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Hund’s multiplicity rule states that a higher spin state has alower energy for agiven
electronic configuration’. Rephrasing this rule for molecular excited states predicts a
positive energy gap between spin-singlet and spin-triplet excited states, as has been

consistent with numerous experimental observations over almost a century. Here we
reporta fluorescent molecule that disobeys Hund’s rule and has a negative singlet-
triplet energy gap of -11 + 2 meV. The energy inversion of the singlet and triplet
excited states results in delayed fluorescence with short time constants of 0.2 ps,
which anomalously decrease with decreasing temperature owing to the emissive
singlet character of the lowest-energy excited state. Organic light-emitting diodes
(OLEDs) using this molecule exhibited a fast transient electroluminescence decay
with a peak external quantum efficiency of 17%, demonstrating its potential
implications for optoelectronic devices, including displays, lighting and lasers.

The spin multiplicity of molecular excited states plays a crucial role
in organic optoelectronic devices. In the case of OLEDs, recombina-
tion of charge carriers leads to the formation of singlet and triplet
excited states in a 1:3 ratio. This spin statistics limits the internal
quantum efficiency of OLEDs and leads to the energy loss owing to
the spin-forbidden nature of triplet excited states to emit photons.
To overcome this issue, two strategies for harvesting the ‘dark’ tri-
plet excited states as photons have been established. The first relies
on organometallic complexes with transition metals, such as iridium
and platinum, which induce a large spin-orbit coupling to allow tri-
plet states to emit photons as phosphorescence?*. The other uses
organic molecules that exhibit thermally activated delayed fluores-
cence (TADF)*”. This class of materials has energetically close singlet
and triplet excited states, in which ambient thermal energy upconverts
the triplet states into the singlet states through reverse intersystem
crossing (RISC). Although the concept of TADF has the advantage of
eliminating the need for transition metals, the resultant temporally
delayed fluorescence typically has atime constant in the microsecond
oreven millisecond range, whichislong enough for detrimental bimo-
lecular annihilations, such as triplet-triplet annihilation and triplet-
polaron annihilation, to compete with delayed fluorescence. These
bimolecular annihilations lead to the decrease in device efficiency
under high current densities, known as efficiency roll-offin OLEDs®’,
and also generate high-energy excitons that are suspected to cause
chemical degradation of materials, particularly in blue OLEDs™.
The research community has thus focused on minimizing the singlet-
triplet energy gap (AE;) to accelerate the upconversion by thermal
activation’. Alternatively, an ideal case would be thermodynamically
favourable downconversion with negative AE;, whichis not expected
ifapplying Hund’s multiplicity rule to the lowest-energy excited state.

Herein, we demonstrate experimental evidence of the existence of
highly fluorescent organic molecules that disobey Hund’s rule and
possess negative AEg; for constructing efficient OLEDs.

Numerous observations of positive AEg; in molecular excited
states are generally understood by the exchange interaction, the
quantum-mechanical effect involving Pauli repulsion, which stabilizes
triplet states relative to singlet states™. AE; is simply equal to twice
the positive exchange energy if the lowest-energy singlet and triplet
excited states (S, and T;) have the same single-excitation configuration™.
Although there is general agreement that AEg; must be positive,
potentially negative AE¢; has been discussed in nitrogen-substituted
phenalene analogues, such as cycl[3.3.3]azine and heptazine, during
the past two decades'? 2. Recent theoretical studies have also suggested
the possibility of negative AE¢; in these molecules by accounting for
double-excitation configurations in which two electrons of occupied
orbitals have been promoted out to virtual orbitals®* (Supplementary
Fig.1). Because the Pauli exclusion principle restricts the accessible
double-excitation configurations in T, an effective admixture of
such configurations stabilizes S, relative to T,. If this stabilization
overcomesthe exchange energy, AEs; could be anegative value (Fig.1a).
However, to the best of our knowledge, none of the molecules has been
experimentally identified with negative AE; and the resultant delayed
fluorescence from inverted singlet and triplet excited states (DFIST).
We note that the accounting for double-excitation configurations
has proved crucial to theoretically reproduce the small but positive
AE¢; of 5,9-diphenyl-5,9-diaza-13b-boranaphthol[3,2,1-delanthracene
(DABNA-1) (0.15 eV)**,

Pioneering computational calculations”inspired us to focus on hep-
tazine as a potential class of molecules that exhibit DFIST. Correlated
wave function theories suggested that S, of heptazine lies 0.2-0.3 eV
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Fig.1| Computational screening of heptazine analogues. a, Schematic
diagram of singlet and triplet excited states splitin energy by the exchange
interaction (middle) and theninverted by including the double-excitation
effect (right). b, Molecular structures of the heptazine analogues examined in

belowT,, althoughS;isa‘dark’state, meaning that the electronic tran-
sition to the ground state (S,) is dipole-forbidden and the oscillator
strength (f) is zeroin the D5, symmetry point group. Notably, the hepta-
zine coreis shared by several synthesized molecules that exhibitintense
TADF**» with positive AE¢; (refs. 2*¥). Furthermore, the recent compu-
tational screening by Pollice et al. has demonstrated that appropriate
chemical modifications of heptazine recover fwhile retaining negative
AE; (ref.?). Assuch, we introduced 186 different substituents to hepta-
zine to generate 34,596 candidate molecules for computational screen-
ing. The structures of all substituents are available in Supplementary
Fig.2. To ensure the synthetic feasibility, at most two distinct types of
substituents were introduced to the heptazine core asR;and R, (Fig. 1b).
We used standard linear-response time-dependent density functional
theory (TDDFT) to calculate AEs; and f, which are more affordable in
computational cost than those calculated by correlated wave func-
tion theories. Although the commonly used adiabatic approximation
in TDDFT does not account for double-excitation character'®*, the
properties calculated by TDDFT are still useful to prescreening for
narrowing the list of the candidate molecules before the high-cost
calculations and experimental evaluation, asboth S, and T, of heptazine
are almost dominated by the single-excitation configuration between
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the computational screening. ¢, Number of screened molecules as afunction of
AEgandfcalculated by TDDFT.d, S-S, energy gaps as afunction of AEgand
fcalculated by TDDFT.

the highest occupied molecular orbital (HOMO) and the lowest unoc-
cupied molecular orbital (LUMO)".

Figurelcshowsthe statistics of the screened molecules asafunction
of AEg;and fcalculated by TDDFT. A well-known trade-off between small
AEgrand largefis evident from this particular dataset of heptazine ana-
logues. Although balancing such a trade-offis akey concerninrecent
synthetic efforts on TADF materials, Fig. 1lcdemonstrates the optimal
combinations of AE¢; and ffor which one parameter can no longer be
improved without sacrificing the other. Figure 1d further visualizes the
trade-offbetween A£¢;and ffor each fluorescence colour. The screen-
ing data suggest 5,264 promising candidates to show fluorescence
across the entire visible spectrum, with AE5; < 0.35 eVand f> 0.01. Set-
ting therange of the vertical S,-S, energy gap t02.70-2.85 eV for blue
fluorescence further narrows down the candidates to 1,028 molecules,
correspondingto 2.97% of all the screened molecules. We then assessed
their synthetic feasibility and selected two heptazine analogues HzT-
FEX, and HzPipX, (Fig. 2a) for further evaluation. We note that these
molecules recover fwhile retaining small AE¢; (f= 0.010 and 0.015 and
AE¢ =210 and 334 meV for HZTFEX, and HzPipX,, respectively). This
trend is consistent with the recent computational screening on hep-
tazine analogues with asymmetrical substitutions®.

Hole Electron

Fig.2|Lead candidate molecules HZTFEX, and HzPipX,. a, Molecular structures of HZTFEX, and HzPipX, with AE; calculated by EOM-CCSD. b,c, Dominant pair

of NTOs of S, and T, of HZTFEX, (b) and HzPipX, (c) for the EOM-CCSD calculations.
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Fig.3|Photophysical properties of HZTFEX, and HzPipX, in deaerated
toluene solutions. a, Steady-state absorption and PL spectra of HZTFEX,

and HzPipX,. Theinset is the magnified view of the absorption spectra.

b,c, Transient PL decays of HZTFEX, (b) and HzPipX, (c) at varying temperatures.

To examine whether HZTFEX, and HzPipX, could have negative
AE¢, we computed their S, and T, by correlated wave function theo-
ries. Equation-of-motion coupled cluster with single and double
excitation (EOM-CCSD)? calculations predict HZTFEX, to possess
negative AEg;of 12 meV, affirming its potential for exhibiting DFIST.
In comparison, AEg; calculated for HzPipX, remains at a positive
value of 10 meV, which is comparable with those of the current
state-of-the-art TADF materials®®~%, Figure 2b,c shows the domi-
nant pair of natural transition orbitals (NTOs)* for S;and T,. In both
molecules, the hole orbitals are exclusively localized on the periph-
erical six nitrogen atoms of the heptazine core, whereas the electron
orbitals are localized on the central nitrogen atom and the carbon
atoms of the core, as well as on the substituents. The spatial separa-
tion of these orbitals indicates that the exchange interactionis weak,
resultingin nearly degenerate S, and T, in the single-excitation pic-
ture. Similar spatial separations of NTOs have also been found in the
multi-resonant TADF materials, such as DABNA-1 (refs. 2%3). In this
situation, the stabilization of S; by including the double-excitation
configurations becomes more dominant to determine the sign of
AE¢. Indeed, S, of both molecules comprise double-excitation con-
figurations with weights of around 1% described as the sum of the
squares of the doubles amplitudes in EOM-CCSD, which are slightly
higher than those of T,. Two other wave-function-based calculations
using second-order algebraic diagrammatic construction (ADC(2))*
and complete active space with second-order perturbation theory
(CASPT2)* further validate the inversion of S;and T, in HZTFEX, with
calculated AEs; of =34 meV and —-184 meV, respectively. However,
for HzPipX,, the two methods also invert AE¢; (-12 meV with ADC(2)
and -171 meV with CASPT2) as compared with the positive value of
10 meV predicted with EOM-CCSD (Supplementary Table 1). This
variation in estimates of AEg; highlights the current limitations of
excited-state calculations and demands conclusive experimental
evaluation. We note that AE¢; calculated by other second-order
methods are given in the Supplementary Information, as well as
the dependence of the choice of the guess orbitals and the size of
the active space on the CASPT2 results.
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d, Temperature dependence of 7, of HZTFEX, and HzPipX,; the solid lines in
drepresent the fits of 7, to asingle exponentialininverse temperature.
e,f,Schematic diagram of the excited states and the associated transitions of
HZTFEX, (e) and HzPipX, (f).

HzTFEX, and HzPipX, were synthesized by nucleophilic aromatic
substitution of 2,5,8-trichloroheptazine with corresponding alcohol or
amine, followed by Friedel-Crafts reactions with m-xylene. The details
of the synthesis and characterization are given in the Supplementary
Information. The photophysical properties of the two molecules were
evaluated in deaerated toluene solutions (Fig. 3a and Extended Data
Table1). The steady-state absorption spectra of HZTFEX, and HzPipX,
comprise the lowest-energy absorption band centred at 441 nm and
429 nm, respectively, with small molar absorption coefficients on the
order of 10* M cm™, reflecting the spatial separation between the hole
and electron NTOs computed for S, of each molecule. On photoexcita-
tion, HZTFEX, exhibits blue emission with a peak wavelength (4;,) of
449 nm and a photoluminescence (PL) quantum yield (@®;,) of 74%,
whereas slightly blue-shifted A, of 442 nm and similar @, of 67% are
observed for HzPipX,. These energy differences in absorption and
emission are also predicted by TDDFT calculations and are attributed to
the stronger electron-donating effect of the piperidyl group in HzPipX,
than that of 2,2,2-trifluoroethoxy group in HZTFEX,. In aerated tolu-
ene solutions, @, of HZTFEX, and HzPipX, decrease to 54% and 37%,
respectively. Because atmospheric O, can quench molecular triplet
excited states and the change in @, is reversible, we ascribe the blue
emissions of the two molecules, at least partially, to delayed fluores-
cence through forward intersystem crossing (ISC) and RISC between
S,;and T,. Thisassumptionis supported by transient absorption decay
measurements on HzZTFEX,, which scrutinized ISC from S, to T, as the
signal decay of S, at 700 nm and the signal growth of T, at 1,600 nm,
followed by the persistent signal decays of both S, and T, (Extended
DataFig.1). We also note that both decays have similar time constants
(223 ns for S, and 210 ns for T)), indicating the steady-state condition
with the constant population ratio maintained by ISC and RISC.

Toshow the excited-state kinetics of the two moleculesin detail, we
performed transient PL decay measurements at varying temperatures
(Fig.3b,cand Supplementary Fig.3 for thelog-log representation). Both
molecules exhibit biexponential transient PL decays, which comprise
nanosecond-order prompt fluorescence followed by sub-microsecond
delayed fluorescence with temperature-dependent time constants.
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Fig.4 | OLED performance. a,b, Current density-voltage-luminance
characteristics (a) and external quantum efficiency-luminance characteristics
(b) of the fabricated OLED using HZTFEX,; the insetin ashows the EL spectra
measuredat1.0 mA andtheinsetinbrepresentsthe viewing-angle

Remarkably, the time constant of delayed fluorescence (7)) of HZTFEX,
gradually decreases from 217 ns to 195 ns with decreasing temperature
from300 K t0200 K (Fig. 3d). Thisanomalous temperature dependence
of T indicates that S, lies energetically below T, for which lowering
the temperature shifts the steady-state population towards emissive
S, relative to dark T, and thus accelerates the delayed fluorescence
(that s, decreases 1y,). In comparison, 7, of HzPipX, increases from
565 ns to 1,372 ns by the same temperature decrease, as has been
similarly observedin conventional TADF materials®”. Itis worth noting
that 7 of HZTFEX, is much shorter than emission time constants
ever reported for TADF materials®>® and phosphorescent materials**
used for efficient OLEDs, which are typically in the microsecond
range.

We further analysed the temperature-dependent PL decay kinetics
with the underlying rate equation. In the absence of phosphorescence
andnon-radiative decay of T, to S, the rate equation for the populations
of S,and T, is given by

d[sl] _ [‘ (ke + ke Kisd) - Kwisc ][51] a

de(Ty kisc ~kisc)\Th
inwhich k,, k,,,, ksc and kg are the rate constants of radiative decay
of S, to S, non-radiative decay of S; to S,, ISC of S, to T, and RISC of
T, to S, respectively. By numerically fitting equation (1) to the PL
decay data at 300 K, we found that RISC is faster than ISC in HZTFEX,
(kpisc =4.2 X107 sversus ki = 2.3 x 107 s '), whereas RISC is slower than
ISC in HzPipX, (kpisc =2.2 X 107 s versus kisc = 8.9 x 107 s ™) (Fig. 3e,f).
These parameters simulate that the population of T, is lower than
that of S, in HZTFEX, under the steady-state condition, indicating
that$, lies energetically below T, (Extended Data Fig. 2). Furthermore,
the temperature dependence of kisc and kg follows the Arrhenius
equation, k=Aexp(-E,/k;T), in which k is the rate constant, A is the
pre-exponential factor, E, isthe activation energy, kg is the Boltzmann
constant and Tis the absolute temperature (Extended Data Fig. 3).
The best-fit parameters of the Arrhenius equation yield the activa-
tionenergies of ISC and RISC (£, ;sc and E, zisc) (Extended Data Table1).
Subtracting £, sc from E, s, we determined AEg; of HZTFEX; to be
-11+2 meV, whichisin marked contrastto positive AEs; ever observed
in numerous molecules, as well as in HzPipX, (AEs; =52 £1 meV).
Wenote thatthe changeink, + k., at varying temperatures is negligible
compared with those in ksc and ks (Supplementary Fig. 4) and thus
the decreasing trend of 7, of HZTFEX, is more reasonably attributed
totheinverted S, and T,. The negative AEs; of HZTFEX, is retained in a
solid-state host matrix (see Extended DataFig.4 and the Supplementary
Information for details).

Having experimentally determined negative AEg;, we conclude that
HzTFEX, exhibits DFIST. Further synthetic efforts replacing the xylyl

Luminance (cd m2)

Time (us)

dependence of the luminance, whichis almost consistent with the Lambertian
distribution. ¢, Transient EL decays of the OLEDs using HZTFEX,, 4CzIPN and
MADN, respectively, measured in pulse operation with square-wave voltages
of8Vand-4V.

groupsinHzTFEX, witheither phenyl or tolyl groupsled toHzTFEP, and
HzTFET,, which similarly show DFIST with measured AEg; of 14 £ 3 meV
and -13 + 3 meV, respectively (see Extended Data Table 1 and Supple-
mentary Fig. 5 for details), indicating the potential of heptazines for
further developing efficient DFIST materials. Incommonwith the three
materials, ISCfrom S, to T, competes with the inherently slow radiative
decay of heptazines, followed by faster RISC, leading to a significant
S, population relative to T, and sub-microsecond DFIST. Thus, we
propose torefer tothe present type of emissions as ‘H (heptazine)-type
delayed fluorescence’ by analogy with ‘E (eosin)-type delayed fluores-
cence’referred to as TADF*and ‘P (pyren)-type delayed fluorescence’
involving triplet-triplet annihilation*.

Finally, we evaluated the electroluminescence (EL) properties of
HzTFEX,in OLEDs fabricated by thermal evaporation. The details of the
fabrication procedures and the device structures are givenin the Sup-
plementary Information. Figure 4a,b shows the EL spectra, current
density-voltage-luminance characteristics and external quantum effi-
ciency-luminance characteristics of the OLED. Intense blue EL originat-
ing fromHzTFEX, was observed with spectral peak wavelengths (A ) at
450 nmand 479 nm and Commissioninternationale de I'éclairage (CIE)
coordinates of (0.17, 0.24). The maximum external quantum efficiency
reached 17%, correspondingto theinternal quantum efficiency of 80%
forabottom-emission OLED with atypical light-outcoupling efficiency
0f20% **. We note that the viewing-angle dependence of the luminance
followed the Lambertian distribution (Fig. 4b inset), ensuring accurate
estimation of the external quantum efficiency from the forward emis-
sion. Remarkably, HZTFEX, exhibited fast transient EL decay, reflecting
the sub-microsecond H-type delayed fluorescence (Fig. 4c). In compari-
son, much slower transient EL decays were observed for E-type delayed
fluorescence of2,4,5,6-tetra(carbazol-9-yl)isophthalonitrile (4CzIPN)®
and P-type delayed fluorescence of 2-methyl-9,10-bis(naphthalen-2-yl)
anthracene (MADN)®, although the EL of MADN initially decayed faster
by the prompt fluorescence solely from S, (ref. *°). It is thus evident
that the fast triplet harvesting of HZTFEX, with negative AEs; can be
retained even in actual OLEDs. Although the efficiency roll-off is still
marked in this preliminary device concerning the large hole injection
barrier caused by the high ionization potential of HZTFEX, (6.3 eV), we
anticipate that further optimization of molecular design will address
thisissue and allow a conclusive exploration of the effects of negative
AE¢; on efficiency roll-off and device stability.

In conclusion, we have demonstrated fluorescent heptazine mol-
ecules that possess negative AE¢;. We observed their blue delayed
fluorescence in both PL and EL with anomalous features: (1) the very
short decay time constants (7p; = 0.2 ps), (2) the decreasing trend of 7,
with decreasing temperature and (3) therateinversion of RISC and ISC
(kisc > kisc)- These features indeed arise from negative AEg; and led to
the terminology ‘delayed fluorescence frominverted singlet and triplet
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excited states (DFIST)’ or ‘H (heptazine)-type delayed fluorescence’.
We predict that further development of DFIST materials will offer stable
andefficient OLEDs based onthefast triplet-to-singlet downconversion,
with great implications for displays, lighting and lasers.
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Methods

Quantum-chemical calculations

Forthe 34,596 heptazine molecules, the T, geometries were optimized
using spin-unrestricted DFT with the LC-BLYP functional and the
6-31G basis set. Vibrational frequency analysis for HZTFEX,, HzPipX,,
HzTFEP, and HzTFET, gave no imaginary frequencies at the same
level of theory. The vertical excitation energies of S, and T, were
calculated using liner-response TDDFT with the LC-BLYP functional
and the 6-31G(d) basis set within the Tamm-Dancoff approxima-
tion. The range-separation parameter of the LC-BLYP functional was
non-empirically optimized to 0.18 bohr™ to minimize the difference
between the energy of the HOMO and the ionization potential of the
neutral system and the difference between the energy of the HOMO
of the radical anion system and the electron affinity of the neutral
system* of 2,5,8-triphenylheptazine. The T, geometries of HZTFEX,
and HzPipX, were also optimized using spin-unrestricted second-order
Mgller-Plesset perturbation theory (MP2) with the correlation con-
sistent cc-pVDZ basis set. At the MP2 geometries of HZTFEX, and
HzPipX,, the vertical excitation energies of S, and T, were calculated
using EOM-CCSD?’, ADC(2)*° and CASPT2* with the cc-pVDZ basis
set. The CASPT2 calculations were performed with the fully internally
contracted scheme over the state-averaged complete active space
self-consistent field (CASSCF) wavefunctions with the active space of
12 electrons and 12 orbitals using the resolution of identity approxi-
mation with the auxiliary fitting basis set. The DFT, TDDFT, MP2 and
EOM-CCSD calculations were performed using the Gaussian16 Rev C.01
program. The ADC(2) calculations were performed using the Q-Chem
5.3.0 program. The CASSCF and CASPT2 calculations were performed
using the Orca4.2.1 program.

Materials and synthesis

Commercially available reagents and solvents were used without
further purification unless otherwise noted. 4CzIPN and MADN were
purchased from Luminescence Technology Corporation and e-Ray
Optoelectronics Technology, respectively. The synthetic procedures
and characterization data of the heptazine molecules are detailed in
the Supplementary Information.

Photophysical measurements

Steady-state ultraviolet-visible absorption spectrawererecorded ona
Shimadzu UV-3600i Plus spectrophotometer. Steady-state PLspectra
were acquiredona HORIBAFL3 spectrofluorometer with 370-nm pho-
toexcitation fromaXe arclamp. The absolute PL quantumyields were
determined using a Hamamatsu Photonics C9920 integrated sphere
system with 370-nm excitation from a Xe arc lamp. Transient absorption
decay measurements were performed by arandomly interleaved plus
train method*® ona UNISOKU picoTAS system with a 355-nm Q-switched
laser pump source (pulse width <350 ps) and asupercontinuum white
probe source (pulse width <100 ps). Transient PL decay measurements
were performed by time-correlated single-photon countingonaHOR-
IBA FL3 spectrofluorometer with a 370-nm LED pump source (pulse
width <1.2 ns) and a UNISOKU CoolSpek cryostat using liquid nitrogen
as the coolant. lonization potentials were determined using a RIKEN
KEIKI AC-3 ultraviolet photoelectron yield spectrometer.

Analysis of transient PL decay kinetics

The time constants of prompt and delayed fluorescence (7, and 7p,;)
were determined by biexponential decay fitting and deconvolution with
theinstrument response function. Itiscommonwhen determiningthe
rate constants of the transitionsinvolved in TADF to assume K¢ >> Kgisc
suchthatthe contribution of RISC to the prompt fluorescence is negligi-
ble*. However, this assumption does not hold true for DFIST materials

with kgisc > kisc. Thus, k, + k.., kisc and kg, were determined without
assuming kisc >> kpisc by fitting the S, population in equation (1) to the
transient PL decay data using the scipy.integrate.odeint and scipy.
optimize.curve_fit functionsin Python 3.7°°. k, and k,, were determined
from @, = k./(k, + k) assuming negligible non-radiative decay of T, to
So-Activation energies of ISCand RISC (E, \scand E, i) were determined
by fitting the Arrhenius equation to the temperature dependence of
kisc and kysc, respectively. AEg; was determined by subtracting £, js¢
fromE, gisc-

OLED fabrication and evaluation

The fabrication procedures of OLEDs are detailed in the Supple-
mentary Information. EL spectra were recorded using a Hamamatsu
Photonics PMA-12 photonic multichannel analyser. Current density-
voltage-luminance characteristics were measured using a Konica
Minolta CS-200 luminance meter and a Keithley 2400 source meter.
The viewing-angle dependence of luminance was measured using a
home-build spectro-goniometer with a Konica Minolta CS-2000 spec-
troradiometer. Transient EL decays measurements were performed
using a home-build set-up witha Hamamatsu Photonics H7826 silicon
photomultiplier tube (time response = 1.5 ns) and an Agilent 33220A
functiongenerator for pulse OLED operation (square-wave voltages =8,
-4 Vand frequency =2 kHz).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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m9.figshare.20058977.

47. Baer, R, Livshits, E. & Salzner, U. Tuned range-separated hybrids in density functional
theory. Annu. Rev. Phys. Chem. 61, 85-109 (2010).

48. Nakagawa, T., Okamoto, K., Hanada, H. & Katoh, R. Probing with randomly interleaved
pulse train bridges the gap between ultrafast pump-probe and nanosecond flash
photolysis. Opt. Lett. 41,1498-1501 (2016).

49. Goushi, K., Yoshida, K., Sato, K. & Adachi, C. Organic light-emitting diodes employing
efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat.
Photonics 6, 253-258 (2012).

50. Haase, N. et al. Kinetic modeling of transient photoluminescence from thermally
activated delayed fluorescence. J. Phys. Chem. C 122, 29173-29179 (2018).

Acknowledgements This work was supported in part by an Industrial Technology Research
Grant for Young Researchers from the New Energy and Industrial Technology Development
Organization (NEDO) (grant no. 09151455 to Y.-J.P.), JST PRESTO (grant nos. 13417316 to Y.-J.P.
and JPMJPR17N1to N.A.) and JSPS KAKENHI (grant nos. 24685029, 177H03103, 20H02554 to
Y.-J.P. and 20K15252, 21H05413, 22H02051 to N.A.). The authors thank M. Kim at RIKEN CEMS,
T. Chiba, and M. Hirasawa at Yamagata University for their support with the OLED fabrication
and evaluation. The computations were partially performed using the HOKUSAI Big Waterfall
system at RIKEN.

Author contributions N.A. and D.M. conceived the project. N.A., Y.H. and S.M. conceived the
procedures of the computational calculations. N.A., Y.-J.P.,, Y.H., K.N. and S.M. performed the
computational calculations. N.A., H.l. and Y.-J.P. performed the photophysical measurements.
N.A., Y.K. and Y.-J.P. fabricated and evaluated the OLEDs. B.D., R.I., H.l. and A.N. performed
synthetic experiments and assisted the characterization of the synthesized compounds and
analysis of data. N.A., Y.-J.P., F.A. and D.M. designed the experiments and analysed the data.
N.A., Y.-J.P. and D.M. wrote the manuscript.

Competing interests The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-022-05132-y.

Correspondence and requests for materials should be addressed to Naoya Aizawa,

Yong-Jin Pu or Daigo Miyajima.

Peer review information Nature thanks Pierre Audebert and the other, anonymous, reviewer(s)
for their contribution to the peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.


https://doi.org/10.6084/m9.figshare.20058977
https://doi.org/10.6084/m9.figshare.20058977
https://doi.org/10.1038/s41586-022-05132-y
http://www.nature.com/reprints

Article

a b c
500 0.7
7 )
400 6T S o6} — Deaerated solution 102} — S absorption at 700 nm
=] g- — Aerated solution s — Ty absorption at 1600 nm
= 0.5 i S
a0 5 5 é ----- Spectral difference 2
@ 4 2 € 04 .§
< S k) ®
£ 200 38 5 03 E10°}
F ,E = ]
100 2 Bo2 §
15 E 3
0 A = g o1
__ c
0 - 0 L L L 10 ul L L L L 1 L
600 800 1000 1200 1400 1600 600 800 1000 1200 1400 1600 0 50 100 150 200 250 300 350
Wavelength (nm) Wavelength (nm) Time (ns)
Extended DataFig.1| Transient absorption data of HZTFEX,. a, Transient line represents their spectral difference and mainly correspondsto the
absorption of HZTFEX, as afunction of wavelengthand timein adeaerated transient absorption of T,. ¢, Transient absorption decays of S;and T,
toluene solution. b, Integrated transient absorption spectra of HZTFEX, over monitoredat700 nmand 1,600 nm, respectively.

0-500 nsindeaerated and aerated toluene solutions; the dashed green dashed



1Y
o

(0] 0 " .
10 3 HzTFEX> — Transient PL decay 10 3 HzPipXz — Transient PL decay
_ — S population (fit) _ ' — Sy population (fit)
3 — T4 population 3 I — T1 population
-1 -1
— 10 — 10" ¢
= = E
7} 7}
c c
3 S
£ k= i
-2 -2
10'3 i ] " | i ] . ] ; | ; 10'3 P T W S SR TR T A i |
0 0.2 0.4 0.6 0.8 1 1.2 0 04 08 12 1.6 2 24 28
Time (ps) Time (ps)
Extended DataFig.2 | Analysis of the transient PL decays of HZTFEX,and solutionsat300 K. The solid blue line represents the T, population simulated
HzPipX,.a,b, Fit (solid red line) of the S, populationin equation (1) to the by the best-fit parameters k, + k,,,, k;sc and kgisc in equation (1).

transient PL decay of HZTFEX, (a) and HzPipX, (b) in deaerated toluene



Article

a b c
HzPipX:
108 L HzTFEX2 100 L -P 2‘ L S
i - A A4 @ *———|
o o
~ M z
8 8
| 7] [7]
: 7 \N\‘\’\‘\‘\’\‘\ g B
810"t 810" ¢
2 2
g - |SC (Ea,isc 53 =1 meV) g 8- |SC (Ea,isc 17 meV)
—4— RISC (Earisc 42 + 1 meV) —4— RISC (Earisc 69 + 1 meV)
106 ! 1 ! L 105 ! 1 1 1
3 3.5 4 4.5 5 3 3.5 4 4.5 5
1/Temperature (103 K_1) 1/Temperature (103 K_1)

Extended DataFig. 3 | k;sc and ky,sc Of HZTFEX, and HzPipX,. a,b, Temperature ~ equation. The error bars of the plotsinaandb are smaller than the plot size.
dependence of kisc and ky,sc of HZTFEX, (@) and HzPipX, (b) in deaerated c,Schematicdiagram of the potential energy surfaces of S;and T, and the
toluene. Thesolidlinesinaandbrepresentthe fits of the plotstothe Arrhenius  activationenergies of ISCand RISC.



Tr 10° | 10%/T (K™
. ——3.33 ——5.50
308 3 |
s = 6.50
206 107}
2 S :
Q -—
£ 04r £
7 T
0.2 |+ 102 - ‘
0 N " I " I R | i I [ PR T TP SR A |14 | M [ |
350 400 450 500 550 600 650 0 02 04 06 08 1 12 14
Wavelength (nm) Time (ps)
c d
10% | 108 ¢
m
= —
58 ‘o
cC o -—
s g e
28 3
s | 8 |
ET o i
E 2 _ S . —@—ISC (Eaisc 21 +1 meV)
- - —a—RISC (Eanisc 12 meV)
© L
102 i 1 . ] . | . | 106 , 1 R 1 . | " |
3 4 5 6 7 3 4 5 6 7
1/Temperature (103 K_1) 1/Temperature (103 K_1)

Extended DataFig. 4 |Photophysical properties of HZTFEX, inasolid-state dependence of 7, of PPF:1wt% HZTFEX,. d, Temperature dependence of k,s¢
host matrix. a, Steady-state PLspectra ofathin film of bis(diphenylphosphoryl)  and kysc of PPF:1wt% HZTFEX,. The solid linesind represent the fits of the plots
dibenzo[b,d]furan (PPF):1wt% HZzTFEX,.b, Transient PL decays of PPF:1wt% tothe Arrhenius equation.

HZTFEX,at varying temperatures under aN,atmosphere.c, Temperature



Article

Extended Data Table 1| Photophysical properties of HZTFEX, and HzPipX, in deaerated toluene solutions

APL dp.  TPF TDF k: kear kisc krisc E.isc Earisc AEst

B omp o (sF @9 Y G (Cd Y (meV) (meVy (meV)

HzZTFEX. 449,476 74 14 217 54x105 19x10° 23x107 42x107 53+1 42+1 -11+£2
HzPipX> 442,467 67 79 565 63x10° 3.1x10° 89x10" 22x10’ 17 69+1 52+1
HZTFEP, 454,483 44 35 288 3.1x10° 40x10° 14x10" 1.8x10" 31+£2 17+1 -14+3

HZTFET. 451,479 42 23 246 29x10° 40x10° 1.6x107 27x107 44+2 31+1 -13+3

*Photoluminescence (PL) peak wavelength. °PL quantum yield. “Time constant of prompt fluorescence. “Time constant of delayed fluorescence. °Rate constant of radiative decay of the
lowest-energy excited state (S,) to the ground state (S,). ‘Rate constant of non-radiative decay of S, to S,. 9Rate constant of intersystem crossing (ISC) of S, to the lowest-energy triplet excited
state (T,). "Rate constant of reverse intersystem crossing (RISC) of T, to S,. ‘Activation energy of ISC. 'Activation energy of RISC. “Energy gap between S,and T..
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