) 0, (4) 0.2, (5) 0.28 and (6) 0.4. Solid circles show the maxima of the curves and
open circles indicate their intersections with the line lZ0.

2321Delayed feedback control of chaos
the dependence K versus l corresponding to this branch by a function j,
KZjðlÞ. Formally, an explicit expression for this function can be written
in the form

jðlÞZfK1ðlÞ 1CR expðKlÞ
1CexpðKlÞ ; ð2:29Þ

where fK1 denotes the inverse function of fðGÞ. More convenient for graphical
representation of this dependence is, of course, the parametric form (2.20a) and
(2.20b). The EDFC will be successful if the maximum of this function is located
in the region l!0. Then the maximum defines the minimal value of the leading
FE lmin for the EDFC, and KopZjðlminÞ is the optimal value of the control gain
at which the fastest convergence of the nearby trajectories to the target orbit is
attained. From figure 4b, it is evident that the delayed feedback controller should
gain in performance through an increase in the parameter R, since the maximum
of the jðlÞ function moves to the left. At RZR-z0:28, the maximum
disappears. For ROR-, it is difficult to predict the optimal characteristics of the
EDFC. In §2b, we have established that, in this case, the value lmin is determined
by the intersection of different Floquet branches.

The left boundary of the stability domain is defined by the equality K1Zjð0Þ
(figure 4b) or alternatively by equation (2.21), K1ZG1ð1CRÞ=2. This
relationship between the stability thresholds of the periodic orbit controlled by
the PFC and the EDFC is rather universal and is valid for systems whose leading
Phil. Trans. R. Soc. A (2006)
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FE of the UPO is placed on the boundary of the Brillouin zone. It is interesting to
note that the stability threshold for the original DFC (RZ0) is equal to one half
of the threshold in the case of the PFC, K1ZG1=2.

An evaluation of the right boundary K2 of the stability domain is a more
intricate problem. Nevertheless, for the parameter R!R-, it can be successfully
solved by means of an analytical continuation of the function jðlÞ on the
complex region. For this purpose, we expend the function jðlÞ, at the point
lZlmin, into power series

jðlÞZKopC
XNC1

nZ2

anðlKlminÞn: ð2:30Þ

We evaluate the coefficients an, numerically, by the least-squares fitting. In this
procedure, we use the knowledge of numerical values of the function jðlmÞ,
mZ1;.;M in MON points placed on the real axes and solve a corresponding
system of N linear equations. To extend the Floquet branch to the region
KOKop, we have to solve the equation KZjðlÞ for the complex argument l.
Substituting lKlminZr expði4Þ into equation (2.30), we obtain

XNC1

nZ2

anr
nsin n4Z 0; ð2:31aÞ

K ZKopC
XNC1

nZ2

anr
ncos n4; ð2:31bÞ

Re lZ lmin Cr cos 4; ð2:31cÞ

ImlZ r sin 4: ð2:31dÞ
Let us suppose that r is an independent parameter. By solving equation (2.31a),
we can determine 4 as a function of r, 4Z4ðrÞ. Then, equations (2.31b), (2.31c)
and (2.31d) define the parametric dependencies, Re l versus K and Iml
versus K, respectively.

Figure 5 shows the dependence of the leading FEs on the control gain K for the
EDFC. The thick solid line represents the most important Floquet branch that
conditions the main stability properties of the system. It is described by the
function KZjðlÞ with the real argument l. It should be noted that the same
function has been depicted in figure 4b for inverted axes. For R!R-, this branch
originates an additional sub-branch, which starts at the point (Kop; lmin) and
spreads to the region KOKop. The sub-branch is described by equations
(2.31a)–(2.31d), which results from an analytical continuation of the function
jðlÞ on the complex plane. This sub-branch is leading in the KOKop region and
its intersections with the line lZ0 defines the right boundary K2 of the stability
domain. In figure 5a,b, the sub-branches are shown by solid lines. As seen from
the figures, the Floquet sub-branches obtained by means of an analytical
continuation are in good agreement with the ‘exact’ solutions evaluated from the
complete system of equations (2.10), (2.15) and (2.16).

For ROR-, the maximum in the function jðlÞ disappears and the Floquet
branch that originated from the eigenvalues lZ lnRGip of the controller
(see §2b), becomes dominant in the KOKop region. This Floquet branch as well
Phil. Trans. R. Soc. A (2006)
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as the intersection point (Kop; lmin) are unpredictable via a simple analysis. It can
be determined by solving the complete system of equations (2.10), (2.15) and
(2.16). In figure 5c,d, these solutions are shown by dots.

Figure 6 demonstrates the amount of information one can gain via a simple
analysis of parametric equations (2.20a) and (2.20b). These equations allow us to
construct the stability domain in the (K, R) plane almost completely. The most
important information on optimal properties of the EDFC can be obtained from
these equations as well. The thick curve in the stability domain shows the
dependence of the optimal value of the control gain Kop on the parameter R.
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The star marks an optimal choice of both parameters (Kop;Rop), which provide
the fastest decay of perturbations. Figure 6b shows how the decay rate lmin

attained at the optimal value of the control gain Kop depends on the parameter
R. The left part of this dependence is simply defined by the maximum of the
function jðlÞ, while the right part is determined by intersection of different
Floquet branches and can be evaluated only with the complete system of
equations (2.10), (2.15) and (2.16). Unlike the simple model considered in §2b,
here, the intersection occurs before the maximum in the function jðlÞ
disappears, i.e. at RZRop!R-. Nevertheless, the value R- gives a good
estimate for the optimal value of the parameter R, since R- is close to Rop.
3. Stabilization of torsion-free periodic orbits

Most investigations on the DFC method are restricted to the consideration of
UPOs arising from a flip bifurcation. The leading FM of such orbits is real and
negative (or the corresponding FE lies on the boundary of the Brillouin zone,
ImLZp=T). Such a consideration is motivated by the fact that the usual DFC
and EDFC methods work only for the orbits with a finite torsion, when the
leading FE obeys ImLs0. Unsuitability of the DFC technique to stabilize
torsion-free orbits (ImLZ0) has been considered, over several years, as a main
limitation of the method (Ushio 1996; Just et al. 1997; Nakajima 1997b;
Nakajima & Ueda 1998a). More precisely, the limitation is that any UPOs
with an odd number of real FMs greater than unity can never be stabilized by
the DFC. This limitation can be explained by the bifurcation theory as
follows. When a UPO with an odd number of real FMs greater than unity is
stabilized, one of such multipliers must cross the unit circle on the real axes in
the complex plane. Such a situation corresponds to a tangent bifurcation,
which is accompanied with a coalescence of T-periodic orbits. However, this
contradicts the fact that DFC perturbation does not change the location of
T-periodic orbits when the feedback gain varies, because the feedback term
vanishes for T-periodic orbits.

Here, we describe an unstable delayed feedback controller that can overcome
the limitation (Pyragas 2001). The idea is to artificially enlarge a set of real
multipliers greater than unity to an even number, by introducing an unstable
degree of freedom into a feedback loop.
(a ) Simple example: extended delayed feedback control for RO1

First, we illustrate the idea for a simple unstable discrete-time system
ynC1Zmsyn, msO1, controlled by the EDFC

ynC1 ZmsynKKFn; ð3:1Þ

Fn Z ynKynK1 CRFnK1: ð3:2Þ
The free system ynC1Zmsyn has an unstable fixed point y-Z0 with the only real
eigenvalue msO1 and, in accordance with the above limitation, cannot be
stabilized by the EDFC for any values of the feedback gain K. This is so, if the
EDFC is stable, i.e. if the parameter R in equation (3.2) satisfies the inequality
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jRj!1. Only this case has been considered in the literature. However, it is easy
to show that the unstable controller with the parameter RO1 can stabilize this
system. Using the ansatz yn, Fnfmn, one obtains the characteristic equation

ðmKmsÞðmKRÞCKðmK1ÞZ 0; ð3:3Þ

defining the eigenvalues m of the closed-loop system in equations (3.1) and (3.2).
The system is stable if both roots mZm1;2 of equation (3.3) are inside the unit
circle of the m complex plain, jm1;2j!1. Figure 7a shows the characteristic root-
locus diagram for RO1, as the parameter K varies from 0 toN. For KZ0, there
are two real eigenvalues greater than unity, m1Zms and m2ZR, which
correspond to two independent subsystems of equation (3.1) and (3.2),
respectively; this means that both the controlled system and the controller are
unstable. With the increase in K, the eigenvalues approach each other on the real
axes, collide and pass to the complex plane. At KZK1hmsRK1, they cross the
unit circle jmjZ1 symmetrically. Then, both eigenvalues move inside this circle,
collide again on the real axes and one of them leaves the circle at
KZK2hðmsC1ÞðRC1Þ=2. In the interval K1!K!K2, the closed-loop system
in equations (3.1) and (3.2) is stable. By a proper choice of the parameters R and
K, one can stabilize the fixed point with an arbitrarily large eigenvalue ms. The
corresponding stability domain is shown in figure 7b. For a given value ms, there
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is an optimal choice of the parameters RZRop hms=ðmsK1Þ and
KZKophmsRop, leading to zero eigenvalues, m1Zm2Z0, such that the system
approaches the fixed point in finite time.

It seems attractive to apply the EDFC with the parameter RO1 for
continuous-time systems. Unfortunately, this idea fails. As an illustration, let
us consider a continuous time version of equations (3.1) and (3.2),

_yðtÞZ lsyðtÞKKFðtÞ; ð3:4Þ

FðtÞZ yðtÞKyðtKtÞCRFðtKtÞ; ð3:5Þ
where lsO0 is the characteristic exponent of the free system _yZlsy and t is the
delay time. By a suitable rescaling, one can eliminate one of the parameters in
equations (3.4) and (3.5). Thus, without a loss of generality, we can take tZ1.
Equations (3.4) and (3.5) can be solved by the Laplace transform or simply by
the substitution yðtÞ, FðtÞfelt that yields the characteristic equation

1CK
1KexpðKlÞ
1KR expðKlÞ

1

lKls
Z 0: ð3:6Þ

In terms of the control theory, equation (3.6) defines the poles of the closed-loop
transfer function. The first and the second fractions in equation (3.6) correspond
to the EDFC and plant transfer functions, respectively. The closed-loop system
in equation (3.4) and (3.5) is stable if all the roots of equation (3.6) are in the left
half-plane, Re l!0. The characteristic root-locus diagram for RO1 is shown in
figure 7c. When K varies from 0 to N, the EDFC roots move in the right half-
plane from locations lZ lnRC2pin to lZ2pin, for nZG1;G2.. Thus, the
continuous time EDFC with the parameter RO1 has an infinite number of
unstable degrees of freedom and many of them remain unstable in the closed-loop
system for any K.

(b ) Usual extended delayed feedback control supplemented
by an unstable degree of freedom

Hereafter, we shall use the usual EDFC at 0%R!1; however, we
introduce an additional unstable degree of freedom into a feedback loop.
More specifically, for a dynamical system _xZf ðx; pÞ with a measurable scalar
variable yðtÞZgðxðtÞÞ and a UPO of period t at pZp0Z0, we propose to
adjust an available system parameter p by a feedback signal pðtÞZKFuðtÞ of
the following form:

FuðtÞZFðtÞCwðtÞ; ð3:7Þ

_wðtÞZ l0cwðtÞCðl0cKlNc ÞFðtÞ; ð3:8Þ

FðtÞZ yðtÞKð1KRÞ
XN
kZ1

RkK1yðtKktÞ; ð3:9Þ

where FðtÞ is the usual EDFC described by equation (3.5) or equivalently by
equation (3.9). Equation (3.8) defines an additional unstable degree of freedom
with parameters l0cO0 and lNc !0. We emphasize that, whenever the
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stabilization is successful, the variables FðtÞ and wðtÞ vanish, and hence the
feedback force FuðtÞ vanishes. We refer to the feedback laws (3.7)–(3.9) as
unstable extended delayed feedback controls (UEDFCs).

To get an insight into how the UEDFC works, let us again consider the
problem of stabilizing the fixed point

_y Z lsyKKFuðtÞ; ð3:10Þ

where FuðtÞ is defined by equations (3.7)–(3.9) and lsO0. Here, as well as in a
previous example, we can take tZ1 without a loss of generality. Now, the
characteristic equation reads

1CKQðlÞZ 0; ð3:11Þ

QðlÞh lKlNc

lKl0c

1KexpðKlÞ
1KR expðKlÞ

1

lKls
: ð3:12Þ

The first fraction in equation (3.12) corresponds to the transfer function of an
additional unstable degree of freedom. Root loci of equation (3.11) are shown in
figure 8. The poles and zeros of the Q-function define the value of roots at KZ0
and K/N, respectively. Now at KZ0, the EDFC roots lZ lnRC2pin,
nZ0;G1;., are in the left half-plane. The only root l0c associated with an
additional unstable degree of freedom is in the right half-plane. Root l0c and the
root ls of the fixed point, collide on the real axes, pass to the complex plane and
cross into the left half-plane at KZK1. For K1!K!K2, all roots of equation
(3.11) satisfy the inequality Re l!0, and the closed-loop system (3.7)–(3.10) is
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stable. The stability is destroyed at KZK2 when the EDFC roots lZ lnRG2pi
in the second Brillouin zone cross into Re lO0. The dependence of the five
largest Re l on K is shown in the inset (a) of figure 8. The inset (b) shows the
Nyquist plot, i.e. a parametric plot Re NðuÞ versus ImNðuÞ for u2½0;N�, where
NðuÞhQðiuÞ. The Nyquist plot provides the simplest way of determining the
stability domain, it crosses the real axes at Re NZK1=K1 andK1=K2.

As a more involved example, let us consider the Lorenz (1963) system under
the UEDFC,

_x

_y

_z

0
B@

1
CAZ

KsxCsy

rxKyKxz

xyKbz

0
B@

1
CAKKFuðtÞ

0

1

0

0
B@

1
CA: ð3:13Þ

We assume that the output variable is y and the feedback force FuðtÞ (equations
(3.7)–(3.9)) perturbs only the second equation of the Lorenz system. The
variables of the Lorenz system are denoted by rZðx; y; zÞ and those extended
with the controller variable w by xZðr;wÞT. For the parameters sZ10, rZ28
and bZ8=3, the free (KZ0) Lorenz system has a period-one UPO,
r0ðtÞhðx0; y0; z0ÞZr0ðtCtÞ, with the period tz1:5586 and all real FMs,
m1z4:714, m2Z1 and m3z1:19!10K10. This orbit cannot be stabilized by usual
DFC or EDFC, since only one FM is greater than unity. The ability of the
UEDFC to stabilize this orbit can be verified by a linear analysis of equations
(3.13) and (3.7)–(3.9). Small deviations dxZxKx0 from the periodic solution
x0ðtÞhðr0; 0ÞTZx0ðtCtÞ may be decomposed into eigenfunctions according to
the Floquet theory, dxZeltu, uðtÞZuðtCtÞ, where l is the FE. The Floquet
decomposition yields linear periodically time-dependent equations dxZAdx with
the boundary condition dxðtÞZeltdxð0Þ, where

AZ

Ks s 0 0

rKz 0ðtÞ Kð1CKHÞ Kx 0ðtÞ KK

y0ðtÞ x 0ðtÞ Kb 0

0 ðl0cKlNc ÞH 0 l0c

0
BBBBB@

1
CCCCCA: ð3:14Þ

Owing to equality dyðtKktÞZeKkltdyðtÞ, the delay terms in equation (3.9) are
eliminated, and the equation is transformed to dFðtÞZHdyðtÞ, where

H ZHðlÞZ ð1KexpðKltÞÞ=ð1KR expðKltÞÞ; ð3:15Þ
is the transfer function of the EDFC. The price for this simplification is that the
Jacobian A, defining the exponents l, depends on l itself. The eigenvalue
problem may be solved with a fundamental matrix Ft that satisfies

_Ft ZAFt; F0 Z I : ð3:16Þ
The eigenvalues of Ft define the desired exponents,

det½FtðHÞKeltI �Z 0: ð3:17Þ
We emphasize the dependence of Ft on H conditioned by the dependence of A on
H. Thus, by solving equations (3.15)–(3.17), one can define the FEs l (or
multipliers mZelt) of the Lorenz system under the UEDFC. Figure 9a shows the
dependence of the six largest Re l on K. There is an interval K1!K!K2, where
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the real parts of all exponents are negative. Basically, figure 9a shows the results
similar to those presented in figure 8a. The unstable exponent l1 of a UPO and
the unstable eigenvalue l0c of the controller collide on the real axes and pass into
the complex plane providing a UPO with a finite torsion. Then, this pair of
complex conjugate exponents crosses into domain Re l!0, just as it does in the
simple model of equation (3.10).

Direct integration of the nonlinear equations (3.13) and (3.7)–(3.9) confirms
the results of linear analysis. Figure 9b,c shows a successful stabilization of the
target UPO with an asymptotically vanishing perturbation. In this analysis, we
used a restricted perturbation similar to that in the previous paper (Pyragas
1992). For jFðtÞj!3, the control force FuðtÞ is calculated from equations
(3.7)–(3.9); however, for jFðtÞjO3, the control is switched off, FuðtÞZ0, and the
unstable variable w is dropped off by replacing equation (3.8) with the relaxation
equation _wZKlrw, lrO0.
4. Conclusions

The aim of this paper was to review experimental implementations, applications
for theoretical models and modifications of the time-delayed feedback control
method and to present some recent theoretical ideas in this field.
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In §2, we have demonstrated how to use the relationship between the Floquet
spectra of the system controlled by proportional and time-delayed feedback in
order to obtain the main stability properties of the system, controlled by time-
delayed feedback. Our consideration has been restricted to low-dimensional
systems, whose UPOs originated from a period-doubling bifurcation. These
orbits flip their neighbourhood during one turn, so that the leading FE is placed
on the boundary of the Brillouin zone. Knowing the dependence of this exponent
on the control gain for the PFC, one can simply construct the relevant Floquet
branch for the case of time-delayed feedback control. As a result, the stability
domain of the orbit controlled by time-delayed feedback as well as by optimal
properties of the delayed feedback controller can be evaluated without an explicit
integration of time-delay equations. The proposed algorithm gives a better
insight into how the Floquet spectrum of periodic orbits controlled by time-
delayed feedback is formed. We believe that the ideas of this approach will be
useful for further development of the time-delayed feedback control techniques
and will stimulate a search for other modifications of the method in order to gain
better performance.

In §3, we discussed the main limitation of the DFC method, which states that
the method cannot stabilize torsion-free periodic orbits, or more precisely, orbits
with an odd number of real-positive Floquet exponents. We have shown that,
this topological limitation can be eliminated by introduction into a feedback loop
an unstable degree of freedom that changes the total number of unstable torsion-
free modes to an even number. An efficiency of the modified scheme has been
demonstrated for the Lorenz system.

Lastly, we note that, despite certain progress in the DFC theory, there are still
some open problems. Almost all theoretical investigations are based on a linear
approach and do not consider an important problem concerning the domain of
attraction for target UPOs. The only exception is the recent paper by Yamasue &
Hikihara (2004), in which such a domain has been numerically analysed for a
Duffing system. We believe that this problem can be considered analytically as
well. Recently, we have demonstrated (Pyragas 2004b) an analytical treatment
for a dynamical system under DFC when the system is close to a subcritical Hopf
bifurcation. The analysis has been performed by using the method of averaging, a
standard asymptotic method of nonlinear dynamics. In our opinion, an
asymptotic method is a promising analytical approach for a nonlinear analysis
of delayed feedback-controlled dynamical system close to any bifurcation point of
periodic orbit. From this approach, we expect interesting and important
theoretical results in the future.
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Pyragas, K. & Tamaševičius, A. 1993 Experimental control of chaos by delayed self-controlling

feedback. Phys. Lett. 180A, 99–102.

Pyragas, K., Pyragas, V., Kiss, I. Z. & Hudson, J. L. 2002 Stabilizing and tracking unknown steady

states of dynamical systems. Phys. Rev. Lett. 89, 244 103. (doi:10.1103/PhysRevLett.89.

244103)

Pyragas, K., Pyragas, V., Kiss, I. Z. & Hudson, J. L. 2004a Adaptive control of unknown unstable

steady states of dynamical systems. Phys. Rev. E 70, 026 215. (doi:10.1103/PhysRevE.70.

026215)

Pyragas, K., Pyragas, V. & Benner, H. 2004b Delayed feedback control of dynamical systems at a

subcritical Hopf bifurcation. Phys. Rev. E 70, 056 222. (doi:10.1103/PhysRevE.70.056222)

Rappel, W. J., Fenton, F. & Karma, A. 1999 Spatiotemporal control of wave instabilities in cardiac

tissue. Phys. Rev. Lett. 83, 456–459. (doi:10.1103/PhysRevLett.83.456)

Rosenblum, M. & Pikovsky, A. 2004a Controlling synchronization in an ensemble of globally

coupled oscillators. Phys. Rev. Lett. 92, 114 102. (doi:10.1103/PhysRevLett.92.114102)

Rosenblum, M. & Pikovsky, A. 2004b Delayed feedback control of collective synchrony: an

approach to suppression of pathological brain rhythms. Phys. Rev. E 70, 041 904. (doi:10.1103/

PhysRevE.70.041904)

Rössler, O. E. 1976 An equation for continous chaos. Phys. Lett. 57A, 397–398.

Shinbrot, T., Grebogy, C., Ott, E. & Yorke, J. A. 1993 Using small perturbations to control chaos.

Nature 363, 411–417. (doi:10.1038/363411a0)

Shuster, H. G. (ed.) 1999. Handbook of chaos control. Weinheim, Germany: Wiley/VCH.

Simmendinger, C. & Hess, O. 1996 Controlling delay-induced chaotic behavior of a semiconductor

laser with optical feedback. Phys. Lett. 21A, 97–105.

Simmendinger, C., Munkel, M. & Hess, O. 1999 Controlling complex temporal and spatio-temporal

dynamics in semiconductor lasers. Chaos Soliton. Fract. 10, 851–864. (doi:10.1016/S0960-

0779(98)00037-X)

So, P., Ott, E., Schiff, S. J., Kaplan, D. T., Sauer, T. & Grebogi, C. 1996 Detecting unstable

periodic orbits in chaotic experimental data. Phys. Rev. Lett. 76, 4705–4708. (doi:10.1103/

PhysRevLett.76.4705)

Socolar, J. E. S., Sukow, D. W. & Gauthier, D. J. 1994 Stabilizing unstable periodic orbits in fast

dynamical systems. Phys. Rev. E 50, 3245–3248. (doi:10.1103/PhysRevE.50.3245)

Sugimoto, Y. & Osuka, K. 2002 Walking control of quasi-passive-dynamic-walking robot “Quartet

III” based on delayed feedback control. In Proceedings of the 5th International Conference on

Climbing and Walking Robots(CLAWAR), pp. 123–130.
Phil. Trans. R. Soc. A (2006)

http://dx.doi.org/doi:10.1103/PhysRevLett.64.1196
http://dx.doi.org/doi:10.1103/PhysRevE.59.5266
http://dx.doi.org/doi:10.1103/PhysRevLett.76.2290
http://dx.doi.org/doi:10.1103/PhysRevLett.86.2265
http://dx.doi.org/doi:10.1103/PhysRevE.66.026207
http://dx.doi.org/doi:10.1103/PhysRevLett.89.244103
http://dx.doi.org/doi:10.1103/PhysRevLett.89.244103
http://dx.doi.org/doi:10.1103/PhysRevE.70.026215
http://dx.doi.org/doi:10.1103/PhysRevE.70.026215
http://dx.doi.org/doi:10.1103/PhysRevE.70.056222
http://dx.doi.org/doi:10.1103/PhysRevLett.83.456
http://dx.doi.org/doi:10.1103/PhysRevLett.92.114102
http://dx.doi.org/doi:10.1103/PhysRevE.70.041904
http://dx.doi.org/doi:10.1103/PhysRevE.70.041904
http://dx.doi.org/doi:10.1038/363411a0
http://dx.doi.org/doi:10.1016/S0960-0779(98)00037-X
http://dx.doi.org/doi:10.1016/S0960-0779(98)00037-X
http://dx.doi.org/doi:10.1103/PhysRevLett.76.4705
http://dx.doi.org/doi:10.1103/PhysRevLett.76.4705
http://dx.doi.org/doi:10.1103/PhysRevE.50.3245


K. Pyragas2334
Tsui, A. P. M. & Jones, A. J. 2000 The control of higher dimensional chaos: comparative results for
the chaotic satellite attitude control problem. Physica 135D, 41–62.

Ushio, T. 1996 Limitation of delayed feedback control in nonlinear discrete-time systems. IEEE
Trans. Circuits Syst. I 43, 815–816. (doi:10.1109/81.536757)

Yamasue, K. & Hikihara, T. 2004 Domain of attraction for stabilized orbits in time delayed
feedback controlled Duffing systems. Phys. Rev. E 69, 056 209. (doi:10.1103/PhysRevE.69.
056209)
Phil. Trans. R. Soc. A (2006)

http://dx.doi.org/doi:10.1109/81.536757
http://dx.doi.org/doi:10.1103/PhysRevE.69.056209
http://dx.doi.org/doi:10.1103/PhysRevE.69.056209

	Delayed feedback control of chaos
	Introduction
	Experimental implementations
	Applications for theoretical models
	Modifications

	Theory of delayed feedback control
	Proportional versus delayed feedback
	Properties of the extended delayed feedback control: simple example
	Demonstration for the Rössler system

	Stabilization of torsion-free periodic orbits
	Simple example: extended delayed feedback control for R1
	Usual extended delayed feedback control supplemented by an unstable degree of freedom

	Conclusions
	References


